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Abstract— The Internet provides no information on the fate as TRIAD [13], NIRA [30], and Platypus [26], allow end
of transmitted packets, and end systems cannot determine who systems to control the domain-level path of their packets,
:’Sé sLGI}tspt?\neSylblceanfr?gt %rgﬁfsln%a?rthiﬁlal)/slg% ;hrzlrhgr?g:icrig Aiieiarl while a more recent proposal [33] enables multi-path saurce
servic’e level agreements, nor can they react to adverse networ to ghpose failure-independent paths. To m,ake, an informed
conditions appropriately. While current probing tools provide decision about such paths when current service is poor, @n en
some assistance in this regard, they only give feedback on prohes system needs to know which domains are currently dropping
not actual traffic. Moreover, service providers could, at any time, or delaying its packets. We therefore contend that the heter
render their network opague to such tools. should not remain “opaque to failure” but should instead

We proposeAudlt, an explicit accountability interface, through provide information about where packets are being dropped

which ISPs can pro-actively supply feedback to traffic sources
on loss and delay, at administrative-domain granularity. Notably, OF delayed so that end systems (whether these be the source

our interface is resistant to ISP lies and can be implemented with hosts themselves, or the originating domain) can inteliye
a modest NetFlow modification. On our Click-based prototype, adapt to current conditions.

playback of real traces from a Tier-1 ISP reveals less thar2% . . . - -
bandwidth overhead. Finally, our proposal benefits not only end There is also a simpler rationale for providing this informa

systems, but also ISPs, who can now control the amount and tiON. Internet service is a contractual business; end usays

quality of information revealed about their internals. their ISP, and ISPs have either customer-provider or pgerin
arrangements with each other. Providing some form of perfor
I. INTRODUCTION mance feedback would help establish whether providers (and

eers) are adequately performing their duty. Laskowski and

The Internet is built around a best-effort service mod h h d that. without such tabilit i
that provides no guarantees ahead of time about when, uang have snowed that, without such accounta ity
routes and innovation in the Internet are impossible [23].

even if, packets will be delivered. Many have argued that thi
lack of guarantee played a key role in the Internet's sugcessEXisting Internet probing tools such as ping and traceroute
enabling IP to run over a wide range of network technologi@@n help debug network problems. These tools are very
using simple and scalable algorithms. While some clamor fgffective in pinpointing long-lasting outages or persisteigh-
augmen[ing best-effort with qua"[y-of-service assues)dew drop rates. However, because they only reveal how the nktwor
if any believe that the best-effort model should be discardereacts to probe packets, not to previously sent packets faile

The Internet has also adopted the philosophy of not provitf capture low-rate or sporadic misbehavior (e.g., an mter
ing any after-the-fact information about the fate of paskettent router failure, or malicious low-rate drop patterng])2
The rationale for not providing advance assurances—ergblifis such, they have limited value when trying to make finely-
flexibility of network technologies and simplicity of therfo tuned decisions about the reliability of a provider's seevi
Warding path_does not app'y to monitoring and repor‘tin@_/lore importantly, even if the Internet’s behavior on probe
The lack of such on-line monitoring tools (as opposed taffic were enough to detect all problems, such probingstool
probing tOOIS, which we discuss |ater) more ||ke|y arisesir reveal information at router granularity, at the border and
strict adherence to layering and transparency according W#hin the interior of ISPs alike. One cannot expect that
which, from a host's perspective, all that matters is wheth&SPs will remain so transparent to these tools: in what other
and when a packet was delivered, which can be determinediBgustry do organizations allow free inspection of thetemmal
the endpoints themselves without help from the networks THnfrastructure? We think it likely that the current trendI&Ps
line of thinking has resulted in an Internet that is transpar Pefuddling these tools will increase, preventing unaueot
to success but opaque to failure. probing.

It has long been a central Internet tenet that applicationsBased on these considerations, we think the Internet would
should adapt to current network conditions, but often thHee well-served to move beyond the current situation, where
notion of adaptation was limited to purely end-to-end corihere is no systematic way to learn the fate of packets, and
siderations such as congestion control and adaptive codaiysuch performance monitoring relies on an ad hoc set of
techniques. In such cases, not knowing where packet losspoobing tools that provide more information than an ISP wloul
delays occurred is no hindrance; all that matters is thag thike to reveal (its internal structure) and less informatiban
did occur and endpoint measurements are enough to estabéishend system would like to know (what happened to the
that fact. However, there have been several recent effortspreviously sent packets). We propose instdadlt, an explicit
extend adaptation to edge-controlled routing. Proposaish accountability interfacethrough which ISPs report on their



own performance. We argue that this is better than probing,gigfdype Eggtg \?Vritgcd%ggg R [Ty I

both for the end systems and the ISPs: the former learn what specified {ToS, src IP/port, dst IP/port} tuple
happens to their traffic, not just their probes; the lattertom handoffPoint | Inter-AD link #5 to AD X or

what information they release regarding their business. We all inter-AD links to AD X

show that ISPs cannot misuse our interface to lie about theirdirection Incoming or outgoing

(or other ISPs’) performance. We also present two caseestudi_7umbPkts 10

on implementing the interface to report on TCP traffic and @v97tme 2007-08-08 18:02:49 antb4 msec CEST

demonstrate that it can be done with a modest NetFlow [1]
modification and a reasonable amount of resources.

After a problem statement (8lI) we define Audit (§lll) and
describe how it can be used in the face of both honest 64
dishonest ISPs (81V). Next, we present our case studies: fiﬁ%
a straightforward implementation that provides accurass |
feedback (8V), then an extension that provides accurateyde
feedback (8VI); we evaluate them in a software prototype.
(8VII). We close with a discussion of the bigger picture bego
what is covered in this paper (8VIII), related work (81X) an
our conclusions (§X).

TABLE |I. Feedback entry fields and example contents.

astructure, including reporting having seen packetdid

, and reporting having not seen packets it did see. Weplac
restrictions on the ability of ADs to collude with other AD
fneighboring or otherwise).

Our threat modetioes notallow a malicious AD to modify
otherwise tamper with traffic reports from other ADs that i
orwards. We justify this restriction by observing thatptigh

Ds make no guarantees with regards to their own traffic
(including reporting traffic they generate), they sign lgga

Il. PROBLEM SETUP binding service-level agreements with their peers, whiayt
would openly violate by manipulating neighbors’ reporting
A. Goals packets; we believe that the majority of ISPs today would

With this work, we wish to enable traffic sources to detelavoid such open violations. In Section VIII-A, we discuss
mine which administrative domains are losing and/or delgyi expanding our threat model by removing this restriction, to
their packets; amdministrative domain{AD) is defined as a address stronger adversaries, which we consider uniedbst
contiguous network administered by a single authority.lEatoday’'s—but perhaps not tomorrow’s—Internet.
administrative authority that provides accountabilityfrise to
choose how to present itself: an AD can correspond to a single I1l. ACCOUNTABILITY INTERFACE
Autonomous System (AS), a group of peering ASes, an entireln this section, we present an initial interface-level defin
ISP, or even a coalition of neighboring ISPs. tion of the accountability facilities we propose. This istno

More specifically, our first goal is to provide a trafficintended as a rigorous mathematical background to feedback
source with enough feedback to determine: (1) a measurereporting and comprehension; rather, it is meant to ilatstr
how much of its outgoing traffic was dropped at which AQhe accountability facilities we advocate. In later seusiave
and (2) a measure of the delay experienced by its outgoiegplain how a source AD can use the interface to determine
traffic through each traversed AD. The granularity of these loss and delay of its own traffic.

“measures” can be very fine (e.g., per-packet metrics) or o
coarser (e.g., aggregate metrics over multiple packets). ~ A- Audlt Definition

It is critically important to ensure that the measures de- A reporting AD organizes its feedback faedback packets
scribed above cannot be arbitrarily skewed by a malicioémch one including its identity and a setfekdback entries
AD on the traffic path or off the path. Our second goal ia\t a high level, a feedback entry specifies a unidirectional
to guarantee an upper bound on the error that a maliciowaffic aggregate a hand-off pointwhere packets from this
AD can unobtrusively induce in each measure. We defineaggregate entered or exited the reporting AD, how many such
“malicious AD” in the threat model, below. packets were observed at this hand-off point, aritenthey

The flip side of the second goal is our third goal: whewere observed. This information is encoded in the feedback-
tampering of our monitoring metrics violates the error bdun entry fields stated in Table I; in the rest of this section, we
this tampering should be attributable to a specific link l@s=w discuss them in more detail.
the tampering AD and its peer. In other words, egregious The aggType and aggld fields together specify the traffic
tampering should béocalizable aggregate a feedback entry refers to. The interface allows f

Our final goal is to “do no harm”: our solution should nomultiple aggregate types, so that each AD can choose its own
enable previously impossible attacks against innocent A@s granularity of reporting aggregates—as we discuss lates, th
example, we should not make denial-of-service attackeeasihoice affects the quality-overhead trade-off of the medra.
than they are now. Any rule that unambiguously specifies a set of packets sent by

a source AD can be used to define an aggregate type; the only
B. Threat Model restriction is that aggregate types must be such that any two

Our threat model allows an AD to bbenign—that is, aggregates either have no packets in common or one is a subset
report what it measures dutifully—analicious—that is, report of the other. For example, two aggregate types that honsr thi
inflated or deflated measurements for traffic traversing itestriction are packets and TCP flows (as defined in §V-C).



Uvi{Z;.aggld}
Uvi{Z;.handoffPoint}
T;.direction
Svi{Z;.numPkts}

Svi{Zi.numPkts-&;.avgTime}

The handoffPoint field describes a connection between ff-aggfd
the reporting AD and one of its peers, through whigjyld T~h?nd0ﬁp0int
packets transitioned from one AD to the other. It can specify if-d”" ection
one or more inter-AD links or the peer itself (implying that &.numPkts

this connection consists of all inter-AD links with the sifiec! T.avgTime = T roum Phts
peer). In this way, each AD can choose the level of detail at o ) ) o
which it exposes its structure—for instance, by exposing on@BLE !l.  Definition of 7 = +i;, when all feedback entries; are

. . . X roduced by the same AD, they all have the same directigdirection,
hand-off point per peer, an AD provides no information on th%qd all aggyegategi.agg[d are c)cgmbinable.

number of its inter-AD links. An AD makes publicly available

the identities of its hand-off points, as well as the maximufhe number ofx packets dropped or the delay incurred dy

acceptable delay across each hand-off point as agreed upggkets per AD along that path.

with the corresponding peer—*acceptable” in the sense that, \ore specifically, if AD X produced feedback entry

it is exceeded, the corresponding inter-AD links are comgid on aggregatey, and AD Y produced feedback entry, the

to have failed. 3 source can determine that delivered a packets toY, if
The direction field specifies whethetggld packets entered 3 pandoffPoint = §.handoffPoint, &.direction = out, and

or exited the reporting AD ahandoffPoint. The numPkts direction = in. Given all feedback entries; produced by

field is a count of theigg/d packets observed atindoffPoint, AD X on «, the source can determine the following:
while avgTime is a timestamp that corresponds to the (abso- 1) The number ofa packets lost withinX is I —

lute) average time at which these packets were observed. F o numPlts — @, numPlts, where

B. An Informal Aggregate and Feedback Algebra Tin = Xi g, direction=in} {T:} and

Tout = 2{i 4, direction— i}
To express the relationship between two aggregatasd 5 2) T?;g aver{aigé dgéig;"i_n%“lﬁéé }by packets withinX is
of traffic originating at certain source AD, we use set notati

Any two such aggregates aoembinableiff Tour-avgTime — Fin-avgTime, if L =02
D) . . .
y 99 , 9 Since different ADs may report on different aggregate types
« @ C {3, all of o's packets also belong 18, or it is up to the source to do the necessary combinations (by
e 3 C q, all of 5's packets also belong te, or

, applying the simple algebra of 8llI-B). We illustrate with

« aNf =10, aand§ have no packets in common. a simple example. Suppose an aggregate that consists of
To express the combination of two or more combinablgree packets crosses a hand-off point from ADto AD
aggregates, we use the union operator. For exampieJif3, vy, In response,X produces one feedback entfy on the
thena U3 = 3. As with set union, combination is associativeentire aggregate, whereas produces three feedback entries
and commutative (e.gUvi{a;} = ar U (Ui izr{ci})). i1, 2, and s, one for each packet. It is up to the source

To denote a particular feedback entry, we use vector n@r determine thatj;, §», and §3 are combinable, and that
tation, e.g.,Z. To denote a particular field within feedbacky = §, + §, + 3. Then, the source can order the reports
entry &, we use notatiort.(field name), €.9.,7.aggld. As a to determine the aggregate’s path, as well as individuaketac
convention, we use the same symbol to denote an aggredat® and delay measures on each AD.
and its identifier. Feedback entries from the same AD and with )
the same direction can be combined (using the combing}or B- On-path Lies
to form feedback entries for the combined aggregates. Forwe now turn to the case in which an AD misrepresents
instance, if a given AD’s feedback entrigsand  refer to its performance when reporting on a particular aggregaie. W
aggregates and g, respectively, then the feedback eniry-§  seek to answer two questions: when can a source detect such
refers to the aggregate U 5. Recall that not all aggregateslies and, when it does, can it identify the liars?
can be combined. Table Il defines the combinator 1) Detection: We start with the observation that correct
feedback entries from two peering ADs on the same traffic
aggregate satisfy certain consistency conditions, as dsrfye

In this section we present how Audlt can be used to provideter-AD links between the two ADs do not drop, reorder, or
traffic sources with performance feedback. We first descrilieconsistently delay packets. If the two ADs’ feedback iesstr
how sources can decipher reports from honest ISPs, then havthe same aggregate disagree on (1) how many packets the
dishonest reports can be detected via feedback inconsisten earlier AD delivered to the later AD, or (2) when, on average,
leading to lie localization. it delivered them, then either one of them is lying, or thexe i

a problem with the inter-AD link between them.

IV. USING AuDIT

A. Honest Reporters

In the absence of dishonest feedback reporters, a sou
can combine a collection of feedback entries on aggregat
from multiple ADs to determiner’s AD-level path. It can also
combine the packet count:_s and average t'meStamps CO”eCtGths does not mean that an AD cannot provide delay feedbackadfict
at all the entrances and exits of each reporting AD to computet incurs loss; we show how to do that in §VI.

IrDefinition: Consider a traffic aggregatethat crosses a hand-
of point from AD X to AD Y the two ADs produce
Seedback entries on, denoted byt andg, respectively, with



Z.handoffPoint = §.handoffPoint. Feedback entrieg andy feedback inconsistengye omit the straightforward proof for

are consistenwith each other, iff lack of space).
o §.numPkts = #.numPkts Interestingly, the converse is also true: when ADdoes
o §.avgTime — F.avgTime < 7, wherer is the maximum ot report onc traffic at all, then its peers can causé to
acceptab|e one-way de|ay acras&andoffPoint. be reported incompetent with respectdoThis is one of the

o . basic incentives for deploying our accountability intedathe
A second observation is that, when feedback entries on th@yre information an AD generates about its performance, the

same aggregate are consistent, an involved AD can only figye difficult it is for its peers to undetectably blame their
about its performance by implicating one or more of its peergits on it.
We illustrate with two examples. Note that Lemma 4.1 holds even when peering ADs use
Consider again traffic aggregateand ADsX andY from  gifferent aggregate types. For instance, consider traffigrex
the definition above. Supposg drops one of the packets,gatea that crosses a hand-off point from AR to AD L (L
but, instead of admitting the loss, it claims it never got thg), “liar"). Suppose X produces a single feedback entry on
lost packet in the first plac_e, ie., it reports receivingnfro ., \vhereasl, produces one feedback entry for eachpacket.
X one fewer packet than it actually did (@tnumPkts = Now L can lie about which individuak packetsX delivered,
z.numPkts — 1); this implies that eitherX’ did not deliver to ¢ jt must still ensure that the total number of receiveckpts:
Y all pa_lckets that it reported, or the inter-AD link betweery reports is equal to the number of delivered packets regort
X andY is lossy. by X. Similarly, L can lie about the time it received each
Now suppos&” tries to hide some of the delay incurred byindividual packet, but it must still choose the reportedrgnt
a in its network, by claiming that, on average, it received times such that their average is equal to the average ext tim
packets10 msec later than it actually did (a.avgTime —  reported byX. Essentially,L can wrongly accus& of losing
z.avgTime = 7 + 10 msec). This necessarily implies thalpr delaying an individuale packet (andX cannot dispute
either X' delivered the packets at that time, or the inter-Alhe claim, because it is not reporting on each packet), but it
link betweenX andY” introduced an additiondl0-msec delay. cannot blame any loss or average delay 6mwith respect to
In both examplesY” is essentially blaming its own loss or, without causing feedback inconsistencies.
delay onX; alternatively, it could blame them on the next AD  Between successive ADs, feedback inconsistencies are in-

on a’s path. escapable at the granularity of timearest common superset

Definition: Consider a traffic aggregatethat crosses a hand-°f the aggregates reported for the same traffic. Being able to

off point from AD X to AD Y: the two ADs produce find that ne.arest common superset efﬂmently (that is, witho

feedback entries om, denoted byz and §, respectively, comblna_torlal searchgs ov_era_lllfeedbaclf entries recavdub

with Z.handoffPoint = §.handoffPoint. SupposeX delivers source) is an ess_ent|al _crlterlon determining which agapesg

through this hand-off poinp packets of aggregate to Y at YP€S are compatible with Audit.

average time. We say that: 2) Localization: When source5' receives inconsistent feed-

back entries from a pair of ADX andY’, either one of them

is lying about its performance, or at least one inter-AD link

between them is faulty. The source cannot determine which of

these are true, but it can narrow down the problem toXhe

Y pair. This may be useful to the source (e.g., if the source

is connected though multiple ISPs, it may be able to route

its traffic avoiding the suspiciouX™-Y" link altogether), but it

is not enough for accountability: if ADs can lie about their

performance and then point fingers at their peers, there is no
Finally, we observe that, if an AD blames loss and/or aveincentive to tell the truth.

age delay on one of its peers, unless the peeris in on thédie, t We address this problem by exposing lying ADs to the peers

lie is bound to result in inconsistent feedback entries ketw they implicated. Continuing with the above example, if saur

the liar and the peer—for instancé reports deliveringp S receives inconsistent feedback entries fragmand Y, it

« packets toY’, while Y reports receivingg — ép o packets subsequently askX and Y for a signed version of these

from X. Inconsistency alerts the receiver of the correspondimgntries. If an AD responds with a signed entry that differs

feedback entries to the fact that something is wrong (eitiner from the original (unsigned) one, the$i concludes that AD

AD is lying or an inter-AD link is problematic), triggering is lying (within our threat model). If both ADs insist on thei

further investigation. So, one measure of the harm a lying Agriginal reports,S sends both signed entries to bothandY'.

can do is the extent to which it can blame an innocent peerom that point on, it is up to the two peers to sort out their

without causing any feedback inconsistencies. differences: if both ADs insist they are telling the truthgy
Lemma 4.1: If AD X produces correct feedback entries ortan investigate their inter-AD link; if no problems are faun

traffic aggregatex, then none ofX’s peers can blame any losswith the link, i.e., the inconsistency was due to a lie, thea t

or average delay onX with respect too without causing a lying AD is exposed to the peer it implicated.

o “Y blames lossip on X with respect toc,
if §.numPkts =p — op.

« “Y blames average delay on X" with respect toq,
if g.avgTime =1t + 7+ 6t.

e “X blames losip on Y with respect toq,
if Z.numPkts = p + dp.

o “X blames average delay on Y with respect toq,
if Z.avgTime =t — 7 — it.



Audlt does not mandate how peering ADs investigate arde previous hop for the aggregate in conflictiBs reporting
resolve their disputes over feedback inconsistencies—d&at of L as its next hop for the aggregate.
pends on the debugging tools they have at their disposal asn general, an off-path ADL cannot blame loss or delay
much as their business relationship. Whatever the processwith respect to aggregate on an innocent AD any more than
provides a strong incentive for ADs to be honest: if lyingin on-path AD can—i.e., not at all, as long as the innocent AD
means implicating a peer, who will deterministically le@inat produces correct feedback @n In a scenario where not all
it has been implicated, then lying means entering a (patiynti ADs on «o’s path provide timely feedback, and, moreover, the
legal) dispute with that peer and damaging the correspgndisource does not know's AD-level path, L may be able to
business relationship. Given the nature of today’s ISPrimss, produce credible feedback am and present itself as being
in which peers sign either provider-customer SLAs or pagriron path; however, it cannot blame any loss or delay with
agreements, we believe that an ISP would not risk losingra@spect too on any AD correctly reporting om.. Note that,
peer’s trust. to produce credible feedbaclf; needs help by an on-path

3) The Role of Inter-AD LinksOne could argue that feed-colluder; without it,L would be hard pressed to pick the right
back inconsistencies between two peering ADs are impassibumber of packets, a consistent average entry time, ettheat
to properly ascribe when in fact it is the inter-AD link beteve risk of being identified as a generator of false feedback and
them that has failed. In practice, an innocent AD shoulgenalized in its business with its partners.
be able to discover the truth: An inter-AD link can be a

. . . V. BAsIC FEEDBACK ON TCP TRAFFIC

physical link connected at each end to elements belonging
to the two ADs; the only way for such a link to introduce e now present our first case study: how an ISP can imple-
loss or unpredictable delay is for it to be physically danthgement Audlt for reporting TCP-flow statistics, in particuléne
which is straightforward to debug with the right equipmenflumber of packets lost and, if that is zero, the average delay
Alternatively, an inter-AD link can consist of two physicalincurred by each TCP flow within its network.
links plugged into a switch located at an Internet exchange

o i ] S . ) . Checkpoints
point; in this case, investigating an inconsistency ineslv L . _
verifying the health of the physical links as well as the loss Statistics are collected at designatfteckpointslocated on
and delays introduced by the switch. inter-AD links. Physically, a checkpoint can be a monitgrin

Of course, we cannot preclude the case where an inter-/&ﬂpqgle running in_side a borde_r router, or a separ_ate box
link goes through a sophisticated exchange point that-intrBOS't'oned to passively tap the link. Conceptually, it dstss

duces multiple active elements in the datapath. In that,ca; Iea link tap, a clock, short- and long-term state and a segndin

however, the exchange point itself becomes an adminigtrat uffer.

entity that receives and delivers packets, which means thaf\n AD places checkpoints on all the links through which

it should also support Audlt, otherwise ADs will be free t&raﬁic enters and exits its netvyork.. Each check_pqint tylﬁyca
blame their faults on it. In general, the idea is that hapd-t(?lays two roles: as an entry point, it collects statisticgraffic

debug entities export the accountability interface, so fdnalts en.ttgnn?hthepgD; as an exit point, it collects statistics ffic
can be tracked down to a pair of such entities and an eagff—' Ing the AD. . .

to-debug element between them, like a physical link; then, Each AD mu_st k_eep its checkpoint clocks roughly synchro-
when two entities send inconsistent feedback, it is easwrfior hized. One option is to use NTP and get an accuracy of a few

innocent entity to determine whether the other one is lying gunhdred mm:oselconds (is Iq?]g asNe_?;h CheCkpf'lnt[ IS tl)ocated
the element between them has failed. in the same local network with an server) [11]; a better

one is to equip each checkpoint with a GPS receiver (cugrentl
C. Off-path Lies costing about $200) and get an accuracy3df) nsec [4].
' Checkpoints from different ADs located on the same inter-

Besides lying about its forwarding performance, a malisioyzD link need only keep track of their clock drift.
AD may also choose to lie about having seen an aggregate

when it, in fact, has not. We refer to this misbehavior a8- The Accountability Center

“off-path lying.” An adversary’s impersonating a legitittka = Each AD maintains araccountability centeras part of

on-path AD (i.e. forging feedback entries for another AD) isits network management platform. Physically, this can be a

an authentication issue that is handled in an implememtationodule running inside a management node, or a cluster of

specific fashion (see 8V-E). nodes, depending on the size of the AD and the amount of
When all ADs on an aggregate’s path provide feedbackaffic it generates and forwards.

the source will not be tempted to consider feedback from anAn accountability center exports two interfaces. As part

AD L situated off the actual path of the aggregate: if no ABf a source ADS, it exports afeedback receivemterface,

downstream of the source designatesas the next hop. where reporting ADs can send their feedback regarding ¢raffi

cannot present itself as “on path.” An on-path AD¥ that generated byS; the address of this interface is publicly

misrepresents its next hop to lieis itself malicious and can available through DNS. As part of a reporting AD, it exports

be caught by the same feedback inconsistencies describea ifollow up interface (e.g., over HTTPS), where feedback

the previous sectionM’s downstream AD would repoit/ as receivers can request/provide signed statements in case of



Field name | Description # bits In the past, IP-prefix-to-AD maps have been compiled in
tepld ToS, src IP/port, dst IP/port 104 the context of AS-level traceroute [25], i.e., when trying
numPkts Number of packets withicpld | 8 to map the source addresses of ICMP TIME_EXCEEDED
observed at this checkpoint messages to ASes. Mapping those addresses (which belong
firstArrival | Time the first packet was 32 to IP-router interfaces) can be tricky in several scenarios
observed at this checkpoint First, ASes do not always advertise the addresses of their
lastArrival | Time the last packet was 32 router interfaces. Second, some router interfaces areiqailys
observed at this checkpoint located at exchange points and may be advertised by more
avgTime Average time at which 32 than one AS. Third, if a non-BGP speaking network has
the packets were observed multiple providers, each one of them advertises the netaork
closed Is this piece of state “closed”? 1 prefixes, which, as a result, appear to belong to multiplesASe

The first two scenarios are not relevant to our mechanism,
TABLE Ill.  Short-term state maintained per TCP flow at eachasipeint. because we 0n|y need to map addresses of TCP sources, never
All the timestamps are in milliseconds. . . . . .
private infrastructure. The third scenario is straightfard to
_ _ . _ ~handle: multi-homed, non-BGP speaking networks, either do
feedback inconsistencies (see 8IV-B.2), or verify thatdaie not receive feedback or receive feedback through their BGP
IP address corresponds to a checkpoint fr&m speaking providers.

C. Packet Classification per TCP Flow and Short-term State. Long-term State and Statistics Reporting

A checkpoint considers a sequence of packets to belongeach checkpoint reads its short-term state ev&rgeconds,

to the same aggregate of type “TCP flow,” when both of tH&eates feedback entries from its closed records, packbges
following conditions are true: per source AD (using the feedback-receiver map), copias the
local storage (from where they expire aftér hours), and
tuple, and nds them to the correspond_ing feedback receivgr via UDP.
. any FIN or RST packet is the last one. Source ADs that do not advertlse.a feeqlback-recewer asldres
) . do not get any feedback on their traffic. Feedback packets

Each checkpoint maintains short-term state per TCP flojg; e to congestion can be recovered through the follpw-u

which is organized irflow records(see Table ). The only . .nnel (see §V-F).

difference between a NetFlow cache and a checkpoint's short identify and drop spoofed feedback packets, a feedback
term state is that the latter includes the average time ath"’hireceiver uses a lightweight authentication scheme, resoénit
each flow's packets were observed. of SYN-cookies [10]. When first contacted by a checkpoint,
A record is “closed,” i.e., stops getting updated, for anyq feedbhack receiver verifies that the sender's addreseihd

of the following reasons: (i) The flow ended, i.e., & FIN Ofqrregponds to a checkpoint; then it responds with a random
RST packet from that flow was observed. (i) Inactivity, i.eyonce which it stores locally. All subsequent reports from
currentTime — lastArrival > mazldle; in our implemen- a: checkpoint to the feedback receiver carry incremehts o
tation, we usemazldle = 15 sec, i.e., the NetFlow defaultyhat nonce, much like a TCP sequence number. The feedback

for maximum packet inter-arrival time within a flow. (i) receiver periodically changes the nonce for each checkpoin
Age, i.e., currentTime — firstArrival > maxAge; we use and establishes it with a new handshake.

mazAge = 60 sec (less than thg0-minute NetFlow default), \yhen a flow record is closed due to inactivity, age, or

because we want to collect aggregate statistics on a long flgWsrfiow of the numPkts field, the corresponding feedback
at least every minute. (iv) The number of packets exceedgfliry can temporarily lead the source AD to wrong conclu-
the corresponding field sizevfmPkts > 255). sions. For example, if a transit AD delays a packet by more
than mazldle, the exit point will close the corresponding
flow record before observing the delayed packet, potemtiall
To send collected feedback to the corresponding sourggeaking” the flow into two separate feedback entries; rafte
ADs, the accountability center of each reporting AD builds gceiving the first feedback entry, the source AD may falsely
feedback-receiver magvhich maps IP prefixes to their origin conclude that the reporting AD lost the second part of the
ADs and the corresponding feedback-receiver addressiss; {bw. Such errors are corrected once the corresponding TCP

table is then distributed to all the checkpoints of the ADeThfiow has ended, and the source AD has collected all related
accountability center builds the feedback-receiver mawim feedback entries.

stages: first, it compiles an IP-prefix-to-origin-AD mapnggi

BGP data from the AD’s border routers; then it looks up- Follow-up Channel

the feedback-receiver address for each origin AD and adddf a feedback receiver is missing expected feedback or
that information to the map. Given that IP-prefix-to-AD mapgientifies a feedback inconsistency, it uses the follow-up
computed from BGP tables are known to be ambiguous [25jterfaces of the involved ADs to resolve the issue as desdri
we explain next why these limitations have no impact on oum 8IV-B.2. Upon receiving a request, the accountabilitptes
mechanism. retrieves the relevant information from the corresponding

« all packets have the same {ToS, src IP/port, dst IP/porEj:a

D. Determining Where to Report



O »
[] Checkpoint
Path

Field name | Description # bits
entryPoint | ldentity of entry checkpoint 16
entryTime | Average entry time of the packets 32
observed at this exit point

TABLE IV. Short-term state maintained at each exit point pegke-path
TCP flow. The entry time is in milliseconds.

within the AD, they are guaranteed to enter and exit the AD
in the same order. Although the IP protocol itself does not
Fig. 1. AD-granularity view of the paths taken by a sourcgigregate to a provide this guarantee, to the best of our knowledge, modern
remote destination. routers (and the providers that use them) generally do.

checkpoints and puts together the requested statemerd: Fés Packet Classification per Single-path TCP Flow
back receivers do not directly contact checkpoints. A checkpoint considers a sequence of packets to belong to
the same aggregate of type “single-path TCP flow,” when these
packets

The benefit of the implementation presented in this section, pelong to the same TCP flow (as defined in §V-C) and
is simplicity: each checkpoint collects NetFlow-styletistics ~ , cross the same entry and exit checkpoints of this AD.
and sends them to t_he cc_)rrespor_ld_mg source ADs. The_re aRote that collecting packet counts and average timestamps
two cases, however, in which providing per-TCP-flow statist 4 e granularity of single-path TCP flows overcomes the
is insufficient to characterize AD performance with respect limitations described in §V-G: First, using these statitia

TCP traffic; we discuss these cases here, before addresgagrce AD can compute the average delay incurred by a split

them m_the next section. : ._flow across each individual intra-AD path of the reporting
The first case is split TCP flows. Consider the following\, - gecond, since packets are assigned to flows based on
sr?enarrl]o. I!1n Izl(lgure 1, traffic frorg? to_ l?] IS no.rmﬁllljy IrOUtEd their entry and exit checkpoints, the average entry and exit
throug hC ?(C pomtg,a’), 6’. J and11; tTﬁ té/}?ca lfan e timestamps reported by an AD on a certain flow always
tween checkpoints and11 is 10 msec. ThenX' malfunctions ofar 1 the same set of packets, which allows a source AD

(e.g., a link goes doyvn) and routes two packets fro_m the SarFEBeaccurately compute the average delay incurred by these
TCP flow through different paths; as a resuit, receives the gackets within the reporting AD
X .

two packets through different entry points. The first pack
follows the normal path (and incurs the typid@kmsec delay), B. Short-term State

but the second one follows a longer path and incut@ms Checkpoints collect different types of statistics depagdi
delay withinT¥’s network. In this scenario, ADV" introduces o, their role: entry points maintain state per TCP flow, where
higher average delay than normal into a TCP flow as a resglfit points maintain state per single-path TCP flow. Thestatt
of a malfunction in a previous AD. Yet, ift’ collects per- s a0 organized in records, each one including the fields of
TCP-flow statistics (i.e., exports the average entry and efiupie |11 plus two extra fields summarized in Table IV: an
time for the two packets), a source receiving its feedback €3, pyint field (which specifies the entry point for this flow)
only determine that the average delay acrtissvas55 MSeC  ang anentry Time field (which specifies the average time at
and potentially conclude that’s performance decreased. \yhich this aggregate’s packets entered this AD).

The other case is long, delay-sensitive TCP flows that incur|; may seem counter-intuitive, at first, that we maintain the

packet loss. It is possible that the source of such a flow Woué%rageentry time of an aggregate at the correspondingt
want to know the average delay incurred within each ABqint The reason is that an entry point cannot assign packet

by the_packets that were succe_ssfully delivered by that Al single-path TCP flows (and compute the corresponding
Reporting the average time at which the flow's packets edter&verage timestamps), because it cannot kibvand where
each AD is not enough to compute this information, becauggcn observed packet will exit the AD.

that corresponds tall the packets that entered the AD, not
the ones that made it to the exit. C. Statistics Collection

We have established that the right place to assign packets
) to a single-path TCP flow and compute their average entry
We now show how an ISP can extend the implementatigie is the exit point that observes these packets. Thigesea

presented in 8V to accurately report on the average delg) implementation challenge: an exit point must be able to
incurred in its network by split TCP flows and/or flows that
incur packet loss. 2An exception is Juniper’s M160 OC192 linecard, which introed packet
This case study concerns ADs whose internal paths do ﬁgﬁrdermg due to its parallel structure [6]. qurderlngSVMmmate_d in the
d | K . if K f hee company'’s next core router [7] after bad publicity—notablgamparison test
reorder Sam@;'c ass packets, I.e., If two packets rom_t S8yiith Cisco’s highest-end, at the time, router, showing thatlatter introduced
class of service follow the same sequence of router intesfaco reordering [5].

G. Limitations

VI. ACCURATE DELAY FEEDBACK ON TCP TRAFFIC



determinewhereand wheneach observed packet entered thentryTime fields of all the corresponding records. To update
AD. One would think that at least the “where” question coulthe entryTime field, the exit point assumes that the packet
be answered based on routing state; unfortunately, imtarid entered right after the last marker from the corresponding
external routing tables are generally insufficient [18]. entryPoint. When there are no routing changes and no
A seemingly straightforward solution is packet annotatiorentryPoint errors (see next paragraph), this overestimates the
When a checkpoint observes a packet entering its AD, average delay incurred by a flow at most By, .
reads the packet's TCP/IP headers, updates its (per TCH) Error Correction: It is possible that the version of the
flow) state accordingly, and annotates the packet with its #try-point map at a certain exit point is temporarily otéta
address and the current time; the checkpoint that obser@sentry point has observed a new {source prefix, destination
the packet exiting the AD uses the annotation to compute tpeefix} pair, but the corresponding update has not reached th
entryPoint and entryTime fields and update its (per single-accountability center or the exit point yet. This may resalt
path TCP flow) state accordingly. Albeit conceptually sieypl the exit point observing a new TCP flow and failing to create
this approach would face deployment issues: even thougfilow record that corresponds to its actual entry point. Tal de
packet size and content modification at line speed is withith this case, each exit point remembers the prefix pairs it
the capabilities of modern hardware, ISPs are typically nistoked up recently and the flow records it created; if it reesi
equipped to perform it, especially at the Internet core. an update of the entry-point map that concerns one of these
Fortunately, in a typical modern AD, it is feasible toprefix pairs, it creates a new flow record according to the new
“emulate” packet annotation: Inter-AD routes do not chandBapping, assuming that all packets of the flow incurred the
all that frequently, which allows an exit point to correctjyess Maximum possible delay.
with a high probability the entry point of an observed packef, giatistics Reporting

Moreover, modern routers do not arbitrarily reorder pasket Each exi . ds its sh - d
which allows an exit point to bound the delay incurred by a ach exit point reads its short-term state eveétyseconds,

packet without knowing its exact entry time. Based on thegéganlzeshclosed flow dr'ecords pem§ryPc\>/i/11r:£, and sends
observations, we propose a solution, where the exit pointtr%em to the comresponding entry point. enever an entry

not explicitly told the entry point and time of each observeBO!Nt receives a re_co_rd from an exit point, '.t looks up the
packet, but rather performimformed guesseand fixes any correspondingcpld in its local state and associates the record
mistakés after the fact with the matching local one; if no match is found, the record

1) Entry-point DisambiguationEach entry point processe is discarded. Eventually, an entry point associates eacdl lo

the source and destination addresses of observed paclcbtiTF\Cr:]P flow record with one or more matching smgle“- path ,TCP
flow records sent by exit points, produces a set of “coalésced

builds a history of source-destination prefix pairs. All rgnt feedback entries (avoiding to repeat thed-bit long fepld

points of a given AD periodically send updates of their higto ith every entry), copies them to local storage, and seremth

to the AD’s accountability center, which uses them to buil 1 ihe correspon’ding source AD. To computé the number of

ggn?jri]é;yt-ep(:mr mag)i:tosmUsodu;::ees-d;s:;]r;gtlr(:]r; p;e;:;lx gﬁg;ictg ackets from each TCP flow that entered/exited the reporting

distributed to );”p exit .poi?ns of the AD V\F/)hich Ese it to D and the_corresponding average times_tamps, the source AD

determine potential entry points for obser,ved flows must combine all feedback entries on single-path TCP flows
) . X . ' _ with the sametepld and direction sent by the reporting AD.

2) Entry-time DisambiguationMoreover, each entry point  \ve illustrate with an example. In Figure 1, source AD
sends to each exit point marker, i.e., a control packet that ¢onqs out TCP flowf, which consists oB packets. The three
includes a timestamp corresponding to its birth time, eVeRickets entei at times9, 10, and11. X loses the first one,
T, time units. Whenever an exit point observes a non-mark§jivers the second one © at time 20, and the third one
packet, it can determine a lower bound on the packet's enlfy - 4t time 26. The first packet enterdy” at time 50 and is
time, by assuming the packet entered the AD right after the,ivered toD at time 60, while the second one entelE at
last marker from the corresponding entry point. FOr inséaNnGme 55 and is delivered at tima55. Table V describes the
suppose checkpoirt,, in Figure 1, observes a packet exiting.gntent of the (honest) feedback entries producedibgnd
AD V" and guesses that this packet entered at checkpojft o 1o compute the number of packets that exitedk
5, if the last marker from checkpoink bore timestamp!, 4nq their average exit time§ combines the feedback entries
checkpoint6 concludes that the packet cannot have emer%ﬁjoduced by checkpointsand4 (374 and5'" line in Table V).

Y before timet. For lack of space, we omit the detailsgimijarly, to compute the number of packets that entered
of handling routing changes, multiple intra-AD paths angV and their average entry time§ combines the feedback

multiple service classes. entries produced by checkpoinisand 10 (6! and 9" line
3) Short-term State UpdateWhenever an exit point ob- jn Taple V).

serves a new TCP flow, it first uses the entry-point map

to guess a set of candidate entry points, then creates c£1e|-'m'ta“°”3

flow record for each one of them. Upon observing subse-In the beginning of this section, we set out to produce accu-
guent packets from the same TCP flow, the exit point upate delay statistics for TCP flows that are split across ipielt
dates thenumPkts, firstArrival, lastArrival, avgTime, and paths and/or incur loss. We mentioned packet annotation as a



aggType | aggld };,aojgfﬁ dir 7}%’; ‘%fn . with each other with respect to) such a flow. For instance,
T [ Tcp 7 19 pn 3 10 W cannot lie aboutf’s average exit time from its network
2 | SPTCP | f, 23 1-2 in 1 10 (because that would cause an inconsistency wWishaverage
3 | SPTCP | f, 2-3 3-5 out 1 20 entry time inD), but it canlie about the exit time of each of
4 | SPTCP | f, 24 1-2 in 1 11 the two f packets that it successfully delivered (as longias
2 ?EPTCP f, 24 é‘g out i ;8 does not report the entry time of each individyalpacket).
- | sp TCP {” 9-11 6:9 iz 9 98 In general, the extent to which an AD can lie depends on the
8 | spTCP f: 0-11 | 11-12 out | 2 | 108 detail at which its peers report their performance; if alese
9 | TCP f 8-10 in 1 55 report on TCP flows, an AD is free to report any performance
10 | SP TCP | f, 10-11 | 8-10 mn 2 8 it wants for its internal paths, as long as the average pé?-TC
11| SPTCP | f,10-11 | 11-12 out | 2 | 108 flow performance across all paths matches the peers’ reports

TABLE V. Feedback sent by ADS( (top half) andW (bottom half) in VII. OVERHEAD EVALUATION

Figure 1 to source ALY regarding TCP flowf. “SP TCP” stands for “single- . . .
path TCP flow.” The format of theggId field depends omggType: for TCP We now evaluate the implementation proposed in §VI, based

flows, it consists oftcpld; for single-path TCP flows, it consists @#tp/d  on a software prototype and real traces from OC-48 links of
and anentryPoint-czitPoint pair. a Tier-1 ISP (obtained from CAIDA [3]).

A. Processing and Memory Overhead

We implemented a checkpoint prototype using the Click
odular router [21]. Our prototype consists of a NetFlow-
like traffic monitoring module and an accountability module
he former observes forwarded packets and collects per-TCP
) _ flow state (as an entry point) and per-single-path-TCP-flow
When a flow enters an AD through multiple entry pointSsiate (as an exit point). The accountability module pecatty
the corresponding exit points have no way of guessing whig8,4s the collected statistics, packs closed flows intobieekd
packet entered at which entry point; the best they can dojgckets, and sends them to the corresponding entry pomts (a
assume that the entire flow entered at each of the candidgfe exit point) or source ADs (as an entry point); it is also
entry points and compute the corresponding average enfgéponsible for sending and processing marker packets. We
times. This may not reveal the exact delay incurred by ”Eﬁeployed this prototype on two PCs, each with a Xeon 3.8
flow along each path, but does provide information on thgy, processor and Gbytes of memory. We set up a simple
performance of each path that carried the flow. For instanqgstbed, where one PC acted as an entry point and the other
consider again the scenario depicted in Figure 1: Checkpoify 5n exit point.
11 guesses that floyf entered through checkpoingsand/or  The goal of the experiment was to evaluate the performance
10, creates two flow records (one for each entry point), ang the accountability module—in an actual checkpoint im-
updates both of them with every observgdpacket. The pementation, the traffic-monitoring module would be imple
resulting feedback entries (see Table V, limeands for the  mented in hardware, close to the data path, e.g., as a NetFlow
path between checkpointsand 11, and lines10 and 11 for  gngine, More specifically, our goal was to test whether an
the path between checkpoints and11) allow S to estimate f_the-shelf processor with a credible amount of memory
the performance of the twél” paths—specifically, what the .3y process per-flow statistics collected at a high-speed |i
average delay incurred by within W would have been, if ang generate the corresponding feedback in real time. To
both f packets had entereld” through checkpoind or 10.  thjs end, we emulated an OC192 link to our entry and from
Marker-based estimation of a packet's entry time reliesur exit point, i.e., we caused the traffic-monitoring maul
on the assumption that same-class packets are not reorde(gghing on the two PCs to generats0, 000 new flow records
along a single intra-AD path; a router malfunction that @usper second—assumirig 000 bytes per flow, this corresponds
reordering can also cause an exit point to produce wromrgughly to10 Gbps; each flow lasted f@0 seconds, leading to
entry-time estimates. Although, in practice, there aresMay a total of5 million concurrent flows. Moreover, we emulated
alleviate the effects of such malfunctions, there is no releg 100-checkpoint topology, i.e., the exit point thought it was
way to provably bound the error they can introduce—at leasénding its feedback @ entry points, whereas the entry point
not without assuming a maximum intra-AD delay. Both thithought it was collecting its feedback fro89 exit points.
and the previous limitation are due to the use of markers agge used7, = 10 sec, T, = 5 h, and T,,, = 5 msec. Our
can be avoided at the cost of using packet annotation.  accountability modules successfully sustained this flote;ra
We close with the observation that Lemma 4.1 does ntitey started falling behind under a loadf0, 000 new flows
apply to single-path TCP flows: unlike a TCP flow, a singleper second.
path TCP flow is unique to the AD that produced it, because it As far as state is concerned, each checkpoint maintains two
consists of the packets that were successfully deliveimd Bt types: the short-term state described in Tables Il and3% (
specific entry point to a specific exit point of that AD; henceyytes per single-path TCP flow) and a history of the statstic
no two ADs can produce feedback on (and be inconsistdrds produced within the lagf; hours. With1 GB of memory

conceptually straightforward but expensive solution;nthvee
“approximated” that solution with a cheaper one at the cost
of introducing certain inaccuracies in the collected stas.
We now discuss these inaccuracies and how they qualitativ
affect the provided feedback.



Trace rate (Mbps) | 386 | 833 | 330 | 294 | 115 | 145 TCp flows as the common case, feedback introduces in each
Avg flow size (KB) | 10.9| 9.8 | 11.8| 9 | 6.5 | 5.2 gource AD roughlyl.85% bandwidth overhead over the AD’s
BW overhead (%) | 0.8 | 0.9 | 0.8 | 1 | 1.4 | 1.8 exported traffic. To put this overhead in context, it is worth
noting that the IPv6 header would introdus®& bandwidth
overhead, assuming an average packet siz&)ofbytes.

TABLE VI. Trace characteristics (rate and average flow sa&) bandwidth
overhead.Ts = 10 sec andT; = 5 h.

VIIl. DiIscussiON
and200 GB of storage, a checkpoint could handle rougtly A, Feedback Tampering
million concurrent TCP flows and keep5ahour history on a

- One limitation of our threat model and the presented imple-
billion flows per hour.

mentations is the assumption that malicious routers witl no
B. Bandwidth Overhead selectively tamper with the feedback they observe. In pract

. L . this assumption is justified because an ISP that engageslin su
Our implementation introduces three types of bandwidysqpack tampering is violating legally binding agreersent

overhead: the overhead due to marker packets incurred \gih jis peers; moreover, to the best of our knowledge, traffi
each reporting AD, the (also intra-AD) overhead of sendingmpering by malicious on-path routers is not currentlywno
feedback from exit to entry points, and that of receiving, pe 5 typical Internet problem. However, it could become a
feedbgck from multiple ADs incurred by each source AD. Wﬁroblem in the future, unless we provide a way to prevent or
examine each one below. . .. expose such malicious behavior.

The intra-AD overhead introduced by markers is inde- \ve are considering two approaches towards dealing with
pendent of the amount of forwarded traffiéd bytes (the teegback tampering. The simplest one is to enable provider-
minimum packet size) every, time units for every entry- recejver pairs to detect (but not necessarily localizeliieek
exit point pair that exchanges traffic. Each AD can Ws¢  (ampering, so they can negotiate alternative delivery ath
as a knob to determine the balance between overhead &gk can be done by enhancing feedback packets with message
feedback quality. For instance, to achieve delay accuragyihentication codes (MACS). For instance, consider acgour
T\, = 5 msec, each pair of entry-exit points must exchanggn g 5 transit AD X that forwards some of’s traffic, and
100 Kbps of marker traffic; for an AD withi00 inter-AD links, 3 majicious entity) on the path fromX to S. If M modifies
this corresponds to a total 0 Mbps of marker traffic per {he content of(’s feedback packets§ can detect it, as long as
checkpoint (in each directiord). _ each packet carries a MAC. Iff dropsX's feedback packets,

The |_ntra-AD overhead introduced by feedback flowing a5 detect it, as long as it knows th&tis part of the AD-
from exit to entry points depends on (1) the average TGE\g| path and expects to receive feedback from it. In thaeca
flow size and (2) the size of the flow records sent by exit can issue a follow-up request t&§ and verify thatX did
points, which is18 bytes in our implementation (we omit thejnqeed send feedback 1 that was dropped along the way.
formatting details for lack of space). To get an estimateheft o more complete, but expensive approach is to force

average TCP flow size, we looked at §ix traces from a Tierfdegback to flow hop by hop through the checkpoints that
ISP, provided by CAIDA (see Table V1); we choSeh00 bytes  opserved the corresponding traffic. In this way, the AD4eve
per flow as a representative number, as all our traces showggh that delivers each piece of feedback becomes visible,
a higher average flow size, which would reduce the overheﬁ%king it possible to investigate feedback-tamperingdents

thanks to amortization. Assuming this average flow size andygq expose the culprits as with feedback inconsistencies.
single exit point per TCP flow as the common case, feedback

introduces roughly).36% bandwidth overhead per entry pointB. Flow Sampling

where the percentage is computed over the throughput of theAnother limitation is that each checkpoint must observe

traffic observed by the entry point. every single packet in order to produce accurate statistics
Similarly, the overhead incurred by a source AD depends qmnactice, ISPs prefer to usampledNetFlow, which monitors

the average TCP flow size and the size of the feedback entrigsy a configurable percentage of forwarded traffic and, ,thus

sent by each AD (in our implementatio®3 bytes per single- allows them to control the resources spent in monitoring. We

path TCP flow), but also the average number of ADs per floare considering adapting our implementation to work with

path. Suppose ISPs report at the granularity of ASes; givah tsampled or adaptive [17] NetFlow at the cost of reduced (but

75% of AS pairs are less thah ASes apart [24], using as bounded) accuracy in the reported statistics.

the average number of ADs per flow path seems a reasonable,

albeit rough, estimate—note that this number is consistéht w " Reflector Attacks

the average AS path length observed in current BGP tables [8]One aspect that we have considered, but left outside this

Assuming this number;, 000 bytes per flow, and non-split Paper for lack of space, is how to prevent reflector attacks.
In such attacks, compromised nodes spoof the victim’s sourc
3Currently, according to data from Route Views [2], more ti#n5% of ~address and use it to send a large volume of TCP packets to
ASes have fewer that00 inter-AS connections. ASes Wlth more interconnecygrious destinations, in order to cause the victim to rexeaiv
tions would have to be broken to multiple ADs to remain withiis ttnarker | | f feedback . ffic it did
overhead, without necessarily exposing their internal canmpentalization to arge volume of feedback entries on traffic It did not gererat

feedback receivers. A key observation that helps us address this problem is that,



in order to launch a successful reflector attack, the attacke subset of the observed packets and estimates the average
must generate unusually small (in terms of packets) TGRrruption/loss rate per link; however, it requires sosrte
flows; hence, by packaging feedback on small flows separatatust their destinations and feedback producers to engage
reporting ADs enable feedback receivers to efficientlysifgs in probing sessions with each destination, whereas we are
suspicious feedback. Another key observation is that, lyterested in delay/loss localization that is practicaté&ploy
studying the feedback received through a reflector attdwk, twithout needing to involve destination hosts or domains.
intended victim can trace every single attacking sourcé&b@ac  Another related line of work is Trajectory Sampling, in

its AD, i.e., a fortuitous side-effect of deploying accaaluitity ~which routers within an ISP sample packets and record their

is that spoofing becomes localizable. digests. The key point is that all routers sample the same
packets, which allows the ISP to combine the recorded di-
IX. RELATED WORK gests and reconstruct its internal paths at a router lev@l [1

- A We are considering using this work as a basis to build an
Our work was originally inspired by Hash-based Trace- : . ) : o
ur W W 'giatly” Insp! y %I_ternatwe Audlt implementation that computes its stitis

back [27]; we share common mechanisms with that arChitebased on traffic samples. We chose to start with a NetFlow-

ture, albeit with different goals. In both architecturesiffic based implementation instead, only because NetFlow is al-
leaves a trail on its path. In our case, this trail is per-flow P ' y

state recorded at the entry and exit points between ADs an (?gdy widely deployed, whereas Trajectory Sampling reuir

used to send pro-active feedback to source ADs; in HasrdbaESICket'digeSting capabilities on the datapath, which e s

Traceback, the trail consists of packet digests recordedctt unavailable.

router and is used to send reactive information to destinati In an'earller vvprkshop paper, we describe a pr'ellmmary
. Lo r?echanlsm that informs traffic sources where their packets
Accountability has also been studied in the context g

Byzantine fault detection in distributed systems [31]: GAT aﬁfg}#gge:]?s; O;ngg_ugng[fc]k :2 Stza;; V\;c;rk,ag/\l/(eetta;k; a
provides accountability for network storage [32], whileeRe g P : perp ' P

Review addresses the more general problem of accoun}abiﬂf)w' and it flows hop by hop through the checkpoints that

: o .%enerated the corresponding traffic. The reason for takiag t
in any distributed system that can be modeled as a collection roach was that it allowed every AD on a packet's path
of deterministic state machines [20]. Both systems provi P y P P

secure logs of the messages sent and received by each ngt just the source AD) to receive feedback on the fate of

and identify faulty nodes by processing their logs. Our wor at pa_cket. However, th's functionality was provided a th.

o 7 . cost of increased bandwidth and memory overhead, progessin

is similar in spirit: one can view each AD sequence as a . .
complexity and the need for custom hardware. In contraist, th

distributed system that keeps “logs” (flow records) of theaper focused on a practically deployable solution
messages” (packets) that enter and exit each “node (AEB'FinaIIy, we target similar goals (albeit through different

Our approach differs mainly in functionality (we measuretea , . ) : .
. . .philosophy and mechanisms) with probing tools that seek to
node’s performance rather than detect Byzantine behavidr)
alize loss and delay on end-to-end Internet paths. Recen

and domain specificity: Since our “messages” correspond tQ

. —y : e evelopments include the design of flexible probing pro-
packets transmitted over high-speed links, it is still iangical cosses [28] and scalable algorithms that compute statistic

today to produce secure logs of al mgssagef e)(Chamgﬁultiple paths by monitoring only a subset [12]; also, Mao
between nodes. Moreover, because our “nodes” are admin-

istrative domains engaged in business with their peers, ave %t al. have proposed to complement traditional traceroyte b

s misbehavior (in our cadyapping the discovered router addresses to the corresgpndi

. S o /ESes thus producing AS-level paths [25]. From the widely
!ymg) to_a_l | other nodes—ex_posmg Itto th(_a implicated pspr( used traceroute program to sophisticated network-tonpbgra
is a sufficient deterrent against misbehavior. . . .

techniques [15], probing tools express the traditionald(an

A more theoretical perspective on network accountabilty i . .
offered in [19]. The authors prove that, to perform accurafedm'ttedly’ the only currently applicable) approach teetnet

L . i, roubleshooting: treat it as a black box and try to guess its
fault localization in th? presence of ”T'a"C'OUS erltltlesuthinternal structure (and faults) by studying its response to
can add, drop_ or modify traffic (|nclud|_ng feedback), EVeitferent signals. Our approach is the opposite: let therhmt
feedback provider must share keys with the correspondllr{geIf (ie., the ISPs) report on its faults on its own terms
feedback receiver and use them to perform cryptographic o '

. 2 Y rémoving the n for probing from multiple van in
operations. The same work also presents the Optimistic ar?rgj oving the need for probing fro ultiple vantage points,

Statistical FL (fault localization) protocols, which aéds a 203 :\\:g:]dlr?l%rti rgkuc;f initating 1SPs into making the Biac
different threat model than Audit (arbitrary traffic tamper paque.
by malicious on-path entities), but are related to the esiters X. CONCLUSIONS

we mention in 8VIII: Optimistic FL is similar to the hop- \ye hronosed Audit, an accountability interface that ergble

by-hop feedback propagation scheme we mention in VIll-Agps to report the loss and delay experienced by transient
although the former performs corruption and loss localarat traffic to the traffic source, while keeping internal ISP stue

and does so per packet, whereas we are interested in delay ghd policy private. We showed that the proposed interface
loss localization per aggregate. Statistical FL is relatethe s resistant to lies in a business-sensible malicious threa
sampling approach we mention in VIII-B, in that it considersodel: as long as an ISP follows the reporting interface for



some packet aggregate, its peers cannot blame on it their Igs]
and/or delay for the same aggregate without the ISP deg;ectig7
their lie. We also showed that ISPs can implement Audlt t ]
report on TCP traffic with a modest NetFlow modification ands]
introducing less thar2% of bandwidth overhead on typical [©]
Internet traffic.

We believe that an accountability interface would have [a0]
positive impact on the Internet. Most importantly, it exgss [11]
ISP performance. Good ISPs may want to employ it, to prove
to their customers that they are not responsible for packez]
loss or delay. This may, in turn, drive the remaining ISPs to
improve their (now measurable) service. In this sense,atteo [13]
ability could bring better ISP service by increasing cortjmet
on performance (which is now only dimly observable), not jus
on price. [14]

The detailed performance information can also help end
systems choose alternate routes to improve their perfacema
There are many proposals for letting end systems con?r[&a]
their routes, but far fewer for how those end systems migh]
gather the information necessary to intelligently chodwssirt
routes. By giving them the knowledge of which ADs ar 7]
currently underperforming, they can narrow their search fo
better routes. This may even remove the need for Internet Qo
mechanisms, since (ignoring access links) there are lysuéﬁg
uncongested paths between two network points; to get good
quality of service, end systems merely need to find those*spatp1 9
Our accountability interface, though not a complete sotuti
to this problem, does provide useful information.

The use of layering to hide implementation details fror#0l
higher layers is a crucial aspect of the Internet architectu
correspondingly, end systems view the Internet as a blapk|
box, remaining ignorant of any network structure. But etyual
crucial is the end-to-end principle of implementing as muqlgz]
functionality as possible at the edges. In particular, rimdé
applications should adapt to Internet conditions rathenth
expecting the network to adjust to their requirements. dfith [23]
more knowledge of the Internet’s behavior, the edge’s @bili
to adapt is limited to congestion control and related bedravi [24]

Our accountability interface is designed to provide stiteit
information out of band. It preserves layering and leaves [B5)
semantics unchanged; it is an external vehicle for infogmin
the host of network conditions. Many have called for apyg)
Internet knowledge [14] or information plane [29] that wdul
expose network information to end systems. We view this work
as a first concrete and viable step in this direction. 271
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