Closed-loop Identification of Multivariable Systems:
Excitation and Variance Issues

L. Mi8kovic P*, A. Karimi®?, D. Bonvin®, M. Gevers®**

2Center for Systems Engineering and Applied Mechanics (CESAME),
Universi€ Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

PLaboratoire d’Automatique, Ecole Polytechniquédgrale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland.

Abstract

A variance analysis of the parameters of a plant, belonging to a class lo¥aniable systems, estimated in closed-loop operation is
performed. More specifically, having in mind the control applicationsreviieis not desirable to excite all external reference inputs, the
effect of the absence of one or more reference signals on the earidrihe estimated parameters is investigated. The derived expressions
are valid for a wide range of model structures including all conventipmadliction error models. It is shown that, regardless of the
parametrization, the absence of a reference signal never improdegamost cases, impairs the accuracy of the parameter estimates. In
other words, there is a price to pay when restrictions are imposed on pleeireental conditions. The analytical results are illustrated by
two simulation examples.
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1 Introduction a control engineer has to specify, for each of the reference
inputs, the experimental conditions such as the type of ac-

A common approach in closed-loop identification of mul- ceptable input signals, the acceptable level of excitatios

tivariable systems is to excite all external referencealgn ~ €XPeriment time, etc. It is clear that exciting only one or a
simultaneously and then use the acquired data to identifyfeW referencc_e inputs m_akes this task much simpler and thus
the parameters of the selected model structure. However, in"0r€ appealing to engineers.
practice, it is not rare to encounter the situation whers it i i i N o i
not convenient to excite all references due to process limi- In this context, the identifiability pf mqltwarlable lineays-
tations or for economic reasons. For example, in an indus- ©8Ms has been recently re-examined in [1]. It has been shown
trial process where product quality is one of the reference that, in contrast to commonly held beliefs, it is not neces-
signals, exciting this reference would result in manufactu ~ S&1Y to excite all reference S|gnal_s for the |dent|f|(;at|cbn_ o]
ing a product of non-uniform quality, which is not accept- & multivariable system operating in closed loop with a lin-
able in most cases. Instead, it is preferable to perform the €@r time-invariant controller. In fact, provided that trane
identification by exciting the other reference inputs. Arest ~ troller is of sufficient complexity, it is possible to idefytia
incentive for not exciting all reference inputs is of practi Multivariable system even without any external excitation
cal nature: When performing identification on a real plant, N Such case, it is the excitation due to noise that provides
the information for the estimation of the parameters. On the
other hand, relying on information from the noise source
only might mean that one has to acquire an unreasonable
long data sequence in order to satisfy the prescribed level
of accuracy. In that case, an additional excitation at one or
several of the reference inputs would allow achieving the
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to the identification where all reference inputs are excited the variances in both open and closed loop are compared for
Since different experimental conditions yield differeet- SISO systems represented by BJ model structures.
els of accuracy of the estimated parameters, the obvious way

to quantify the aforementioned drawbacks is to analyze the The result of this variance analysis is that, in the case of
accuracy for the two cases. closed-loop identification, the following two situationanc

- . , be distinguished:
A similar accuracy analysis in the context of open-loop iden

tification of multi-input systems has been considered re-
cently in [4]. More specifically, the effect of an additional
input signal on the variance of the polynomial coefficients
in the case of FIR, ARX, ARMAX, OE and BJ models has
been investigated. Necessary and sufficient conditions on
the parametrization of MISO models under which the addi-
tion of an input decreases the covariance of the parameter
estimates have been provided. It has been shown that, for
model structures that have common parameters in the pla b
and noise models, any additional independent input sign
reduces the covariance of all parameters, including the pa-
rameters of the noise model and those associated with the
other inputs. It has also been shown that, the accuracy im-
provement resulting from an additional input extends belyon
the case of common parameters in all transfer functions.

() If all parameters of the noise model are present in the
plant model, or if there is no noise model at all, then the
accuracy of all parameter estimates is always improved by
exciting both references simultaneously. For the FIR and
OE structures, this result is in contrast to the open-loop
case, where existence of common parameters between the
plant and noise models is required to improve the accuracy
of all parameter estimates.

If the noise model contains some parameters that are in-
dependent of the plant model, then simultaneous excita-
tion of both reference signals may improve but can never
worsen the quality of the parameter estimates.

The paper is organized as follows. Preliminaries concern-
ing prediction error identification are given in Section 2. |
In the present contribution, a Linear Time-Invariant (LTI) Section 3, an expression describing the influence of the ref-

system withm inputs andy outputs is to be identified using erence signals on the information matrix is derivgd. This ex
tpression is used for the computation of the variance of the

data collected in closed-loop operation. It is assumed tha ! : X .

the following two assumptions hold: parameter and transfer fupctlon estimates in Section 4. The
results presented in Sections 3 and Section 4 are general-

dzed for arbitrary number of inputs and outputs in Section 5.

Section 6 illustrates the analytical results via two sirtiala

examples. Finally, conclusions are given in Section 7.

Al) there are no common parameters between the model
associated with the various outputs

A2) the disturbances acting on the different outputs are not
correlated

Observe that these two assumptions restrict the class of mul 2 Preliminaries

tivariable systems for which the results of this work apply.

For systems fulfilling these assumptions, a MISO model can The following unknowr2 x 2 LTI “true” plant is considered:

be identified for each output separately and the resulting in

dividual models combined into a final MIMO model [3]. sy () =G(g Y u(t) + H(g~ )n(t)

The questions that this paper addresses are along the fol-

lowing two lines: (i) What are the possible drawbacks of not G Gz u(t) + [Hl 0 ] n(t) )
Ga1 Gag 0 H,

exciting all reference signals? (ii) Do the conditions oa th

parametrization of the MISO structures that apply to open-
loop identification carry over to the case of direct closed- . -
loop identification (with the difference that, in closedpo ~ Wheré Gii, Gia, Goi and Gy, are strictly causal, finite-

operation, the external reference signals are excitedadst  °Order, rational transfer functions that are not necessant
of the inputs)? alytic outside the unit circle, anff; and H, are stable and

inversely stable transfer functions. The backward-shjift o

To answer these questions, a general model structure is in-eratorg~ ! will be omitteinn the sequel whenever appropri-
troduced that encompasses all commonly used parametricte: The signal(t) € 'R” is the output of the true plant,
model structures. It is assumed that the true plant (includ- “(f) € R* the control signaly(t) € R* an external refer-

ing the noise model) is in the model set. For clarity of pre- €7C€ Signal and(t) € R* white noise input with variance

sentation, it is first assumed that = p = 2 and the main g?i = diag(c},,07,). The systen® is controlled by the sta-

findings are presented. Then, the results are extended to arPiliZing 2 x 2 controllerk” as depicted in Fig. 1. The control
bitrary values ofn andp. An analysis of the variance of the ~ Signalu(t) can be expressed as a function-(ff as follows:
estimated parameters, which is asymptotic in data lendth bu

not in model order, is performed for two cases of excitation: u(t) = U (r(t) — Hn(t)) (2)

(i) a single reference signal is used to excite the closeg-lo Uil U
system; (ii) both references are applied simultaneously. A = | """ " | (1) — Hy(1)) ©)
similar asymptotic analysis has been performed in [2], wher Ua1 Uz




J'77(75) calculated via the prediction error criterion [5]:

H QN : N
) 1 ,
r(t) u(t) Ly 0(1) o) On = ?N = arg i - ;[E(tﬁ)} @)
- K G TN

where the one-step ahead prediction eer@r 6) for (4) is
defined as:

Fig. 1. Multivariable closed-loop system

A ~

where the input sensitivity functiotv is U = K, with e(t.0) =1 (t) __lyl(ﬂt —1.9)
S = (I + GK)~! being the output sensitivity function and =H1(0)" (y1(t) — Gr1(O)ua(t) — G12(0)u2(t))(8)
I € R**2 pbeing the identity matrix.

and the transfer functions are written generically as fonst
Under the assumptions Al and A2, the plant (1) can be Of the parameter vectat.
divided in the following two distinct subsystems .

Let us assume that the parameter estimatesonverge to

S1:y1(t) = Griu(t) + Graua(t) + Hiny(t) (4) the true parameter vectég asN tends to infinity. Then, the
Sy 1 yo(t) = Goyur (t) + Gosusa(t) + Hama(t) (5) parameter error converges to a Gaussian random variable:
Since the identification of these two subsystems can be per- VN (éN — 90) dist, N(0, Py) 9)

formed separately, only the identification of the subsystem
S1 will be treated subsequently. By duality, the same results h h . L )
will hold for the subsystends. where the covariance matri&% is given by:

T — —
Consider the direct closed-loop identification of the sisbsy Py = oy, [E(t,00)0" (t,00)] 7" £ 07 (yM™" (10)
tem S; using the following model structure:

with v (t,0) £ % and M the information matrix. Typ-

M = {G11(a), G12(a, B8), H1 («, B,7), ically, to compute approximate expressions for the covari-
—— . ance of the parameter vector estimates, the asymptotic co-
0= (a By ) € Dy CR™ (6) variance formulas (9)-(10) are used:
2
whereG1(a), Giz2(a, 8) andH; (o, 3, ) are rational trans- cov(fy) ~ ipg _ Im M1 (12)

fer functions,@ € R™ is the vector of model parameters,
and Dy is a subset of admissible values fbrlt is assumed
that the true subsystey can be described by this model In the next section, an expression fof is derived that
structure for somé, = (o, 5% ,7¢ )" € Dy. Note that  shows the dependence of this matrix on the external excita-
this parametrization covers a wide range of model struc- tion signals-; (¢) andrz(t). In turn, this expression will help
tures. For example, if one considers the ARMAX structure analyze the dependence of the covariance of the parameter
Ay1(t) = Briui(t) + Biaua(t) + Cimu(t) then the sub-  estimatedy onr(t) andry(t).

vectora contains the parameters of the polynomidlsind

By, B contains the parameters &f;> and~ contains the

parameters of’;. Also, in this caseéd; = Hy(a, 7). 3 Expression for the information matrix M

N N

The direct identification method gives consistent estisiate  Combining (3), (4) and (8), the gradient of the prediction

Of. the Open—loop plant if the data are SUfﬁCiently |nf0rmat| error with respect to the parameters@a{: 90 can be ex-
with respect to the adopted model structure and if the true pressed as follows:

plant, including the noise model, can be described withén th

chosen parametrization [6]. Here, sufficiently informativ o —17/.0 0

data means that the signalgt) are persistently exciting W(t,00) = H ™ [(912U11 + 912U ) 1 (1)
of appropriate order. In closed loop, this is ensured e.g. + (gflUlg -‘rgnggg) ro(t)

by a persistently exciting reference signal or by using a +(h? — ® U Hy — ¢°Usy H ¢
sufficiently complex controller. The reader is referredp [ ( . gt N GioUnHh) m(?)
for more details. Using a set of input-output data of length — (911U12Hz — g15U22H2) (1))

N acquired in closed-loop operation, the estimése is £ 1057y (t) 4 TThro(t) + Ty () + e (t) (12)



where If a submatrix ofM carries the argumemntandsn, this means
that this particular submatrix depends on the statistics of

0 0G11(0) 9 0G12(0) bothr (t) andry(t) as well asy; () andny(t). Otherwise,
911 = T P 912 = o 9—s the submatrices a#/ carry as argument only the particular
- - component on which they depend, for examplgs(n;)
and depends only on the statistics 9ff(t).
1™ " Hp oty (13) In the sequel, the effect of the presence or absence of the

N _ ) second external reference signg(t) on the variance of the
The quantitied], IT3, ITY andII; are introduced in (12)  elements of the parameter vector estimate is analyzed. Note
for the sake of simplicity of notation. that, for a given model structure, the presence or absence
of a particular external reference signal does not charge th
From (10)-(13), and using Parseval's theorem and the factstructure of the information matri/since, in closed-loop
thatr(t), 72(t), m1(t) andny(t) are not correlated, the in-  operation, both inputs; (¢) andus () are excited by both

formation matrix can be rewritten as: reference signals.
1 (" S S
M=o [ {IGI}"®,, + 15105 ®,, + _
2 J_» 4 Effect of the second reference signal

+ T 0, + T 0, } dw
' ’ Consider the matrid/ given in (18). All the possible model

o .

= M(r1) + M(rz) + M(m) + M(n2) (14) structures that can correspond to the parametrizatioref6) ¢

) ) be classified in two groups:
where(.)* is used to denote the complex conjugate trans-

pose. A) The model structures that have no noise model or where

. . . the subvectory of the vectord is empty (there are no
Consider now the partition of the parameter veétan (6). parameters in the noise mod#} that are independent of
The sensitivities of the transfer functiot, G12 and the plant model). This group includes the classical FIR,
with respect td read: ARX and OE model structures.

B) The model structures whose noise model contains some

¢ = ( g 0 0 )T g% = ( g gﬁ O)T (not necessarily all) parameters that are independent of
1 H ’ T12 1212 the plant model. This group includes the ARMAX and BJ
and hf = (h? % h?) (15) model structures.

o 0 0 In order to study the effect af; (¢) andrz(¢) on the accuracy
where the definition of the components ¢ff;, ¢7, and h{ of the parameter estimates @f 3 and~, we introduce:
is analogous to that in (13). It follows from (12), (13) and
(15) that the quantityI] reduces to:

Co Cap Ca,
_ L -1 _
I = Hy 1(9?‘1U11+g?2U21 91Un1 0) (16) C=M" =| Csa Cs Cpy (9)
C“/a Cvﬁ C"/

Consequently, the contribution of (¢) to M can formally

be expressed as: 2 R o2
Note thatcov(an) ~ —*+Ca, cov(Bn) = —*+Cs, and
Mi1(r1) Mia(r1) O cov(yn) ~ %Cv. Furthermore, the variance of the identi-
M(ry) = | Mai(r1) Mas(r) 0 | . (17) fied plant models?;; (fx) andGi2(fy) and the identified

noise modeH; (6y) can be calculated using Gauss’ approx-
imation formula [5]. For a large number of dada and by
using (15) forg?,, ¢¥, andh{, one obtains:

0 0 0

Similar calculations provide expressions faf(rs), M (1)

andM (n2), from which the information matrid/ becomes: o o2
var (Gll(ejw,‘gND ~ ];7[1 (971)" Ca g4
My (r,m) Maa(r,n) Mis(m) - o2 .
M = | Mai(r,n) Mas(r,n) Mas(m) | - (18) var (G12(€JW,9N)) ~ ];771 {(9%2)" Cagts
Msi(m) Msa(m) Mss(m) +(g15)"C 9532}



and

Proof. The inequalities (25) are a direct consequence of the

following expression:

2
var (Hy(e™,0x)) = % {(hg)* Cuh

+(h)"Ca b + (h])" Cy b1} (20)

In the sequel, the analysis is performed separately for the
two groupsA andB, and thus the corresponding covariance
matricesC' and their elements will carry the appropriate sub-
scripts “4” and “B”, respectively. Furthermore, the block-

)o@ _ 6@ (3 _ D) oo
e - =c@ (M - m)

_ —1
= (M a1 Q)
_ -1
= (MPan MY+ ML) >0, (28)

a

diagonal element§’,, Cg, C, and the matrice§’ and M Comments
will carry the superscript(‘1)” when only reference signal
r1(¢) is applied and (2)” when both reference signals are 1) For a structure of groud, the simultaneous excitation

applied simultaneously.

4.1 GroupA 2)

When the vectofy is empty and both excitation signais(t)
and ro(t) are present, the information matrix/ in (18)

reduces to
u® _ (Mn(?“»??) M12(7"777)>
= )
Moy (r,n) Maa(r,m)

When excitingr; (¢) alone, the corresponding information
matrix reads:

3)
(21)

4.2

1
Mz(; )= Mo (r1,m) Maa(r1,m) Mas(m)

of r1(¢t) andr,(t) reduces the covariance of the esti-
mates of the parameter vectarsand 3 compared to
the case where (t) alone is excited.

If the variance of-(¢) tends to infinitny) andAM
also tend to infinity and consequentd)”/ff) tends to
zero. The intuition is thatr and 3 become perfectly
known when the power of;(¢), and therefore also the
power ofu; (t) andusy(t), tend to infinity.

The presence of(t) reduces the variance of all trans-
fer function estimates. If the power of(t) grows

unbounded, the variances 6f(6y), G12(6y) and
H,(Ay) tend to zero.

GroupBB

When onlyr(t) is excited, the information matri®zy"
has the following form:

Mui(r1,m) Miz(r1,m) Mais(m)
(27)

Msi(n)  Msa(n) Mss(n)

When bothr, (t) andry(t) are present, the information ma-

My (r1,m) Mys(r,
MY = ( 11(r1,m) Mia(r 77)) . (22)
My (r1,m) Maa(r1,n)
The matrixMﬁf) can be written as:
M@ = MY+ AM (23)
with
_ M Mo (r
AN & ( 11(r2) 12(72)) . (24)
M1 (r2) Mas(ra)

The following result is an immediate consequence of the
expression (23) and the fact thAt\/ > 0.

Theorem 4.1 Consider the closed-loop identification of the
parameter vectors and 5 of the model structured C M.
Let the excitation signals, () andrz(¢) be independent and
persistently exciting of sufficient order. Then, the comace
matrices of the parameter estimatésand 3 decrease by
addition of the second excitation(t), i.e.

with

trix M is given by expression (185" and M are
related as follows:

MP =M + AM (28)
Mi1(re) Mi2(r2) O
AM = M21 (’I“Q) Mgg(’r‘g) 0 (29)

0 0

Next, the following result can be established.

Theorem 4.2 Consider the closed-loop identification of the

e <cly and P <c.  (25)

parameter vectora, 8 and~ of the model structur8 c M.
Let the excitation signals, (¢) andrs(¢) be independent and



persistently exciting of sufficient order. Then, the coaace

matrices of the parameter estimateand /3 cannot increase
by addition of the second excitatien(t), i.e

<y

oy and CL) < CL. (30)
In addition, the covariance matrices §fare strictly smaller
by addition of the second excitatien(t), i.e

o <cll). (31)

Proof. The matrix AM is positive semi-definite (note the
non-negative contribution of;(¢) to the elements of/ in
(14)). Consequently,

oy —of) =cyamcy’

—1
= (M an ) + g

> 0. (32)

Now, the expression (30) follows from the fact that any prin-
cipal submatrix of a positive semi-definite matrix is pogti

semi-definite. Also, it follows from (32) tha(f 2) < O(l
However, this |nequaI|ty can be strengthened as foIIows
Whenr,(t) alone is present, by straightforward calculation

of the inverse of th¢3, 3) element ofM,(;), one obtains:
= (Ms1(m) Mz2(m

g )+ ()

Similarly, when bothr, (¢t) andry(¢) are applied:

(M3z3(m) —

M1 (r1,m) Mia(ri,n)
Moy (r1,m) Maa(re,m)

)

Maz(m)
Mo3(m)

(33)

O = (Mas(m) = (Ms1 (1) Mas (m1))
My (r1,m) Mia(ri,n) -

1 J-20)
My (ry,m) Maa(r1,m)

T -1
X (Miz(m) Maz(m)) )
where the matrixAM > 0 is given in (24). By comparing
expressions (33) and (34), the expression (31) follows im-
mediately. O

(34)

Comments

1) For a structure of groups, the presence of a second
reference signal:(¢) does not increase the covariance
of the estimates of the parameter vectars? and re-
duces the covariance of the estimates ofhis state-
ment is valid also for model structures with indepen-

dent parametrization of the plant and noise models suchwith § € Dy

as BJ.

2) If the energy ofrs(t) grows unbounded, expressions

(34) and (24) reveal tha(ﬁgl)g tends toM3' (). At
the same time, using (18), it is straightforward to show

thatC Ny andq(fg tend to zero. This can be explained

as foIIows wherr,(t) goes to infinityus (¢) andus(t)

also go to infinity, and the parametersand3 become

perfectly known; then, the estimation gfcorresponds

to the identification of the unknown parameters of the

Moving Average (MA) modely(t) = Hy(q~)ni(t)

(note that some parameters &f might already be

known as they are part af and/orj3).

The excitationr,(¢) never impairs, and in most cases

improves, the accuracy of all transfer function esti-

mates: see (30), (31) and (20). When the powet, Of)

goes to infinity, the variances 6f;; (éN) andGlg(éN)

tend to zero.

4) Even when the plant and noise models are parame-
terized independently, there is a strong correlation be-
tween the parameter estimates due to closed-loop op-
eration. A smaller variance of the plant parameter esti-
mates implies a smaller variance of the parameter esti-
mates associated with the noise model and vice versa.

3)

It follows from Theorems 4.1 and 4.2 that, regardless of
the parametrization, the addition of the external signél)
never increases (and typically reduces) the variance of the
parameter estimates obtained via direct closed-loopifient
cation. This conclusion holds for any controllgrthat guar-
antees informative experiments in closed loop. Furtheemor

it follows from (14) that, for direct closed-loop identifica
tion and for both groupsA and B, the contribution of the
noise is never detrimental to the precision of the parameter
estimates.

5 Extension to general multivariable systems satisfying
the assumptions Al and A2

In this section, the analysis presented in Sections 3 and 4
for the case of two inputs and two outputs is generalized
to multivariable systems with arbitrary number of inputs
and outputs that satisfy the assumptiotisand A2. Let us
consider then-input 1-output subsyste,,; of anm-input
p-output systens,,,,:

cyi(t)

Sm1 = Gyyu1(t) + Groua(t) + - -+

+Gimum(t) + Him(t)  (35)

and suppose thd,,; is to be identified using the following
model structure:

Mml - {G11<O[),G12(Oé,ﬁ),"' aGlm(aaﬁf' : ’5)7
T
Hl(aw@f"aé?’Y)? HZ(QT ﬁT 5T ’VT) }(36)
C R, Here Gll( ) Glg(a,ﬁ),'”,
Gim(a, B,---,8)andHy(a, ,7) are rational trans-



fer functions. Observe that the partition ®fn the subvec- where, in the equation fdil}, the indexk ranges fromi to
tors a, 3, ... will be different for each of the outputs. It is  m, while in that forII}, k ranges fron® to m. Using (40)
assumed tha$,,, is controlled by then x p controller K. in (39) gives the information matrid/,, in the following
The control signaki(t) € R™ can be expressed as in (2) form:

with r(t) € R? andn(t) € RP. The one-step ahead predic-

tion errore,,1 (¢, 0) for (35) reads: Mui(r,n) - Min(r,n)  Migmin(m)

eml(t,G) Hl( ( Zleuk ) (37) M7n:

My (T7 77) T Mm7n(r7 77)
M 1)1 (1) "o M 1) (m1) (1)
From (3), (35) and (37) the gradient of,; with respect to o
the parameters @ = 6, can be expressed as: The contribution of a component oft), sayr;(t), to M,,

reads

Myy(ry) -+ Myp(r1) O
?abml(t 90 [(Z glkUkl) M. (,,,1) — : :

m Mml(rrl) et anL(Tl)
+ (Z kaUm) ra(t) + -+ (ngkUlm> Tm (t) 0 o0

0 - Observe that\/,,, and M,,, (r1) have exactly the same struc-
(h ;glkUmfh) m(t (kz 91kUk2H2> 2(t) ture asM in (18) andM (r1) in (17), respectively. Hence,

the results of Theorems 4.1 and 4.2 apply for the general

5 U multivariable structures satisfying A1 and A2, mutatis mu-
- - Zglk km tandis.
2 k() + Z 17 (£) (38) 6 Simulation Results

o _ In order to illustrate the analytical results for both grsup
where the sensitivitieg{,, ¥k = 1,m are defined analo- 4 and, two 2 x 2 simulated plants are considered. Both

gously as in (13). Recall thak = [od, 8L, ..., 68 ~d1F plants are controlled by the sare< 2 controller:
represents the values of the model parameters that exactly
describe the true subsystesy,;. A calculus similar to the 1— -1 1 0.25
one that led to (14) and (16) yields: K@Y = 08(—03(]1) ' (41)
(1-04¢7") \o025 —1
1 " TIT * NN * . . - .
My, = o Z I IT," ®,., + Z AL 0y ¢ dw The controller is designed so as to stabilize both plantis-wit
TS k=1 out other performance consideration.
£ Mu(re) + Y My () (39) A Monte-Carlo simulation is performed to compare the case
= k=1 where the reference signaj(¢) alone is excited with the
case where the two reference signals are applied simultane-
and ously. The reference signats(t) andr,(t) are PRBS gen-
m m erated by a 10-bit shift register with data lendth= 1023
_ -1 a B 8 and standard deviatiors., = 0.4 ando,, = 1. The distur-
= (Z gl > gnUn imUmt 0) bance signals; () and, (t) are white noises with standard

deviationso,,, = 0, = 0.4. The signals-; (t), r2(t), 71 (t)

7 — (h? _ ig?zUu hf _ igflUu and.(t) are mutually independent. This way, the assump-

= tions of Theorems 4.1 and 4.2 are verified.

- by =g Um B) Simulation 1: Group A
m m The following FIR plant is considered:
ol=H (-Zg?lUmHk - Zglﬁleka
=1 =2 y1(t) = Briua (t) + Biaua(t) + m1(t)

— @ UnmiHi  0) (40) Y2(t) = Barui (t) + Bagua(t) + n2(t)
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Fig. 2. Variance of the transfer function estimatgs; (¢~ *) (left),
G12(¢™") (middle) andH; (¢~ 1) (right), for the ARMAX model
with 2 reference inputs (solid line) and one input (dashed line).

with By; = 0.5¢7 4 0.15¢72, By = 0.26¢~" + 1.6¢72,
By = 0.06¢g7! +0.45¢72 and By, = 0.7¢~! +0.2625¢ 2.
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Fig. 3. Variance of the transfer function estimatgs; (¢~ *) (left),
Ga2(g™1) (middle) andH» (g~ ") (right), for the ARMAX model
with 2 reference inputs (solid line) and one input (dashed line).

0.8¢ ! andCy = 1 — 0.7¢~!. The parameter vectdt =
(a1, as,bly,bly, bl by c1,c2)T is considered. The Monte-

The variance of the parameter estimates is computed for bothCarlo simulations provide the following variances:
cases of excitation. In these simulated examples, we camput

the parameter estimates corresponding to both outputs ofvar(é(l)) =1073(0.653 32.19 0.742 0.191

the SyStem; thug = (b%h b%h b%27 b%Qa b%l? b%la b%Qa b§2)T'
Whenr (t) alone is excited, the asymptotic variances of the
elements ob computed by 1000 Monte-Carlo runs are:

var(M) = 107%(3.546 2.777 9.115 12.49
3.712 2.494 8.736 12.11)

The asymptotic variances of computed when both (¢)
andry(t) are excited simultaneously are:

var(0®) = 1074(1.103 0.749 1.549 2.621
1.202 0.778 1.619 2.585)

The variances are reduced by addition of the second excita-

tion, which is due to the additional energy in beth(t) and
us(t) caused by the extra signal(t). Note that, in the case
of open-loop identification of FIR models, the asymptotic

accuracy of the estimates of thé, coefficients is totally
independent of the presencewf{(t).

Simulation 2: Group B
The following ARMAX structure is considered:

A1y1(t) = Byua (t) + Biaua(t) + Cini(t)
Asya(t) = Bajuq (t) + Bagua(t) + Cana(t)

with A; =1 —0.45¢7 %, Bi1 = ¢~ %, Bio =0.6¢71, Cy
1-— 0.8(]71, Ay =1 — 0.55(]71, By = 0.75(]71, Boo

2.810 32.41 0.518 1.23).

var(9®)=1073(0.551 0.185 0.686 0.134
0.751 0.204 0.478 0.726).

As expected, the presence @f(t) improves the precision

of all estimated coefficients. The corresponding variances
of the transfer function estimate§;(¢~!), Gi2(¢71),
Go1(q7 1Y), Gaa(q™1), Hi(q™ ') and Hy (g~ 1) are computed

at 500 frequency points for the two cases of excitation and
compared in Figs. 2 and 3. As expected, the accuracy of the
six transfer function estimates is improved.

7 Conclusions

In this contribution, the effect of not exciting some of the
references is quantified for the case of closed-loop identi-
fication. A variance analysis for the identified parameters
has been performed for two situations: (i) when a reference
input is not excited; (ii) when all reference signals are ex-
cited simultaneously. It follows from this analysis thag; r
gardless the parametrization, the non-excitation of one or
several references almost always impairs the quality of the
parameter estimates. This result may come as not surprising
to the reader, especially if one considers that an additiona
reference signal brings about an increase in the energy of
all inputs, which in turn yields an improved accuracy of



the plant model parameters. On the other hand, before this
work it was not clear: (i) how an additional reference sig-
nal affects the parameters of the noise model? (ii) does the
improvement of the accuracy of the plant model parameters
occurs for any (arbitrary) model structure? Observe that th
result presented here contrasts with the situation in tke ca
of open-loop identification, where an additional input im-
proves the accuracy of the estimated parameters only for the
model structures that have common parameters between the
different transfer functions [4].
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