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1. INTRODUCTION
During the past 30 years of the Internet revolution, the In-
ternet has become a major force of change with an enor-
mous effect on civilization. Consequently, computer net-
works have evolved into more complex system and become
virtually ubiquitous. This in turn, has given raise to a grow-
ing demand for scalable and reliable computer system ar-
chitectures. Thus far, there has been enormous effort by
the research community to introduce decentralized, simple,
and scalable distributed systems to solve a wide range of
problems. In this paper we explore one promising solution,
which was initially inspired by mathematical models that in-
vestigate two everyday life phenomena, epidemics and gos-
sip, which we used interchangeably throughout the paper.
During the last century, mathematicians developed models
to predict the rate of diseases spread, namely epidemics,
using differential equations. In addition, researchers have
developed discrete mathematics models to predict what we
already know; rumors spread fast, namely gossip. It was
thus natural to harness these models in order to design dis-
tributed systems that mimic the basic behavior of such fast
spreading everyday life paradigms.

To begin with, gossiping and broadcasting were first de-
scribed as two different information dissemination problems
for a group of individuals connected by a communication
network. More concretely, as defined in [14], in the gossip-
ing problem, every individual in the network initially knows
a unique item of information and needs to communicate it
to everyone else in the network, whereas the broadcasting
problem is defined as the case in which one individual has

an item of information which needs to be communicated to
every other individual. The authors present solutions for
both problems, producing a deterministic sequence of un-
ordered pairs of communication partners. Each pair repre-
sents a phone call made between a pair of individuals, such
that, during each call, the two people involved exchange all
the information they know at that time. At the end of the
sequence of calls, everybody knows all the information that
had to be spread. The survey focuses on the number of
calls among n people over arbitrary network topologies and
variants of the problems.

A similar version of the gossiping problem has been stud-
ied in parallel processing (see, e.g., [10, 17, 27, 33, 34]). As
in [14], initially there is a collection of nodes, each holding
a packet. The nodes are interconnected via a network of a
given fixed topology and the goal is eventually to have ev-
ery node obtain a copy of each packet. The communication
is assumed to be parallel and synchronous, following a sys-
tolic model [24]. The main reasons to consider gossiping in
this model are its conceptual simplicity and its potential to
efficiently solve a wide range of parallel processing problems.

Lately, a new variety of gossip-based algorithms have evolved
as communication patterns for designing simple, scalable,
and efficient communication protocols in large distributed
systems. To the best of the authors’ knowledge, the first
work proposing such gossip-based algorithms is due to De-
mers et al. [5]. This paper proposes a family of gossip-
based algorithms for maintaining replicated database sys-
tems. Since then, gossip-based algorithms have been pro-
posed to solve central problems in numerous distributed sys-
tems deployed over wide range of physical networks. These
problems include, for instance, replicated database main-
tenance [5], Usenet news distribution [25], implementation
of e-mail distributed systems [3], ad-hoc routing [13], dis-
tributed failure detection [36], network management [35],
lightweight broadcast [7], peer-to-peer membership mainte-
nance [11, 16, 37], aggregation in sensor networks [6], build-
ing of overlay structure [12], and topology management [15].



Position and Objectives. Gossip-based algorithms are dis-
tributed algorithms, in which nodes take steps and exchange
information in execution cycles in order to provide a solution
to given problems in a distributed manner. In this paper we
factor out the fundamental elements found at the heart of
these algorithms, hopefully, leading to a better understand-
ing of this innovative form of communication.

Thus far, many of the gossip-based algorithms proposed in
the literature have been evaluated empirically, and not the-
oretically. We believe that this is due to limitations of the
existing theoretical models in modeling real distributed en-
vironments, on which gossip-based algorithms are deployed.
That is, most existing theoretical models (that have been
used to derive various theoretical results) do not capture all
the key factors to which real life distributed systems are ex-
posed. Consider, for an example, the dynamic behavior and
scale of peer-to-peer networks, in which information and net-
work’s topology are changing continuously over time. These
networks require robust mechanisms for keeping nodes up-
dated with new content. Gossip-based algorithms have been
used to spread information in such dynamic environments.
However, thus far, theoretical models assume a static com-
munication network topology.

Additionally, theoretical analysis of gossip-based algorithms
will not only serve to evaluate the properties of these algo-
rithms but also to uncover their strengths and weaknesses
compared to traditional distributed algorithms. Neverthe-
less, in order to conduct such theoretical analysis, we need
a general model, which captures the main characteristics
of the distributed environment in which we choose to de-
ploy. In this paper we try to face this problem, by defining
a generic framework that can be used as starting point to
model a distributed system in which one chooses to deploy
an arbitrary gossip-based algorithm.

We factor out key elements found at the heart of gossip-
based algorithms:

Problem A distributed computing problem that the gossip-
based algorithm solves.

System The communication network (e.g., wired, wireless,
overlay, internet) and environment in which we choose
to deploy the algorithm.

Efficiency The goal is to design efficient algorithms, which
is manifested in the following criteria:

Time complexity Total number of rounds for deliv-
ery, as measured from the start state until termi-
nation.

Message complexity The total amount of data trans-
ferred over the network channels throughout an
execution.

Connectivity complexity The total number of com-
munication channels established throughout an
execution.

Space complexity The total amount of memory de-
voted to the algorithm throughout an execution.

1.1 Organization
The rest of the paper is organized as follows. The elements
of the framework are presented and described in Section 2.
Section 3 gives a formal definition of termination and sev-
eral complexity measures that are of interest in the analysis
of gossip-based algorithms. Finally, conclusions and future
directions are given in Section 4.

2. GENERIC FRAMEWORK
A gossip-based algorithm, as we understand it in this paper,
provides a service which is the solution to a problem (e.g.,
broadcasting information, random peer sampling, comput-
ing some aggregate value, etc.). The given algorithm solves
the problem on top of an underlying system that provides
itself some basic services (typically communication primi-
tives) and some guarantees (e.g., connectivity). The link
between the service and the underlying system is the algo-
rithm itself, which is in charge of using the services provided
by the underlying system to provide the desired service. In
this section we describe these three main elements around
which a gossip-based algorithm is built.

2.1 Problem Definition
Any gossip-based algorithm solves a problem in a distributed
system in which there is a set V of n processes or nodes, each
having a unique identifier and with communication capac-
ity between them. For the definition of the problem, which
is the topic of this section, we do not impose any specific
mean of communication. Although it is commonly assumed
that communication is via message passing, other forms, like
shared memory, could also be possible. The distributed sys-
tem considered could be dynamic in its composition. This
means that nodes can be in at least two states, active or
inactive, and that at different times different sets of nodes
can be active. We denote by V (t) the set of active nodes at
time t and define V =

⋃
t V (t).

2.1.1 Problem Classification
Theoretical work on gossip-based algorithm has mainly fo-
cused on three classes of problems: information spread, ag-
gregate computation, and overlay management.

Information Spread Given a state in which one of the
nodes, v ∈ V (called the source node), has a message
mv, the objective is that eventually every node has a
copy of message mv [5, 7, 9, 18, 20, 28].

Computing Aggregates Given a state in which each node
v ∈ V has a value xv, the problem is to compute some
aggregate function f (e.g., SUM, AVERAGE, MIN, or
MAX) of all the values, xv, so that every node even-
tually has the aggregate value [4, 19, 28].

Overlay Management In the overlay management prob-
lem (e.g., [1, 7, 11, 37]) each node v ∈ V has a subset
viewv ⊆ V , such that v has direct communication with
every node in viewv. The nodes in viewv are the neigh-
bors of v in a overlay network OV . The objective is
to achieve an overlay network with some property P
(e.g., that each set viewv is a uniform random sample
of V ).



Unlike the previous two classes, overlay management is usu-
ally a continuous problem, in the sense that it is not enough
that the property P is reached, but it also must be main-
tained afterwards. This will make it different from the other
problems classes.

2.1.2 Algorithm Termination or Problem Solution
In principle, identifying when a solution of one of the above
problems has been found seems simple. However, that usu-
ally implies a very strict definition of the problem solution.
We propose here alternative definitions of problem solution
or algorithm termination, in the line of [9].

For instance, a strict definition of termination for informa-
tion spreading algorithms is very natural: an arbitrary in-
formation spreading algorithm A terminates when all nodes
have received a copy of the message mv that is being spread.
Unfortunately, even the “best” algorithm may never be able
to guarantee termination as defined, due to the dynamics of
the network, the churn, or the random behavior of the al-
gorithm itself. For this, it seems convenient to introduce an
approximation factor δ ≥ 1 to the complete dissemination of
the message. Let V (t) be the set of nodes in the system at
time t, and Mv(t) denote the subset of these nodes at that
time that have the message mv. We say that the spread-
ing algorithm A has terminated at time t if the following
predicate is satisfied

TermA(t) =

{
|V (t)|
|Mv(t)| ≤ δ

}
.

A similar issue appears in gossip-based algorithms that com-
pute aggregates. Let us assume that the algorithm A com-
putes the aggregate function f : Rn 7→ R over the input val-

ues xvi , vi ∈ V , where V =
⋃

t V (t). Let f̂vi(t) be the esti-
mate of f(xv1 , . . . , xvn) at node vi at time t. The natural ter-

mination condition would be that f̂vi(t) = f(xv1 , . . . , xvn)
for all vi ∈ V . However, it seems convenient to relax this
condition with an approximation factor δ ≥ 1, as the follow-
ing termination predicate

TermA(t) =

{
max

vi∈V (t)

(
f̂vi(t)

f(xv1 , . . . , xvn)
,
f(xv1 , . . . , xvn)

f̂vi(t)

)
≤ δ

}
.

In overlay management problems, termination is harder to
define, since, as we said, this is an instance of continuous
problems. Then, the target is not only to take the overlay
network to a state that satisfies some property P (e.g., full
connectivity, some degree of expansion), but also to main-
tain the overlay network in the set of states that satisfy the
property. In fact, strictly speaking, an algorithm that pro-
vides this service never terminates, since it has to continue
running to preserve the property. Reaching the desired prop-
erty can be seen as a form of stabilization of the overlay. We
will use the term “termination” for uniformity, and say that
the problem has terminated at time t if

TermA(t) = {P (OV (t))}.

Another issue in overlay management problems is whether
the property can in fact be maintained or it can stop being
satisfied due to the dynamics of the systems. For instance,
many algorithms [1] can still partition the communication

system at any time, hence most possibly preventing P from
holding.

In the following, we will use TermA(t) as the predicate to
indicate whether a gossip-based algorithm A has terminated
at time t.

2.1.3 Probabilistic Problem Specification
Most gossip-based computations are probabilistic in nature.
This may be due to the fact that the algorithms itself is
randomized, or that the underlying system only provides
probabilistic guarantees. In either case, it very natural to as-
sume that the specification of the problem to be solved could
be given in probabilistic terms. These terms usually imply
defining some“acceptable”error probability. The error prob-
ability can affect the specification in two forms [29]. One is
that keeping the complexity fixed (and hopefully small), the
answer may have some probability of being incorrect (Monte
Carlo algorithm). Alternatively, if correctness is to be guar-
anteed, efficiency is achieved only with some probability (Las
Vegas algorithm). These two forms of defining probabilistic
specifications can be expressed then in the form of a given
time complexity C and an error ε, and the condition to be
satisfied by both classes of algorithms is that

Pr[TermA(C)] ≥ 1− ε. (1)

The main difference between the two classes of algorithms
has to do with the time the algorithm is run and the condi-
tion that defines if the problem has been solved. If a Monte
Carlo algorithm is developed, then the algorithm will run
for at most C time, and it solves the problem if Equation 1
is satisfied. Observe that in a given execution TermA(C)
may not hold, but that does not prevent the algorithm from
stopping. In a Las Vegas algorithm, the execution continues
until a time t at which TermA(t) is satisfied.

2.2 Underlying System Parameters
A gossip-based algorithm is designed to solve the specified
problem in a given environment. This environment has to
provide with basic elements like communication primitives,
but its characteristics may also be hard obstacles to over-
come by the algorithm. Here we state some elements of the
underlying system that we believe are important to gossip-
based algorithms.

2.2.1 Communication Graph
As practically all theoretical models of systems for gossip-
based algorithms, we assume that communication between
nodes is done via message passing. To model which nodes
can directly communicate among each other, we use a com-
munication graph. The communication graph of a system
model is a graph G(V,E) that consists of the set V of n
nodes, each having a unique identifier (i.e., address), inter-
connected by a set of edges E. Further, a communication
channel of bounded capacity, latency and given reliability is
associated with each edge. The original gossiping and broad-
casting problems assumed a complete underlying communi-
cation graph, i.e., a message can be sent between any two
nodes. Variants on the communication graph include restric-
tions on the communication patterns among the nodes, i.e., a
node can contact some but not all other nodes. For instance,
[14] presents results on the number of calls among n nodes
over trees, arbitrary connected graph, and grid graphs.



Note that the communication graph can change over time.
If that is the case, we denote by G(t), V (t), and E(t) the
graph, active nodes, and available communication channels
at time t, respectively. Furthermore, the characteristics of
nodes and channels can also change over time. All this has
to be included in the model of the underlying system. As
a summary, the most important elements of this underlying
system are:

Channels The communication channels associated with each
edge e ∈ E(t) have a bounded capacity, latency and
given reliability and direction. Consider a wireless sen-
sor network, some devices might be capable of bidirec-
tional transmissions whereas smaller/others not. An-
other parameter that describes the communication chan-
nels is whether the communication is point-to-point or
a node can broadcast on all its channels in one sin-
gle operation. Finally, communication channels can
restrict the message length that nodes can use to ex-
change information.

Network Topology The network, by its nature (e.g., wire-
less), can restrict the communication patterns by al-
lowing or not different nodes to be connected together
via the edge set E(t). Note that the above patterns can
change and evolve over time, e.g., mobile peers that
have a limited wireless transmission range. We denote
the possible communication partners (neighbors) of a
node v at time t as Wv(t) = {p : (v ∈ V (t)) ∧ ((v, p) ∈
E(t))}.

Churn Nodes can appear and disappear (become active
and inactive) from the system for application (or user-
defined) reasons (e.g., join/leave) or for technological
reasons (e.g., node crash, failures) at any time. As
exposed, V (t) is the set of active nodes at time t.

Overlay It is usually the case that the set of neighbors of
every node is very large. Then, for scalability reasons,
in this case it is common that only a subset of this set
is known and used by v. This is the view that node
v locally has of the whole system at a certain time
t and is denoted as viewv(t) ⊆ Wv(t) ⊆ V (t). The
union of all these views form an overlay of the under-
lying network topology. The communication between
peers (i.e., which node(s) v can pick to communicate
with) is thus restricted first by the network (to the set
Wv(t)) and second by the overlay network (to the set
viewv(t)).

The underlying system is well-defined when all the under-
lying system parameters are given, and depending on these
parameters, some algorithm parameters are restricted or im-
plicitly fixed.

2.2.2 Overlay Networks and Views
As we said, the overlay network of nodes is created and
maintained by maintaining local views of their neighbors
at the nodes. The local views that each node maintains
(e.g., [1, 7, 11, 16]) are said to be global if they contain all
the neighbors of the node, and partial otherwise. Note that
as defined above a view contains only nodes that a given
peer can physically contact and is not comparable to group
membership as defined in [31].

Global Views. Global views have been considered in pre-
vious theoretical works in which a gossip-based approach
relied on the assumption that each peer locally knows every
other peer in the system. Consider, for example, the general
structure of a gossip-based protocol discussed in the semi-
nal paper of Demers et al. [5]. The system consists of a set
V of n nodes interconnected by a complete graph (clique).
In other words, each node has a global knowledge of the
system, with a view that contains every other node in the
system. The choice of neighbor, be it randomized or deter-
ministic, thus can rely on this global view of the system. In
this case, the view maintained by a peer v is equal to the
whole network at all times, viewv(t) = V (t), meaning that
the nature of the network assumed can only be a complete
graph as each peer v can potentially contact any peer in the
view, thus network.

Partial View. Providing each node with a global view is
unrealistic in a large distributed system for scalability rea-
sons. First the data structure for storing the view should not
grow linearly with the system size and second, maintaining
such information in the presence of churn incurs considerable
communication costs. The resulting problem is a need for
protocols that maintain partial views, keeping given desired
properties of the overlay network (e.g., connectivity [1, 7]).
Interestingly, the problem of overlay maintenance can itself
be solved by gossip-based algorithms (e.g., [1, 7, 11, 16, 37]).
Very often the overlay maintenance is achieved with a Peer
Sampling Service (named after [16]).

2.2.3 Peer Sampling Service
A peer sampling service [1, 7, 11, 16, 37] provides nodes
with samples of the set V (t), which have some probabilistic
guarantees (typically, is a uniformly chosen random sam-
ple). The sampling has to consider the churn rate experi-
enced by the system, trying to prevent including inactive
nodes in the samples. In the above cited work, the peer
sampling service always assumed an underlying complete
communicating graph, and used the sample as the node’s
view, such that viewv(t) ⊆ Wv(t) = V (t). It would be
of great interest to define generic peer sampling algorithms
that (1) take into account the network restrictions, such
that viewv(t) ⊆ Wv(t) ⊆ V (t) where Wv(t) can arbitrarily
change over time, (2) try to reduce the load on the network,
and (3) finally keep given desired properties of the overlay
network.

2.3 Gossip-Based Algorithms
In this section we present the structure of a generic gossip-
based algorithm and identify its most significant parameters.

2.3.1 Structure of Gossip-Based Algorithms
Gossip-based algorithms have a very simple and regular struc-
ture. The code of the gossip-based algorithm is executed by
each node in rounds. Every round r, a node performs (1) a
communication phase, followed by (2) a processing phase.

Communication Phase. In the communication phase of
a round, a network node v chooses a subset of communi-
cation partners (called neighbors) from its local view, and



exchanges with them information it holds. The message sent
by the node is synthesized from the current state of the node,
and possibly includes information from several previous ex-
changes.

Processing Phase. After the communication phase, a net-
work node applies a state transition function to its current
state to obtain the new state. The transition depends on
the current state and the information obtained form the set
of neighbors that have been contacted. In the case of in-
formation spread or broadcast, the state transition function
defines (1) what information should be delivered (i.e., if the
node received new information) and (2) what information
has to be gossiped in the next round(s) (i.e., how long an
information has to be gossiped, named contagion period).

We illustrate a common structure of a generic gossip-based
algorithm in Figure 1. The communication phase begins in
line 2, as the neighbors set is filled by a select method.
This method implements the communication strategy of the
algorithm, defined by the underlying system parameters and
adjusted by the algorithm parameters. For each of the cho-
sen communication partners, a communication channel is
opened and data can be exchanged (line 4). The gossip
message is exchanged depending on the transmission model
chosen for the algorithm (lines 6, 9, 16 and 20), and after
the information is received (lines 9 and 16), the communica-
tion phase is finished, and the processing phase starts. The
update method implements the state transition function
that will effectively solve the problem, delivers the informa-
tion and chooses what information to gossip in the following
round(s) (if applicable) and finally does some maintenance
tasks (e.g., buffer management).

1: upon timer(t time units) at node vi do
2: neighbors ← select F communication partners from viewvi

3: for all p ∈ neighbors do
4: communicateWith(p)
5: if push then
6: send gossip message to p
7: end if
8: if pull then
9: receive gossip message from p
10: update local state
11: end if
12: end for
13: end upon

14: upon communicateWith() from vj at processor node vi do
15: if push then
16: receive gossip message from vj

17: update local state
18: end if
19: if pull then
20: send gossip message to vj

21: end if
22: end upon

Figure 1: Generic gossip-based algorithm pseu-
docode. The booleans push and pull are true in case of
a pushpull transmission model.

2.3.2 Algorithm Parameters
The above basic pseudocode of a gossip-based algorithm has
to be instantiated depending on the problem that has to be

solved and the underlying available system. Among others,
this instantiation depends on the following basic parameters.

Transmission Model. As can be observed, in Figure 1,
there are two flags, push and pull, that strongly characterize
the behavior of the algorithm. They determine if the com-
munication of the node with the neighbors only transfers
information from the node to the neighbor, only transfers
information from the neighbor to the node, or transfers in-
formation in both directions. The first two cases are one-way
transmission. In the first, we say that information is pushed
from the node to the neighbor, while in the second we say
that the information is pulled by the node from the neighbor.
In the general case of two-way transmission, where the two
nodes exchange their information, the transmission model is
named pushpull.

Communication Strategy and Fanout. The communica-
tion strategy defines how a node v chooses the subset of
communication partners, i.e., its neighbors, for the current
round. The first decision the algorithm designer has to make
is the size of the neighbors’ set, F , known as the fanout.
The set of neighbors is chosen from the viewv(tr) (tr is
the time at which round r is executed), thus neighbors ⊆
viewv(tr) ⊆ Wv(tr) ⊆ V (tr). The way a set of neighbors is
chosen can be deterministic or random. Following the com-
munication strategies defined, it is sometimes the underlying
system that dictates or influences the choice of neighbor(s)
with whom communicate by reflecting the nature of the un-
derlying network (e.g., network-driven communication strat-
egy [20, 26]) or to reflect a given arbitrary topology (e.g.,
application-driven topology [15]).

Buffer Management. Inherently to all gossip-based algo-
rithm, duplication of messages can happen. Furthermore, it
is common that every message carries several units of infor-
mation, typically named events. Hence, it is highly possible
that a node receives information (events) that it already
knew, which is one of the reasons gossip-based algorithms
are considered fault-tolerant. With random communication,
there is a fair chance that the same neighbor is chosen more
than once. Moreover, even without repeating partners, it is
possible that two nodes p and q, which both communicated
with r in the past, can now exchange r’s information.

For scalability reasons (e.g., overall number of messages ex-
changed, size of these messages, etc.) an algorithm usually
specifies that a node should not forward all events forever
and decide to stop gossiping this or that particular event
(i.e., by removing it from the gossip message) at some point.
This buffer management problem is exposed in [8] and solu-
tions are proposed in, e.g., [7, 32].

Message Size. Within the restrictions imposed by the un-
derlying system, the algorithm has to decide how to forward
the events that it has in its buffer. It may decide that it will
forward all events forever, which means that unless events
are purged from the memory the message size will grow ar-



bitrarily large. Another option is to decide that only a fixed
number of events will be forwarded in each message, which
implies that messages will have a fixed size, but open the
question of how to select the set of events to transmit (e.g.,
age-based purging [7]). Finally, it can decide to forward
each event a maximal number of times, which implies that
the message size depends on the number of events to gossip
in the following round(s). In epidemic terminology, each dif-
ferent event represents an infectious disease and sending or
receiving messages translates to infecting and being infected
by other nodes. Once a node gets infected by a disease, it
can basically (1) decide it can only be infectious by a fixed
number of diseases and thus instantly heal other diseases
(i.e., having a maximal message size), (2) be infectious for-
ever (i.e., forwarding each event an infinite number of times),
or (3) be infectious during a given time, named contagion
period (i.e., forwarding the same event a given number of
times since reception of it), a special case is named infect-
and-die when the contagion period is 1 for a given disease.

History Buffer Size. A related issue is to manage the his-
tory of delivered events. The history of delivered events is
maintained on each node in order to decide if a received
information is new (i.e., has to be delivered in case of infor-
mation spread), or has already been received in the past (i.e.,
the node received a duplicate). The management of the de-
livered buffer must be scalable as more and more events are
received (and delivered) over time. Modeling and analysis
of the history buffer can be found in [23].

3. COMPLEXITY
A gossip-based algorithm is expected to solve the intended
problem in an efficient manner. However, to decide if an
algorithm is efficient, we need some measurement units to
compare algorithms with each other. The performance of
gossip-based algorithms is usually measured with the follow-
ing criteria, with which smaller values imply more efficient
algorithms.

Time complexity. The time complexity of an algorithm A
is the time it takes to solve the problem. Using the notation
introduced in Section 2 for the termination event, we can
define this complexity as

TA = inf{t : TermA(t)}.

That is, the time complexity of the algorithm is the time it
takes to satisfy the termination condition. This definition of
time complexity is appropriate for deterministic behaviors
and Las Vegas probabilistic algorithms. However, random-
ized gossip-based algorithms are usually considered Monte
Carlo algorithms. That is, after a fixed time of executing the
gossip-based algorithm, there is some probability of having
reached termination. In this set up, it seems more appro-
priate to define an acceptable error probability ε ≥ 0, and
hence define the time complexity of algorithm A as

TA(ε) = inf{t : Pr[TermA(t)] ≥ 1− ε}.

As described in Section 2, gossip-based algorithms work in
rounds. If these rounds are (roughly) synchronous, in the

sense that all nodes complete the same number of rounds in
the same time, the above definition can be translated from
time to rounds. This is frequently done, and very often the
time complexity analysis is done in terms of rounds instead
of time. In this case, if TermA(r) denotes the event that
algorithm A has terminated at the end of round r, the time
complexity measured in rounds of A is defined as

T r
A(ε) = inf{r : Pr[TermA(r)] ≥ 1− ε}.

Observe that for overlay management algorithms (and any
other continuous problem), since they never really termi-
nate, the time complexity in fact gives the time it takes
for the algorithm to reach a “stable” state in which the de-
sired property is satisfied. This is clearly an interesting per-
formance parameter that efficient algorithms should try to
minimize.

Connectivity complexity. The connectivity complexity is
the total number of communication channels established be-
tween nodes until termination. Given the time complexity
in rounds of a gossip-based algorithm, it is usually fairly
easy to bound the connectivity complexity. Consider for ex-
ample, an arbitrary gossip-based algorithm A that runs over
network G(V,E) of n nodes, which exhibits time complexity,
T r
A. Assume that, in every round, each node establishes at

most a constant number c of connections. Thus, A’s con-
nectivity complexity CA is bounded as follows

CA ≤ c× n× T r
A.

Observe that overlay management algorithms (continuous
problems) never really terminate. For them, on top of the
connectivity complexity until “termination”, an interesting
parameter is the connectivity rate, which is the number of
connections or communication channels established per unit
of time once the stable state has been reached. If the al-
gorithm works in synchronous rounds the connectivity rate
can be defined in terms of connections per round. With the
above assumptions, if algorithmA is an overlay management
algorithm, its connectivity rate CRA would be bounded as

CRA ≤ c× n.

Message complexity. The message complexity of an al-
gorithm is the total amount of data transferred over the
network channels throughout an execution until termina-
tion. A bound on this parameter can be easily computed
from the connectivity complexity and the maximum mes-
sage size. Let m be an upper bound on the size of the mes-
sages exchanged by algorithm A, in bits. Assuming that all
connections exchange messages in both directions (pushpull
case), it is fairly easy to bound the message complexity MA
of algorithm A as

MA ≤ 2× CA ×m.

For overlay management algorithms, it is possible to define
the message rate as the amount of data exchanged per unit
of time once the stable state has been reached. Trivially,
this value can be upper bounded by 2× CRA ×m.



Space complexity. The space complexity of an algorithm
is the amount of memory devoted to the algorithm in each
node. This memory has been mostly used for storing overlay
data (i.e., view), message buffering and history management.
The measurement of these sets should be given as a function
of the network size (n) for the overlay data and as a function
of the message complexity for message and history data.

4. CONCLUSION AND FUTURE WORK
In this paper we have presented a generic framework for the-
oretical analysis of gossip-based algorithms. In this frame-
work we have identified the key elements that are involved
in the evaluation of an algorithm, namely the problem it
solves, the environment on which it runs, and the goodness
measures that can be used to evaluate it. Hopefully, this
work will open the door to many future lines of (theoretical)
research. We point out some issues that we believe should
be looked at further in the rest of this section.

Layering. In our framework we have identified three layers
in a gossip-based computational environment: the service,
the system, and the algorithm itself. We have placed the
overlay as part of the underlying system, and mentioned that
it can be managed as a service that can be provided with a
gossip-based algorithm as well. This leads to a new layer-
ing. The issue we want to raise is whether any gossip-based
computation can in fact be cleanly divided into these layers.
It would be nice to prove whether this is always possible or,
on the contrary, there are cases in which a strong coupling
between layers is required. Additionally, in the first case, it
would be of interest to determine whether this layering has
some impact on the performance of the algorithm.

Robustness to Sampling. In our framework we placed the
peer sampling service as part of the environment. In the-
oretical analysis it is often assumed that this service has
some “nice” properties, like uniform randomness. However,
as mentioned above, this service itself could be provided by a
gossip-based algorithm and the service may not be as “nice”
as expected. It seems of interest to evaluate the robustness
of the guarantees of gossip-based algorithms to imperfect
peer sampling services. For instance, if an algorithm works
correctly for uniform random sampling, how robust it is if
the sampling is not exactly uniform? Which properties still
hold?

Modeling Dynamics (Fault Tolerance). We have included
in the framework the fact that current networks are highly
dynamic. Gossip-based algorithms have been shown empir-
ically to provide the robustness required to perform useful
work in the presence of this constant change. Thus, we be-
lieve that an important direction of theoretical study is the
analysis of the behavior of gossip-based algorithms in the
presence of network dynamics. For that, a model of the dy-
namic behavior of nodes and links has to be defined. Some
concepts from classical distributed systems can be used, like
the classification of node failures. However, new parame-
ters may need to be considered, like changes in the net-
work topology or the link bandwidths. An inspiring previous

work is [18], in which Karp et al. investigate the robustness
of their median counter gossip algorithm against failures.
Their model, may be adopted as general settings in order to
qualify the robustness of gossip style algorithms.

Sequences of Problems. In our framework we have iden-
tified three main classes of problem typically solved with
gossip-based algorithms. To our knowledge still largely un-
explored is a new class of problems in which we have a con-
tinuous arrival of instances of basic problems. An instance
of this class could be a problem in which broadcasting prob-
lems are continuously arriving, and all the broadcasts have
to be efficiently completed. This new class requires new
parameters and models. For instance, a parameter of the
problem which is of great interest is the arrival rate of new
instances, and a performance metric is at which arrival rate
the gossip-algorithm collapses and is not able to complete
all the problem instances.

Continuous Problems. We have mentioned that the over-
lay management problem has the interesting property that
it really never terminates, since it is a continuously available
service. It would be interesting to identify other problems
that fall in this category, and exhaustively identify parame-
ters of interest for their modeling and analysis.

Gossip Symmetry. Most of the gossip algorithms in the
literature consider that each peer executes the same imple-
mentation of the algorithm with the algorithm parameters
(e.g., every peer has the same fanout). It would be inter-
esting to see the impact of arbitrary distributions on some
given system settings (e.g., fanout, contagion period) on the
different complexity measurements that we proposed. The
closest related works to this open research direction are [11]
and [21] where the authors expose, following [2], that the
probability of having an atomic broadcast in the infect-and-
die model is only dependent on the mean fanout and not on
the exact distribution of it, but no results that we know of
have yet shown that the distribution has no impact on any
complexity measures.

Fanin Limitation. In a highly scalable gossip-based algo-
rithm, the memory requirement (with respect to space com-
plexity) and communication requirement (with respect to
message and connectivity complexity) should ideally not change
with the network size |V | = n. However, few gossip-based
algorithms limit the number of incoming connections. Con-
sider the general structure of the anti-entropy protocol of
Demers et al. [5]. In each cycle every node chooses uni-
formly at random a single communication partner from all
the network nodes and pulls information from it. In [22]
Koldehofe provides a method for analyzing such protocols,
by representing the propagation of information as a balls-
and-bins random process [29]. Formally, suppose we have n
bins and we uniformly at random throw n balls into them.
Thus, the maximum number of incoming connections a node
may experience during a single execution cycle bears resem-
blance to the maximum number of balls in any bin. This



maximum load is known to be O( log n
log log n

) with high proba-

bility [30], which is a function of the size of the network n. In
essence, we require a scalable gossip-based algorithm to em-
ploy communication strategies in which both outgoing and
incoming connections to and from each node are bounded
by a constant number.
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