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Genetic Team Composition and Level of Selection
in the Evolution of Cooperation

Markus Waibel, Member, IEEE, Laurent Keller, and Dario Floreano, Senior Member, IEEE

Abstract— In cooperative multiagent systems, agents interact
to solve tasks. Global dynamics of multiagent teams result from
local agent interactions, and are complex and difficult to predict.
Evolutionary computation has proven a promising approach to
the design of such teams. The majority of current studies use
teams composed of agents with identical control rules (“geneti-
cally homogeneous teams”) and select behavior at the team level
(“team-level selection”). Here we extend current approaches to
include four combinations of genetic team composition and level
of selection. We compare the performance of genetically homo-
geneous teams evolved with individual-level selection, genetically
homogeneous teams evolved with team-level selection, genetically
heterogeneous teams evolved with individual-level selection, and
genetically heterogeneous teams evolved with team-level selection.
We use a simulated foraging task to show that the optimal
combination depends on the amount of cooperation required
by the task. Accordingly, we distinguish between three types of
cooperative tasks and suggest guidelines for the optimal choice
of genetic team composition and level of selection.

Index Terms— Altruism, artificial evolution, cooperation, evo-
lutionary robotics, fitness allocation, multiagent systems (MAS),
team composition.

I. INTRODUCTION

MULTIAGENT SYSTEMS (MAS) span a large number
of research fields, from software agents to robotics,

and play a key role in several industrial applications, such
as ground and air vehicle control, supply chains, or network
routing. The design of control rules for MAS is challenging
because agent behavior depends not only on interactions with
the environment but also on the behavior of other agents.
As the number of interacting agents in a team grows, or
when agent behaviors become more sophisticated, the design
of suitable control rules rapidly becomes very complex. This
is especially true when agents are expected to coordinate or
cooperate to collectively achieve a desired task. Evolutionary
computation has been advocated as an effective and promising
strategy to generate control parameters and decision rules for
collective agents [1], [2].

Manuscript received July 14, 2007; revised November 21, 2007 and June
26, 2008; accepted November 5, 2008. Current version published June 10,
2009. This work was sponsored by the Swiss National Science Foundation
and the European Commission (FP6, IST-FET projects ECAgents and Swar-
manoids).

M. Waibel and D. Floreano are with the Laboratory of Intelligent Systems,
School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland (e-mail: markus.waibel@a3.epfl.ch; dario.floreano@epfl.ch).

L. Keller is with the Department of Ecology and Evolution, Bio-
phore, University of Lausanne, CH-1015 Lausanne, Switzerland (e-mail:
laurent.keller@unil.ch).

Digital Object Identifier 10.1109/TEVC.2008.2011741

Level of Selection

G
en

et
ic

Te
am

C
om

po
si

tio
n

H
et

er
og

en
eo

us

[1], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13],
[14], [15], [16], [17], [18],
[19], [20], [21], [22], [23],
[24], [25], [26], [27], [28],
[29], [30], [31], [32], [33],
[34], [35], [36], [37], [38]

[17], [39]

[17], [24], [40]

[3], [17], [29], [39], 
[40], [41], [42], [43],
[44], [45], [46], [47],
[48], [49], [50], [51],
[52], [53], [54]

H
om

og
en

eo
us

Individual Team

Fig. 1. Sample of approaches to the evolution of multiagent teams. The
majority of work uses genetically homogeneous teams, usually created from
a cloned individual genome, with team selection. In some cases, authors
created behaviorally heterogeneous agents out of a single team genome:
Luke [25], [26] decoded team genomes into six separate sub-teams with
one or two identical players each. Other authors [11], [20], [22], [28],
[33] decoded one team genome into different single agent genomes. Yet
another approach was taken by work using distributed embodied evolution
to evolve heterogeneous teams [43], [50]–[54]. In these cases, selection and
replication were entirely distributed among agents, with dynamics reminiscent
of the replicator dynamics observed in bacterial evolution [55] and game
theoretic models [56]. In some cases, teams were evolved using a continuously
updated gene-pool rather than separate gene-pools for subsequent generations
(“steady state evolution”) [45]–[47]. Finally, some authors have conducted
more detailed comparisons of the influence of genetic team composition or
level of selection alone: Martinoli [40] also considered more complex methods
of selection. Stanley et al. [49] clustered genetically similar individuals
into sub-teams that shared fitness, which resulted in partially heterogeneous
teams. Mirolli et al. [39] also compared partially heterogeneous teams. Quinn
[29] evaluated individuals in different heterogeneous teams to create robust
homogeneous teams.

In addition to the methodological issues of evolving agents
that operate in isolation [2], the evolution of agent teams must
address two major issues: 1) It must determine optimal team
composition. Agents of a team may either share control rules
(genetically homogeneous teams) or employ different ones
(genetically heterogeneous teams), and 2) It requires a suitable
method for selective reproduction of desired team behavior.
Selection may operate either on individuals (individual-level
selection) or on teams (team-level selection). In the simplest
case, one must decide between genetically homogeneous or
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heterogeneous teams, and between selecting agents at the
individual or at the team level.

Fig. 1 shows a sample of previous work on the evolu-
tion of MAS in robotics, combinatorial optimization, cellular
automata, artificial life, genetic programming, and others,
plotted according to the chosen genetic team composition
and level of selection. In addition to work cited in Fig. 1,
some authors have used cooperative co-evolutionary algo-
rithms (CCEAs, [57]) to evolve heterogeneous control rules for
teams of agents [58]–[61]. CCEAs are applied by decomposing
problem representations into subcomponents and then creating
a separate population of individuals for each subcomponent.
This approach allows teams to be composed of specialized
subgroups and corresponds to the biological co-evolution of
multiple species. In their basic form, CCEAs require the
designer to manually decompose the multiagent task, and thus
to solve part of the optimization problem beforehand. Work
that used machine learning techniques other than evolutionary
computation (e.g., reinforcement learning) is not considered
in this paper.

Fig. 1 suggests that the majority of current approaches to
the evolution of MAS use genetically homogeneous teams
evolved with team-level selection. Where the reasons for the
choice of genetically homogeneous teams are made explicit,
it is argued that homogeneous teams are easy to use [8], [36],
require fewer evaluations [25], [32], scale more easily [13],
and are more robust against the failure of team members [13],
[62] than heterogeneous teams. Many other approaches use
genetically heterogeneous teams evolved with individual-level
selection. Genetically heterogeneous teams are sometimes
seen as providing more behavioral flexibility [25] and as
providing advantages in tasks that require specialization [7],
[25], [62], [63].

The terms “homogeneous team” and “heterogeneous team”
used in the current literature cover many different aspects. It
is important to note that while all agents in genetically homo-
geneous teams share the same genes, agents can nevertheless
be behaviorally heterogeneous. This can happen when agents
differentiate during their lifetime, for example due to varying
initial conditions [30], or due to developmental processes or
learning [64]. This can also happen when agents “activate”
different parts of their genome, for example when each agent’s
behavior is controlled by a different section of a single
team genome [11], [22], [28], [33]. In this case, agents can
specialize on different functions, yet be genetically identical,
just like specialized cells in a biological organism. Conversely,
it is important to note that genetically heterogeneous teams
are those in which agents are, on average, not genetically
more similar to team members than to agents in the rest of
the population [65], [66]. This means that teams resulting
from embodied evolution or common versions of steady-
state evolution are usually genetically heterogeneous although
these algorithms often generate multiple offspring from a
single parent, resulting in genetically similar (but not identical)
agents. In some cases, teams consist of clonal sub-teams [25],
[26] or agents that share only part of their genome. Teams
with agents that are, on average, genetically more similar (but
not identical) to members of their team than to members of

the rest of the population are termed “partially heterogeneous.”
The effects of partial genetic heterogeneity on the evolution
of multiagent teams are not yet fully explored in evolutionary
computation [39], but there is evidence that they can lead to
improved specialization [25], [26]. These effects have been
deeply studied in biology [67], [68].

The choice of level of selection is rarely discussed explicitly.
Some research has addressed the related issue of credit assign-
ment for the evolution of MAS [40], [69]. In the context of
MAS, credit assignment is concerned with distributing fitness
rewards among individual agents. Fitness distribution leads to
credit assignment problems [70], [71] in many cooperative
multiagent tasks, because individual contributions to team
performance are often difficult to estimate or difficult to
monitor [72]. Selection is usually performed on the basis of
accumulated individual or team fitness, which may be the
result of many fitness rewards with different types of credit
assignment. Therefore an optimal choice of level of selection
is not only influenced by the type of task but also by the types
of credit assignment used.

Genetic team composition and level of selection have long
been identified as two important factors for the evolution of
biological multiagent teams such as groups of genes, cells,
individuals, or other replicators [67], [73]. In particular the
evolution of altruism [74], in which agents cooperate to
increase team fitness in spite of an individual fitness cost to the
cooperator, has received a lot of attention [68], [75]. Here we
define cooperation as a behavior that increases the fitness of
other agents, and altruistic cooperation (altruism) as a behavior
that increases the fitness of other agents and decreases the
cooperator’s fitness.

In this paper, we focus on cooperative multiagent tasks that
do not require specialization. We compare the performance of
robot teams evolved in four evolutionary conditions: geneti-
cally homogeneous teams evolved with team-level selection;
genetically homogeneous teams evolved with individual-level
selection; genetically heterogeneous teams evolved with team-
level selection; and genetically heterogeneous teams evolved
with individual-level selection. We evaluate the performance
of robot teams evolved in these four evolutionary conditions
for three classes of multirobot tasks: a task that does not
require cooperation; a task that requires cooperation but does
not imply a cost for cooperators; and a task that requires
altruistic cooperation, i.e., a task that implies an individual
fitness cost for cooperators. Cooperative tasks that benefit from
specialization were not considered in this paper.

II. EVOLUTIONARY CONDITIONS

The four possible combinations of genetic team composition
and level of selection were formalized into four evolutionary
algorithms (Fig. 2). For the remainder of the paper we will
use the terms “homogeneous” and “heterogeneous” to desig-
nate genetically homogeneous and genetically heterogeneous
teams, respectively, and the terms “individual selection” and
“team selection” to designate teams evolved with individual-
level selection and team-level selection, respectively. We con-
sider populations composed of M teams, each composed of N
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Fig. 2. Four evolutionary conditions. A population (large oval) is composed
of several teams (medium ovals), each of which is composed of several robots
(small circles) evaluated together. Genetic team composition is varied by either
composing teams of robots with identical genomes (homogeneous, identical
shading), or different genomes (heterogeneous, different shading). Level of
selection is varied by selecting teams (team selection), or selecting individuals,
independent of their team affiliation (individual selection).

Algorithm 1 Homogeneous teams, individual selection
for each of M new teams do

select two individuals from all old teams
recombine their genomes to create one new genome
mutate new genome
clone new genome to obtain N genomes for new team

end for

individuals. Population size and team sizes are kept constant
across generations. At each generation, the old population is
entirely replaced by a new population of offspring. Individuals’
genomes are binary strings.

1) Algorithm 1—Homogeneous Teams, Individual Selec-
tion: Each of the M teams at generation 0 was formed by
generating one random genome and cloning it N − 1 times to
obtain N identical robot genomes (clones) per team. Teams
were evaluated in the task and an individual fitness determined
for each of the N robots. For a new generation, each of the M
new teams was created from two individuals selected among
all individuals of all old teams in the population using roulette
wheel selection. The two genomes of the selected individuals
were recombined (one-point crossover, crossover probability
of 0.05) to produce one new genome. The resulting new
genome was mutated by flipping the value of each bit with a
probability of 0.05 and then cloned N−1 times to generate the
N robot genomes of the new team. Teams evolved using this
evolutionary condition were thus genetically homogeneous.

2) Algorithm 2—Homogeneous Teams, Team Selection:
Each of the M teams at generation 0 was formed by generating
one random genome and cloning it N − 1 times to obtain
N identical robot genomes (clones) per team. Teams were

Algorithm 2 Homogeneous teams, team selection
for each of M new teams do

select two old teams
recombine their genomes to create one new genome
mutate new genome
clone new genome to obtain N genomes for new team

end for

Algorithm 3 Heterogeneous teams, individual selection
for each of M new teams do

for each of N new team members do
select two individuals from all old teams
recombine their genomes to create one new genome
mutate new genome
add new genome to new team

end for
end for

evaluated in the task, and for each team a team fitness was de-
termined as the sum of the individual fitnesses of all N robots.
For a new generation, each of the M new teams was created
from two old teams selected using roulette-wheel selection.
The two genomes of the selected teams were recombined
(one-point crossover, crossover probability of 0.05) to produce
one new genome. The resulting new genome was mutated by
flipping the value of each bit with a probability of 0.05 and
then cloned N − 1 times to obtain the N robot genomes of
the new team. Teams evolved using this evolutionary condition
were thus genetically homogeneous.

3) Algorithm 3—Heterogeneous Teams, Individual Selec-
tion: Each of the M teams at generation 0 was formed by
generating N random genomes. Teams were evaluated in the
task and an individual fitness determined for each of the
N robots. For a new generation, each of the N × M new
individuals was created from two individuals selected among
all individuals of all old teams in the population using roulette
wheel selection. The two genomes of the selected individuals
were recombined (one-point crossover, crossover probability
of 0.05) to produce one new genome. The resulting new
genome was mutated by flipping the value of each bit with
a probability of 0.05. This process was repeated N × M − 1
times to form M new teams of N individuals each. In this
evolutionary condition robots were not, on average, genetically
more similar to team members than to robots in the rest of the
population, and thus teams were genetically heterogeneous.

4) Algorithm 4—Heterogeneous Teams, Team Selection:
Each of the M teams at generation 0 was formed by generating
N random genomes. Teams were evaluated in the task, and
for each team a team fitness was determined as the sum of
the individual fitnesses of all N robots. For a new generation,
each of the N×M individuals was created from two old teams
selected using roulette wheel selection. Two genomes, each
randomly selected among the members of a selected team,
were recombined (one-point crossover, crossover probability
of 0.05) to produce one new genome. The resulting new
genome was mutated by flipping the value of each bit with
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Fig. 3. Left: Experimental setup for task 3, the altruistic cooperative foraging task. Ten micro-robots (black squares with arrows) searched for small and
large tokens and transported them to the target area (hatched area at bottom) under the white wall (the other three walls were black). An identical setup was
used in the other two tasks, except that the arena contained either only small tokens in task 1, or only large tokens in task 2. Right: Three micro-robots in
task 3, which is the altruistic cooperative foraging task. The robot in the background could transport the small token by itself. The robot at the left could not
transport the large token by itself and needed to wait for the arrival of a second robot (blurred in the picture due to its rapid movement towards the large
token).

Algorithm 4 Heterogeneous teams, team selection
for each of M new teams do

for each of N new team members do
select two old teams
randomly select two old team members
recombine their genomes to create one new genome
mutate new genome
add new genome to new team

end for
end for

a probability of 0.05. This process was repeated N × M − 1
times to form M new teams of N individuals each. In this evo-
lutionary condition, robots were not, on average, genetically
more similar to team members than to robots in the rest of the
population, and thus teams were genetically heterogeneous.

III. EXPERIMENTAL METHOD

A. Scenario

The experimental setup (Fig. 3) consisted of a 50× 50 cm2

arena with 10 micro-robots and two types of tokens: small
and large. We chose to study a foraging task, because forag-
ing combines several aspects of multiagent tasks (distributed
search, coordinated movement, transportation) and relates to
many real-world problems [76], [77]. In addition, foraging is
a wide-spread and well-studied behavior of many biological
societies [78]–[80]. Experiments were conducted in simulation
of micro-robots and evolved controllers were transferred to the
real robots (see Section III-D).

Robots foraged tokens by transporting them into a 4-cm
wide region at one side of the arena marked by a white wall. A
single robot was sufficient to transport a small token. At least
two robots were required to transport a large token, and thus
retrieval of large tokens required cooperation. Cooperating

agents had to coordinate their behaviors to successfully align
their positions before and during token transport.

The micro-robots [81] were small (2× 2× 4 cm3) two-
wheeled robots equipped with three infrared distance sensors
at the front and one at the back, which could sense objects up
to 3 cm away and allowed robots to distinguish between small
and large tokens (Fig. 4 left). An extension module with a
fourth infrared distance sensor with a range of up to 6 cm and
a linear camera were mounted higher on the robot, overlooking
tokens but sensitive to other robots and walls.

B. Control and Genetic Architecture

Robots were controlled by a feed-forward neural network
with a single layer of three hidden neurons (Fig. 4 right) and
a sigmoid activation function (tanh). The inputs were given
by the activation values of five infrared sensors, two vision
sensors, and a constant bias value of −1. Infrared sensor
activation values were scaled in the range [0; 1]. Vision sensors
were an average of three equidistally spread camera pixels
spanning a field of view of 18°, for the left or right side of
the image, respectively. The averages were thresholded to yield
0 for a white or 1 for a black arena wall. Using the average
value of three pixels rather than a single pixel allowed a robust
detection of the white foraging target area in spite of the
presence of other robots in the field of view. The two output
units were used to control the left and right wheel motors.
The activation values in the range [−1; 1] were mapped into
speeds in the range [−4; 4] cm/s, with speeds in the interval of
[−2.5; 2.5] cm/s set to 0 because of unreliable motor response
at low speeds.

The neural network connection weights were in the range
of [−2; 2] and coded on 8 bits. The genome of one individual
was thus 8× 32 bits long.
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Fig. 4. Left: Side and top-view schematics of a simulated micro-robot. The robot was equipped with four infrared (IR) distance sensors (three at the front,
one at the back) to detect tokens, and a camera to identify the target area. A fifth infrared distance sensor (high IR) was mounted higher on the robot and thus
overlooked tokens. This allowed robots to distinguish tokens from walls and other robots. Right: The neural network architecture, which is a feed-forward
neural network with a single layer of three hidden neurons. Inputs were given by the activation values of five infrared (IR) sensors and two vision sensors
with activation values computed from left and right camera pixels (see text).

C. Collective Tasks

We devised three types of foraging tasks that differed in the
amount of cooperation required from agents.

1) Task 1—Individual Foraging: The arena contained
6 small tokens, each of which awarded 1 fitness point to the
foraging robot. This task did not require cooperation, because
a single agent was sufficient to transport a small token.

2) Task 2—Cooperative Foraging: The arena contained
four large tokens, which each awarded 1 fitness point to each
team member, irrespective of its participation in the token
foraging. This corresponded to a situation where the individual
contributions to team performance were not known, i.e., a
situation with credit assignment problems [70], [71], which is
the case for many cooperative multiagent tasks [72]. This task
required cooperation because it could not be accomplished by
a single agent.

3) Task 3—Altruistic Cooperative Foraging: The arena
contained six small and four large tokens. Small tokens each
awarded one fitness point to the foraging robot and large
tokens each awarded one fitness point to each team member,
irrespective of their participation in the token foraging. In this
task cooperation was costly for individuals, because individu-
als that did not cooperate always had higher fitness than their
cooperating team mates. This meant that cooperators suffered
a relative individual fitness cost and therefore this task required
altruistic cooperation [68].

D. Evolutionary Experiments

Due to the large number of evaluations required for the
evolution of robot behaviors, all evolutionary experiments
were conducted using a physics-based 2-D simulator [82],
which is available as part of an open evolutionary framework
[83]. All simulation parameters, including robot size, shape,
speed, and weight, as well as collision dynamics, friction

forces, and sensor and actuator modalities, were based on the
micro-robots described in Section III-A.

We evolved teams of robots under the four evolutionary
conditions separately for each of the three tasks, making a
total of 12 experimental lines. Evolutionary experiments lasted
for 300 generations. Twenty independent runs were performed
for each experimental line. Populations consisted of 100 teams
of 10 agents each. Each team was evaluated 10 times for
3 minutes with random token and robot starting positions and
orientations. Fitness was averaged over the 10 evaluations.

To compare the efficiency of the four evolutionary condi-
tions, we re-evaluated the best teams at generation 300 for
1000 times and compared their team fitness. Fitness values
were analyzed using Wilcoxon rank sum tests. All fitness
values were normalized for each task, with 0 being the minimal
possible fitness and 1 the theoretical maximum value.

IV. RESULTS

A. Task 1—Individual Foraging

Successful foraging behavior evolved for all four evolu-
tionary conditions (Fig. 5). After 300 generations of artificial
evolution, heterogeneous teams evolved with individual selec-
tion collected all 10 tokens in most evaluations and achieved
fitness values close to the maximum value achievable. These
fitness values were higher than those of homogeneous teams
evolved with individual selection and homogeneous teams
evolved with team selection (Wilcoxon rank sum test, df = 38,
P < 0.001 and P < 0.006, respectively). A possible reason
could be the disparities in genome evaluation in homogeneous
and heterogeneous teams. For a team size of N agents,
heterogeneous teams evaluated N times more genomes than
homogeneous teams. This was because each heterogeneous
team consisted of N different genomes, whereas homogeneous
teams consisted of N identical genomes. On the other hand,
homogeneous teams evaluated each genome N times more
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Fig. 5. Task 1—Individual Foraging. Left: Evolution of the best team fitness averaged over the best teams in 20 independent evolutionary runs over 300
generations. Right: The best team at generation 300 of each of the 20 independent experiments per evolutionary condition and per task was evaluated 1000 times.
The mid-line in the box is the median, while the box represents the upper and lower quartile above and below the median. The bars outside the box generally
represent the maximum and minimum values, except when there are outliers, which are shown as crosses. We define outliers as data points which differ
more than 1.5 times the interquartile range from the border of the box. The notches represent the uncertainty in the difference of the medians for box-to-box
comparison. Boxes whose notches do not overlap indicate that the medians differ at the 5% significance level [84]. In this task, which did not require cooperation,
heterogeneous teams evolved with individual selection performed best, followed by homogeneous teams evolved with individual selection and homogeneous
teams evolved with team selection. Heterogeneous teams evolved with team selection performed significantly worse than all other evolutionary conditions.

often than heterogeneous teams. This was because each team
evaluation evaluated an identical genome N times. Our results
suggest that higher evaluation accuracy may have been less
important than a larger number of different genomes in this
task. The larger number of genomes may have allowed hetero-
geneous teams to discover solutions faster than homogeneous
teams, which could explain the steep initial fitness increase. It
may also have allowed heterogeneous teams to discover better
solutions than homogeneous teams, which could explain the
higher final fitness obtained with this evolutionary condition.
To test whether these disparities in genome evaluation caused
the high team performance of heterogeneous teams evolved
with individual selection, we performed a set of additional
experiments (see additional experiments without these dispar-
ities in the next section).

Performance of homogeneous teams evolved with individual
selection and homogeneous teams evolved with team selection
did not differ significantly (P = 0.337). This was because
with roulette-wheel selection the probability of a team to
be selected was the same as the sum of the probabilities of
each individual team member to be selected. Since all team
members of homogeneous teams shared the same genome,
selection probabilities for a given genome were equal for
both homogeneous evolutionary conditions. It should be
noted, however, that this is not necessarily true for other
types of selection. Selection mechanisms where the fitness of
a genome is not directly proportional to its probability to be
selected (e.g., truncation or rank-based selection) may lead to
differences in the number of selected individuals with a given
genotype and consequently affect the relative performance
of homogeneous teams evolved with individual selection and
homogeneous teams evolved with team selection. In these
cases, individual selection may select for genomes that lead to
higher maximum but lower average individual performance.
However, additional investigations using truncation selection
(selection of best 30% of the population; all other experimental
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Fig. 6. Task 1—Individual foraging without disparities in genome evaluation.
(a) Homogeneous teams evolved with one evaluation per team (instead of
10) and (b) heterogeneous teams evolved with 100 agents per population
(instead of 1000). Heterogeneous teams evolved with individual selection
performed similar to homogeneous teams evolved with individual selection
and homogeneous teams evolved with team selection in this task. For boxplot
explanations, see Fig. 5.

parameters identical) did not find such performance differences
in any of the three types of task (P = 0.350/0.903/0.394
for tasks 1/2/3 respectively; see Fig. S4 in the supplementary
material1).

Heterogeneous teams evolved with team selection per-
formed significantly worse than all other evolutionary con-
ditions (all three P < 0.002). This was because, unlike all
other three evolutionary conditions, this evolutionary condition
did not allow a direct link between the performance of a
genome and its probability to be selected. Instead, selection

1An electronic supplement for this paper is available online at
http://lis.epfl.ch/documentation.php
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generations. Right: The best team at generation 300 of each of the 20 independent experiments per evolutionary condition and per task was evaluated 1000
times. Homogeneous teams performed significantly better than heterogeneous teams. For boxplot explanations, see Fig. 5.

of good genomes could only happen indirectly, by selecting
those teams that contained a better mix of genomes than other
teams. Since good genomes could be part of bad teams or bad
genomes part of good teams, selection for good individual
genomes was inefficient. This explains the slow initial fitness
increase and the lowest final fitness of heterogeneous teams
evolved with team selection.

B. Task 1—Individual Foraging: Disparities in Genome Eval-
uation and Credit Assignment

To test the hypothesis that the high team performance of
heterogeneous teams evolved with individual selection was
caused by disparities in genome evaluation, we performed a
set of additional experiments. First, we evolved homogeneous
teams in the same task, but used only one evaluation per team
rather than 10 evaluations [Fig. 6(a)]. Second, we evolved
heterogeneous teams in the same task, but used only 100
agents per population rather than 1000 agents [Fig. 6(b)]. In
this set of experiments homogeneous and heterogeneous teams
therefore evaluated the same number of genomes and had the
same number of evaluations per genome.

Without disparities in genome evaluation, heterogeneous
teams evolved with individual selection performed similar to
homogeneous teams evolved with individual selection and
homogeneous teams evolved with team selection (all three
P > 0.597). Heterogeneous teams evolved with team selection
performed worse than all other evolutionary conditions (all
three P < 0.001), because the efficiency of selection was not
affected by the changes in genome evaluation.

C. Task 2—Cooperative Foraging

Successful foraging behavior evolved for all four evolution-
ary conditions (Fig. 7). The experiments with a cooperative
task led to a change in the relative performance of the four
evolutionary conditions. Performance of homogeneous teams
evolved with individual selection and homogeneous teams
evolved with team selection was significantly higher than that
of heterogeneous teams evolved with individual selection and

heterogeneous teams evolved with team selection (all four
P < 0.001), with the best fitness values in homogeneous teams
up to 70% higher than those in heterogeneous teams. One
possible reason is disparities in genome evaluation between
homogeneous and heterogeneous teams (see next section).
Another possible reason is that selection of good genomes
could only happen indirectly in this task, which may have led
to inefficient selection just as in heterogeneous teams evolved
with team selection in task 1 (Section IV-B). This could be
because fitness in this task was assigned to all team members,
irrespective of their participation in the token foraging.

Performance of homogeneous teams evolved with individual
selection and homogeneous teams evolved with team selection
did not differ significantly (P = 0.839). This was because
fitness in this task was assigned to all team members, irre-
spective of their participation in the token foraging. For the
same reason, performance of heterogeneous teams evolved
with individual selection and heterogeneous teams evolved
with team selection did not differ significantly (P = 0.365).

D. Task 2—Cooperative Foraging: Disparities in Genome
Evaluation and Credit Assignment

To test the hypothesis that the differences in performance
of heterogeneous teams that evolved with individual selection
and homogeneous teams that evolved with individual selection
and team selection were caused by disparities in genome
evaluation or by the fitness assignment to all team members,
we performed two sets of additional experiments. First, we
again corrected for the disparities in genome evaluation.
However, correcting for this factor alone did not eliminate
the performance differences (see Fig. S2 in the supplementary
material2). Second, we performed experiments where we again
corrected for the disparities in genome evaluation and where
fitness was only assigned to team members that participated in
the token foraging. In these experiments, each of the four large
tokens awarded 5 fitness points to each of the two transporting

2An electronic supplement for this paper is available online at
http://lis.epfl.ch/documentation.php
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Fig. 8. Task 2—Cooperative foraging without disparities in genome evalua-
tion and without credit assignment problems. (a) Homogeneous teams evolved
with one evaluation per team (instead of 10) and (b) heterogeneous teams
evolved with 100 agents per population (instead of 1000). The performance
of heterogeneous teams evolved with individual selection was higher than the
performance of heterogeneous teams evolved with team selection, but did not
reach that of homogeneous teams in this task. For boxplot explanations, see
Fig. 5.

robots, rather than 1 fitness point to each of the 10 team
members. This second additional set of experiments therefore
corresponded to a situation where the individual contributions
to team performance were known, i.e., a situation without
credit assignment problems.

Without the disparities in genome evaluation and without
credit assignment problems, heterogeneous teams that evolved
with individual selection outperformed heterogeneous teams
that evolved with team selection (P < 0.001). This was
because selection of good genomes could now happen di-
rectly, which allowed for efficient selection. However, the
performance of heterogeneous teams evolved with individual
selection remained lower than that of homogeneous teams
evolved with individual selection and homogeneous teams
evolved with team selection (P < 0.001 and P < 0.002,
respectively, Fig. 8). A possible reason is that heterogeneous
teams had to solve a more complex optimization task than
homogeneous teams. Successful cooperation in heterogeneous
teams required individuals to evolve behaviors to coordinate
their actions with N − 1 different team members, while indi-
viduals in homogeneous teams only had to evolve behaviors to
coordinate with a single type of team member. In other words,
homogeneous teams led to a smaller search space because all
team members were per definition identical, and thus only
a subset of the total number of possible team compositions
was considered in these teams. Furthermore, individuals in
heterogeneous teams were not just different in a team, but
team members changed from one generation to the next.
Both factors may have hindered the evolution of cooperative
behavior in heterogeneous teams.

The performance of homogeneous teams evolved with in-
dividual selection and homogeneous teams evolved with team
selection did not differ significantly (P = 0.441) in this second
additional set of experiments.

Heterogeneous teams evolved with team selection per-
formed worse than all other evolutionary conditions due to
inefficient selection (all three P < 0.001).

E. Task 3—Altruistic Cooperative Foraging

Successful foraging behaviors evolved for all four evolu-
tionary conditions (Fig. 9). Team performance in the altruistic
cooperative foraging task was systematically lower than in the
cooperative foraging task. This may seem surprising because
the larger number of tokens in the arena increased the total
number of fitness points available. A possible reason is that
the increased number of tokens led to more clutter in the
arena, which made successful token transport more difficult
(see video supplied with supplementary material3).

Homogeneous teams achieved significantly higher fitness
values than heterogeneous teams (all four P < 0.001). Possi-
ble reasons are disparities in genome evaluation and inefficient
selection for the foraging of large tokens because fitness points
gained from large tokens were assigned to all team members,
irrespective of their participation in the token foraging (see
next section).

Performance of homogeneous teams evolved with individual
selection and homogeneous teams evolved with team selection
did not differ significantly (P = 0.310). This was because
selection probabilities for a given genome were again equal
for both homogeneous evolutionary conditions.

looseness1Performance of heterogeneous teams evolved
with individual selection and heterogeneous teams evolved
with team selection did not differ significantly (P = 0.490).
However, the four evolutionary conditions resulted in dif-
ferent foraging strategies in this task (Fig. 10): While ho-
mogeneous teams evolved with individual selection and ho-
mogeneous teams evolved with team selection as well as
heterogeneous teams evolved with team selection collected
a significantly higher proportion of large tokens than small
tokens (all three P < 0.001), heterogeneous teams evolved
with individual selection collected a significantly higher pro-
portion of small tokens than large tokens (P < 0.001).
In comparison to the other three evolutionary conditions,
heterogeneous teams evolved with individual selection col-
lected significantly high proportion of small tokens (all
three P < 0.001), but significantly low proportion of
large tokens of all four evolutionary conditions (all three
P < 0.003).

F. Task 3—Altruistic Cooperative Foraging: Disparities in
Genome Evaluation and Credit Assignment

To test the hypothesis that the differences in performance
of heterogeneous teams evolved with individual selection
were caused by disparities in genome evaluation or by the
fitness assignment to all team members, we performed two
sets of additional experiments similar to those described in
Section IV-D. First, we again corrected for the disparities in
genome evaluation. However, correcting for this factor alone

3An electronic supplement for this paper is available online at
http://lis.epfl.ch/documentation.php
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1000 times. Homogeneous teams performed significantly better than heterogeneous teams. For boxplot explanations, see Fig. 5.
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Fig. 10. Task 3—Altruistic cooperative foraging. The plot shows the average
proportion of the six small tokens and four large tokens collected by the best
teams at generation 300 for each of the 20 independent experiments and for
each of the four evolutionary conditions. Heterogeneous teams evolved with
individual selection pursued a different foraging strategy than teams of the
other three evolutionary conditions, collecting very few large tokens but most
small tokens.

did not eliminate the performance differences (see Fig. S3
in the supplementary material4). Second, we again performed
experiments where we corrected for the disparities in genome
evaluation and for credit assignment problems.

Without the disparities in genome evaluation and without
credit assignment problems, heterogeneous teams evolved
with individual selection outperformed heterogeneous teams
evolved with team selection (P < 0.001). This was because
selection of good genomes could again happen directly, which
allowed for efficient selection. However, the performance of
heterogeneous teams that evolved with individual selection
remained lower than that of homogeneous teams that evolved
with individual selection and homogeneous teams that evolved
with team selection (P < 0.015 and P < 0.003, respectively,
Fig. 11). This may have been because heterogeneous teams
had to solve a more complex optimization task.

4An electronic supplement for this paper is available online at
http://lis.epfl.ch/documentation.php
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Fig. 11. Task 3—Altruistic cooperative foraging without disparities in
genome evaluation and without credit assignment problems. (a) Homoge-
neous teams evolved with one evaluation per team (instead of 10) and (b)
heterogeneous teams evolved with 100 agents per population (instead of
1000). The performance of heterogeneous teams evolved with individual
selection was higher than the performance of heterogeneous teams evolved
with team selection, but did not reach that of homogeneous teams. For boxplot
explanations, see Fig. 5.

In this second additional set of experiments, the perfor-
mance of homogeneous teams that evolved with individual
selection and homogeneous teams that evolved with team
selection did not differ (P = 0.133).

Heterogeneous teams evolved with team selection per-
formed worse than all other evolutionary conditions due to
inefficient selection (all three P < 0.001).

Importantly, the altruistic cooperative foraging task led to
the evolution of a different foraging strategy in heterogeneous
teams evolved with individual selection than in the other three
evolutionary conditions (Fig. 10). A possible reason is that
cooperation to collect large tokens now implied a cost for
individuals. To test this hypothesis, we performed additional
experiments with this evolutionary condition. First we repeated
the experiments with a setup identical to that of task 3, i.e.,
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Fig. 12. Task 3—Altruistic Cooperative Foraging in heterogeneous teams
evolved with individual selection. For the first 300 generations, individual
contributions to the cooperative foraging of large tokens were known (no credit
assignment problems). From generation 300 onward, individual contributions
to the foraging of large tokens were presumed unknown (credit assignment
problems). The introduction of credit assignment problems led to the rapid
collapse of cooperation and a decrease in team fitness.

with 1000 agents per population and 10 evaluations per team,
but with known individual contributions to large token forag-
ing, i.e., a situation without credit assignment problems. Each
of the four large tokens awarded five fitness points to each
of the two transporting robots, rather than one fitness point
to each of the ten team members. Then, at generation 300,
we changed the fitness assignment and assumed unknown
individual contributions to large token foraging, i.e., a situation
with credit assignment problems. Each of the four large tokens
awarded 1 fitness point to each team member, irrespective of
their participation in token foraging.

This change in fitness assignment resulted in a drastic
change in foraging strategy (Fig. 12). While at generation
300 heterogeneous teams that evolved with individual selection
collected a significantly higher proportion of large tokens than
small tokens (P < 0.001), at generation 500 they collected a
significantly lower proportion of large than small tokens (P <
0.001). As a direct result of this change, team performance
decreased significantly (P < 0.001) between generation 300
and generation 500. This was because after the introduction of
credit assignment problems, fitness points gained from large
tokens were assigned to all team members, and therefore
individuals collecting small tokens gained a fitness advantage
over their team mates. This led to the selection of individuals
that foraged for small tokens and resulted in fewer and
fewer individuals foraging for large tokens. The observed
drop in team fitness also implies a drop in average individual
fitness. This illustrates that fitness is a relative measure of
performance and therefore evolution selects for performance
increase relative to the performance of competitors, rather than
for absolute performance. The simplicity of the neural network
controllers did not allow individuals to accurately discriminate
large and small tokens, which explains the incomplete collapse
of large token foraging.

In contrast, the foraging strategy in homogeneous teams
that evolved with individual selection and in homogeneous

teams that evolved with team selection was not affected by
the costs implied in large token foraging (see Figs. S5 and
S6 in the supplementary material5). This was because relative
fitness differences between team members could not have an
influence on the selection of genomes when individuals were
genetically identical.

Foraging strategy in heterogeneous teams that evolved with
team selection was not affected by the costs implied in large
token foraging (see Figs. S5 and S6 in the supplementary
material5). This was because relative fitness differences be-
tween team members did not have an influence on selection
of genomes when selection acted at the level of the team.

V. CONCLUSION

This paper provides an experimental demonstration of how
the choice of genetic team composition and level of se-
lection influences the performance of MAS in tasks with
varying levels of cooperation that do not provide a benefit
for specialization. We have identified three different types
of multiagent tasks depending on the amount of cooperation
required between team members. Our results demonstrate that
different combinations of genetic team composition and level
of selection lead to significant performance differences. No
combination achieved optimal performance in all three types
of task.

We have identified and studied three different types of
multiagent tasks depending on the amount of cooperation
required between team members.

In tasks that did not require cooperation, heterogeneous
teams that evolved with individual level selection achieved
the highest team performance. Team heterogeneity allowed
evaluation of a high number of different genomes in parallel,
and individual selection allowed efficient selection of good
genomes. However, these teams performed poorly in tasks
that required cooperation and in tasks with credit assignment
problems.

For multiagent tasks that required cooperation, the highest
team performance was achieved by homogeneous teams. These
teams led to efficient cooperation between team members
and they were not affected by credit assignment problems
or costs associated with cooperation. Our results suggest that
homogeneous teams are a safe choice in tasks that do not
benefit from specialization when the requirements for agent
cooperation are difficult to estimate. Compared to hetero-
geneous teams, homogeneous teams evaluate less genomes,
which may result in premature convergence to suboptimal
solutions. Our experimental results indicate that a simple way
to prevent this problem is to use populations made of a large
number of homogeneous teams.

Heterogeneous teams evolved with team selection were
inefficient at selecting for good performance in all three types
of tasks studied here and therefore cannot be recommended
for cooperative tasks that do not require specialization.

Converging evidence towards these guidelines was recently
found in a study on the evolutionary conditions for the emer-
gence of communication in societies of robots with different

5An electronic supplement for this paper is available online at
http://lis.epfl.ch/documentation.php

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on July 13, 2009 at 12:07 from IEEE Xplore.  Restrictions apply.



658 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JUNE 2009

morphologies and sensing abilities than those described in this
paper [17].

However, it should be noted that evidence from both studies
has two notable limitations. First, they did not address tasks
that benefit from specialization in addition to cooperation.
There is evidence that behavioral heterogeneity can lead to
significant performance advantages for such tasks [29], [63],
[85]–[88]. Second, they did not consider teams with intermedi-
ate genetic similarity. Biological research has shown that such
teams can overcome individual fitness costs of cooperation
[55], [89], thus combining the best of both worlds—enhanced
genetic diversity with readiness to adopt altruistic behaviors. A
good understanding of those conditions will require significant
further research.
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