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Abstract

Combining several classifiers has become a very active subdiscipline in the field of pattern
recognition. For years, pattern recognition community has focused on seeking optimal
learning algorithms able to produce very accurate classifiers. However, empirical experience
proved that is is often much easier finding several relatively good classifiers than only finding
one single very accurate predictor. The advantages of combining classifiers instead of single
classifier schemes are twofold: it helps reducing the computational requirements by using
simpler models, and it can improve the classification skills. It is commonly admitted that
classifiers need to be complementary in order to improve their performances by aggregation.
This complementarity is usually termed as diversity in classifier combination community.
Although diversity is a very intuitive concept, explicitly using diversity measures for creating
classifier ensembles is not as successful as expected.

In this thesis, we propose an information theoretic framework for combining classifiers.
In particular, we prove by means of information theoretic tools that diversity between
classifiers is not sufficient to guarantee optimal classifier combination. In fact, we show
that diversity and accuracies of the individual classifiers are generally contradictory: two
very accurate classifiers cannot be diverse, and inversely, two very diverse classifiers will
necessarily have poor classification skills. In order to tackle this contradiction, we propose
a information theoretic score (ITS ) that fixes a trade-off between these two quantities. A
first possible application is to consider this new score as a selection criterion for extracting
a good ensemble in a predefined pool of classifiers. We also propose an ensemble creation
technique based on AdaBoost, by taking into account the information theoretic score for
iteratively selecting the classifiers.

As an illustration of efficient classifier combination technique, we propose several algo-
rithms for building ensembles of Support Vector Machines (SVM ). Support Vector Machines
are one of the most popular discriminative approach of pattern recognition and are often
considered as state-of-the-art in binary classification. However these classifiers present one
severe drawback when facing a very large number of training examples: they become compu-
tationally expensive to train. This problem can be addressed by decomposing the learning
into several classification tasks with lower computational requirements. We propose to train
several parallel SVM on subsets of the complete training set. We develop several algorithms
for designing efficient ensembles of SVM by taking into account our information theoretic
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score.
The second part of this thesis concentrates on human face detection, which appears

to be a very challenging binary pattern recognition task. In this work, we focus on two
main aspects: feature extraction and how to apply classifier combination techniques to face
detection systems. We introduce new geometrical filters called anisotropic Gaussian filters,
that are very efficient to model face appearance. Finally we propose a parallel mixture of
boosted classifier for reducing the false positive rate and decreasing the training time, while
keeping the testing time unchanged. The complete face detection system is evaluated on
several datasets, showing that it compares favorably to state-of-the-art techniques.

Keywords: pattern recognition, classifier combination, information theory, support
vector machines, AdaBoost, face detection.



Version Abrégée

La combinaison de classificateurs est devenue une sous-discipline très active dans le do-
maine de reconnaissance des formes. Pendant des années, les plus gros efforts dans le
domaine de l’apprentissage automatique se sont concentrés sur l’élaboration d’algorithmes
produisant des classificateurs optimaux, très robustes. Cependant, de nombreuses études
empiriques ont montré qu’il s’avère plus aisé de trouver plusieurs classificateurs relative-
ment performants plutôt qu’un seul prédicteur très robuste. Les avantages de combiner
plusieurs classificateurs au lieu d’utiliser un classificateur unique, sont doubles : réduire la
complexité des modèles d’une part, et améliorer les performances de classification d’autre
part. Il est communément admis que les classificateurs doivent être complémentaires afin
d’obtenir une combinaison efficace. Dans le domaine, cette complémentarité est habituelle-
ment appelée diversité. Bien que cette diversité soit un concept très intuitif, les méthodes
ayant tenté d’employer explicitement les mesures de diversité pour créer des ensembles de
classificateurs n’ont jusqu’alors pas eu le succès escompté.

Dans cette thèse, nous proposons d’abord un nouveau cadre théorique pour la combinai-
son de classificateurs, basé sur la théorie de l’information. En particulier, nous prouvons,
à l’aide des outils de théorie de l’information tels que l’information mutuelle, que la diver-
sité entre les classificateurs n’est pas suffisante pour garantir une combinaison optimale.
En effet, nous montrons que la diversité et la précision des différents classificateurs sont
généralement deux notions contradictoires: deux classificateurs très précis ne peuvent pas
être divers, et inversement, deux classificateurs très divers auront nécessairement des perfor-
mances de classification faibles. Afin de palier cette contradiction, nous proposons un score
(appelé ITS ) fixant un compromis entre la diversité et la moyenne des précisions des clas-
sificateurs. Une première application possible est de considérer ce nouveau score comme un
critère d’optimisation pour extraire une combinaison optimale, parmi un ensemble prédéfini
de classificateurs . Nous proposons également une technique de création d’ensembles basée
sur AdaBoost, en tenant compte du score ITS pour entrainer itérativement des classifica-
teurs.

Ensuite, nous illustrons ce cadre théorique en proposant plusieurs algorithmes pour con-
struire des ensembles efficaces de machines à vecteurs de support (SVM ). Les machines à
vecteurs de support sont parmi les méthodes les plus populaires des approches discrimi-
nantes à la reconnaissance des formes. Elles sont souvent considérées comme état de l’art
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en classification binaire. Cependant, ces classificateurs présentent un inconvénient majeur:
ils deviennent très compliqués à entrâıner lorsque la quantité de données d’apprentissage est
importante. Ce problème peut être résolu en le décomposant en plusieurs sous-problèmes
de moindre complexité. Nous proposons de former plusieurs SVM en parallèle, entrâınés
indépendamment sur des sous-ensembles des données d’apprentissage. Nous développons
plusieurs algorithmes pour concevoir des ensembles efficaces de SVM en prenant en compte
notre score ITS.

La deuxième partie de cette thèse se concentre sur la détection automatique de vis-
ages dans les images. Cette application peut être formulée comme un problème am-
bitieux de reconnaissance des formes. Ce travail se focalise principalement sur deux points:
l’extraction d’attributs discriminants et l’utilisation de techniques de combinaison de clas-
sificateurs dans les systèmes de détection de visage. Nous présentons de nouveaux filtres
géométriques appelés filtres gaussiens anisotropiques, qui s’avèrent très efficaces pour mod-
éliser l’apparence des visages. Enfin nous proposons un ensemble de classificateurs paral-
lèles, entrâınés par Boosting, pour réduire le nombre de fausses détections et diminuer le
temps de d’apprentissage, tout en gardant une vitesse de test stable. Le système complet de
détection de visage est évalué sur plusieurs bases de données, montrant des améliorations
significatives par rapport l’état de l’art.

Mots-clés: reconnaissance des formes, combinaison de classificateurs, théorie de l’information,
machines à vecteurs de support, AdaBoost, détection de visages.
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conseils judicieux et sa bonne humeur quotidienne qui contribue à l’ excellente ambiance de
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Je n’oublie pas de saluer les membres du laboratoires pour leur assistance administrative
et informatique, ainsi que pour leur sourire chaque jour: Marianne Marion, Gilles Auric,
Christophe Aeschliman et Simon Châtelain. Merci aussi à Matteo, mon collègue de bureau
avec qui j’ai partagé à la fois éclats de rire et discussions fructueuses. J’adresse aussi mes
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Introduction 1
Face detection has been an active application in the field of computer vision for the last two
decades, mainly because of the increasing number of potential applications in biometrics,
content-based image retrieval, video conferencing or intelligent human-computer interfaces.
However, detecting human faces in images can also be viewed as a very challenging machine
learning task and is commonly used for the evaluating the robustness of pattern recognition
techniques, from feature selection and extraction steps to classification.

The challenge of face detection in still images comes from the large variability of the face
appearance due to many intra-personal and extra-personal factors, such as the modification
of the face appearance with changes in illumination or head pose. Face detection can be
turned into a pattern recognition task by using a sliding window that scans the image at
different scales. At each position, a classifier checks the presence of a potential face.

A large number of techniques have been proposed for solving this classification problem
and, one very popular classification technique for this kind of applications is to combine
several classifiers to form an ensemble of classifiers. Combining classifiers was originally
employed for helping the implementation of learning algorithms having large computation
requirements, like Neural Networks for instance, the underlying motivation being that it
is generally much easier finding several quite good classifiers than building one single very
performant classifier. Then, classifier combination became a very active field in the machine
learning community as it proved to be very effective in many applications, not only for re-
ducing training complexity but also in terms of classification performances. Face detection
is a typical problem for which combining classifiers can improve significantly the perfor-
mances. On the one hand, learning a robust face model requires a huge number of training
patterns, and, dealing with very large training sets presents two major drawbacks: the
training procedure becomes very computationally expensive and the risk of having outliers
and noisy examples is increased. Face detection can take advantage of classifier combination

1
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techniques from four different perspectives:

• Reduce the training complexity. This step is very important in face detection as the
total training time can be reduced from weeks to days;

• Reduce testing time. As most of the applications require real-time face detectors,
large efforts should be put on reducing the time needed to process one single frame;

• Improve the overall performances of the system. Combining classifier can help reduc-
ing number of false detections;

• Obtain sparser models. It can produce models with low storage requirements. This
should be considered as a important factor in embedded systems.

Classifier combination techniques can be divided into two main categories, aggrega-
tion of classifiers outputs or ensemble creation techniques. On the first hand, aggregation
techniques dispose of a set of predefined classifiers. A combination rule then takes the clas-
sification decision. The combination can be performed at the decision level (using the class
labels) or at a score level (usually represented by posterior probabilities). In this catego-
ry, usual applications concerns fusion of modalities (e.g. in biometrics) or combination of
experts. On the second hand, ensemble creation techniques try to generate a set of classi-
fiers such that their combination will be performant. Such algorithms are usually iterative
procedures that grow ensembles until the expected classification performances are reached.

Many studies focused on understanding why ensemble methods - even simple voting
schemes - were so successfull in most of supervised classification tasks. One of the main
factors that can explain this empirical observation is that, performance of complementary
classifiers can be improved by aggregation, supposing that errors committed by one classifier
can be corrected by the others in the team. On the contrary, combining classifier that
commit errors on the same data seems to be useless. Consequently, it is commonly admitted
that classifiers need to be diverse in order to improve performances compared to the best
individual classifiers. In this sense, numerous diversity measures have been proposed to
analyze the efficiency of classifier ensembles. However, in practice, using these diversity
measures as criteria for creating good ensembles is not as successful as expected. How to
efficiently use explicit measures of diversity in classifier ensembles is still an open problem
in the pattern recognition community.

The work in this thesis mainly focuses on the role played by diversity in ensemble
methods. In particular, we will propose an information theoretic framework for proving
that diversity is, in general, not self-sufficient, but needs to be coupled carefully with the
average individual accuracy of the classifiers in the team. As an illustration, we will pro-
pose a complete analysis of one particular classifier combination technique: combination
of Support Vector Machines. Support Vector Machines are one of the most popular dis-
criminative approach of pattern recognition and is often considered as state-of-the-art in
binary classification. However they present one severe drawback when facing a very large
number of training examples. These classifiers become very computationally expensive to
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train, mainly because of the model selection step that becomes quickly intractable. This
problem can be addressed by decomposing the learning of the Support Vector Machine
into several tasks with lower computational requirements. One possible solution is to split
the training data into several subsets, and train in a parallel manner one Support Vector
Machine on each subset. Not only does it reduce the complexity of the learning problem
but, in practice, it also provides improvements in terms of classification accuracy. In fact,
the implementation in a parallel structure can reduce influence of potential outliers or noise
present in the training data. In this work we will propose several strategies for designing
performant ensembles of Support Vector Machines, in particular based on our information
theoretic framework.

1.1 Organization of the Thesis

This thesis is organized in two main parts. We will first give theoretical aspects of pattern
recognition and classifier combination, in particular we will propose an information theoretic
framework for combining classifiers and detail concrete example considering ensembles of
support vector machines. Then, we will propose to use classifier combination techniques in
a real-world application, namely frontal face detection.

Chapter 2 gives an introduction to pattern recognition from a discriminative perspec-
tive and review the main classifiers used throughout the thesis: Support Vector Machines,
decision trees, K-nearest neighbors, etc.

Then, chapter 3 gives a general overview of classifier combination techniques. A greedy
ensemble creation technique called AdaBoost is detailed, since it will be used extensively
in the face detection application.

Chapter 4 introduces the information theoretic framework for combining classifiers.
We propose the so called Information Theoretic Score that measures the efficiency of an
ensemble by fixing a trade-off between diversity and individual accuracies. As an illustrative
use of this score, several combination techniques will be proposed.

Chapter 5 introduces new techniques for combining efficiently Support Vector Machines.
The second part of the thesis will be divided into three main chapters. First, a general

overview of existing face detection techniques is given in chapter 6.
Chapter 7 introduces new geometrical features that can be used to model efficiently

face appearance, while chapter 8 shows how classifier combination techniques can be im-
plemented successfully in a frontal face detection system.

Finally, chapter 9 will conclude by giving a short summary of the work and give the
main perspectives.

1.2 Main Contributions

This thesis mainly targets the study of classifier combination and proposes, as a case study,
the application to face detection. We study the concept of diversity in several classifier com-
bination schemes. In particular, we propose to analyze the classifier combination problem in
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an information theoretic framework and then propose solutions for tackling the limitations
of pure diversity-based classifier combination techniques. We show how the new information
theoretic framework can be used in the particular case of combination of Support Vector
Machines. Finally we give an illustration of classifier combination techniques in a complete
real-world system, namely face detection. Here is a short list of the main contributions of
the present work:

• We propose an information theoretic framework to classifier combination. We will
give theoretical insights justifying why an ensemble can outperform single classifier
schemes. In the particular case of majority voting for combining the decisions, we
show that the main challenge of optimal classifier combination is to find a trade-off
between diversity in the ensemble and average individual accuracy.

• From empirical considerations we establish a link between these two contradictory
quantities. We propose a new measure of the efficiency of an ensemble, the Information
Theoretic Score (ITS).

• The new score is used in the context of over-production and selection of classifiers
and evaluated on several common datasets.

• We then show how this framework can be extended to weighted majority voting
through an example algorithm. We propose a modification of AdaBoost that takes
into account the information theoretic score mentioned hereabove. AdaBoost is known
for implicitly creating diversity between the hypotheses that are selected. We show
that incorporating an explicit measure of diversity (through our new score) gives an
algorithm that compares favorably with the standard version of AdaBoost.

• We then consider a particular classifier combination application: combination of sev-
eral Support Vector Machines. This technique can be used to efficiently reduce the
training complexity but we also show how it can improve classification performances
by taking advantage of the classifier combination paradigm. In particular, we propose
to use an on-line algorithm for training parallel Support Vector Machines jointly by
taking into account the information theoretic criterion.

• Concerning the face detection application, we first present new geometrical features
that efficiently model the face appearance. These new features proved to be more
discriminative than the state-of-the-art features, while still being computationally
efficient.

• Finally, we propose to use a classifier combination technique in the face detection
application for improving both training time and classification performances. We
show on standard frontal face datasets that our system compares favorably to state-
of-the-art algorithms.
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Theoretical Developments
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Statistical Pattern

Recognition 2
2.1 Introduction

The Machine Learning field aims at developping algorithms that are able to learn by ex-
perience. Learning by heart is a simple task from a mathematical perspective as it only
involves memory considerations. However, machine learning refers to a more challenging
task, that is learning a model from available information, such that the model will generalize
to new situations. Human brain has very powerful learning capabilities, and many studies
have concentrated on understanding the underlying biological phenomenon. This field of
study is situated at a crossroad between various research communities such as probability
and statistics, engineering, computer science, biology, medical research, signal processing,
adaptive control theory, etc. In the last decades machine learning covered a wide range of
applications, including automatic character recognition, speech recognition, but also med-
ical diagnosis, data mining, and more recently biometrics. The large scientific research
activity in this field is reflected by the publication of many books on machine learning
[8, 32, 48, 57, 75, 146, 164, 167].

Pattern recognition (or classification) is the field of applications that aims at learning
from a set of examples how to classify new data into a finite set of categories that are called
classes. The input of a common pattern recognition system is thus an entity called pattern
(e.g. an image, an audio signal, etc.) which we aim to associate to an output class.

Here are a few examples of typical pattern recognition tasks:

• Predict from various medical and demographic measurements if a patient presents
risks of developing lung, prostate or breast cancers;

• Recognize automatically handwritten digits for automatically reading ZIP codes on
postal envelopes;

7
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Sensorsignal featuresmeasurments
Feature extraction
Feature selection/ decisionClassification

Figure 2.1: Different stages of pattern recognition systems.

• Recognize fingerprints or faces for biometric verification purposes;

• Develop an efficient SPAM filter.

A pattern recognition system is ususally decomposed into three main steps: data acqui-
sition, feature selection and extraction and finally classification. A pattern is represented by
a set of measurements that should contain relevant information with respect to the structure
of the object that we want to classify. The measurements can potentially be collected from
a large number of sensors, thus resulting in a high dimensionality vector of measurements.
The first steps in a pattern recognition system consists in processing the raw data coming
from the measurements, in order to find an adequate representation of the signals. This
pre-processing of the data is called feature selection and extraction. The new data called
features are then given to a classifier that takes the decision. An overall view of the main
stages of a pattern recognition system is shown in figure 2.1. The training examples (or
training patterns) are the known instances from which we want to learn a model that can
generalize to previously unseen data.

Pattern Recognition can basically be split into two categories: supervised learning and
unsupervised learning.

• In supervised learning, the classes in which we want to classify the data are known
a priori. Each training pattern is associated to one of these known classes (one the
the 10 digits, cancer or not, SPAM or not). An example of supervised learning is
face recognition. Consider the problem of recognizing the identity of of person based
an image of its face. The training examples are face images from which we know
the associated identities. The set of classes then corresponds to the list of known
identities that are present in the training set. A robust system should be able to
recognize identities of new face images for identities belonging the set of classes.

• In unsupervised learning, the true classes of the training examples is not known a
priori. We seek to find the various groups of pattern present in the set of training
data. The task is thus to investigate the underlying structure of the data. Clustering
techniques are often used to extract the groups in the training dataset. For example,
given a collection of text documents, we want to organize them according to their
content similarities.

Most of the work in this thesis concentrates on supervised learning.
From a mathematical perspective, pattern recognition can be seen as a decision making

process that can be summarized as follows: A given pattern x is to be assigned to one of
C classes wi, w2, . . . , wC based on a vector of d measurements called features. A pattern x
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belonging to class wi is viewed as an observation drawn randomly from the class-conditional
probability function p(x|wi). The optimal assignment for unknown examples x is the class
that maximizes the posterior probability p(wi|x) ∀i ∈ 1, . . . , C. This principle is known as
the maximum a posteriori criterion (MAP).

There are basically two different approaches for implementing the MAP principle. The
first technique consists in finding directly decision functions between the classes in order
to find the class that is more likely to generate the test example. This technique is known
as discriminative approach. Most of the work in this thesis focus on this decision-driven
strategy, that is why we will give more details in the next sections of this chapter.

The other technique tries to explicitly estimate the underlying class-conditional proba-
bility densities. It is based on Bayes decision rule [157]:

p(w|x) =
p(x|w).p(w)

p(x)
. (2.1)

It mainly shows that posterior probabilities p(w|x) can be expressed as a function of the
class conditional densities p(x|w) and the class priors p(w). In practice these class condi-
tional densities are unknown and various techniques have been proposed to estimate these
quantities from the training data. These techniques are called generative methods. The
simplest generative method is to consider the class conditional densities to be Gaussian
distributed and to estimate directly the Gaussian parameters from the training data. See
[8] for a detailed overview of recent generative methods (e.g. Bayesian networks).

In the remaining of the chapter we will present the main concepts of statistical pattern
recognition from a discriminative perspective.

Section 2.2 will give an overview of the main theoretical concepts of the discriminative
approach to pattern recognition. Then section 2.3 gives a first example of classifier, namely
Support Vector Machines. In section 2.4, we present other decision functions that will
also be used throughout this thesis. Section 2.5 reviews the main principles of feature
selection and extraction. Finally, section 2.6 gives more practical considerations about
model selection and evaluation of the algorithms.

2.2 Theoretical Concepts of Discriminative Pattern Recog-

nition

One possible formalism of the pattern recognition task is based in statistical learning theory
proposed by Vapnik [164]. In this section, we give the theoretical concepts in broad lines.
The common pattern recognition task is when the output space only contains two classes.
The classification problem is then a binary classification task. Nevertheless, a multi-class
problem can easily be decomposed into several coupled binary problems, that is why we
will only consider the binary case if not specified otherwise. Note that several applications
need to cope with a very large number of classes (e.g. speech recognition where each word
represents one single class) but such cases a re out of the scope of this thesis.

Let us consider each pattern to be represented by a vector x ∈ R
d of d features. Each
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example to be classified belongs to one of the two classes represented by the labels y = −1
or y = 1.

Let us consider Zn the set of n training patterns in the space Z = R
d × {−1, 1}:

Zn = {z1, z2, . . . , zn} , with zi = (xi, yi) ∈ Z = R
d × {−1,+1}. (2.2)

Each sample zi is assumed to be generated from an unknown (but fixed) probability dis-
tribution function (pdf ): P (x, y). For each of the training examples xi, the true class label
yi is known (supervised learning).

2.2.1 Expected Risk Minimization

The problem of learning may be expressed as an optimization problem in which one wants
to find the function f∗ from a suitably chosen set of functions F , which minimizes the risk
of misclassifying new vectors drawn from the same pdf P . An example x is assigned to
class +1 if f∗(x) ≥ 0 and to the class −1 otherwise. The best function can be obtained by
minimizing the so-called expected risk R on F [164]:

R(f) = EZ [L(y, f(x))] =
∫

Z
L(y, f(x))dP (x, y), (2.3)

where L is called loss functional. The loss functional penalizes the differences between the
true labels y and the predicted ones f(x). The most commonly used loss is the binary loss
(or 0/1-loss):

L(f(x), y) =

{
0, if f(x) = y

1, otherwise
. (2.4)

It simply counts the number of misclassified examples. Other loss functionals take into ac-
count the confidence that we may have for the prediction of each example. For example, the
squared loss function is widely used in regression applications: L(f(x), y) = 1

2 (f(x) − y)2.
The logistic loss function is used to give a probabilistic interpretation of the output:
L(f(x), y) = log(1 + exp(−f(x)y)). More specific loss functionals will be given in sec-
tion 3.5.

The optimal function f∗ should be the one that generalizes best from training examples
to new data. That is why the amount of new data that is misclassified by f∗ is called
generalization error.

Unfortunately, the risk R(f) cannot be minimized directly, since the underlying distri-
bution P (x, y) is unknown. Therefore, we need to find an estimate of f∗ obtained from
the available information: the training set. A simple technique called induction principle
consists in only computing R (equation (2.3)) on the available data. The risk is then called
the empirical risk:

Remp(f, Zn) =
1
n

n∑
i=1

L(f(xi), yi). (2.5)

It can be shown that the empirical risk is an unbiased estimate of the expected risk:
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(a) Small training set (b) Solid line underfits (c) Dashed line overfits

Figure 2.2: Illustration of the overfitting and underfitting phenomena.

E[Remp(f, Zn)] = R(f) (see [164]). The empirical risk minimization consists thus in se-
lecting the function: f∗Zn

= arg minf∈F Remp(f, Zn). The proportion of training samples
that are misclassified by the obtained function is called training error.

2.2.2 Capacity

Empirical risk minimization seems straightforward. However, it presents a major limitation
known as overfitting. In order to understand the problem from a theoretical perspective,
we will introduce the notion of capacity of a class of functions.

A very important step in the design of pattern recognition systems is the choice of the
set of function F in which we seek the optimal solution.

Let us consider a simple 2-dimensional problem as depicted in figure 2.2. Consider that
the training set is represented by the examples in figure 2.2(a). Given only this small sample
set, either the solid or the dashed hypothesis might be true, the dashed one being more
complex, but also having a smaller training error.

Only when more data are available we can judge which decision function reflects best
the true distribution. Let us imagine that the true distribution is in fact the one depicted
in figure 2.2(b). In this case, solid line is too simple to explain the data, while the dashed
line seems to generalize well. We say that the solid line underfits the data. If the true
distribution is the one represented in figure 2.2(c), then the dashed line is too complex, it
overfits the data. In this last case, we see that a function that minimizes the training error
(dashed line in figure 2.2(a)) is not a guarantee of small generalization error.

A possible solution for avoiding overfitting is to restrict the complexity of the function
class F . From a practical perspective, the main idea is that simple function that explains
most of the data is preferable to a complex one. (this follows Occam’s razor principle).

More theoretically, Vapnik et al [164] showed that the solution f∗Zn
found by minimizing

the empirical risk is better on the given training set Zn than on any other set drawn from
p(x, y).

In fact, the complexity of the class of functions F plays a key role in this problem. The
capacity of a set F gives a measure of this complexity:

Definition 2.1. The capacity is the largest n such that there exits a set of example Zn such
that one can always find a function f ∈ F which gives the correct classification for all the
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Empirical Risk

Expected Risk

Capacity

Complexity of the Function Set

Figure 2.3: Illustration of the dilemma between empirical risk minimization and
confidence of the function set (capacity).

n=2
d=1

d=1
n=3

Figure 2.4: Illustration of the VC dimension in a 1-dimensional feature space. 2 points
can be separated by an hyperplane with any labellings while 3 examples cannot. In this

case, VC =2.

examples in Zn, for any possible labeling

In practice, controlling the capacity of decision functions is achieved by adding a regu-
larization term in equation (2.5) (e.g [119, 160]).

Finding an optimal set of functions and regularization term can be viewed as a model
selection step. This step is on of the most essential in order to obtain a robust decision
function.

Vapnik et al [164] proposed a theory for controlling the capacity of a set of function.
They define the Vapnik-Chervonenkis (VC) dimension:

Definition 2.2. Vapnik-Chervonenkis (VC) dimension of a class of function F is the num-
ber of points that can be separated for all possible labeling and using all the functions of the
class F .

This VC dimension is not related to the number of parameters of the set of function
but really gives a measure of the complexity. For example simple class of functions with
one single parameter can produce infinite VC.
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The main interest of VC is that it gives several formulations of upper-bounds on the
expected risk. For example, the following theorem is proved in [164].

Theorem 2.1 (Vapnik et al [164]). Considering the binary loss defined in equation (2.4),
for all δ > 0 and f ∈ F , the inequality bounding the risk:

R[f ] ≤ Remp[f ] +

√
1
n

(
V C(log

2n
V C

− log
δ

4
)
)
, (2.6)

holds with probability of at least 1 − δ for n > V C.

From the bound in equation (2.6) we can distinguish two extremes:

• If the class of function F is very simple, then the squared root term vanishes but a
large training error might occur.

• If F contains very complex functions, then the empirical error may be small but the
regularization term may become large.

The best class of functions F is usually lies in between. Figure 2.3 gives an illustration of
the trade-off between the empirical risk and the regularization term.

In fact the expected risk minimization faces a typical bias/variance dilemma. The bias
comes from the choice of the set of function F . There is a bias when the optimal solution
is not included into F . The variance is due to the fact that using another training set Z ′

n

would give a different solution.

2.3 Large Margin Classifiers

In section section 2.2 we introduced the main theoretical considerations of statistical pattern
recognition. Basically the goal if to find the optimal function f∗ in a class of functions F ,
that minimizes the expected risk equation (2.3). In the following sections we will present
several examples of decision functions that will be used widely in this thesis.

2.3.1 Introduction to Linear Machines

A first simple choice of function class F is to use simple hyperplanes for separating the
two-class data. They are called linear discriminant functions, linear machines or linear
classifiers. Let us consider a set of functions of the form∗:

fw,b(x) = 〈w,x〉 + b, (2.7)

where w and b are the parameters of the linear function. The set of points where fw,b(x) = 0
is called the hyperplane and the decision function is given by:

f(x) = sgn(fw,b(x)) = sgn (〈w,x〉 + b) . (2.8)
∗We use 〈·, ·〉 to denote the inner product operator
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w

(a) Possible Perceptron solutions

2/||w||

w

(b) Hyperplane with maximal margin

Figure 2.5: Linear decision functions for linearly separable data. (a) Solutions for
Perceptron. (b) The separating hyperplane that separates the data while maximizing the

margin between the two classes following the idea of Support Vector Machines.

The optimization process of the learning is to find the best function parameters w and
b. There are various motivations for using simple hyperplanes as decision functions. On
the first hand it perfectly fits with Occam’s Razor principle cited in a previous section. In
fact, it can be shown that for the class of hyperplanes, the VC dimension can be bounded
efficiently. More details can be found in [164].

The papameters w and b can be optimized such that the number of misclassified ex-
amples is minimized. This is the principle of Rosenblatt’s perceptron [135]. It considers
an optimization criterion which is directly proportional to the sum of the distances of mis-
classified examples to the decision boundary. A set of data is linearly separable if there
exists a constant γ such that yi〈w,xi〉 + b > γ for all i. The limitations of this simple
mistake-driven procedure is that its convergence is only guaranteed for linearly separable
data. Novikoff [107] proved that the perceptron algorithm converges after a finite number
of iterations if the data set is linearly separable and the number of mistakes is bounded by(

2r
γ

)2
, where r = maxi ‖ xi ‖. Moreover, the perceptron algorithm stops once the training

data has been correctly separated and this induces that the solution of the perceptron is
not unique. This non unicity is shown in figure 2.5(a). All the candidate linear functions
drawn separate perfectly the training data. However, we have no information about which
one will generalize best.

Fisher introduced another criterion for separating the data but trying to separate them
as much as possible (e.g [48]). This criterion is the ratio of the between-class to within-class
variances. This criterion aims at finding the best separation between the classes by taking
into account their respective variances. However, it is only optimal under the assumption
of two normal distributions.
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2.3.2 Maximization of the Margin

A popular quantity that measures how much a linear hyperplane separates the data is the
margin. The margin is defined as the minimal distance of a sample to the decision surface.
Vapnik [164] showed that the VC dimension can be bounded in terms of the margin.

Linearly Separable Case

Let us first assume that the two classes are linearly separable (the non separable case will
be discussed later on). The parameters w and b in equation (2.8) can be rescaled such
that the closest points to the hyperplane satisfy |〈w,x〉 + b| = 1. This normalization gives
the so-called canonical representation of the hyperplane. Now let us call x1 and x−1 two
samples of each class satisfying 〈w,x1〉 + b = 1 and 〈w,x−1〉 + b = −1. The margin ρ is
given by the distance between these two points, measured perpendicular to the hyperplane:

ρ =
w

‖w‖ .(x1 − x−1) =
2

‖w‖ . (2.9)

The hyperplane perpendicular to the margin is depicted in figure 2.5(b).

From this definition, the bound linking VC and the length of the weight vector w is:

V C ≤ Λ2R2 + 1, (2.10)

where Λ ∈ R
+ is a constant such that ‖w‖ < Λ and R is the smallest ball around the

data: ‖x‖ < R. As we cannot directly minimize the expected risk defined in equation (2.3),
we try to minimize two terms: the empirical risk in equation (2.5) and the complexity
term in equation (2.6). The empirical risk is forced to be zero as we constrain b and w
to linearly separate the data, and the capacity is controlled by minimizing the bound in
equation (2.10). It turns out that minimizing this bound means minimizing ‖w‖2.

For a fixed training set Zn, finding the optimal hyperplane (optimal in the sense of
largest margin) is thus equivalent to solving a quadratic optimization problem:

min
w,b

1
2
‖w‖2, (2.11)

subject to:
yi〈w,xi〉 + b ≥ 1, i = 1, . . . , n. (2.12)

A standard approach to optimization problems with equality and inequality constraints
is the Lagrange formalism [41]. The dual optimization problem is obtained by introducing
the Lagrange multipliers αi > 0, i = 1, . . . , n, (one for each constraint in equation (2.12)).
We obtain the following Lagrangian function:

L(w, b, α) =
1
2
‖w‖2 −

n∑
i=1

αi (yi〈w,xi〉 + b− 1) . (2.13)
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This function has to be minimized with respect to w, b and maximized with respect to α.
The optimal saddle point equation is found at: ∂L

w = 0 and ∂L
b = 0. We obtain the following

dual optimization problem:

max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉, (2.14)

subject to:

αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αiyi = 0. (2.15)

By solving this dual optimization problem, we obtain a linear decision function that
only depends on dot products between training patterns:

f(x) = sign

(
n∑

i=1

αiyi〈x,xi〉
)
. (2.16)

We have up to now only considered the case of separable training data which corresponds
to training error equal to zero. However, this might not be the optimal choice that minimizes
the expected risk. This is particularly true in case of noisy data. Directly minimizing the
empirical risk introduces a large risk of overfitting.

Non Linearly Separable Case

In order to find a better trade-off between empirical risk and capacity, a common strategy
is to allow some training points to fall into the margin. This is done by introducing the
so-called slack variables ξi that will relax the constraints defined in equation (2.12):

yi〈w,xi〉 + b ≥ 1 − ξi, ξi ≥ 0 i = 1, . . . , n. (2.17)

We then add a constant C > 0 that penalizes training patterns that fall into the margin.
This C controls the trade-off between empirical risk and capacity. It needs to be tuned
through a model selection process. The new optimization problem:

min
w,b

1
2
‖w‖2 + C

n∑
i=1

ξi, (2.18)

which can be turn into another dual problem:

max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉, (2.19)

subject to:

0 ≤ αi ≤ C, i = 1, . . . , n,
n∑

i=1

αiyi = 0. (2.20)
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This formulation is known as a C-Support Vector Machine (C-SVM). Let us now analyze
the decision function equation (2.16) obtained by the dual optimization problem.

A first interesting property of the SVM is given by the so-called Karush-Kuhn-Tucker
conditions [163]. They show that for each training pattern:⎧⎪⎨

⎪⎩
αi = 0 ⇒ yif(xi) ≥ 1 and ξi = 0

0 < αi < C ⇒ yif(xi) = 1 and ξi = 0
αi = C ⇒ yif(xi) ≤ 1 and ξi ≥ 0

(2.21)

These conditions mean that the solution equation (2.16) is sparse in α. In other words,
most of the training samples are outside the margin and their corresponding αi are zero.
This sparsity is one of the most attractive property of the SVM since the number of training
examples the model depends on is small comparing to the size of the training set. These
models are thus appealing as they have low storage requirements and usually lead to fast
decision functions.

The main drawback of SVM is that finding the support vectors and their coefficients
α requires solving a quadratic optimization problem. This becomes intractable in very
large scale problems. Several on-line algorithms have been proposed to find iteratively
the support vectors. The two well known techniques are Kernel Adatron (KA) [148] and
Sequential Minimal Optimization (SMO) [117].

2.3.3 Non Linear Classifiers in Kernel Feature Spaces

We have seen that simple decision functions are preferred in order to ovoid the problem of
overfitting. However, linear decision functions are not very realistic in most applications as
they present the tendency to underfit the training data. There exists various algorithms
for building more complex non linear decision functions. One possibility is to use Neural
Networks. An Artificial Neural Network (ANN) is an information processing paradigm
that is inspired by the way biological nervous systems (human brain) process information.
The non-linear decision function is obtained by merging information from a structured
collection of simple decision units called neurons. See [65] for a complete review on ANN .
When these decision unit are simple linear perceptrons, the algorithm is called Multi-Layer
Perceptron (MLP ). The weights of each perceptron are learn iteratively using feedforward
or backpropagation strategies.

Another way of extending the linear decisions to non linear functions is given by the
notion of kernel [1, 148, 164]. We noticed hereabove that most of real data cannot be linearly
separated in the original feature space. The idea is to find a non linear mapping Φ of the data
such that the examples are projected onto a potentially much higher dimensional feature
space, where the data can more easily be linearly separated. The motivation of projecting
data into a high dimensional feature space is that simple hyperplanes can be sufficient
for separating the new data. This phenomenon is represented graphically in figure 2.6.
Consequently, the mapping allows to apply the principles established of linear separable
data, but in the new complex feature space.
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Figure 2.6: Mapping Φ that projects 2D data onto a 3D space where the data becomes
linearly separable.

Let us define the non linear mapping from R
d onto a high dimensionality Hilbert space

S:

Φ : R
d → S (2.22)

x �→ Φ(x).

Given this mapping Φ, all the linear techniques presented in the previous sections can be ap-
plied in the new feature space S simply by replacing the data {(x1, y1), (x2, y2), . . . , (xn, yn)}
by the projected data {(Φ(x1), y1), (Φ(x2), y2), . . . , (Φ(xn), yn)}.

The new problem is then how to choose the mapping Φ. We notice that only dot products
between examples are involved in the decision function given in equation (2.16). The trick is
that we do not really need to explicitly know the mapping Φ, the only information we need
from the feature space S is how to compute dot products in that space. A very efficient
trick for computing dot products in feature spaces is to use the so-called kernel functions
[104]. A kernel function is defined as:

k : R
d × R

d → R (2.23)

x1,x2 �→ k(x1,x2) = Φ(x1)Φ(x2).

A kernel function needs to fulfill several properties known as Mercers’s conditions [99]:

Theorem 2.2 (Mercer). There exists a mapping Φ and an expansion k if and only if for
any function g such that

∫
g(x)2dx is finite, then

∫
k(x1,x2)g(x1)g(x2)dx1dx2 ≥ 0.

The two most used kernel function are Polynomial kernel:

Polynomial kernel K(x1,x2) = (〈x1,x2〉 + 1)p (2.24)
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and Radial Basis Functions (RBF ):

RBF kernel K(x1,x2) = exp(−γ‖x1 − x2‖2). (2.25)

Support Vector Machines can easily integrate this kernel trick in order to find large
margin hyperplanes in the new high dimensional feature space. The decision function
equation (2.16) becomes:

f(x) = sign

(
n∑

i=1

αiyik(x,xi)

)
. (2.26)

Using the kernel trick, we can obtain complex non linear decision functions. Once again,
the capacity of the classifier needs to be controlled. In this case the capacity is controlled
by the kernel coefficients. For example the variance parameter σ of the RBF kernel will
determine the degree of non linearity of the decision function. A small σ will produce a
complex decision function very likely to overfit while a larger σ will produce a smoother
function. Concerning the polynomial kernel, the degree of the polynomial p will have the
same effect.

2.4 Other Examples of Non-linear Decision Functions

In this section we present other common decision functions that will be used throughout
this thesis. They differ from section 2.3.2 in the sense that their non linearity is intrinsic and
is not caused by any extension from linear case, like for example, the kernel trick presented
in the previous section.

2.4.1 K-Nearest Neighbors

We first present a very simple classifier that does not require a training process: K-Neareast
Neighbors (k−NN). Let us assume that a distance function d is associated to the input
feature space (e.g. the well-known l-2 norm: d(x1,x2) =‖ x1−x2‖2). For a given parameter
K ≥ 1 the decision function is built as follows: For any test example x, select the K nearest
training patterns according to d(x,xi) and keep their indices s1, s2, . . . , sK . In the 2-class
case, the decision function is then given by:

f(x) = sign

(
1
K

K∑
k=1

ysk

)
. (2.27)

There are basically two quantities to be chosen by the user: the distance metric d and
the number of neighbors K. In fact the value of K controls the capacity. A small K will
produce a complex decision function very likely to overfit and a too large K will tend to
underfit the training data.
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Figure 2.7: A simple decision tree with 4 decision nodes.

2.4.2 Decision Trees

A decision tree [13, 124], in its simplest form, produces decision boundaries that are parallel
to the features axes. It is generally represented by a graph model containing a root node,
several branches and leafs. A simple graphical example is given in figure 2.7. The root
node takes as input the pattern x and each leaf corresponds to one of the C classes. In the
simplest form of decision trees, the nodes are very basic classifiers that only consider one
single input feature. Each node compares the feature value to a predefined threshold. The
training process consists in subdividing iteratively the feature space until all the training
patterns in a node are from the same class. The simplest decisions trees only have one split
at the root node. They are called decision stumps. Then several tree growing techniques
have been proposed, like the CART [13] or ID3 [124]. In order to avoid overfitting, the first
solution is to stop the construction of the tree before the end. The other possibility is to
grow completely the tree and then prune it.

2.5 Feature Selection and Extraction

2.5.1 Curse of Dimensionality

The generalization performances of a classifier depend on the interrelationship between the
number of training samples n , the number of features d, and the complexity of the decision
function. Imagine that we partition the feature space into hypercubes such that we associate
a class label y to each cell. This label corresponds to the class having the largest number
of training patterns in the cell. The problem is that the number of hypercubes grows
exponentially with the dimensionality of the feature space d. The consequence of this is
that the number of training samples required also becomes an exponential function of the
feature dimension d [8]. This phenomenon is termed as curse of dimensionality [128]. An
illustration of this problem is shown in figure 2.8. The same number of examples fill more
of the available space when the dimensionality is low. In practice, curse of dimensionality
means that, for a given sample size, there is a maximum number of features above which
the performance of the classifier will degrade rather than improve.
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Figure 2.8: Curse of dimensionality. 5 examples fill more space in a 2-dimensional
feature space than in 3 dimensions.

In order to avoid this curse of dimensionality, a wise technique is to restrict the set of
features to only a small number of discriminant features. In practice, it is generally accepted
that using at least ten times as many training samples per class as the number of features.
(i.e. n

d ≥ 10) is a good design choice [66]. The reduction of the number of features can be
made into two steps: feature selection and feature extraction.

2.5.2 Feature Selection

Feature selection consists in keeping the most relevant features and discarding irrelevant
or redundant features. This feature selection step is critical in applications where a huge
number of features is encounterred. Complete reviews can be found in [67, 74, 103]. From
a set of d features we want to find the optimal subset of d∗ features (with d∗ ≤ d) such that
the classification error is minimized. Finding the best subset requires the optimization of
some criterion J . A natural choice is J = 1−Pe where Pe is an estimate of the classification
error. A straightforward approach is to test all the possible subsets from the original feature
set and keep the subset that minimizes J . This exhaustive search becomes intractable if d
is not very small.

The only optimal and non exhaustive feature selection method is called the branch and
bound algorithm [106]. It uses intermediate results in order to derive bounds on the optimal
criterion value. However, in most applications this approach remains too computationally
expensive, that is why most of the techniques use suboptimal sequential selection. Se-
quential Forward Selection (SFS) selects the best features, one at a time, while Sequential
Backward Selection (SBS) deletes iteratively the poorest features. A complete comparative
study of most of these techniques can be found in [28].

2.5.3 Feature Extraction

The purpose of feature extraction is to find better representations for a given set of features
by applying either linear or non-linear transformations on the data. Feature extraction is
equivalent to projecting the data onto a feature space where the separation of the class-
es becomes simpler. The most commonly used linear transformations include Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA).
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PCA was first introduced in 1933 [62] for decorrelating the input data. It can simply
be viewed as a rotation of the feature space along the main axis of the data called principal
components. The main reason for performing PCA is to find a smaller group of underlying
variables that describe the data. LDA is similar to PCA except that it takes into account
a discriminative criterion for projecting the data. The principle is to find a projection that
minimizes the within class variance (SW ) while maximizing the between class variance (SB).

Then there are several non-linear feature extraction techniques. The most used is Kernel
PCA [58]. It is an extension of PCA that maps the input data into some new high dimen-
sionality feature space (the notion of kernel will be more detailed later in this chapter).

2.6 Model Selection and Risk Estimation

In this chapter, we reviewed several well known classification techniques. In each technique,
there is at least one hyperparameter to be tuned trough a model selection step: numbers of
neighbors K for k−NN , number of hidden layers for MLP , C and the kernel parameters
for SVM , etc. These parameters are often determinant for obtaining good generalization
properties.

Two strategies can basically be considered for tuning this parameters, depending on
the amount of available data. If there is a consequent amount of training data available, a
simple validation process is sufficient. Otherwise, a cross-validation technique needs to be
implemented.

2.6.1 Simple Validation

Let us index the predefined class function F by the hyperparameter θ (that can be multi-
dimensional) representing various parameter configurations. The principle is to divide the
available data Zn into two disjoint sets: a training set Ztrain and a validation set Zval.
Ztrain is used for training the classifiers with all possible valued of θ. The performance of
each θ is then estimated on Zval. We keep the value θ∗ giving the minimal risk on the
validation set:

θ∗ = arg min
θ

1
nval

nval∑
i=1

L(f∗θ (xi), yi) (2.28)

where f∗θ is the function of F that minimizes the empirical risk on Ztrain.
The final function that is finally returned is found by searching the optimal solution f∗θ∗

on the whole training set Zn, where θ∗ is the best parameter discussed before.

2.6.2 Cross-Validation

In many applications, there is not a sufficient amount of data for having reliable estimates
by splitting into one training set and one validation set. The solution is then to use a
K-fold cross-validation [77]. The principle is rather simple. The original training set Zn is
split into K disjoint subsets Zn = {Z1, Z2, . . . , ZK}. Then for each value of the parameter
θ the estimate of the generalization error is described by the following process: First train
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a classifier on {Z1, . . . , ZK−1} and measure the errors on the remaining subset ZK . Then
continue the procedure on other combinations of the subsets: train on {Z1, . . . , ZK−2, ZK}
and measure the errors on ZK−1, etc. Finally the estimated validation error is the average
of the K rounds.

The choice of K will determine a trade-off between computation complexity and confi-
dence in the estimation error. The particular case K = n is called leave-one-out (1 single
pattern is kept as test set at each round).

2.6.3 Estimation of the Risk

In some application, the task of the pattern recognition problem is to not only to return the
best classifier but also to give an estimation of the expected risk. This estimation requires
another splitting strategy additional to model selection.

If possible, a third separate test set Ztest is used for estimating the risk. Otherwise,
another cross-validation procedure can take place. Depending on the amount of data,
several scenarios are possible:

• Large datasets: Use three disjoint subsets for training, validation and estimation of
the test error.

• Intermediate-sized datasets: Split the dataset into two: Zsel, Ztest. Perform cross-
validation on Zsel for model selection and measure the error rate on Ztest.

• Small datasets: Perform a double cross-validation. One run for validation and another
cross-validation into each subset for the error estimation.

2.6.4 Comparison of Classifiers

Finally, if the ultimate goal of the pattern recognition task is to find a good learning methods
in opposition to designing the best classifier, the comparison of the classification errors is
not sufficient. If possible, the methods should be trained on several datasets, and statistical
tests should be used for showing significance of the results. A review of the possible goals
of pattern recognition as well as the main statistical tests that are commonly used is given
in [29].

2.7 Summary

In this chapter we briefly reviewed the main principles of the discriminative approach to
pattern recognition. This review is far from being exhaustive as only techniques that are
used in the remaining of the thesis have been presented. In particular, we presented the
Support Vector Machines that are often considered as state-of-the-art of discriminative
techniques. SVM will be extensively used in chapter 5 through a multiple classifier system.
The other techniques presented, k−NN and tree classifiers will be used as baseline classifiers,
mainly in chapter 4.
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In the next chapter, we will review a very active field of pattern recognition: multiple
classifier systems. We will discuss the motivations for combining classifiers and reviewing
in broad lines the main techniques. We will pay particular attention to Boosting as it will
be use extensively throughout the remaining of the thesis.



On Combining Classifiers 3
3.1 Introduction

In this chapter, we will review the main classifier combination techniques. Combining
classifiers is an established research area in the field of statistical pattern recognition to
develop highly accurate systems. In most of the applications, there is no unique optimal
learning algorithm. Moreover, the generalization properties of each algorithm are very
sensitive to the model selection step. By combining several of these classifiers instead of
keeping only one, we can hope increasing both reliability [88] and accuracy [30].

In the beginning of the 1990s, lots of studies consisted in splitting one complex clas-
sification task into several lower complexity tasks using the notion of local experts (e.g.
[70, 71, 113]). In fact, it is generally much simpler finding several relatively good clas-
sifiers than finding one single very discriminant classifier. This chapter will describe the
main situations in which combining classifiers can be applied successfully. Then, we will
give an overview of the main classifier combination techniques, from simple majority voting
to more complex ensemble creation methods. We will particularly describe the theoretical
foundations of AdaBoost in section 3.5 as this ensemble creation technique will be employed
widely throughout the remaining of the thesis.

A complete overview of classifier combination techniques can be found in Kuncheva’s
book [82]. Many different terms have been used to describe classifier combination tech-
niques, the most common being: combination of multiple classifiers [53, 76, 82, 88, 172],
mixture of experts [3, 20, 64], consensus aggregation [6], classifier ensembles [30, 85, 170].

A possible general definition of classifier ensemble is: An ensemble of classifiers is a set
of classifiers whose individual decisions are combined in some way to classify new examples
[30].

There are several possible strategies for combining classifiers. We can basically distin-
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Figure 3.1: Two possible structures for combining classifiers.

guish the combination at the decision level and the combination from a design perspective.
Concerning the combination at the decision level, several classifiers are collected indepen-
dently and the purpose is to find the best consensus decision. In this case the role of the
combination is to centralize information coming from different sources. Some examples of
decision level combination scenari are listed bellow:

• In some applications, several classifiers can be obtained from different sources (differ-
ent training patterns or different features). A typical example is the fusion of several
modalities for biometric authentication: face, speech, fingerprint, etc. ;

• Sometimes, more than one training set is available. Different training sets can be
collected at different times or in different conditions.

On the second hand, the classifier combination can be used for performance consid-
erations. The goal is to design an ensemble that improves the accuracy and, if possible,
without increasing the complexity of the testing process. This is usually achieved by one
of the following ensemble design strategies:

• Combine different learning algorithms instead of only keeping the one giving the lowest
estimation of the expected risk;

• For a given learning algorithm, combine several candidate solutions. Several candi-
dates can be obtained by various initialization procedures or various model selection
strategies (as discussed in section 2.6);

• Train several classifiers on subset of the training set or feature set. Some classifiers
can be more efficient on local subspaces and act like experts on their local area.

In the section 3.2 we will analyze several motivations for using ensembles instead of one
single classifier. Then, we will briefly review the main approaches proposed in the literature
for fusing classifier outputs in section 3.3. Finally we will review some popular ensemble
creation methods: bagging and variants in section 3.4 and Boosting in section 3.5.
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Figure 3.2: Motivations for combining several classifiers instead of only one according to
[30].

3.2 Motivations

In [30] Dietterich gives three main reasons explaining why en ensemble of classifier may
work better than a single classifier.

• Statistical Reasons: In many classifier design procedures, the best solution f∗ is
not unique and there is no criterion for picking one particular solution. For example,
when the training set is small, many classifiers may obtain good performances on
this training set. It has been shown that combining several of these solutions we
are likely to find a solution with better generalization properties. This is depicted in
figure 3.2(a);

• Computational Reasons: Many learning techniques use local searches to converge
toward the solution (e.g. neural networks), with the risk of staying stacked in local
optima. Running several searches (e.g. using different initializations) and combining
the solutions can improve the performances. See figure 3.2(b);

• Representational Reasons: Finally, when we choose a learning algorithm, we fix
the class of functions F in which we seek the solution. However, the true optimal
solution may lie outside of this space. By combining several solutions in F we can
reach functions outside F . The simplest illustration is to combine several linear
decision functions in order to obtain complex non-linear decision boundaries. See
figure 3.2(c).

Another fundamental advantage of combining classifiers is that it can protect from
overfitting. Freund et al [43] explain that averaging classifiers reduces the variance of the
decision function. They give theoretical properties in the case of Bayesian averaging.

From a learning theory perspective, it has been shown that the expected risk of the
average of a set of models is better than the average of the expected risk of these models.
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For example, consider a simple ensemble g over K models fk:

g(x) =
∑

k

fk(x). (3.1)

The mean square error risk of a single classifier fk at x is ek(x) = E[(y − fk(x))2]. The
average risk of a model is ē(x) =

∑
k ek(x). The average risk of the ensemble g is e(x) =

E[(y − g(x))2]. If we define the diversity of model fk by dk(x) = (fk(x) − g(x))2, then the
average diversity becomes d̄(x) =

∑
k dk(x). It can be shown that e(x) = ē(x) − d̄(x).

3.3 Fusion of Classifier Outputs

A first simple way to combine classifiers is to combine the outputs of each classifiers for de-
ciding the label associated to each test example. The combination process can be viewed as
a mapping fcomb from the space of classifiers outputs to a label y as shown in equation (3.2).
This mapping is usually called combiner. Let us consider that we have K classifiers to be
combined with decisions di, i ∈ {1, . . . ,K}. Each decision di can be either a class label yi

or a posterior probability pi(y|x) on any other classifier output information (e.g. margin).

fcomb : R
K → {−1,+1} (3.2)

(d1, d2, . . . , dK) �→ y = fcomb(d1, d2, . . . , dK).

There are basically two possibilities for choosing fcomb: fixed rules and trainable rules.
On the first hand, fixed rules (also called non-trainable rules) are simple combiners that
fuse decisions of given classifiers. They do not require any additional data. On the second
hand, trainable rules can be much more complicated combiners. In fact finding a good
trainable combiner can be viewed as a new pattern recognition problem, taking as training
features the outputs of all classifiers. In order to have an unbiased training process, this
strategy requires an additional training set that was not used for training or testing the
individual classifiers [30].

3.3.1 Non Trainable Combiners

The simplest non-trainable combiner is probably the most widespread in the multiple classi-
fier system community. Majority voting simply returns the class with the highest number of
votes. There has been a huge amount of research concerning theoretical aspects of majority
voting for several decades, and, despite its simplicity it has proved to be very efficient is
most applications.

In some applications, additional information can be derived from each classifier. Instead
of only using the final class labels to which each example is estimated to belong, it is also
possible to produce a ranked list of the candidate classes. The combination of the classifiers
can directly use such lists. The most popular ranked majority voting strategy is called
Borda Count [9].
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Majority voting only takes into account the labels output by each individual classifier. A
natural way to use more information is to use posterior probabilities for taking into account
a confidence measure for each classifiers.

Several probability rules have been proposed, each of them being built on particular
probability assumption. A detailed review of these assumptions is given in [76].

Let us recall the context. Consider that we want to classify a pattern x in one of the
C classes (c1, ..., cC ). We model each of the C classes by the probability density functions
p(x|ck) and its a priori probability by P (ck). Assume that we have K classifiers to be
combined. Let us denote by pj(ck|x) the posterior probability estimated from the j-th
classifier that x belongs to class ck. The Bayes decision rule equation (2.1) states that an
example x is assigned to the class ci if:

P (ci|x) > P (ck|x), for k = 1, ..., C; k �= i (3.3)

Equation (3.3) relies on the Bayesian framework. By making various assumptions on
the posterior conditional distributions of each classifier, we can derive several combination
rules. We give hereafter five simple probabilistic rules.

• Product rule: Example x is assigned to the class ci if for k = 1, ..., C; k �= i:

P (ci)
∏

j=1,..,N

pj(x|ci) > P (ck)
∏

j=1,..,N

pj(x|ck) (3.4)

This rule derives directly from Bayes theorem by assuming that the measurements of
the different classifiers are conditionally independent;

• Sum rule: Example x is assigned to the class ci if for k = 1, ..., C; k �= i:

(1 −N)P (wi) +
∑

j=1,..,N

Pj(ci|x) > (1 −N)P (wk)+

∑
j=1,..,N

Pj(ck|x) +
∑

j=1,...,N

Pj(ck|x) (3.5)

The sum rule derives from the product rules by assuming that the posterior probabilities
only slightly differs from the know priors [76]. Then from equation (3.4) and equation (3.5)
we extract three other combination rules. For example, the sum rule in equation (3.5) can
be approximated by the maximum posterior probabilities. In all the cases, example x is
assigned to the class ci if for k = 1, ..., C; k �= i:

• Max rule:
max

j=1,...,N
Pj(ci|x) > max

j=1,...,N
Pj(ck|x) (3.6)

• Min rule:
min

j=1,...,N
Pj(ci|x) > min

j=1,...,N
Pj(ck|x) (3.7)
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• Median rule:
medianj=1,...,N Pj(ci|x) > medianj=1,...,N Pj(ck|x) (3.8)

3.3.2 Trainable Rules

Majority voting considers the decisions of each classifier uniformly, which means that each
classifier will have the same weight in the final decision. However, some classifiers may be
more robust than others and we would like to add more weights to these classifiers. This
can be done by using weighted majority voting. The goal is to design a weight distribution
on the classifiers outputs.

The optimal choice of the weights wi, i ∈ {1, . . . ,K} is given by the following theorem
[82]

Theorem 3.1 (Kuncheva, 2004). Consider an ensemble of K independent classifiers with
individual accuracies p1, p2, . . . , pK . The outputs are combined by weighted majority voting.
Then the accuracy of the ensemble Pwmaj is maximized by assigning weights:

wi ∝ log
pi

1 − pi
(3.9)

Another possible trainable combination is called Behavior Knowledge Space (BKS) [63].
It uses a multinomial combination of classifiers. The posterior probabilities are estimated for
each classifier but also for each possible combination of votes. A look-up table (the BKS
table) is designed through a training process. This table evaluates the optimal decision
for each combination of votes. This technique proved to have very good generalization
properties on large sample cases but is very sensitive to overfitting in small sample cases
[127].

Finally a combiner can be viewed as a new pattern recognition task where the input
patterns corresponds to outputs of the classifiers. For example, Collobert et al [20] proposed
to use Neural Networks for combining several SVM .

3.3.3 Fixed Rules vs Trained Rules

Evaluating what is best between fixed on trainable rules is basically application dependent.
However there are some commonly admitted general rules. A first notion that can be taken
into account is the reliability of each classifiers. In some cases, the confidence expressed
by a particular classifier may not be reliable. This problem is discussed in the framework
of stacked generalization [171]. For example, consider a biometric identification system
in which we combine the speech modality with a face identification system [130]. Let
us imagine the scenario where the face image is captured in very bad conditions (e.g.
poor lighting conditions or partial occlusion of the face due to external factors). The face
modality becomes then less reliable than speech.

Many other characteristics can be considered for comparing fixed and trainable rules
(see [33, 134]):
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• Size of the dataset: trainable rules are preferred if the training dataset is large but if
only a small validation set is available, simple rules like majority voting can outperform
trainable rules. The complexity of the trained rule should be adapted to the size of
this validation set. This is one reason why BKS overfits quickly on small datasets;

• Size of the ensemble: Small ensemble are preferred for trainable rules while large
ensemble reduce the bias of fixed rules;

• Degree of balance: If the output of the classifiers are not of the same nature or
uncalibrated: trainable rules generally outperform fixed rules.

In this section we presented several techniques for combining classifiers assuming that
the classifiers are given. These methods use outputs of the given classifiers for taking the
final decision. In the following section we will present ensemble creation methods. In
other words, techniques that directly train the classifiers such that they can be combined
optimally.

3.4 Bagging

3.4.1 Introduction

The first popular ensemble creation method is called Bagging (Bootstrap AGGregatING)
[10]. The principle is to combine classifiers that are trained on bootstrap replicates of the
training set. Given a training set Zn, bagging generates K replicates Z(1)

n , Z
(2)
n , . . . , Z

(K)
n

of the same size n by randomly drawing elements of the original training set. The same
element can be used several times in the same set. Moreover, classifiers are trained on
each training set with the same prediction rule. Finally the ensemble decision is made by
averaging the decisions. The bagging procedure is sketched in Algorithm 3.1. In order to
obtain an efficient combination, parallel classifiers need to have diversity between them (this
notion of diversity will be discussed more deeply in chapter 4). As each replicate comes
from the same training set, the prediction rule needs to be unstable in order to guarantee
diversity between classifiers. A classifier is known to be unstable if a slight change in the
training set can give significant changes in the decision function. Typical unstable classifiers
are neural networks or decision trees.

Breiman [10] first presented bagging as a variance reduction procedure mimicking av-
eraging over several training sets. The underlying approximation should be kept in mind:
averaging is performed on bootstrap replicates of a single training set, and not on different
training sets. Thus, although experimental results often shown the expected variance re-
duction [10, 143], several other arguments have been given to explain the success of bagging.
Schapire et al. [143] provide bounds for voting algorithms, including bagging, relating the
generalization performance of aggregated classifiers to the margin distribution of examples.
Unlike boosting, bagging does not explicitly maximize margins, but experiments show that
for complex classifiers, bagging produces rather large margins. A phenomenon that cannot
be explained by the variance reduction (which is an asymptotic analysis) is that outliers
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Algorithm 3.1: Bagging algorithm [10]
• Training

1. Given a training set Zn create K bootstrap replicates Z(k)
n

2. For each bootstrap Z
(k)
n select f∗(Z(k)

n ) = arg minf∈F Remp(f, Z
(k)
n )

• Testing
Given an input x, the corresponding output is:

f(x) =
1
K

K∑
k=1

f∗(Z(k)
n )(x)

are particularly well handled by bagging [31]. In [52] Grandvalet explains the success of
bagging by the stabilization provided by spreading the influence of examples, rather than
reducing the variance.

3.4.2 Random Forests

Breiman proposed Random Forests [12] as a variant of Bagging. A random forest is an
ensemble creation method that uses tree classifiers (see section 2.4.2) as base classifier. An
ensemble of decision trees is built by generating independent identically distributed random
vectors Θk, k = 1, . . . ,K. One tree is grown from each vector. The difference with Bagging
is that the vectors Θk can be built by sampling from feature sets, sample set or by varying
some parameters of the tree (e.g. number of nodes).

In [131], Rodriguez et al. proposed a variation of random forest called Rotation forests
that simply adds a PCA pre-processing in order to decorrelate the training data. They
show experimental improvements on many datasets.

3.5 Boosting

3.5.1 Boosting Theory

The underlying idea of boosting is to combine simple rules iteratively to form an ensemble
that will improve the performances of each single member. Boosting theory has its roots
in Probably Approximately Correct (PAC) learning [162]. PAC gives a nice formalism for
deciding how much training data we need in order to achieve a given probability of correct
predictions on a given fraction of future test data. In [162], Valiant showed that simple
rules, each performing only slightly better than random guessing, can be combined to form
an arbitrarily good ensemble. The challenge of boosting is to find a PAC algorithm with
arbitrarily high accuracy.
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Boosting seeks a function f of the form:

f(x) =
T∑

t=1

αtht(x), (3.10)

where αt is a weighting coefficient at iteration t and ht is the simple rule used at iteration
t (this rule is usually called weak hypothesis). Note that we employ the subscript t instead
of k to underline that it is an iterative process.

First boosting algorithms were proposed by Shapire in 1990 [141] and Freund in 1995
[42]. However, some strong assumptions prevented to use efficiently these algorithms in
practical situations: They need prior knowledge of the accuracy of the weak hypotheses.

3.5.2 AdaBoost

A first step towards more practical Boosting is AdaBoost (Adaptive Boosting) algorithm
[44]. Adaboost is adaptive in the sense that a new hypothesis is selected given the perfor-
mances of the previous iterations. Unlike bagging, this allows the algorithm to focus on
the hard examples. This adaptive strategy is managed by a weight distribution D over the
training samples. A weight D(i) is given to each training pattern xi. Examples with large
weights will have more impact for choosing the weak hypothesis than those with low weights.
Then at each round, the weight distribution is updated such that weight of misclassified
examples is increased.

Let us consider, as usual, a training set Zn = {(x1, y1), (x2, y2), . . . , (xn, yn)}. We
suppose that we have a base learning algorithm (or weak learner) which accepts as input
a sequence of training samples Zn along with a distribution D over the training samples.
Given such input, the weak learner constructs a weak hypothesis h : R

d → R. The predicted
label y is given by sign(h(x)) while the confidence of the prediction is given by |h(x)|. We
also assume that the corresponding weighted training error is smaller than 1

2 . This means
that the weak hypotheses have to be at least slightly better than random guessing with
respect to the distribution D. The distribution D is first initialized uniformly over the
training samples. It is then iteratively updated such that the likelihood of the objects
misclassified in the previous iteration is increased. The general formulation of AdaBoost
algorithm is given in 3.2.

The loss function L used for updating the weights (step 4 in the main loop) is usually
an exponential loss-function as shown in equation (3.11), but other loss functions have been
proposed (Logitboost [68] or arcing[11]).

L(αt, yiht(xi)) = exp(−αtyiht(xi)). (3.11)

Two critical choices in AdaBoost are how to choose the weak hypothesis ht and what is the
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Algorithm 3.2: AdaBoost algorithm[44]
Input: Zn = {(x1, y1), (x2, y2), . . . , (xn, yn)}, number of iterations T1

Initialize: D(1)
n = 1/N for all n = 1, . . . , N2

for t = 1, . . . , T, do3

1. Train weak learner with respect to the weighted sample set {Zn,D
(t)}

2. Obtain hypothesis ht : R
n → R

3. Choose optimal αt ∈ R

4. Update the weights:

D
(t+1)
i =

D
(t)
i L(αt, yiht(xi))

Nt
,

where Nt is a normalization constant such that
∑n

i=1D
(t+1)
i = 1 .

end

Output: H(x) = sign
(∑T

t=1 αtht(x)
)

4

optimal αt. Let us define the training error of the ensemble H:

L0/1(H) =
1
n

n∑
i=1

L0/1(H(xi), yi), (3.12)

where L0/1 is the standard 0/1 loss function defined in equation (2.4). Shapire and Singer
[144] give a bound on the training error:

Theorem 3.2 (Shapire, 1999). The training error L1/0(H) of the output hypothesis H is
bounded by:

L1/0(H) ≤
T∏

t=1

Nt, (3.13)

where Nt =
∑

iD(i) exp(−αtyiht(xi)) is the normalization factor defined in Algorithm 3.2.

According to Theorem 3.2, the training error can be minimized by greedily minimizing
Nt on each round of boosting. For choosing the optimal αt, we will consider several cases
in the following sections.

3.5.3 Discrete AdaBoost

Let us first consider the original version of AdaBoost, called Discrete AdaBoost, when the
range of each weak hypothesis is restricted to the labels {−1; 1}. Then the optimal αt can
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be found by approximating Nt as follows:

Nt =
∑

i

D(i) exp(−αtyiht(xi)) (3.14)

≤
∑

i

D(i)
(

1 + yiht(xi)
2

exp(−αt) +
1 − yiht(xi)

2
exp(αt)

)
. (3.15)

Following equation (3.14), the coefficient αt that minimizes Nt is found analytically :

αt =
1
2

log
(

1 + rt
1 − rt

)
, (3.16)

where rt =
∑

iD(i)yiht(xi).

This choice of αt leads to the following theorem concerning the training error:

Theorem 3.3 (Shapire, 1999). With the choice of αt given in equation (3.16), the training
error of the output hypothesis H is bounded by:

L1/0(H) ≤
T∏

t=1

√
1 − r2t . (3.17)

With this setting, the optimal hypothesis ht is the weak hypothesis that maximizes |rt|.
This quantity rt is a natural measure of the correlation of the predictions of ht and the
labels yi with respect to Dt. From equation (3.17) it follows that:

L1/0(H) ≤ exp

(
−

T∑
t=1

r2t
2

)
, (3.18)

from which we infer that the condition
∑T

t=1 r
2
t → ∞ suffices to guarantee that the training

error L1/0(H) converges towards 0 when the number of iteration increases. Clearly this
holds if rt ≥ r0 > 0 for some positive constant r0 (recall that weighting training error of of
weak hypothesis is lower than 0.5).

3.5.4 Real AdaBoost

A more general formulation of Discrete AdaBoost uses confidence levels of each weak clas-
sifier instead of just binary outputs. It is called Real AdaBoost [144]. Unlike Discrete
AdaBoost, the output space of the weak classifiers is not restricted to {−1; 1}, but can
take values in R. More specifically, let us consider a partition of R into disjoint blocks
X1,X2, . . . ,XN for which h(x′) = h(x) = cj for all (x, x′) ∈ Xj ×Xj . Let us assume that
the partitioning is given. The task is to find the optimal cj , i = 1, . . . , N . Let

W+
j =

∑
i:xi∈Xj ,yi=+1

D(i),
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be the weighted fraction of positive samples falling into partition Xj , and

W−
j =

∑
i:xi∈Xj ,yi=−1

D(i),

the equivalent for the negative class. Then the normalization factor Nt in Algorithm 3.2
can be rewritten as:

Nt =
∑

j

(
W+

j exp(−cj) +W−
j exp(cj)

)
. (3.19)

This expression of Nt that we want to minimize gives the optimal cj :

cj =
1
2

log

(
W+

j

W−
j

)
. (3.20)

This technique proved to be very effective in many application, outperforming Discrete
AdaBoost by taking into account confidence measure of the weak hypotheses. A good
example of weak learner that can be used using this partitioning technique is a simple
decision tree. The leaves of the tree directly define the partition of the domain. Note that
in practice, W+

j or W−
j is very small which would produce inconsistency in equation (3.20).

That is why we generally use a smoothed version of the coefficients:

cj =
1
2

log

(
W+

j + ε

W−
j + ε

)
, (3.21)

with ε > 0 being an appropriately small constant.

3.5.5 Generalization Error

So far we only considered training error convergence to prove the efficiency of AdaBoost,
but, as described in chapter 2, minimizing the empirical risk is not a guaranty of good
generalization. However, in practical situations, AdaBoost seems to be very unlikely to
overfit and presents one more interesting property: the test error continues decreasing with
the number of iterations, even if the training error has reached 0. In order to explain this
phenomenon, let us analyze AdaBoost from a margin perspective. Let us recall that the
ensemble hypothesis has the form:

H(x) = sign (f(x)) ,

with
f(x) =

∑
t

αtht(x).

Without loss of generality, we can consider that
∑

t αt = 1. Let us call H the space of the
hypotheses ht. Similarly to margins in Support Vector Machines, we can define the margin
of example x with label y to be ρ = yf(x). The value of the margin can be seen as a
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confidence in the prediction of H. The following theorem concerning generalization error
has been proved in [144]:

Theorem 3.4 (Shapire, 1999). The Generalization error can be upper bounded with prob-
ability 1 − δ for all θ > 0 and for all f by:

PZn (yf(x) ≤ θ) + O
(

1√
n

(
d log2(n/d)

θ2
+ log

(
1
δ

))1/2
)
, (3.22)

where PZn denotes the probability with respect to choosing an example (x, y) uniformly from
the training set Zn and d can be viewed as the VC dimension of H.

The bound expressed in 3.4 does not depend on the number of classifiers in the ensemble
T but remains quite loose in practical applications. However, it shows the tendency that
larger margins lead to better generalization. In fact, the generalization continues improving
after the training error has reached zero because the margin still increases. Note that several
studies have tried to interpret AdaBoost as a soft margin classifiers [97, 125, 126, 137, 142].

3.5.6 A Probabilistic Interpretation of Boosting

In [68], Friedman et al. propose a statistical interpretation of AdaBoost by fitting an
additive model

∑
t ft(x) with ft(x) = αtht(x). A simple way would be to minimize squared-

error loss E[(y−
∑

t ft(x))2] in a forward stagewise manner. However, squared-error loss is
commonly used in linear regression but is not appropriate for classification (the examples
too well classified are penalized, as shown in figure 3.3). A better choice of loss function
is to use a binomial log-likelihood. It is depicted in figure 3.3 with other standard loss
functions. The procedure is then called LogitBoost.

The additive logistic model has the form:

log
p(y = 1|x)
p(y = −1|x)

=
T∑

t=1

ft(x). (3.23)

Others standard AdaBoost versions like Discrete AdaBoost and Real AdaBoost can also be
interpreted as a additive logistic regression model by considering an exponential criterion:

J(H) = E[exp(−yH(x))]. (3.24)

The function H that minimizes J(H) is the symmetric logistic transform of p(y = 1|x):

Theorem 3.5 (Friedman 2000). E[exp(−yH(x))] is minimized at

H(x) =
1
2

log
p(y = 1|x)
p(y = −1|x)

. (3.25)

Hence
p(y = 1|x) =

exp(H(x))
exp(−H(x)) + exp(H(x))

, (3.26)
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Figure 3.3: Examples of loss functions including exponential loss (AdaBoost) and
logistic loss (LogitBoost).

p(y = −1|x) =
exp(−H(x))

exp(−H(x)) + exp(H(x))
. (3.27)

This analysis gives a rather simple new interpretation of boosting. This probabilistic
interpretation will be used later in this thesis, in particular for efficient posterior probability
estimation.

3.6 Analysis

In the previous sections we presented several ensemble creation methods like Bagging and
Boosting. Depending on the application, some techniques perform better than others.
In this section we will give a general overview of the advantages and drawbacks of these
algorithms, trying to show why these ensemble creation techniques work.

Several studies ([45, 78, 110]) have proposed theories for studying the effectiveness of
Bagging and Boosting. They are based on a bias plus variance decomposition of classifi-
cation error as proposed in [49]. In this decomposition we can view the expected error of
a learning algorithm on a particular target function and training set size as having three
components:

1. A bias term measuring how close the average classifier produced by the learning
algorithm will be to the target function;

2. A variance term measuring how much each classifier will vary with respect to each
other (how often they disagree);

3. A term measuring the minimum classification error associated with the Bayes optimal
classifier for the target function (this term is sometimes referred to as the intrinsic
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target noise).

Using this framework it has been suggested [10] that both Bagging and Boosting reduce
error by reducing the variance term. Freund and Shapire [44] argue that Boosting also
attempts to reduce the error in the bias term since it focuses on misclassified examples.
Such a focus may cause the learner to produce an ensemble function that differs significantly
from the single learning algorithm. In fact, Boosting may construct a function that is not
even producible by its component learning algorithm (e.g. changing linear predictions
into a classifier that contains non-linear predictions). This property makes Boosting an
appropriate algorithm for combining the predictions of weak learning algorithms. Though
the bias-variance decomposition is interesting, there are certain limitations to applying it
to real-world data sets. To be able to estimate the bias, variance, and target noise for a
particular problem, we need to know the actual function being learned. This is unavailable
for most real-world problems. To deal with this problem Kohavi and Wolpert [78] suggest
holding out some of the data. The main problem with this technique is that the training
set size is greatly reduced in order to get good estimates of the bias and variance terms.

One major limitation of AdaBoost is its tendency to overfit in presence of noisy data.
In fact the method for updating the weight distribution of the sample tends naturally to
increase the weights of noisy samples. This will be discussed more deeply in the case of face
detection in chapter 8.

3.7 Summary

This chapter was a general introduction to multiple classifier systems. We reviewed both
aggregation techniques and ensemble creation methods like Bagging or Boosting. The next
chapter will propose an information theoretic framework for combining classifiers. We
will study diversity between members of the ensemble and its relationship with average
individual accuracy. Then, chapter 5 will present a efficient multiple classifier technique
that involves parallel SVM .
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Information Theoretic

Classifier Combination 4
4.1 Introduction

In the previous chapter we gave a broad overview of classifier combination techniques. In
particular, we have seen that using an ensemble is only justified if the committee becomes
better than the best individual member. In general, an ensemble will be performant if the
classifiers are complementary in the sense that they commit errors on different data. In other
words, the members of the ensemble need to be diverse. The notion of diversity appears
to be a key element in ensemble methods, that is why, in this chapter, we will analyze
more deeply diversity as a major feature for obtaining good ensembles. In the combination
techniques described in chapter 3, diversity is very often implicitly used to improve the
ensemble accuracy. However there are also techniques that directly grow ensembles by
maximizing diversity between classifiers. Thus, many explicit diversity measures have been
proposed in the literature.

In this chapter, we will propose an Information Theoretic (IT ) framework for analyzing
diversity and its close relationship with average individual accuracy of the ensemble mem-
bers. More precisely, we will show that these two quantities appear to be contradictory.
We will consequently propose an information theoretic measure that exhibits a trade-off
between diversity and average individual accuracy.

In section 4.2 we will review the main existing diversity measures and show their limita-
tions for building efficient ensembles. Then in section 4.3 we will briefly review information
theoretic principles for classification. Section 4.4 will propose the IT framework to classifier
combination techniques. Then a new IT measure will be defined in section 4.5. Finally
the last sections will give some example of practical use of the new measure. In particular,
section 4.7 proposes an modification of AdaBoost that incorporates the new measure for
selecting weak classifiers.

41
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4.2 Diversity in Ensembles of Classifiers

It is commonly admitted that a large diversity between classifiers in a team is preferred.
However, diversity can be understood differently depending on the context. It can be viewed
as a measure of dependence, complementarity or even orthogonality between classifiers [85].
In practice, diversity can be used in three different philosophies. First, it can be directly
used as an optimization criterion for training the ensemble. Then, it is often used implicitly
in the ensemble growing techniques, where the ensembles become progressively diverse (e.g.
AdaBoost). Finally it can be used for controlling the pertinence of ensemble by checking if
it is diverse enough.

In [27], Cunningham et al. claim that “any work with classification ensembles should
explicitly measure diversity in the ensemble“. Giacinto et al. [50] states that classifiers in an
ensembles need to be “accurate and diverse“. Several studies focused on understanding how
diversity was handled on various ensemble creation techniques like AdaBoost or Bagging
[80, 149]. Finally, many techniques have been proposed for exploiting diversity for finding
good ensembles [14, 56, 79, 98, 151, 169]. It was even proposed to voluntarily overtrain
the classifiers in order to create diversity between them [26]. In all these studies, various
diversity measures have been proposed. We give hereafter a general overview of the most
significant ones.

4.2.1 Diversity Measures

Diversity measures can be splitted into pairwise and non pairwise diversity measures. On
the first hand, pairwise diversity measures require consideration of the diversity between
each pair of classifiers and then averaging the

(K
2

)
diversity values. Let us consider two

classifiers represented by their outputs y1, y2 and denote y the true label. We define the
following probabilities of the respective pairs of correct/incorrect classifications:

a = P (y1 = y, y2 = y) (4.1)

b = P (y1 �= y, y2 = y) (4.2)

c = P (y1 = y, y2 �= y) (4.3)

d = P (y1 �= y, y2 �= y) (4.4)

The most used diversity measure is certainly Yule’s Q-statistic [181] (QS). It is defined by:

Q =

{
ad−bc
ad+bc , if a, b, c, d < 1
1, otherwise.

(4.5)

As shown in equation (4.5), two statistically independent classifiers will have Q = 0. Q

varies between −1 and 1, the lower the value the more diverse the classifiers. Classifiers
that tend to recognize the same objects correctly will have positive values of Q, and those
which commit errors on different objects will render Q negative.
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Then the correlation coefficient ρ is defined by:

ρ =
ad− bc√

(a+ b)(c+ d)(a+ c)(b + d)
. (4.6)

It is very similar to Q, i.e. it can be shown that Q and ρ have the same sign.
The Disagreement Measure [156] simply corresponds to the total proportion of examples

for which the two classifiers disagree:

D = b+ c. (4.7)

It varies between 0 and 1, the higher the value the more diverse the classifiers.
Double fault [50] counts the proportion of examples misclassified by both classifiers:

DF = b+ c. (4.8)

In the following of the chapter we will also consider a diversity measure based on the
Mutual Information (MI) between the output of two classifiers y1 and y2:

MI = I(y1, y2) =
∑

k

∑
j

p(y1 = k, y2 = j) log
p(y1 = k, y2 = j)
p(y1 = k)p(y2 = j)

. (4.9)

For all these pairwise measures, the diversity of the ensemble of K classifiers is computed
by averaging the

(K
2

)
measures.

On the other hand, there exists several non-pairwise diversity measures. The most used
in the Kohavi-Wolpert variance [78]:

KWv =
1
2

(
1 −

K∑
k=1

P (y = yk|x)2
)
. (4.10)

The diversity measures presented in this section clearly present correlation between them
and, as pointed out in [80], there is no best diversity measure that can be used for building
ensembles with minimal error. Moreover, finding a systematic relationship between these
diversity measures and ensemble accuracy is a more challenging task.

4.2.2 Limits of Diversity Measures

These diversity measures have been extensively used in many applications, particularly in
the context of classifier selection from a large set of classifiers [50]. However, is has been
observed in partice that maximizing the diversity measures is not necessarily a guarantee
for obtaining the best ensembles. In this section we will see through a practical example
that diverse ensembles can even decrease the performances compared to the best classifier
in the team.

In order to show some of these limitations, we perform simple experiments that evaluate
how diversity measures are correlated to the performances of an ensemble of classifiers. In
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Figure 4.1: Improvement of the ensemble with respect to the average individual
accuracy p = {0.5, 0.6, 0.7, 0.8, 0.9}, function of 2 diversity measures.

this study we consider two diversity measures: the QS (equation (4.5)) and the information
theoretic measure based on Mutual Information (MI) (equation (4.9)).

In the first experiment, we consider classifiers with strictly equal individual accuracies
p ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. Considering this constraint, 1000 binary outputs were randomly
generated for 3 classifiers: y1,y2,y3 ∈ {−1, 1}1000. The committee decision is taken by
majority voting among the 3 classifiers. This process is then repeated several times. For each
trial, we measured the ensemble accuracy pvote and we compared two diversity measures:
the average Q-statistics and the average MI. Results are reported in figure 4.1.

In the second experiment p is randomly distributed in the interval p ∈ [0.7 , 0.8] (see
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Figure 4.2: Improvement of the ensemble w.r.t. the average individual accuracy
p ∈ [0.7 0.8], function of 2 diversity measures.

figure 4.2).
It turns out that the diversity (both QS and MI) seems to be a relevant feature when

the classifiers have similar individual accuracies, supposing that this accuracy is not too
low (figure 4.1 with p ≥ 0.7). When they have equal but low accuracies, large diversity
does not necessarily imply improvements (figure 4.1 with p < 0.7). Moreover, figure 4.2
shows that even if the classifiers have only slight differences in terms of individual accuracy,
diversity between them is not a highly discriminant feature for choosing the best ensemble
(this remark is important as in practical applications we cannot ensure that the classifiers
have exactly the same individual accuracy).

These considerations explain why, at least for majority voting combination, diversity is
usually only used for visualization (plot pairs of classifiers according to their diversity), or
overproduction and selection of classifiers. In [150], Shipp et al. also underline that practice
does not give a clear positive relationship showing that highly diverse ensembles have high
accuracy on combination. Kuncheva also reported in [83] that the improvement on the best
individual accuracy by forcing diversity is negligible. More details about diversity and how
to create diversity in ensemble are given in [14].

The remaining of this chapter will investigate this paradoxical behavior of diversity. On
the one hand it is known as a major factor in ensemble design, on the other hand it is not a
relevant feature that systematically leads to improved performances compared to the best
member of the team.

4.3 Introduction to Information Theoretic Classification

4.3.1 Motivations

In this section we will introduce an information theoretic framework for combining classi-
fiers. We will first motive our choice by showing how IT can help tackling the ambiguity
around diversity as explained in the previous section. We will use information theoretic
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tools to understand why selecting the most diverse ensemble is not necessarily the best
choice.

Information theory is commonly used in coding and communication applications and
more recently, is has also been used in classification area. Information theoretic classification
was first introduced by Principe et al. in [123]. It presents a slightly different view compared
to the pattern recognition framework presented in chapter 2. Basically, a learner is viewed
as an agent that gathers information from some external sources. Information theoretic
quantities have been widely used for feature extraction and selection: Fisher et al. [40],
Hild et al. [60] or Sindhwani et al. [153], who proposed a feature selection technique
for support vector machines and neural networks. Recently, Butz et al. [17] proposed to
apply this framework to multi-modal signal processing. This work has also been applied to
audio-visual speaker detection [7] or audio-visual speech recognition [55].

Multi-modal signals represent several signals of different modalities but coming from the
same physical scene. The underlying idea is that the information contained in one signal
can help for the processing of other modalities, and, IT offers a variety of tools for handling
the exchange of information between the source and the signals, and between the signals of
several modalities.

In this work, we propose to model classifier combination as a similar problem, consider-
ing that several classifiers are trained from examples coming from the same physical sample
distribution. IT can thus provide efficient tools for measuring and analyzing dependence
between classifiers and of course accuracy of the classifiers.

4.3.2 Information Theoretic Definitions

This section reviews some basic IT concepts that will be used in the remaining of the
chapter. More details can be in found in [22].

We first introduce the concept of entropy, which measures the amount of uncertainty of
a random variable. Let X be a random variable with probability density function p(x).

Definition 4.1. Shannon’s entropy HS(X) of a discrete random variable X is defined by

HS(X) = −
∑

k

p(xk) log p(xk). (4.11)

The entropy is expressed in bits. We can also define the conditional entropy of a random
variable Y given X:

Definition 4.2. The conditional entropy of a random variable Y given X is defined by:

HS(Y |X) =
∑

k

p(xk)HS(Y |X = x). (4.12)

Another important notion is the mutual information (MI) which measures the depen-
dence between two random variables X and Y .
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H(X)

H(Y|X)I(X;Y)H(X|Y)

H(Y)

Figure 4.3: Venn Diagram representing the concept of entropy and mutual information.
Mutual information can be viewed as the intersection between the marginal entropies.

Definition 4.3. Consider two random variables X and Y with a joint probability density
function p(x, y) and marginal probability density functions p(x) and p(y), then Shannon’s
mutual information IS(X;Y ) between X and Y is defined by

IS(X;Y ) =
∑

k

∑
j

p(xk, yj) log
p(xk, yj)
p(xk)p(yj)

(4.13)

MI is in fact the relative entropy between the joint distribution and the product dis-
tribution. For notation simplicity and if not specified otherwise, Shannon’s definitions
HS(Y |X) and IS(X;Y ) will be written H(Y |X) and I(X;Y ). The relationships between
entropy and mutual information are summarized by the following theorem:

Theorem 4.1.

I(X;Y ) = H(X) −X(X|Y ), (4.14)

I(X;Y ) = H(Y ) −X(Y |X), (4.15)

I(X;Y ) = H(X) +H(Y ) −H(X,Y ), (4.16)

I(X;Y ) = I(Y ;X), (4.17)

I(X;X) = H(X). (4.18)

The relationships between entropy and mutual information given in Theorem 4.1 can
be represented graphically by means of Venn diagrams as shown in figure 4.3. Mutual
information represents the information that is shared by both variables X and Y . It can
thus be represented by the intersection between both marginal entropies H(X) and H(Y ).

Shannon’s definitions of entropy and mutual information have been extended to the
more general Renyi’s definitions:

Definition 4.4. For an entropy order α > 0, α �= 1, Renyi’s entropy is defined by

Hα(X) =
1

1 − α
log
∑

k

pα(xk). (4.19)
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Definition 4.5. For an entropy order α > 0, α �= 1, Renyi’s mutual information is defined
by

Iα(X;Y ) =
1

1 − α
log
∑

k

∑
j

pα(xk, yj)
pα−1(xk)pα−1(yj)

, α > 0, α �= 1. (4.20)

Although Renyi’s definitions have a discontinuity at α = 1, it can be seen that the limit
of Renyi’s entropy as α goes to one is Shannon’s entropy. In fact this statement is true for
all Renyi’s definitions. [36]

Then the notion of Markov chains will be used to model the classification process.

Definition 4.6. Random variables X,Y,Z are said to form a first order Markov chain
in that order if the conditional distribution of Z depends only on Y and is conditionally
independent of X. The Markov chain is represented by:

X → Y → Z (4.21)

An important information theoretic theorem demonstrates that no processing of Y ,
deterministic or random, can increase the information that Y contains about X:

Theorem 4.2. (Data Processing inequality) If X → Y → Z then

I(X;Y ) ≥ I(X;Z). (4.22)

4.3.3 Information Theoretic Classification

Classification process can be modeled using an information theoretic framework. Let us
first introduce some notations and variables concerning information theoretic classification,
that will be used in the remaining of the chapter.

Introduction

In order to formulate the supervised classification problem in an information theoretic
framework, let us first see how the information theoretic definitions presented in previous
section can be adapted to the context of classification. Let us assume that we have a set X
of n examples, obtained from a physical signal that we denote S. The true class labels of
the examples are represented by a random variable C. C is defined over the set of classes
Ωc (Ωc = {−1; 1} in a binary classification task). Let us denote F the feature vectors
of the examples, obtained by feature selection and extraction. The class labels estimated
by the classification process, (i.e the output of the classifier) is called Ĉ. The common
classification problem can be summarized by a simple processing chain (as in figure 2.1,
chapter 2): acquisition of the signal, feature selection and extraction and classification. In
information theory, this processing chain can be formulated as a first order Markov chain
([17, 123]). The Markov chain is depicted in figure 4.4, along with the main classification
steps.

The ultimate goal in classification is to minimize the difference between the true labels
and the estimated class labels. This can be modelled by considering a random variable
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Figure 4.4: Different stages of pattern recognition systems, formulated as a first order
Markov chain.

E taking values into {1, 0}. The probability of making an error during the classification
process is thus:

Pe = P (E = 1) = P (Ĉ �= C). (4.23)

In this work, we will consider the classification as a general problem of classifying exam-
ples to classes. We will thus integrate the pre-processing steps (signal acquisition, feature
selection and feature extraction) into the classification step, resulting in one single random
variable Ĉ for the whole classification process. Data processing inequality Theorem 4.2
proves that these pre-processing steps cannot increase the amount of information between
C and Ĉ.

The complete classification process can thus be simplified into the following first order
Markov chain:

C → Ĉ → E. (4.24)

Intuitively, the estimated class labels Ĉ should contain as much information about
the class labels C as possible. In other words, we would like to maximize the mutual
information between the true labels and the estimated labels I(C; Ĉ). This intuitive idea can
be formalized by trying to minimize bounds on the error probability Pe (equation (4.23)).

Maximizing Mutual Information

The error probability Pe can be lower-bounded by applying Fano’s inequality to the Markov
chain equation (4.24). Fano’s inequality [38] is given in the following theorem:

Theorem 4.3. Considering the first order Markov chain defined in equation (4.24), the
probability of making an error is bounded by:

Pe ≥
HS(C|Ĉ) − 1

log |Ωc|
=
HS(C) − IS(C; Ĉ) − 1

log |Ωc|
, (4.25)

where |Ωc| is the number of classes.

From this lower bound, Erdogmus et al. [36] also derived an upper bound using Jensen’s
inequality described in [22]. The bounds are summarized in the following theorem:

Theorem 4.4. [36]
Considering the first order defined in equation (4.24), the probability of making an error
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is bounded by:

HS(C) − Iα(C; Ĉ) − hS(Pe)
log |Ωc| − 1

≤ Pe ≤
HS(C) − Iβ(C; Ĉ) − hS(Pe)

mink HS(C|e, ĉk)
, (4.26)

where hS(Pe) = −Pe log Pe − (1 − Pe) log (1 − Pe) is the binary Shannon’s entropy, and
Iα,β(C; Ĉ) represents Renyi’s definition of the mutual information with α, β ∈ R

+ \ {1}.

The tightest bounds in Theorem 4.4 are obtained when the Renyi’s entropy coefficients
(α, β) tend to 1 in which case Renyi’s definitions correspond to Shannon’s ones [36]. As
the number of classes |Ωc| is fixed, the entropy of the class labels HS(C) does not depend
on the classification process. Bounds in equation (4.26) point out that maximizing the
MI between the two random variables C and Ĉ will tend to minimize both bounds, thus
increasing the chances of having a low error probability Pe. Clearly minimizing both bounds
in Theorem 4.4 does not mean necessarily minimizing Pe, however, if the lower bound is
high, the error we be also be high.

In the extreme case where the classifier predicts correctly all the samples then we obtain
the maximal possible mutual information: I(C; Ĉ) = H(C) = H(Ĉ).

In the next section we will extend these properties to the framework of multiple classi-
fiers.

4.4 Information Theoretic Combination of Classifiers

The information theoretic framework introduced in the previous section was referring to
the general classification task. This section shows how it can be extended to the case where
the classification problem is more specifically a combination of several classifiers.

Let us assume that we have a team of K given classifiers. Let us now denote Ĉ the
random variable representing the estimated class labels obtained by aggregation of the
individual decisions. The aim is thus to find the best combination of members in the sense
that it will maximize I(C; Ĉ).

Let us call Ci, i = 1, . . . ,K, the random variables representing the decisions of classi-
fiers i = 1, . . . ,K. Each classifier can be modelled separately using the Markov chain in
equation (4.24). A more logical notation for the output of classifier i would be Ĉi, in order
to emphasize on the fact that the output labels are estimates of the true labels C. However,
for notation simplicity we can write Ci instead of Ĉi as there is no risk of misunderstanding
thanks to the subscript.

Conceptually, the combination process can be summarized by the Venn diagram shown
in figure 4.5. The accuracy of an individual classifier Ci is represented by intersection
between H(Ci) and H(C). The mutual information between two classifiers Ci and Cj is
the intersection of the two corresponding marginal entropies H(Ci) and H(Cj).

For simplification and without loss of generality, let us consider a two class problem
with labels {−1, 1}. The main relationships between the classifiers and the true classes are
measured by the mutual information (MI) between them:
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Figure 4.5: Venn Diagram representing relationships between two classifiers C1, C2 and
the true class labels C.

• The MI between the output of individual classifier i and the true labels is IC;Ci ,
i ∈ {1, . . . ,K}

• The MI between two classifiers is: ICi;Cj , i, j ∈ {1, . . . ,K}, j > i

Let PC;Ĉ be the joint probability density function between true classes and the ensemble
decision and PC , PĈ the corresponding marginal probabilities. The quantity that we want
to maximize is the MI between the true labels and the labels obtained by aggregation of
the individual decisions: Ĉ:

IC;Ĉ =
∑

k=−1,1

∑
j=−1,1

PC;Ĉ(k, j) log
PC,Ĉ(k, j)

PC(k)PĈ(j)
. (4.27)

As described in the chapter 3, the combination can be implemented using variety of
strategies. The simplest combination rule is the majority voting (MV ). Despite its sim-
plicity, MV has proved to be an effective rule for many combination tasks. Moreover, MV

can easily be extended to weighted majority voting which is widely used in the multiple
classifiers community. For example, the decision of AdaBoost [44] is a weighted majority
vote of weak classifiers. Many studies [81, 89, 105, 138] have focused on analyzing why
majority voting was as effective as more complicated schemes in improving the recognition
results. In the remaining of the chapter, we restrict the combination rule to majority voting.
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4.4.1 Majority Voting for Combining Classifiers

Considering a MV combination scheme, the probability PĈ(y) that Ĉ outputs y is is related
to each voter classifier by [147]:

PĈ(y) ≤
K−1∑
i=1

K∑
j=i+1

PCi,Cj(y). (4.28)

Then, considering an odd number of independent classifiers K > 1 and assuming that they
all have the same accuracy denoted p, the accuracy of the ensemble is:

Pmaj =
K∑

m=�K/2�+1

(
K

m

)
pm(1 − p)K−m. (4.29)

The following result is known as the Condorcet Jury Theorem (1785):

Theorem 4.5. [83]

1. If p > 0.5 then Pmaj is monotonically increasing and
Pmaj −→ 1 as K −→ ∞

2. If p < 0.5 then Pmaj is monotonically decreasing and
Pmaj −→ 0 as K −→ ∞

3. If p = 0.5 then Pmaj = 0.5.

This theorem supports the idea that we can expect improvements over the individual
accuracy p only when p is larger than 0.5. This result can be extended to the case where p
is different for each member, supposing that the distribution of individual accuracies pi is
symmetrical about the mean [147].

Nevertheless, these assumptions on the individual accuracies and independence of the
classifiers are of course too strong in our framework as each classifier is trained using features
extracted from the same data. Moreover, this theorem gives asymptotic behavior of the
majority rule. We are more interested in small numbers of classifiers.

The following theorem gives the relationship between the ensemble accuracy and the
individual accuracies as a function of the numbers of voters:

Theorem 4.6. [147]
Consider a group of odd size K with any distribution of the individual accuracies
(p1, . . . , pK), where pi > 0.5 ∀i. The probability to reach the correct decision, when utilizing
the simple majority rule, is larger than the probability p = 1

K

∑K
i=1 pi of a random group

member to do so.

In our case this theorem leads to:

PC,Ĉ(y) ≥ 1
K

K∑
i=1

PC,Ci(y). (4.30)
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Figure 4.6: Venn Diagram showing how to optimize classifier combination.

Considering bounds equation (4.28) and equation (4.30) on each term of the mutual
information in equation (4.27), we see that minimizing theMI between each pair of classifier
ICi;Cj , i �= j and maximizing the MI between each single classifier and the true class labels
IC;Ci will tend to maximize the mutual information between the ensemble decision and true
labels: IC;Ĉ .

As introduced in section 4.3, IC;Ci represents the accuracy of classifier i. ICi;Cj measures
the similarity between the two classifiers i and j. In other words, by minimizing ICi;Cj , we
maximize the diversity between the two classifiers.

This reasoning can be summed up in the following theorem that we propose:

Theorem 4.7. Let C1, C2, . . . , CK be K random variables representing the output labels
of K classifiers and C a random variable representing the true class labels. Maximizing
IC;Ci ∀i ∈ {1, . . . ,K} and minimizing ICi;Cj ∀i ∈ {1, . . . ,K}, ∀j ∈ {1, . . . ,K|j > i},
will maximize IC;Ĉ. Ĉ represents the estimated class labels obtained from C1, . . . , CK by
majority voting.

It is important to note that Theorem 4.7 represents a sufficient condition for maximizing
I(C; Ĉ), but it is clearly not a necessary condition. In fact, it is possible to have an accurate
ensemble of classifiers which does not maximize diversity between classifiers. This will be
discussed experimentally in section 4.6.

Theorem 4.7 can be summarized graphically by the Venn diagram shown in figure 4.6.

4.4.2 Diversity/Accuracy Dilemma

The relationships shown in Theorem 4.7 reveal a paradox in the sense that the two measures
involved are somehow contradictory. In fact, two very good classifiers will clearly have very
low diversity, while two poor classifiers, say slightly better than random guessing, will be
very likely diverse. This paradox can easily be seen using Venn diagrams figure 4.7(a)
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(a) Maximize both accuracies

(b) Maximize diversity

Figure 4.7: Diversity Accuracy dilemma.

and figure 4.7(b). Figure 4.7(a) shows that maximizing both individual accuracies will
tend to expand the intersection between the two marginal entropies, which is equivalent
to increase similarity between classifiers. Inversely, figure 4.7(b) shows that minimizing
similarity between classifiers will force to decrease individual accuracies.

This phenomenon can be discussed through the following formalism. Consider two
random variables C1, C2 representing two classifiers. Let C be the true class labels.

To establish a probabilistic link between the two classifiers, a parallel is made with the
work of Butz et al in [17] concerning processing of multi-modal signals. First recall some
pattern recognition definitions (see section 2.2 for details). We consider that the training
and testing examples are generated from an unknown but fixed probability density function
(pdf ) and the task is to find a function that minimizes the risk of misclassifying new vectors
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Figure 4.8: Coupled Markov chains for 2 classifiers trained differently from the same
input data.

drawn from the same pdf. We can consider that the inputs of both classifiers C1 and C2

come from this pdf. Two coupled Markov chains can be built:{
C → C1 → Ĉ2 → Ĉ → E

C → C2 → Ĉ1 → Ĉ → E.
(4.31)

These coupled Markov chains are depicted in figure 4.8. The probability densities of
C1 and Ĉ1, resp. C2 and Ĉ2, are both estimated from the same data sequences. Therefore
we can write I(C1; Ĉ2) ≈ I(C2; Ĉ1) ≈ I(C1;C2). Then, the data processing inequality
(Theorem 4.2) gives: I(C1;C2) ≥ I(C;C2) and I(C1;C2) ≥ I(C;C1). This implies that:

I(C1;C2) ≥
I(C;C1) + I(C;C2)

2
. (4.32)

Maximizing the individual accuracies represented by I(C;C1), I(C;C2) will consequent-
ly maximize I(C1;C2), the similarity between the classifiers. Inversely, minimizing I(C1;C2)
(maximizing the diversity) will tend to minimize the classifiers accuracy.

This phenomenon reflects the experiments presented in section 4.2.2 which showed that
diversity was not a sufficient condition for improving the classification skills compared to the
best individual member. To address this contradiction presented here, a trade-off needs to
be introduced. A study of how the diversity evolves depending on the classifiers accuracies
is given in the next section.

4.5 Information Theoretic Score

4.5.1 Estimation of the Relationship Between Diversity and Classifiers

Accuracy

This section proposes an empirical estimation of the relationship between diversity and
accuracy in order to give a computable measure of the ensemble performance. This link
is estimated with the following experiment. Outputs of two classifiers (C1, C2) with equal
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Figure 4.10: Graphical representation of Accuracy/Diversity dilemma.

accuracies are iteratively simulated. We report in figure 4.9 the similarity between output
labels I(C1;C2) for each trial as a function of the individual accuracy I(C;C1)+I(C;C2)

2 .

A simple possible modelling of the relationship is to approximate similarity by a quadrat-
ic function of the average individual accuracy. Figure 4.10 gives a graphical interpretation of
this approximation. A classifier is represented by a vector. Its projection onto the horizon-
tal axis measures its individual accuracy while the difference between vertical projections
of two vectors measures the diversity between them. The dash line represents the maximal
diversity allowed between two classifiers with identical accuracy. This fits with the remark
that two poor classifiers can have large diversity while two accurate classifiers cannot be so
diverse.

This model can be extended to K classifiers. In the following, we will consider two terms
based on the mutual information between classifiers, one measuring average accuracy, the
other measuring diversity.
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Definition 4.7. The average accuracy of the K classifiers called Information Theoretic
Accuracy (ITA):

ITA =
∑K

i=1 I(C;Ci)
K

. (4.33)

Definition 4.8. The average diversity between the classifiers is called Information Theoretic
Diversity (ITD):

ITD =

(K
2

)
∑K−1

i=1

∑K
j=i+1 I(Ci;Cj)

. (4.34)

In this work we propose to use a simple first order statistic to measure the individual
accuracies and diversities, for two main motivations. On the first hand, the goal is to
design a simple global score that can be used in various classifier combination applications.
Using other statistics could increase significantly the computational costs of the score. On
the second hand, Theorem 4.7 does not help us to discriminate beween ensembles having
a large variance in the individual accuracies (thus large diversity) and ensembles having
low variance between the individual accuracies and possibly less diversity. In this case we
propose to keep the ensembles with high average accuracy even if diversity between them is
penalized. It avoids the limitations of diversity-based techniques presented in section 4.2.2.

In order to design a score that relects Theorem 4.7, we need to consider the second
order modelling of the similarity between the classifiers and the average accuracy presented
before. This relationship can be written as ITA2 ∝ 1

ITD . In fact, the diversity term
ITD already contains relevant information about the average individual accuracy. We thus
propose to compensate this information by considering the following Information Theoretic
Score (ITS) as a function of ITS and ITD:

Definition 4.9. The Information Theoretic Score (ITS) of an ensemble of K classifiers
combined by majority voting is defined by:

ITS = (1 + ITA)3(1 + ITD). (4.35)

This score will tend to select the best ensemble of classifiers by only considering diversity
when it becomes a relevant feature. Compared to standard diversity based techniques, it
will penalize ensembles with low ITA and large ITD. This model is a choice and other
similar modeling could be chosen. The next section tries to validate this definition in the
context of overproduction and selection of classifiers.

4.5.2 Validation of the ITS

To evaluate the intrinsic behavior of the ITS, we first consider artificial classifier outputs.
By generating random outputs we can explore the complete space of output labels. It
presents the advantage of being completely independent of the process of feature selection
and independent of the learning algorithm. We can thus perform an unbiased evaluation of
the ITS. Let us consider the following simple experimental setup. We randomly generate
output vectors for three classifiers. For each run, we measure the accuracy of the majority
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Figure 4.11: Score behavior with synthetic class labels

voting ensemble and the ITS. The results are shown in figure 4.11. Note that in this
experiment we do not impose the individual accuracies to be identical, we only constraint
them to fall between 0.5 and 1.

As expected, ensembles with high ITS are accurate. Moreover, an ensemble can be
accurate but with a low ITS, therefore, the condition for maximizing I(C; Ĉ) is sufficient
but not necessary.

4.5.3 ITS in Multi-class problems

In section 4.5.1, ITS was defined according to empirical considerations based on binary
classification purposes. However, we will show in this section that the ITS can also be
used in multi-class problems. From a practical point of view, increasing the number of
classes will increase the chances of having different outputs between the classifiers. This
phenomenon is reflected by a higher diversity for a fixed individual accuracy. In order to
check this multi-class behavior, we performed the same experiments as in section 4.5.2 with
simulated output labels but with various number of classes from 2 to 6. Results are reported
in figure 4.12. As expected, the accuracy/diversity representation still holds for multi-class
problems, the diversity being an increasing function of the number of classes. The global
relationship between ITD and ITA does not depend on the number of classes. Nevertheless,
for very large number of classes, an adaptation of the diversity term can be imagined. In
the experiments of this chapter, we will consider datasets with up to 10 classes.

4.5.4 Discussion

ITS fixes a trade-off between average individual accuracies and diversity. It can be used as
a global measure of ensemble efficiency. However it presents some drawbacks. The main
underlying hypothesis we made in the experiments for designing the new measure, is that
the variance of individual accuracies in the ensemble is small. Clearly, if the individual
accuracies in the ensemble are really balanced, approximating the individual accuracies by
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Figure 4.12: ITS in Multi-class problems.

their average becomes irrelevant. In this case, no global relationship between accuracy and
diversity can be found. For example, combining two classifiers, one very accurate and one
poor cannot be optimized by measuring diversity between them. However, in such cases,
the contribution of ITA term in ITS will be more important than ITD, resulting in the
selection of the best classifiers even if they are not diverse.

In fact, the general idea of ITS is to adapt the contributions of both terms ITA and
ITD depending on the context. If the classifiers to be combined have almost identical
individual accuracies, then the contribution of ITD in the ITS will be discriminant. It
there exits more difference between individual accuracies, then ITA becomes more relevant
and it then preferable to choose performant classifiers even if they have more redundancy
between them.

The other drawback of this information theoretic framework is that the proposed crite-
rion is not differentiable. It cannot be used directly as optimization criterion for building
performant ensembles. There are several alternatives to tackle this limitation. On the one
hand, we will propose to use ITS for controlling the performance of classifiers ensembles.
This can be done for example in the context of overproduction and selection of classifiers.
As we cannot maximize ITS analytically, we will also propose techniques for incrementally
increasing the ITS of the ensemble. An important remark is that, we do not really need
to find the best ensemble in the sense that is maximizes the ITS. As pointed out in The-
orem 4.7, the conditions on the mutual informations between classifiers and true classes
do not imply finding the best ensemble but means finding one of the best. To summarize,
the procedures that will be proposed in the remaining of the chapter and in chapter 5 will
concentrate on finding classifiers that are both diverse and individually accurate without
forcing too much diversity between them.
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Figure 4.13: Example of Banana distribution. 3 decision functions a re also plotted: a
decision tree, a SVM and a k−NN .

4.6 Application to Overproduction and Selection

4.6.1 A Simple 2-dimensional Binary Problem

For evaluating the relevance of the ITS defined above on a real classification task, we first
consider a 2 class toy problem using the Banana dataset available in the Matlab Pattern
Recognition Toolbox [35]. An example of the data distributions is shown in figure 4.13.
We generate 1000 training examples for both classes and we split this training set into 15
smaller subsets by random sampling. We then train one classifier with each subset. A first
experiment (figure 4.14(a)) consists in training 15 Support Vector Machines (SVM) with 3rd
order polynomial kernels (the C parameter being evaluated by cross-validation). The 455
possible combinations of three classifiers (called triplets in the following) are exhaustively
tested. For each triplet, we measure the ITS on the training set, the ensemble accuracy on
a large test set and we also compute the average individual accuracy of the three classifiers.
This average accuracy is represented by the gray level of the circles in figure 4.14(a).

In the second experiment, three different learning algorithm are used. We trained 5
SVM , 5 linear classifiers and 5 K-nearest neighbors k−NN and again ITS is measured for
each triplet. Results are reported in figure 4.14(b).

As expected, the triplets of classifiers with low ITA (blue circles) lead to low ensemble
classification accuracy. When the three individual classifiers are accurate individually (red
and white circles in figure 4.14(a) and figure 4.14(b)), the final classification is generally
accurate. However, in both configuration, the white points (which means the 3 best classi-
fiers combined together) do not necessarily give the best combination. This phenomenon is
more visible in the case of 15 SVM as they only have slight differences in their individual
accuracies. In any case, the ensembles with high ITS are very accurate. These experiments
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(a) 15 SVM

(b) 5 SVM , 5 k−NN , 5 linear classifiers

Figure 4.14: Combination accuracy and ITS for each triplet of classifiers. (a)15 SVM
with RBF kernels and (b)5 SVM with RBF kernels, 5 k−NN classifiers and 5 linear

classifiers. The color of the circle is proportional the the average accuracy of the
ensembles.
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show that, at least in toy problems, the ITS can overcome the limitations of diversity as
presented in section 4.2.

(a) Voting of 3 linear classifiers.

(b) Voting of 3 SVM polynomial, d=3.

Figure 4.15: Example of ensemble selection with ITS. Classifiers are generated on
subsets of the complete training set. Bold lines represent the 3 selected candidates.

In figure 4.15(a) and figure 4.15(b), we show a graphical examples of classifier selection
by ITS. We generated 10 linear classifiers in figure 4.15(a) and 10 SVM with 3rd order
polynomial kernels in figure 4.15(b). The decision functions selected by maximal ITS are
drawn in bold. The two class subspaces are represented by different gray backgrounds.
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Dataset # classes # features # examples Best Classifier ITS, K=3
BreastWC 2 33 198 39.43±0.05 32.21±0.02

Glass 6 9 214 36.91±0.04 33.74±0.05
Image 7 19 2310 23.14±0.01 22.60±0.02

Ionosphere 2 34 351 15.92±0.01 15.45±0.01
Iris 3 4 150 5.21±0.12 5.27±0.14
Pen 10 16 10992 4.16±0.03 3.78±0.04

Prima 2 8 768 33.37±0.01 32.16±0.01
Wine 3 13 178 29.87±0.02 27.61±0.03
Zoo 7 16 101 12.11±0.04 12.10±0.04

Table 4.1: Results on UCI datasets. Summary of the datasets used. Number of samples
and dimensionality of the input space. We report error rates (in %) of the best single

classifier and an ensemble of K = 3 classifiers created by maximizing ITS.

4.6.2 Real World Datasets

In this section we report experiments on real world datasets taken from the UCI Machine
Learning repository [2]. The datasets cover a wide range of applications with number of
classes between 2 and 10, with small sample size and large sample size cases. A summary
of the datasets used is given in the three first columns of table 4.1.

In these experiments, we first trained a set of 15 decision trees on random subspaces of
the training set. The choice of the base learner was motivated by the notion of classifier
stability. As in Bagging (see section 3.4), unstable classifiers should be preferred in order
to obtain performant ensembles. Unlike k−NN for example, decision trees are known to
be unstable classifiers.

For each single classifier we measured the error rates by cross-validation for small sample
datasets or using a separate test set if available (for Image and Pen datasets). For each
possible combination of K=3,5 and 7 classifiers, we measure the performance of the ensemble
having the highest ITS. The sampling and training procedure has been repeated 10 times
in order to obtain reliable classification statistics. In last column of table 4.1 we report the
mean and standard deviation of the error rates concerning the best individual classifier and
the statistics of the ensemble of 3 classifiers selected by ITS. It clearly shows that even a
small ensemble of 3 classifiers compares favorably with the best individual classifier in most
datasets.

In order to compare with a pure diversity based ensemble selection, we also extracted,
at each run, the ensemble having the largest average QS. In other words, we compare the
ITS measure with the ensemble the most diverse. Results are reported in table 4.2 for
various numbers of classifiers: K = 3 and K = 5. The first comments concerns the QS
selection. It some datasets, it really decreases performaces compared to the best individual
classifier. This confirms the limitation of the pure diversity based techniques as described
in section 4.2.2. On the second hand, ITS-based selection outperforms QS selection in most
situations.
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Dataset Best Q ITS
K=3 K=7 K=3 K=7

BreastWC 39.43±0.05 38.32±0.09 34.12±0.12 32.21±0.02 31.76±0.09
Glass 36.91±0.04 35.42±0.05 33.32±0.02 33.74±0.05 29.71±0.04
Image 23.14±0.01 23.23±0.01 21.09±0.02 22.60±0.02 19.94±0.02

Ionosphere 15.92±0.01 14.68±0.06 14.23±0.01 15.45±0.01 13.72±0.01
Iris 5.21±0.12 25.67±0.12 20.22±0.11 5.27±0.14 5.05±0.09
Pen 4.16±0.03 5.13±0.07 4.36±0.03 3.78±0.04 3.20±0.04

Prima 33.37±0.01 32.87±0.03 32.12±0.05 32.16±0.01 31.56±0.01
Wine 29.87±0.02 30.52±0.02 28.28±0.04 27.61±0.03 27.03±0.04
Zoo 12.11±0.04 16.10±0.10 9.95±0.08 12.10±0.04 9.75±0.01

Table 4.2: Results on UCI datasets. Comparison of error rates of various methods : best
individual classifier, selection by maximal ITS and selection by maximal QS.

Dataset ITS
K=3 K=5 K=7

BreastWC 32.21±0.02 32.17±0.01 31.76±0.09
Glass 33.74±0.05 29.78±0.08 29.71±0.04
Image 22.60±0.02 20.92±0.03 19.94±0.02

Ionosphere 15.45±0.01 13.92±0.02 13.72±0.01
Iris 5.27±0.14 5.17±0.09 5.05±0.09
Pen 3.78±0.04 3.25±0.05 3.20±0.04

Prima 32.16±0.01 32.94±0.01 31.56±0.01
Wine 27.61±0.03 27.20±0.02 27.03±0.04
Zoo 12.10±0.04 9.81±0.00 9.75±0.01

Table 4.3: Results on UCI datasets. Influence of the number of classifiers in the
ensemble. We report error rates (mean and standard deviation) for ensembles of K=3,5

and 7 classifiers.

Finally, table 4.3 shows the influence of number of members in the ensemble. As ex-
pected, increasing the number of classifiers in the ensembles increases the performances
but in general, small ensembles already give significant improvements compared to the best
individual member.

4.6.3 Discussion

The purpose of the experiments presented in previous section was to show that the ITS is a
relevant measure of ensemble efficiency. It can tackle the limitations of pure diversity based
selection methods. For this we tested all possible combinations of K = 3, 5, 7 classifiers
in a pool of M = 15 classifiers. This means that for each experiment, we needed to test(M

K

)
. For instance, selecting 7 classifiers in a pool of 15 means testing 6435 ensembles. As

many datasets require cross-validation techniques for estimating errors, ITS and QS, the
exhaustive search is very computationally expensive.



4.7. Application to Adaboost 65

Moreover, in practical applications, the number of classifiers in the pool (M) may be
much larger that 15, and the number of classifier to select (K) is not known a priori. As
in feature selection where we want to keep only the features that are discriminant and not
redundant, selection of classifiers in a pool can be seen as selecting only classifiers that are
accurate and, if possible, diverse. There are various sub-optimal alternatives to avoid the
exhaustive search of the best classifiers, mainly using greedy algorithms.

For example, we propose to use the following selection procedure. First select the best
individual classifier C1∗ :

C1∗ = arg max
Ci,i=1,...,M

I(Ci, C). (4.36)

Then, as we need an odd number of classifiers, we need to find two more classifiers maxi-
mizing the ITS between C1∗ and them:

(C2∗ , C3∗) = arg max
(Ci,Cj),i,j∈{1,...,M}\1∗

ITS(C1∗ , Ci, Cj). (4.37)

This procedure can continue recursively until a given number of classifier is reached or
until the improvements by adding 2 more classifiers becomes small enough. Once the first
classifier has been selected, we need to extract 2 other classifiers from the M −1 remaining.
Consequently, each iteration i of the procedure, we need to perform

(M+1−2i
2

)
tests in order

to find the two new optimal classifiers. The total number of test for selecting K classifiers
from M is:

Ntests = M +
�K−1

2
�∑

i=1

(
M + 1 − 2i

2

)
, (4.38)

which appears to be much lower than
(M

K

)
(except when K is very close to M , but in that

case, classifier selection becomes useless.). An example is shown in figure 4.16. It shows the
number of tests that need to be performed using either exhaustive search (red) or iterative
selection (blue), for selecting classifiers from M = 100 classifiers.

4.7 Application to Adaboost

The procedure presented in previous section for iteratively selecting classifiers can be ex-
tended to a boosting strategy. In fact, we will propose an extended version of ITS that will
consider weighted majority voting for combining decisions.

In AdaBoost, diversity is implicitly managed by the adaptive update of the sample
distribution. Weights of misclassified examples is increased such that the next weak classifier
will focus on these examples, thus introducing diversity with respect to previously selected
weak classifiers. At this step, we could wonder how does the ITS evolves during AdaBoost
learning. Intuitively the weak classifiers selected at each iteration should be both diverse
(because of the sample distribution) and accurate (as they minimize weighted training
error). We thus would expect a high ITS measure. An illustration is given in figure 4.17.
At each iteration and for each candidate weak classifier, we measure an estimate of the ITS
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Figure 4.16: Number of tests that need to be performed for classifier selection using
either exhaustive search (red) or iterative selection (blue).

Figure 4.17: Comparison between AdaBoost and its modified version based on the ITS
criterion.



4.7. Application to Adaboost 67

(red crosses). The score of the selected weak classifier is represented by a blue dot. As
expected, the selected weak classifier generally gives a high score.

Algorithm 4.1: ITS-Boost algorithm
Input: Zn = {(x1, y1), (x2, y2), . . . , (xn, yn)}, Number of iterations T1

Initialize: D(1)
n = 1/N for all n = 1, . . . , N . WITA(0) = 0, WITD(0) = 0;2

for t = 1, . . . , T, do3

Train weak learner with respect to the weighted sample set {Zn,D
(t)}

foreach weak classifier h do
Compute the corresponding αh(t).
Compute the ITS:

WITAh(t) = WITA(t− 1) + αh(t)I
(
Y ;h(Y )|D(t)

)

WITDh(t) = WITD(t− 1) +
t−1∑
s=1

1
2

(αh(t) + α(s)) I
(
h(Y );hs(Y )|D(t)

)

WITSh(t) =
(1 + 1

Nat
WITA(t))3

1 + 1
Ndt

WITD(t)
,

where Nat and Ndt are two normalization constants:

Nat =
t−1∑
s=1

α(s) + αh(t),

Ndt =
1
2

(
t−2∑
s=1

t−1∑
r=s+1

(α(s) + α(r)) +
t−1∑
s=1

α(s) + αh(t)

)
.

end
Obtain hypothesis ht : R

n → R, that maximizes WITSh(t).
Update the corresponding values of WITA(t) and WITD(t).
Choose optimal αt ∈ R

Update the weights:

D
(t+1)
i =

D
(t)
i L(αt, yiht(xi))

Nt
,

where Nt is a normalization constant such that
∑n

i=1D
(t+1)
i = 1 .

end

Output: H(x) = sign
(∑T

t=1 αtht(x)
)

4

As explained in section 3.5.2, training in the case of AdaBoost comes to finding the
weak classifiers and their corresponding weights. We naturally propose a modified version
of it that selects weak classifiers that maximizes a weighted ITS (WITS) instead of picking
the weak classifier that minimize the weighted training error. We call this new algorithm
ITS-AdaBoost. The convergence properties of AdaBoost are not affected by the change as
far as the weighted training error of each selected classifier remains at least slightly better
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than random guessing. The detailed algorithm is given in Algorithm 4.1.
The WITS measure used in Algorithm 4.1 takes into account the distribution on the

samples D(t) and the coefficients of the linear combination αt. At each AdaBoost itera-
tion we thus compute incrementally the weighted average accuracy (WITA) and weighted
diversity scores (WITD). At iteration t, the WITA for each candidate weak classifier h is:

WITA(t) =
t−1∑
i=1

α(i)I
(
Y ;hi(Y )|D(i)

)
+ αh(t)I

(
Y ;h(Y )|D(t)

)
. (4.39)

Diversity term is also incrementally computed by adding the diversites between each new
pair of classifier. WITD is initialized with WITD(0) = 0 and then computed recursively
by:

WITD(t) = WITD(t− 1) +
t−1∑
s=1

1
2

(αh(t) + α(s)) I
(
h(Y );hs(Y )|D(t)

)
. (4.40)

Then the weighted score WITS is computed as in equation (4.35) but by considering
weighted versions of each term:

WITS(t) =
(1 + 1

Nat
WITA(t))3

1 + 1
Ndt

WITD(t)
. (4.41)

Nat represents the sum of linear weights at each iteration:

Nat =
t−1∑
s=1

α(s) + αh(t), (4.42)

and Ndt is the sum of the average α coefficients for each pair of classifiers:

Ndt =
1
2

(
t−2∑
s=1

t−1∑
r=s+1

(α(s) + α(r)) +
t−1∑
s=1

α(s) + αh(t)

)
. (4.43)

As in the original version of AdaBoost, the WITS measure obtained in equation (4.41)
will assign more weight to the classifiers having a large αt. Note that the computation load
is slightly increased with respect to AdaBoost as we need to compute the new WITS (t)
for each candidate weak classifier. But the additional computations are generally negligible
compared to the time spent for learning the weak classifiers.

We test this algorithm in several datasets. As usual, we consider several UCI datasets.
The purpose of this section is to compare the proposed ITS-AdaBoost with AdaBoost. That
is why the multi-class problems presented in table 4.1 are thus transformed into binary
classification tasks. The merging of the classes is done so as to respect the balance between
positive and negative classes as much as possible. On the second hand, we consider a face
class modeling application. We used 19 × 19 pixels face and non face images (see [101]).
From the gray intensity pixels, we extract 18 features by keeping 17 principal component
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Figure 4.18: Comparison between AdaBoost and its modified version based on the ITS
criterion. For each dataset, we report test error rates as function of the number of

boosting iterations.

and adding the Distance from feature Space (DFFS). We considered slightly more than
3700 faces for training and roughly 4300 for testing. Non face images were selected by
bootstrapping on randomly selected images. We used 5000 images for training and 10000 for
testing. In this work, simple decision stumps (thresholding on each feature) are used as weak
classifiers. Figure 4.18 gives a comparison between default AdaBoost and the ITS-AdaBoost
on several UCI datasets. In most datasets, it turns out that the generalization is improved
compared to AdaBoost (even if the training convergence is slower). This implementation
basically gives a new possible interpretation of AdaBoost that explicitly takes into account
a diversity measure between the weak classifiers that still considers a weight distribution
over the samples.
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4.8 Conclusions

This chapter presents a new ensemble learning framework using information theoretic con-
cepts. It provides a tool for measuring the goodness of an ensemble by taking into account
a trade-off between individual accuracy and diversity. A first possible use of this infor-
mation theoretic criterion (called ITS) is in the context of overproduction and selection
of classifiers. We show that ITS can help obtaining classifiers that are both diverse and
accurate. We also propose a modification of AdaBoost that explicitly takes into account
this diversity-based measure for iteratively building the ensemble. These techniques have
been evaluated on sereval datasets and show improvements in terms of classification rates.
In the next chapter, we will proposed techniques for obtaining ensembles of support vectors
such that the ITS between SVM is maximized.



Ensembles of Support

Vector Machines 5
In the previous chapter, we analyzed diversity in multiple classifier systems in an infor-
mation theoretic framework. We defined the Information Theoretic Score (ITS) and we
demonstrated how it can be used for selecting classifiers in a predefined team of classifiers.
We also proposed a modification of AdaBoost based on this score. This chapter will con-
centrate more deeply on the design of one particular category of ensemble, namely Multiple
Support Vector Machines (MSVMs). We will propose to use classical combination tech-
niques to create efficient combination of SVM . We will also investigate how ITS can be
employed in iterative optimization problems for obtaining performant ensembles.

5.1 Introduction to Multiple SVM

Training a SVM means finding the hyperplane that maximizes the margin between the two
classes. As explained in section 2.3.2, finding this hyperplane requires solving a quadratic
optimization problem. Consequently, the main drawback of SVM is that the complexity
of the training varies at least quadratically with the number of training examples, which
becomes intractable in large scale problems. To overcome this difficulty, several studies
proposed to decompose the learning task into several lower complexity problems by using
Multiple SVM (MSVMs). The principle of MSVMs is to train several parallel SVM
on subsets of the complete training set. A candidate test example is first given to each
SVM . Then, a combination rule takes the final decision using either classification labels
returned by the parallel SVM or continuous confidence measures. The global architecture
of a MSVMs is shown in figure 5.1. There are two main components in the system: the
algorithm for choosing the data used to train each SVM , and the aggregation rule.

There are basically two types of possible splitting strategies depending of the type of
available data and the motivations for using MSVMs: The subsets can be obtained by

71
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SVM 1 SVM 2 SVM K

y=f(  )x

x

combiner

Figure 5.1: Multiple Support Vector Machines (MSVMs)

partitioning the feature space into smaller subpaces or by splitting the training examples
into subsets.

• Feature subspace techniques are generally used to tackle problems with high dimen-
sional data. In this case, the splitting can be viewed as a feature extraction step.
Training local experts on local feature subspaces can be much easier than training
one single SVM on the complete feature space. Generally the most correlated fea-
tures are clustered together such that the learning algorithm can model efficiently the
subspace and generally produce sparse models (i.e with few support vectors). The
first technique referring to Mixtures of SVM (Kwok [86]) used this approach for im-
proving classification performances of the system. The problem is that it does not
reduce the complexity of large scale problems, in other words, problems with a large
set of training patterns.

• The other alternative is to split the training examples into subsets. This directly re-
duces the complexity of the learning. The simplest strategy is to use disjoint subspaces
obtained by random sampling. This technique was used for example by Collobert et
al. [20]. The main goal is to simplify the learning task but it generally also improves
classification skills by reducing the influence of noise and potential outliers in the
training data. The data subsets can also be obtained by clustering [102]. The SVM
obtained then act like local experts on their own domains.

The other main component of a MSVMs system is the choice of the combination rule
for aggregating decisions from each parallel SVM . As in any multiple classifier system,
the two main possibilities are fixed rules or trainable rules. The choice will be guided by
the splitting strategy. Basically, systems that use clustering techniques for splitting the
data (either in feature space or in the example set) will require trainable rules to give more
weights to the experts having higher confidence levels. For random sampling techniques the
difference between fixed or trainable rules is not that clear. It will be discuss throughout
this chapter. In [20], Collobert et al proposed to use Neural Networks for combining the
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decisions of the individual classifiers. The neural network gater was trained in order to
minimize a squared error cost function. We will discuss in section 5.2 and section 5.3 other
possible aggregation techniques.

MSVMs, in their random sampling version, are similar to Bagging as introduced in
[10] but differ in several points. First, the sampling is done without replacement, thus
generating replicates smaller than the initial dataset. Then the aggregation of the outputs
can be done in many different ways, not necessarily averaging like in Bagging. A variant of
MSVMs has also been proposed for image retrieval using relevance feedback [159].

These studies on MSVMs lie on interesting theoretical foundations showing the interest
of using MSVMs rather than one single SVM trained on the complete training set. An
interesting work focusing on generalization bounds of such kernel machines ensembles is
presented in [37]. Let us define the ensemble margin of an example (in contrast to the
margin of a single SVM). For each point (x, y) we define its ensemble margin to be simply
yf(x), where f is the ensemble decision function (as depicted in figure 5.1). This is exactly
the definition of margin in [143]. For any given δ > 0 we define EEδ to be the number
of training points with ensemble margin < δ (empirical error with margin δ) . In, [37],
Evgeniou et al. proposed an upper bound on the leave-one-out error of the ensemble. It is
given by the following theorem:

Theorem 5.1. The leave-one-out error L((x1, y1), . . . , (xn, yn)) of M parallel SVM is up-
per bounded by:

L((x1, y1), . . . , (xn, yn)) ≤ EE1 +
1
M

M∑
m=1

D2
m

ρ2
m

, (5.1)

where EE1 is the margin empirical error with ensemble margin 1, Dm is the radius of the
smallest sphere centered at the origin, in the feature space induced by m-th kernel, containing
the support vectors of the m-th SVM , and ρm is the margin of m-th SVM .

In some cases, this bound is smaller that the bounds of single SVM . For example
suppose that the SVM use most of their training points as support vectors, then clearly
the Dm of each SVM in the ensemble is smaller than that of the single SVM . Moreover
the margin of each individual SVM is expected to be larger than that of single SVM .

In the remaining of this chapter, we propose different strategies for designing MSVMs.
We first present two simple extensions of the classical MSVMs using different combiners: A
second layer SVM trained on the margins of the parallel SVM is presented in section 5.2,
then simple probabilistic rules are proposed in section 5.3. Section 5.4, gives a first al-
ternative to train MSVMs using ITS as optimization criterion. In this section, Genetic
Algorithms are considered. In order to face the complexity of the Genetic Algorithm ap-
proach, we then propose a learning based on the so-called Kernel Adatron for training
on-line SVM . The techniques proposed trains jointly parallel SVM by allowing some train-
ing patterns to be used by more than one classifier. In section 5.6 we give the experimental
setup and main results for comparing various MSVMs techniques. Finally, in section 5.7 we
study the case where only few training samples are available. In particular, we show that
the MSVMs architecture presented above looses its two main advantages in small sample
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scenarios: reducing the complexity and improving generalization. Nevertheless, we propose
an alternative that takes advantage of the cross-validation techniques usually used as model
selection, by considering ITS between folds of the cross-validation. This will demonstrate
that variant of MSVMs can also be used in small sample cases.

5.2 Second Layer SVM Trained on the Margins

In this section we propose a first aggregation rule that uses a second layer SVM for ag-
gregating the decisions [102]. We call the K parallel SVM first layer SVM . Basically, the
input space for the 2nd layer SVM is the space of margins generated by the 1st layer SVMs.
We can represent the output of such a mixture of K experts as follows:

hαi,b(x) =
∑

i,αi>0

yiαiK〈mi(xi),m(x)〉 + b, (5.2)

where m(x) is the k-th dimensional vector of margins output by the K SVM in the first
layer given the input x.

Assuming that we want to train K SVM in the first layer, we will need K + 1 training
sets (an additional one is used to train the second layer SVM). We use two different
approaches for generating the K + 1 subsets. One consists of a random partitioning of the
original training set. In the second strategy, we first randomly draw a sample that will be
used for training the second layer and then we use a clustering algorithm, like k-Means [96]
, for building the K subsets needed for training the first layer SVM .

In both cases we train each SVM-L1-i using a cross-validation process to select the best
parameters then we use the K+1-th dataset for training the second layer SVM (SVM-L2):
we let each of SVM-L1-i to classify the examples from this dataset and we take the margins
output by the SVM-L1-i as input for SVM-L2. The margin can be seen as a measure of
confidence in classifying an example, so, in some sense, the second layer SVM learns a non
linear function that depends on the input vector and which assembles the confidences of
each individual expert.

From a practical point of view, we have decomposed a problem of O(n2) complexity
in K + 1 problems of O(� n

K+1�2) complexity. As n >> K this decomposition is clearly
advantageous, and has the potential of being implemented in parallel, reducing even more
the training time. Another issue that should be mentioned here is related to the robustness
of the final classifier. In the case of a single SVM , if the training set contains outliers or
some examples heavily affected by noise, its performance can be degraded. However, the
chances of suffering from such examples are less important in the case of MSVMs.

5.3 Probabilistic Rules for Combining SVM

This section proposes a simple alternative for combining decisions of the first layer SVM
[101]. We simply use probability rules as defined in [76]. The second layer SVM presented



5.4. Genetic Algorithms 75

in the previous section is trained on uncalibrated values of the margins. However in or-
der to efficiently use the output of each SVM it would be interesting to have a posterior
probability output. One way of transforming the margins in posterior probabilities con-
sists in training directly a kernel classifier using maximum likelihood. A more appropriate
method was proposed by Platt in [118]. He uses a sigmoid function to map the margins into
probabilities. The advantage of this technique is that we directly obtain estimates of the
posterior probabilities P (y = +1|f) instead of estimating the class conditional densities.
Equation (5.3) shows the form of such a sigmoid:

P (c = +1|f) =
1

1 + exp(Af +B)
. (5.3)

The parameters A and B are trained using maximum likelihood estimation from the
training set, see [118] for details.

Then, the final decision is made accordingly to some combination rules based on the
posterior probabilities estimated from the margins output by the SVM using equation (5.3).
As presented in section 3.3.1, we can use the product, sum, min, max, mean median and
majority voting rules.

The main advantage compared to MSVMs using a second layer SVM is that this strat-
egy does not require any additional independent subset for training the combiner. However,
estimating posterior probabilities from margin distribution may seem unnatural as SVM
are known to be discriminative pattern recognition techniques (in contradiction to gener-
ative models, as discussed in chapter 2). Moreover the fitting of the sigmoid is specific to
each SVM and comparing posterior estimates of parallel SVM can introduce a bias due to
uncalibrated estimates.

5.4 Genetic Algorithms

5.4.1 Motivations

In the two first MSVMs techniques presented here above, the splitting of the training
set is usually done by random sampling. The obtained subsets are completely disjoint.
Consequently, this will lead to classifiers that are similar in the sense that they are trained
from data that are just various estimates of the same distribution. Nevertheless, we saw
in section 4.2 the importance of having diversity between classifiers (or at least moderate
diversity). In this case, the individual SVM should have roughly equal accuracies. The
contribution of ITA in ITS is expected to be high, while the diversity term ITD should be
very small.

In the case of clustering for obtaining the subsets, the resulting classifiers would probably
be very diverse, by acting like experts on their own local area. However, simple fixed
combination rules would not be sufficient as each local classifier may behave badly on the
whole space. To summarize, ITD should be very high, but the average individual accuracies
ITA is probably poor.
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It thus turns out that the problem of finding optimal subsets can be viewed as a possible
application of the Information theoretic Score (ITS) defined in chapter 4. We thus propose
techniques for finding subdivisions of the initial training set that will finally maximize our
ITS. Let us recall that the ITS was defined in the context of majority voting combination,
only this combiner will be considered in the following. If not specified otherwise, MSVMs

will now concern multiple Support Vector Machines combined by majority voting.

5.4.2 Genetic Algorithms with ITS

A first brute force answer to this optimization problem is to use Genetic Algorithms
(GA)[168]. GA have been found to be a robust and practical optimization method. A
candidate solution is represented by a chromosome. A set of chromosomes (called popula-
tion) is first generated randomly and it is then iteratively modified to converge towards the
optimal. The relevance of each chromosome is measured using a fitness function. In our
study, one chromosome represents one training set configuration for all the classifiers in the
ensemble. It means that for each example, the chromosome encodes which classifiers will
use this example in their training set. We use a coding based on a Venn diagram similar
to the one proposed in [84] except that they work in the context of feature selection. The
encoding is detailed in figure 5.2. For example, the code is 0 if none of the classifiers uses
the example (should be obtained for very noisy examples or outliers), 1 if only classifier 1
uses it, 4 if only classifiers 1 and 2 use it and 7 if the three classifiers have this training
sample in their training set.

The evolution of the population if performed by crossover and mutations for adapting
training sets of the 3 classifiers.

5.4.3 Experiments

An illustration of the performance of MSVMs trained by GA (called GASVMs) is given
in table 5.1. In this experiment, we consider the face dataset already used previously in
this thesis and detailed in [101]. Error rates reported in table 5.1 correspond to equal error
rates between face and non face classes. For several population sizes, we train the GA based
on ITS and compare to a single SVM trained on the whole training set, and MSVMs as
presented in section 5.3 with a simple mean rule as combiner.

With only few generations (e.g. 6 generations) the recognition rates are largely improved
compared to simple random sampling introduced in [101].

This GA optimization guarantees to have an ensemble with large ITS. However the
training process is very computationally expensive. In fact running the GA requires training
K× p× g classifiers, where p is the size of the population and g the number of generations.
While it remains efficient with simple classifiers (e.g. k-nearest neighbors), it becomes
practically infeasible with SVM . Another drawback of this GA strategy is that the training
complexity varies dramatically with the number of classifiers in the ensemble. In this work,
only a setup with 3 classifiers has been tested and extending it to larger ensembles can
become quickly intractable. However this GA approach remains interesting for comparison
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Classifier 1 Classifier 2

Classifier 3

1 4

0

2

3

5 6
7

Figure 5.2: Chromosome encoding for GA optimization. Circles represents training
samples that are used for learning each classifier. The code is 0 if none of the classifiers
uses the example, 1 if only classifier 1 uses it, 4 if only classifiers 1 and 2 use it and 7 if

the three classifiers have this training sample in their training set.

# generations GASVMs Single SVM MSVMs (random sampling)
1 17.93(%)
6 12.91(%)
10 10.54(%) 20.86 18.72
16 9.23(%) (%) (%)
20 8.55(%)

Table 5.1: Comparison of 3 classification techniques on face detection dataset. A single
SVM trained on the complete train set, multiple SVM trained by random sampling

(MSVMs) and multiple SVM obtained by GA using ITS as fitness function (GASVMs).
For each classifier, classification error rates are reported.

purposes. It shows the classification rates that can be reached as well as the ITS measures
obtained for good ensembles. In the following we propose a technique for achieving similar
classification rates but with a much lower training complexity.

5.5 Kernel Adatron for Maximizing ITS

As pointed out in [150], directly generating ensembles that are both accurate and diverse is
still a very challenging task. In previous section, we proposed a computationally expensive
technique for achieving this goal. In this section we will detail an algorithm for easily
building parallel SVM that are both diverse and accurate in the sense that their combination
will maximize the ITS. In this work we use an on-line algorithm for training SVM which
is called Kernel Adatron (KA) [46]. An overview as well as implementation considerations
can be found in [148]. KA simply uses a gradient ascent to solve the convex quadratic
optimization described in equation (2.11). The algorithm is described in Algorithm 5.1. In
fact, the optimization differs from standard gradient ascent from two points:

• The coefficients αi are changed directly without using temporary variables (this tech-
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nique is known as stochastic gradient ascent);

• The learning rate ηi may be different for each training pattern.

There are various possible stopping criteria. The first is to monitor the Karush-Kuhn-
Tucker conditions (see equation (2.21)) in order to guarantee that they stay statisfied. The
other criterion is to stop when the increase of the dual objective function becomes small.
One sufficient condition of convergence is given by the following bounds:

0 < ηiK(xi,xi) < 2, (5.4)

that is why a good choice or ηi is ηi = 1
K(xi,xi)

. It becomes 1 in case of RBF kernels [148].

Algorithm 5.1: Kernel Adatron
Initialize ∀i ∈ {1, . . . , n},1

αi = 0
Calculate ∀i ∈ {1, . . . , n},2

• zi =
∑n

j=1 αjyjK(xi,xj)

• δαi = ηi(1 − yizi)

• αi = max(min(αi + δi, C), 0)

Calculate new margins ∀i ∈ {1, . . . , n},3

γ = 1
2( min

{i|yi=+1,αi<C}
(zi) + max

{i|yi=−1,αi<C}
(zi))

Break if ∀i ∈ {1, . . . , n}, maximum number of iteration reached or the margin γ has4

approached 1

5.5.1 KA-MSVMs Algorithm

The general idea of this algorithm is to train jointly SVM such that, at each iteration, both
ITA and ITD terms as increased. In the specific case of SVM , the decision functions are
defined by the support vectors and their Lagrange coefficient. If all the classifiers have the
same support vectors, then the decision functions will be very similar. In order to increase
individual accuracies, different classifiers need to share some important support vectors,
whereas, in order to add diversity, we need to reduce the number of common support
vectors between al the classifiers.

We extend the standard KA algorithm to train jointly M SVM such that the ITS of
the ensemble will be increased. The complete algorithm is described in Algorithm 5.2,
where the index x(c) indicates that the variable x refers to the classifiers number c. The
standard formulation of KA is found by setting M = 1, μ = 0. The adaptation to multiple
classifiers appears in the function fITS weighted by the factor μ. It depends on the output
of all the current classifiers. Basically, the Lagrange coefficients of the support vectors that
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are misclassified by the ensemble will be modified such that a majority of classifier classify
correctly the support vectors. More precisely, let

f (m) = sign

⎛
⎝ ∑

j∈sv(m)

yjα
(m)
j K(m)(xi,xj)

⎞
⎠ , (5.5)

be the decision of the m-th SVM at the current iteration. Then for all the support vec-
tors, we measure the number of parallel classifiers that correctly classify the example:
if max{α(m)}m=1,...,M > 0,

L =
∑

m=1,...,M

I

(
f (m)(xi)yi > 0

)
, (5.6)

where I is an identity function such that I(true) = 1 and I(false) = 0. We then define the
function that handles the joint term between the classifiers. Let us define f (m)

ITS by:

L∗ = max
(
0, �M

2 � + 1 − L
)

f
(m)
ITS =

⎧⎪⎨
⎪⎩

+1 for the L∗ largest α(m)
i ,

withm ∈ {1, . . . ,M |f (m)(xi)yi < 0}
0 otherwise

. (5.7)

The parameter μ is a weighting coefficient that affects the convergence speed. Empirical
studies using crossvalidation showed that μ should be chosen in the range 0.5ηi ≤ μ ≤ 1.5ηi.
Clearly setting a too large μ will tend to overfit the training data.

Algorithm 5.2: ITS - Kernel Adatron
Initialize ∀m ∈ {1, . . . ,M}, ∀i ∈ {1, . . . , n}1

α
(m)
i = 0

Calculate ∀m ∈ {1, . . . ,M}, ∀i ∈ {1, . . . , n}2

• z
(m)
i =

∑n
j=1 α

(m)
j yjK(xi,xj)

• δα
(m)
i = ηi(1 − yiz

(m)
i ) + μf

(m)
ITS

• α
(m)
i = max(min(α(m)

i + δ
(m)
i , C), 0)

Calculate new margins ∀m ∈ {1, . . . ,M}, ∀i ∈ {1, . . . , n}3

γ(m) = 1
2 ( min

{i|yi=+1,αi<C}
(z(m)

i ) + max
{i|yi=−1,αi<C}

(z(m)
i ))

Break if ∀m ∈ {1, . . . ,M}, maximum number of iteration reached or the margin4

γ(m) has approached 1

From the practical point of view, the update rule equation (5.7) tries to encourage
support vectors that are misclassified by the ensemble at the current iteration to also become
support vector of other SVM in the ensemble. This procedure could be seen as extending
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the notion of support vectors to Ensemble Support Vectors (ESV ). The ESV are those
examples that are support vectors of at least �M

2 � + 1 parallel SVM . Figure 5.3 shows a
comparison between standard MSVMs and the KASVMs. It gives a simple illustration of
one single iteration of KASVMs. The 3 solid lines are linear decision functions obtained by
MSVMs with random sampling. The solid bold line is the ensemble decision function by
voting. The support vectors misclassified by the ensemble (bold examples) are included into
the training sets of other SVM and then become ESV . The ensemble decision function
is updated such that all support vectors are correctly classified. In fact, this technique
performs an implicit clustering of the data such that each member of the ensemble behaves
like an expert with respect to the ensembles. This clustering is restricted to the only
examples that are support vectors, it could thus be seen as a sparse clustering.

5.5.2 Experiments

In order to keep a fast convergence of the algorithm, we first perform few iterations of the
standard KA before introducing fITS. This algorithm has been tested first on the face
dataset presented previously in this thesis. We first ran 5 iterations of standard KA (by
setting μ = 0) for training 3 SVM on independent subsets, then μ is set to μ = η. At each
iteration, we measure the ITS of the ensemble on a separate test set and compare it to the
best ITS obtained by GA. Results are depicted in figure 5.4. It clearly shows that the ITS
increases significantly after the introduction of the joint term (5 iterations). It also shows
that we quickly reach the ITS level of the computationally expensive GA technique. (The
ITS level of the GA in figure 5.4 is a mean of 10 trials). Apart from its good classification
skills, this algorithm presents also the advantage of being computationally friendly.

5.6 Comparison Study

The main goal of the experiments reported here is to investigate the behavior of the kernel
Adatron adaptation of the MSVMs and to compare it with the other standard techniques.
MSVMs are particularly effective in large scales applications that is why in our experiments
we used the large large datasets of the UCI repository [2] presented in table 4.1. A first
complete comparative study considers the largest available dataset: the Forest dataset. We
transformed the original multi-class problem into a binary classification task where the goal
was to discriminate class 2 from all the other six classes, this kind of partitioning making the
two new classes of roughly the same size. We took 10000 examples of each class for training
and 30000 for testing. SVM are trained using LIBSVM [18] by 5-fold cross-validation. We
compare the following techniques: Single SVM trained on the complete dataset, Multiple
SVM (MSVMs) [101], Gated SVM (GSVMs) [20], Genetic Algorithms using ITS as fitness
function (GASVMs), 1 monolithic SVM trained using Kernel Adatron (KA 1 SVM), and
finally 3 SVM trained jointly using KA (KASVMs). The results are reported in table 5.2.

The first comparison concerns a single SVM trained either by quadratic optimization
or the kernel Adatron implementation. They perform quite identically in terms of error
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rates but the training time is much lower in the KA case. Then we see that the techniques
MSVMs and GSVMs improve the single classifier implementation as expected. GASVMs
and KASVMs show how using a better subset selection than only random sampling, sig-
nificantly improves the results. Finally the KASVMs version converges much faster than
GASVMs. We notice that the number of support vectors is very high for the KASVMs.
This can be explained by the fact that contrarily to MSVMs, one input sample can be
support vector for several of the 3 SVM at the mean time.
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Experiment #SV Error Training
rate (%) time (min)

1 SVM 966 27.6 195
MSVMs [101] 633+628+644 26.73 ± 0.12 70
GSVMs [20] 143+127+176 26.67 ± 0.14 62
GASVMs 963+878+1035 24.98 ± 0.23 307

KA 1 SVM [46] 1331 27.23 19
KASVMs 1326+1345+1324 25.14 ± 0.12 23

Table 5.2: Comparison of various multiple SVM techniques on UCI Forest database [2].
For each technique we report the number of support vectors (#SV), the test error on a

large test set and the training time in minutes.

Dataset Forest Face Pen Image
1 SVM 27.6% (966) 20.86% (344) 4.78% (205) 2.22% (616)
MSVMs 26.73% (1905) 18.72% (327) 4.52% (373) 2.04% (630)
KASVMs 25.14% (3995) 7.94% (361) 3.31% (386) 1.63% (650)

Table 5.3: Comparison of 3 classification techniques on several large scale datasets. A
single SVM trained on the complete train set, mixtures of SVM trained by random

sampling and mixtures of SVM obtained by KA-ITS. Error rates are reported for each
classifier, as well as the total number of support vectors between parentheses.

In the following experiments, we compared various algorithms on other large scale
datasets (i.e Pen and Image [2]), including the face dataset used in section 5.4. Three
methods were considered: A single SVM (1 SVM), a combination of 3 SVM trained on
random subsets (MSVMs) and 3 SVM combined by Kernel Adatron ITS (KASVMs). Clas-
sification results are reported in table 5.3. For each experiment in table 5.3, the number
between parentheses represents the total number of support vectors involved in the classifier.
In each case, the classification rate is improved using KASVMs.

5.7 MSVMs, Small Sample Case

In the previous sections, we presented several alternatives for training MSVMs such that
the ITS of the ensemble is maximized. MSVMs presented in the previous sections are
proposed for large scale problems. However, we will show in this section that MSVMs can
also be used in small sample size problems but with a different objective. In fact the goal
is not to reduce training complexity but to take benefit from cross validation techniques to
improve generalization, following the idea of Freund et al [43]. As described in section 2.6,
model selection in small sample size problems consists in a cross-validation on the training
set. The parameter vector θ∗ giving best cross validation estimate is used for training the
final classifier on the whole training set. We propose here to keep the K best parameters,
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best in the sense that the resulting ensemble maximizes the ITS. In fact during the cross-
validation process used for model selection, ITS is measured between the cross-validation
folds. At the end, the combination returning the highest ITS is kept. This technique follows
the statistical motivation for combining classifiers as mentioned in section 3.2.

5.7.1 Experiments

In this section, we perform experiment to show-up the behavior of MSVMs architectures in
small sample cases. First of all, simple experiments show that MSVMs as described above
are not efficient in small samples cases for two main points. On the first hand, the gain in
complexity observed in large scale problems disappears as single SVM does not suffer from
large complexity due to large sample set. On the other hand, splitting the small subset into
smaller disjoint sets introduces the risk of training very underfitted classifiers as the number
of training patterns clearly becomes insufficient. The inversion of performance of MSVMs

with the number of training patterns is represented in figure 5.5. For increasing number
of training samples, we trained several time a SVM and 3 parallel SVM . A face/non-face
dataset is considered as example. The inversion phenomenon appears around 60 training
samples. By noticing that the dimensionality of the input patterns is d = 18, it shows that
the MSVMs become useless for very small sample cases.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

MSVMs
1 SVM

# training samples

Er
ro

r r
at

e 
(%

)

Figure 5.5: Comparison between MSVMs and Single SVM on face dataset. MSVMs as
defined in section 5.2 are not efficient in very low sample cases.

The following experimental setup has been performed in order to evaluate multiple SVM
in small sample cases. We consider the large scale datasets used in the previous section
in order to keep a large test set for evaluating the performances of the cross-validation
model selection. Once again, classes are merged into 2 classes in order to face binary
classification tasks. If not defined explicitly in the UCI [2], we first randomly divide the
data into one training and one testing set. For studying the classification performances
as a function of the number of training patterns available, we extract training subsets of
increasing cardinality. We repeat the subsampling process several times. For each training
set, we perform cross-validation for SVM parameter selection. The results for each dataset
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Figure 5.6: MSVMs in small sample cases.
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are depicted in figure 5.6. According to the these results, the ITS-based combination
becomes undeniably better than one single cross-validated SVM in terms of classification
performance. However, we need to notice that the complexity is increased as for each
possible combination of the model parameters, we need to compute the resulting ITS. The
complete brute force search can be avoided by running one pre-selection by normal cross-
validation and searching for the best combination of parameters in the neighborhood of the
best parameters obtained from standard cross-validation.

5.8 Conclusions

Training a SVM can become very complex in large scale problems. This chapter discusses
several alternatives for reducing the training complexity while, if possible, improving classi-
fication results. We study multiple Support Vector Machines (SVM) from two perspective:
the combination rule and the spitting strategy used for obtaining subsets of the training da-
ta. In particular, we propose an algorithm based on Kernel-Adatron to jointly train parallel
SVM such that the information theoretic score is maximized. Finally we also show how
similar multiple SVM techniques can be employed successfully in small scale problems.
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An Overview of Frontal

Face Detection 6
6.1 Introduction

Automatic face detection has been one of the most active applications of computer vision
and pattern recognition in the past years. It is commonly used as a main application
to demonstrate performances of new object detection systems. Moreover, an increasing
number of popular applications needs fast and accurate face detectors: face recognition,
facial expression recognition, video conferencing, image indexing, etc. The performances
of face detectors generally represents a limiting factor for the quality of the whole system
[133].

The general problem of face detection can be described as automatically locating human
faces in images or video sequences. The complexity of the task is due to many different
sources of variation. Here is a short summary of the factor that may influence face appear-
ance:

• Person-specific characteristics: facial appearance can change significantly according
to the identity of the person, its gender, its age or the colour of its skin;

• Face is a deformable object: it can be deformed accordingly to the emotional state of
the person (happiness, sadness, angry, fear, etc.), the actions of the person (speaking,
reading, laughing, sleeping, crying). It can also be occluded by potential objects such
as glasses or beard.

• External factors: head is a 3-D object in a scene. Therefore, the geometrical relation-
ships between the head and the acquisition equipment will determine the head pose
(if the face is frontal, profile, upright or rotated, etc.). Moreover, the type and quality
of the sensor used to acquire the face image is also determinant. Finally, one of the

89
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most important sources of variability is how sensitive face appearance is to lighting
conditions.

All these sources of variability in face appearance demonstrate the complexity of the face
detection task. A complete face detector should be robust to all these variations. However,
in practice, many of these variations are constrained by the application. In particular,
most of the systems that require a further face processing usually imply frontal or almost
frontal faces. For example, in a face verification scenario, the person claiming an identity is
supposed to be cooperative, which means that it can be asked to looks in a specific direction.
The most important advances in face detection research have been carried out considering
frontal or almost frontal face detection. Multi-view face detectors (i.e. detectors robust to
head pose changes) are usually extrapolations of algorithms used for frontal purposes.

In this chapter, we give an overview of the most significant techniques for frontal face
detection. Very complete face detection surveys are proposed by Hjelmas and Low [61]
and Yang et al. [177]. A large variety of methods have been proposed for more than ten
years, going from intuitive anthropometric models to very complex classification techniques
based on recent advances in pattern recognition. Face detection techniques can basically
be split into two groups: feature-based methods and image-based methods. Feature-based
methods use explicit prior knowledge of faces (e.g. presence of eyes, nose and mouth, skin
color models or geometrical structure of the face), while image-based techniques consider
the problem as a binary pattern recognition problem (face versus non-face). Note that most
of the techniques presented hereafter can be seen as hybrid methods between feature-based
and image-based techniques, and there are many other possible ways to categorize all the
techniques.

6.2 Feature-Based Methods

Feature-based techniques can be summed up into two main groups: features analysis and
appearance models.

6.2.1 Feature Analysis

This section presents methods that use prior knowledge about facial features. Low-level
analysis deals with direct segmentation of visual features while high-level analysis uses
algorithms for automatic feature extraction.

Low-level analysis

One of the most primitive features used in computer vision is edge analysis. Historically,
probably the first face detection system [139] tried to extract facial features based on their
edges. They used pre-defined line-drawings around each facial feature. Face candidates
were then selected using a simple correlation technique. This precursor work was later
improved by imposing various constraints on the contours (e.g. curvature constraints [23]
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Figure 6.1: An example of pre-defined line-drawing model [24].

or feature labeling techniques [51]). An example of line-drawing model used in [24] is shown
in figure 6.1.

Grey-level information is another basic feature that was early used for detecting faces.
Faces present very specific contrast changes. Eyes regions are typically darker than the
bridge of the nose. The eyebrows and the lips are also generally darker regions than cheeks
and forehead. In order to take advantage of these gray-level intensity changes, the first step
is to enhance the contrast between these regions, in order to improve the segmentation of
the features. One of the most relevant technique using this strategy is the work of Yang and
Huang [175]. They use a multi-resolution analysis to find the face candidates. Their study
is based in the fact that humans are able to detect faces, even at low resolution. First, face
candidates are selected by looking at uniform regions in low-resolution images. Then for
each candidate, higher resolution scales are inspected in order to check the presence of the
facial features.

Next logical step is to use skin color information which is a very natural and intuitive
way of modeling faces. Many works tried to exploit this feature, mainly because of the
low computation costs of this technique. Clearly, face color changes significantly between
individuals and depending on illumination conditions. The first challenge is to find a good
color space representation, as robust as possible to these changes. The most widespread
color space is RGB. However, most of the skin colors changes are due to variations of
luminance [176]. Therefore, a normalized version of RGB is usually preferred. Each channel
is normalized by the sum of the three channels. Skin colors can thus be clustered efficiently
in the obtained histogram. Many other color spaces have been proposed. The HSI color
space used in [91] present the advantage of introducing a large variance between the skin
and the facial components such as eyebrows or lips. It consequently becomes easier to
segment the facial features. For a given color space, an efficient modeling of the skin-color
regions is needed. This is usually done by simple thresholding but statistical modeling have
proved to be particularlily efficient [109]. One of the drawbacks of this technique is that it
requires an additional training process. In [72], Kakumanu et al. give a complete survey
covering the most efficient skin color modeling techniques.

Finally, several other low-level features have been proposed. For example, Reisfeld et
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(a) (b) (c)

Figure 6.2: The shape statistic technique [16]. (a) Facial features (b)Uncertainty in
shape variables when the two eyes are references, (c) Uncertainty when left eye/nose/lips

are references.

al. [129] proposed to take advantage of the symmetry of the face to efficiently discard
background regions.

High-level analysis

The problem with all the low-level features presented above is that they directly rely on
prior knowledge about face structure, but many background regions may also contain similar
features. That is why high-level analysis have been carried out. The first kind of high-level
analysis is called feature searching. It introduces confidence measures to the presence of
prominent facial features. The work of De Silva et al. [152] is a good example of feature
searching. They first look for top-of-the-head regions and then check the potential presence
of eyebrows regions, etc. For the analysis of pre-defined facial components, they use various
combinations of the low-level features presented in the previous section. The geometrical
relationships between components are generally modeled using anthropometric measures.

Constellation techniques have also been proposed by Leung et al. [92]. The most
prominent features points are selected in the image. Then, all the possible constellations
of points are tested and the most face-like constellation is determined. Graph matching
techniques are used for finding the best constellation. The nodes of the graph correspond
to features on a face, and the arcs represent the distances between different features. An
alternative to graph matching is to use statistical theory of shapes [16]. The shape statistic
is a joint probability density function over the feature points. An illustration is given in
figure 6.2.

6.2.2 Appearance Models

In the group of appearance model techniques, the presence of a face is determined by
correlation measures between a pre-defined face template and the face candidate. The face
model can be rigid (template matching), based on active contours or a deformable template.
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Template Matching

In template matching, the face model is usually made of a combination of several local
models, representing each facial feature (nose, mouth, eyes, etc.). The correlation can be
computed based on low-level feature extraction [139] or geometrical considerations [23]. The
popularity of these correlation-based techniques comes from their trivial implementation.
However, they are not very robust to illumination changes or head pose variations. To
overcome this problem, Sinha [154] proposed to use a small set of spatial image invariants
to describe the space of face patterns. The key remark of this work is that , even if the
brightness of the main face components (eyes, cheeks, forehead) are all affected by variations
in illumination, their relative brightness remain almost unchanged. The face model can be
defined as a collection of pairwise ratios of brightness.

Active Appearance Models

A natural improvement over the pre-defined rigid template is to use deformable templates.
The first solution is to use active contours [73] (or snakes). Many solutions were proposed for
using snakes to detect head contour [54, 87]. The snake is first initialized around the head
boundary. The evolution of the snake is achieved by minimizing a global energy function
E = Einternal + Eexternal. The internal energy term depends on the intrinsic properties
of the snake, it means if it extends or shrinks. A typical Einternal is to consider an elastic
energy, which is directly proportional to the distance between control points of the countour.
The external term depends on the image features that are considered. A simple solution is
to make the external term sensitive to the gradient of the image [54]. It can also include
skin color information [174] in order to attract the contour to the face region. The energy
minimization is achieved by steepest gradient ascent or similar techniques.

Yuille et al [180] proposed to introduce a prior knowledge about the shape in order to
improve the segmentation. The external energy is decomposed into four terms: valley, edge,
peak and image brightness: E = Einternal + Ev + Ee + Ep + Eb. The main drawback of
these techniques is that the evolution of the contour is very sensitive to the initialization.
The computation costs are also pretty high because of the sequential optimization.

Finally another kind of active model was proposed by Cootes et al. in [21]: point
distributed models (PDM). The countour of the PDM is discretized into a set of label points.
First, a training set is used for modeling the variations of these points (see figure 6.3). The
variations of the training set is modelled using Principal Component Analysis. Lanitis
et al [90] showed that using this technique with face images produces a very compact
parametrization. This overcomes one of the main drawbacks of the active appearance
techniques: the computation costs. This also proved to be particularly efficient to partial
face occlusions.
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Figure 6.3: Point Distributed Models [90]. A mean shape model and locations of model
points.

6.3 Example-Based Methods

All the face models presented hereabove were based on prior knowledge about face structure.
The key features that were considered include: presence of specific facial features (eyes,
nose, mouth, etc.), shape of face contour and specific face characteristics (e.g. color of the
skin). This section reviews the techniques that consider face detection as a binary pattern
recognition task. A common point in all the techniques that will be reviewed in this section
is the strategy employed for searching faces in an image. In order to detect faces at any
position, the input image is scanned with a sliding window. At each position, the window
is classified as either face or non face. The method can be applied at different scales (and
possibly different orientations) for detecting faces of various sizes (and orientations). Finally,
after the whole search space has been explored, an arbitration technique may be employed
for merging multiple detections. An efficient exploration of the search space is required for
obtaining a fast face detector. Therefore, various methods have been proposed for speeding
up this search. Usually, feature-based techniques are employed as pre-processing strategies
for reducing the search space. A popular technique is to restrict the scanning process to
regions containing skin-color pixels. However, the core component of such systems is the
classification of each window as face or non face. Among the most efficient techniques, we
will review the linear subspace methods and discriminant-based techniques.

6.3.1 Linear Subspace

The space of face images can be viewed as a subspace of the overall image space. Let us
consider an image x with h rows and w columns. x is a n-dimensional vector with n = w×h.
The principle of the linear subspace methods is to project x onto a lower dimensionality
space where face and non face examples can be efficiently separated. The two techniques
commonly used are Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA).
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Eigenfaces

In 1987, Sirovich and Kirby [155] first proposed to employ PCA decomposition for efficient
face representation. Face images can be represented by linear combination of a few eigen-
vectors corresponding to the largest eigenvalues. The technique is commonly referred as
eigenfaces. For example, let us consider a 20 × 15 pixels face candidate. We can keep 85%
of total variation by considering only between 15 and 20 principal components [102, 121].
This work was then used for joint face detection and recognition in [161]. All the training
face images are projected onto the lower dimensionality space. They form the so-called
face-space. The projection of new face images is supposed to be closer to the face-space
than non face images. The presence of a face is thus evaluated from the Distance From Fea-
ture Space (DFFS), which corresponds to the reconstruction error (the Euclidean distance
between the original vector and its projection).

This technique has been later further developed within a probabilistic framework [114].
They developed a maximum likelihood detector which takes into account both face-space
and its orthogonal component. Samal et Iyengar [140] proposed to use face silhouettes
instead of direct gray value pixel intensities. They generate eigensilhouettes by using several
low-level features like edge detection, thresholding, etc.

Fisherfaces

The principal components used hereabove are obtained from a training set made of face
images. Though this is particularly efficient for face image representation, it is not optimal
in a classification scheme as it does not take into account non face training samples. An
alternative is to use Linear Discriminant Analysis LDA. The principle is to find a projection
that minimizes the within class variance (SW ) while maximizing the between class variance
(SB). The optimal projection is obtained by Fisher Criterion:

W T
fisher = argmax

|W TSBW |
|W TSWW | , (6.1)

where W T
fisher is the optimal projection matrix.

This technique was compared to PCA for face recognition in [5]. A simple example
with 2 dimensional data projected on 1 dimensional line is given in figure 6.4. The advan-
tage of LDA over PCA clearly appears. The projection is build in order to facilitate the
classification between the classes.

Distribution-based

Several studies tried to use PCA or LDA as feature extraction step in order to improve
image representation, and then focussing on better estimation of the face and non-face class
distributions. Sung and Poggio [158] proposed one of the first reference face detection algo-
rithm. They modeled each class in the eigenspace using 6 local clusters for each class. They
obtained 12 multi-dimensional Gaussians. Finally a Muti-Layer Perceptron was trained to
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Figure 6.4: Comparison between PCA and LDA in a two dimensional problem. [5].

classify the input vectors. They also used an iterative bootstrapping procedure to generate
a relevant set of non face images. At each iteration, the non face examples misclassified by
the current classifier were added to the training set. The detector proposed by Schneider-
man and Kanade [145] also models the probability distribution of the face class, but they
employ a naive Bayes classifier. These techniques can be seen as a transition between linear
subspace methods and the discriminant methods presented in the next section.

6.3.2 Discriminant Methods

In the last years, most of the work in frontal face detection has focused on discriminative
techniques. They benefit from recent advances in the field of pattern recognition. Among
the most popular techniques, we have neural network classifiers, support vector machines
or boosting techniques.

Neural Networks

One of the most representative techniques for the class of neural network approaches is the
work of Rowley et al. in [136]. It comprises two modules: a classification module which
hypothesizes the presence of a face and a module for arbitrating multiple detections. The
classification is done by an ensemble of neural networks. Each network was trained to catch
spatial relationships of pixels.

A similar work was carried out by Féraud et al. [39]. Their associative neural networks
were based on Constrained Generative Models (CGM). CGM perform a non-linear PCA to
model the distance of a given input image to the facespace.
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Figure 6.5: Component-based face detection [59]. a) Component templates b) Slight
translation of the components c) Slight out-of-plane rotation of the head.

Support Vector Machines

Osuna et al. [111] proposed an efficient method for training SVM in face detection appli-
cation. They used two huge sets of 10,000,000 test patterns to tune their models. In [59],
Heisele et al. trained several SVM on local face regions into a component-based face detec-
tor. They obtained a total of 14 face components. The interest of this kind of techniques
is their robustness to slight pose changes, as depicted in figure 6.5.

Sparse Network of Winnows

Yang et al. [178] introduced a Sparse Netwok of Winnows (SNoW) learning architecture. It
is composed of a sparse network of linear functions in a feature space which is incrementally
learned . They use boolean features that encode the positions and intensity of pixels. A
comparative study between SNoW and SVMs is given in [179].

6.3.3 Boosting Methods

In 2001, Viola and Jones [165, 166] proposed an hybrid system that can be considered as
the first real-time frontal face detector. Since then, most of the work in face detection has
been concentrated on improving their system. The success of their work can be explained
by three main contributions:

• They use AdaBoost for efficiently selecting and combining simple classifiers;

• They propose simple rectangular filters for building the weak classifiers. These filters
can be computed very efficiently using the so-called integral image representation.

• The classifiers are implemented in a cascade structure, in order to decrease the pro-
cessing time while improving the detection capabilities.

Many works then proposed to improve the system of Viola and Jones by introducing
new filters or trying various variants of AdaBoost.

Filters for Building Weak Classifiers

The first detector based on Adaboost was proposed by Pavlovic and Garg [112]. They used
directly gray intensity of pixels to build weak classifiers.

Viola and Jones introduced the rectangular Haar-like filters that can be computed very
efficiently at any position and scale using the so-called integral image trick (see [25]). The
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(a) (b)

(c)

Figure 6.6: Three variants of the Haar-like filters used in Boosting techniques. a)
Haar-like filters [165], b) Extended set with rotated filters [94], c) Extended set with non

adjacent regions [93]

Figure 6.7: Gabor filters for frontal face detection [19].

rectangular templates are shown in figure 6.6(a). Then, Lienhart et al. [94] proposed to
enrich the set of rectangular filters by allowing rotations by ±45 degrees (see figure 6.6(b)).
Li et al. [93] considered non-adjacent rectangles which present the advantage of proposing
features that are not only local. These filters are depicted in figure 6.6(c).

In [19] Chen et al. proposed to use more discriminative Gabor filters in the last stages
of the cascade. The collection of filters is described by various angles and frequency param-
eters. The reconstructed faces are called Gaborfaces. Examples are shown in figure 6.7.

Finally, another type of filters was recently successfully used in a similar boosting strat-
egy: Local Binary Patterns (LBP ) [108]. A LBP is a non-parametric 3 × 3 kernel which
evaluates local textures in an image. It compares the grayscale values of a pixels and its 8
neighbors. The label 0 is set to all the neighbors with lower intensity than the considered
pixel, and 1 otherwise. The labels are then encoded into an 8-bit word. The encoding of
the LBP filter is shown in figure 6.8.

These filters have been extensively used in face verification purposes and have been
recently used for face detection in [132]. LBP have very low computational costs and
present the advantage of being more robust to local illumination changes than Haar filters.
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Figure 6.8: Local Binary Patterns proposed by Rodriguez et al. [132]

6.3.4 Variants of AdaBoost

Many different variants of Adaboost have been proposed to improve the discrete AdaBoost
proposed in [165]. First, Viola and Jones [165] used simple decision stumps for building
weak classifiers from Haar-like filters. Lienhart et al [94] proposed to use CART trees which
allow to learn dependencies between the features. The training process becomes slightly
more complex but less weak classifiers are needed for obtaining the same test error.

Li and Zhang [93] proposed a new algorithm called FloatBoost. They combine Adaboost
with a feature selection strategy called Floating search. Contrary to AdaBoost, the worst
filters are removed from the collection for the next iteration.

A generalized version of AdaBoost called RealAdaboost (or RealBoost is some papers)
was applied to multi-view face detection in [173]. The output of the weak classifiers is no
more limited to binary decisions (see section 3.5.4 for details).

Architecture of the System

Let us recall that the input image is scanned using a sliding window to check the presence of
faces at any position and scale. However, only few windows effectively contain faces. This
fact motivates the use of a cascade of classifier proposed in [165]. They first applied a very
simple classifier made of 2 weak classifiers. The candidate windows classified as face are
then given to a slightly more complex classifier. Finally only a few remaining candidates
are given to the last stages which contain much more weak classifiers. It clearly decreases
the processing speed by quickly discarding easy to classify background regions. It also
presents another advantage. Each stage is trained on examples that have been misclassified
by the previous stages in the cascade. This technique similar to bootstrapping improves
the classification skills of the detector. The main drawback of this strategy is that many
hyperparameters need to be manually tuned: the number of stages in the cascade, the
number of weak classifiers selected in each stage, the thresholds of each stage, etc.

Luo [95] proposed a systematic method for tuning the thresholds of the stage after the
training process. He showed improvements over the cascade of Viola [165] but it did not
solve how to optimally design the cascade.

Wu et al. [173] proposed a nested cascade structure, where the first weak classifier of
each stage is the complete previous stage. This is a possible way for taking into account
confidence levels of each stage.

Finally Brubacker et al. [15] proposed a new technique for adjusting the threshold of
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each stage and optimizing the number of weak classifiers in each stage. For this, they used
probabilistic models of the overall cascade performance.

6.4 Performance Evaluation of Frontal Face Detectors

6.4.1 General Comparison of the Methods

In the previous sections we presented two main groups of approaches that have been pro-
posed for face detection. Each technique presents advantages and disadvantages and the
choice of the optimal algorithm mostly depends on the underlying application. In general,
feature-based techniques are more robust to variations in head pose as the appearance of
the main facial components (eyes, mouth, nose, etc.) is almost invariant to small rotations
of the head. However, the problem of illumination changes is better addressed in example-
based algorithms as the variations can be learned automatically during the training phase.

Feature-based techniques do not require intensive model training and are generally used
in face localization applications. The task of face localization is to return the precise position
of the face and its main components, while assuming that there is one and only one face
in the image. Example-based techniques can be very fast and accurate for detecting many
low-resolution frontal faces. They are thus generally used in video-surveillance applications
or as pre-processing to face verification or further face analysis.

6.4.2 Quantitative Comparisons and Performance Evaluation

In order to give quantitative measures for comparing the techniques, algorithms need to
be evaluated on standard datasets. A natural performance evaluation technique seems
to simply count the number of correct detections and the number of false alarms. Using
various sensibility thresholds, we can simply draw Receiver Operating Characteristic curves
(ROC). The shape of ROC curves is usually used for comparing detectors. However, it
does not necessarily gives fair comparisons of the systems.

• The output of typical face detectors is represented by window-boxes around the de-
tected positions. But when is a detection considered as correct? If the whole face
falls into the bounding box? If both eyes are present in the bounding box? If both
eyes are present in the upper part of the bounding box? There is no common rules
for stating how accurate the detected windows need to be in order to be counted as
correct detections.

• Researchers need to pay attention to a problem that is common in many pattern
recognition applications. We need to be precise if we aim to compare systems or
algorithms. In the case of example-based techniques for face detections, comparing
two systems means comparing two face detectors already trained. An independent test
set is given to each detector and the best is the detector presenting best ROC curves.
For comparing two face detector algorithms, we need to trained them with rigorously
the same training data and then measure the performances on a separate test set. In
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Figure 6.9: An example of image of the CMU test set presented in [136].

practice, people usually collect their own training and images. The comparison with
other works is then limited to detector comparisons.

• The other difficulty in performance evaluation of face detection algorithms is that
people have various definitions of the object to be detected. The first reference test
set was introduced by Rowley et al. in [136], and Sung et al in [158]. The so-called
CMU test set contains 130 images with a total of 507 labeled frontal faces. However,
among the 507 faces labelled in this dataset, few dozens of them are manually drawn
faces. Should they be considered as human faces or false detections? This ambiguity
produced an important confusion in comparison of face detection techniques. An
example of such ambiguous image is shown in figure figure 6.9. In this image, two
faces are labeled. One is a human face, the other is a sketch on the whiteboard.

In order to address these evaluation ambiguities, Jesorsky et al. [69] introduced in
2001 a criterion based on the relative distance between the detected and the ground-truth
position of the eye centers.

d =
max(d(El, Êl), d(Er, Êr))

d(El, Er)
, (6.2)

where El, Er represent respectively the detected positions of the left and right eyes, and
Êl, Êr represent the true positions. A detection is consider as successfull if d < 0.25. In
2004, Popovici et al. [122] proposed an unified framework for performance evaluation of face
detectors. The evaluation is performed by taking into account several parameters between
the detected location and the annotated positions. They propose a scoring function that
gives high score (1.0) to perfect detections and 0.0 to completely wrong detections. The
scoring function is computed for various criteria: the ratio of the between-eyes distances,
the angle between the eyes axis and of course the distance between the annotated and
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Figure 6.10: The criteria used in the performance evaluation proposed in [122].

Figure 6.11: Shape of the scoring function [122] with several values of parameters α, δ
and μ.

detected eye positions. These criteria are given in figure 6.10.
The scoring function can be parametrized specifically according to each application

(only upright faces, face detection or localization,etc.). The shape of the scoring function
is suggested in figure 6.11, where α, δ μ are 3 parameters of the scoring function.

6.5 Conclusions

In this chapter we presented the standard techniques employed in most of the recent face
detectors. On the first hand we presented the feature-based techniques, robust to slight
changes in head pose but very sensitive to changes in lighting conditions. On the other
hand, example-based techniques can process very low resolution faces and can deal with
relatively important changes in lighting conditions. These latter techniques are usually
preferred when a further post-processing is needed (face recognition/verification, facial ex-
pression recognition, etc.). We also discussed the complexity of comparing performances
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of different classifiers and gave the main evaluation protocols that have been proposed so
far. In the next chapter e will present a new face detection system that benefits from the
advances in pattern recognition techniques presented in chapter 2. We will also propose
complete performance evaluation on some classical datasets using the evaluation protocol
[122] presented hereabove.
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Frontal Face Detection

with Anisotropic

Gaussian Filters 7
7.1 Introduction

In this chapter we present a new face detection system based on the work of Viola and
Jones [165]. Their system uses cascades of boosted Haar-like features for classifying candi-
date images between face and non-face. Viola and Jones motivated their choice by underly-
ing that Haar-like filters can capture contrast between face regions. Nevertheless, it turns
out that these rectangular filters a not particularly well suited for discriminating between
face images and background regions that present similar contrast characteristics than faces.
Consequently, these challenging background windows will fall very close to the face class
in the feature space. As we discussed in the introduction to pattern recognition in chap-
ter 2, those examples that are close the separating decision function are very important for
obtaining robust and sparse classifiers. That is why in this section, we will introduce new
filters called anisotropic Gaussian filters that are more discriminative than Haar-like filters,
especially for hard-to-classify examples.

The remaining of this chapter is structured as follows. Section 7.2 introduces the new
geometrical filters and discusses their ability to model the face patterns. In Section 7.3
we report experiments that support the choice of these new filters, we give comparisons
with relevant existing face detectors. We will also show that using these new filters do not
affect significantly the processing speed of the detection system. Finally, we will draw some
conclusions in section 7.4.
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7.2 Boosted Anisotropic Gaussian Features

This section introduces the new geometrical features and discusses their ability to model
face patterns compared to Haar-like filters. As in [165], AdaBoost is used to build a linear
combination of simple hypotheses, which, combined together form a strong ensemble of
classifiers. The weak learner called at each iteration of AdaBoost builds a simple binary
hypothesis from the collection of filters. This basically means that AdaBoost performs an
implicit feature extraction step coupled with the classification task.

In face detection applications, we usually prefer detecting all the faces even if the number
of false alarms is increased compared to equal error rate. This can be easily implemented by
considering an asymmetric version of AdaBoost that encourages the correct classification
of the positive examples. There are basically two techniques for emphasizing on positive
samples:

• Initialize differently the weight distribution D for the two classes: D(i) = 1
N+

if yi = 1
and D(i) = 1

N− if yi = −1, with N+ < N−. However, this solution simply introduces
a bias at the initialization step which does not guaranty a high true positive rate for
the complete classifier.

• Add a threshold θ to the final decision of AdaBoost H(x) = sign
(∑T

t=1 αtht(x) + θ
)

such that the desired operating point on the ROC curve is achieved on a separate
validation set.

7.2.1 Anisotropic Gaussian filters

In this section we propose a new set of local filters that can be used for constructing the
weak classifiers. The filters are made of a combination of a Gaussian in one direction and
its first derivative in the orthogonal direction. These functions have been introduced by
Peotta et al. in [115] for image compression and signal approximation.

The anisotropic filters are defined by the generating function φ(x, y) : R
2 → R given by:

φ(x, y) = x exp (−|x| − y2). (7.1)

This generative function is depicted in figure 7.1. It efficiently captures contour singularities
with a smooth low resolution function in the direction of the contour (y axis in figure 7.1)
and it approximates the edge transition in the orthogonal direction (x axis in figure 7.1)
with the first derivative of the Gaussian.

In order to generate a collection of local filters, the following transformations can be
applied to the generating function:

1. Translation by (x0, y0):

Tx0,y0φ(x, y) = φ(x− x0, y − y0).
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Figure 7.1: Shape of the Anisotropic Gaussian Filters. A Gaussian in one direction and
its first derivative in the orthogonal direction.

2. Rotation by θ:

Rθφ(x, y) = φ(x cos θ − y sin θ, x sin θ + y cos θ).

3. Bending by r:

Brφ(x, y) =

{
φ(r −

√
(x− r)2 + y2, r arctan( y

r−x)) if x < r

φ(r − |y|, x− r + rπ
2 ) if x ≥ r

4. Anisotropic scaling by (sx, sy):

Ssx,syφ(x, y) = φ(
x

sx
,
y

sy
).

Bending is obtained by projecting the y component onto a circle of radius r as shown in
figure 7.2.

By combining these four basic transformations, we obtain a large collection of functions
that we denote D:

ψi(x, y) = ψsx,sy,θ,r,x0,y0(x, y) (7.2)

= Tx0,y0RθBrSsx,syφ(x, y). (7.3)

Figure 7.3 shows some of these functions with various bending and rotating parameters.
At each iteration of AdaBoost, a weak learner is called to train simple classifiers from

the collection of geometrical filters. As described in section 6.3.3, many techniques can
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r

Figure 7.2: Bending by r. The filter is projected onto a circle of radius r such that the y
axis is a vertical tangent to that circle.

Figure 7.3: Anisotropic Gaussian filters with different rotating and bending parameters.

be used to train these weak classifiers. The simplest weak learner consists in learning
a threshold and a parity for each filter response. More sophisticated constructions were
proposed by Lienhart et al. in [94]. They proposed CART trees which allow to learn
dependencies between the features. However, equivalent results can be obtained using the
simple decision stumps by adding few more iterations in AdaBoost. Moreover, AdaBoost
only requires classifiers that are slightly better than random guessing so this choice will not
affect significantly the convergence of the learning.

We thus consider a simple linear classifier hj : R
d → {−1, 1} for each filter configuration

by choosing two parameters: a threshold θj and a parity pj as shown in equation (7.4).
These parameters are chosen using the Bayes decision rule.

hj(x) =

{
1 if pjfj(x) < pjθj

−1 otherwise
, (7.4)

where the feature fj(x) is the scalar product between the image and the filter ψj corre-
sponding to a particular filter configuration (sx, sy, θ, r, x0, y0):

∀ψj ∈ D fj(x) =
∫∫

X×Y
ψj(x, y)I(x, y) dxdy. (7.5)

Figure 7.4 shows some functions selected in the first iterations of AdaBoost. It turns
out that they are particularly well adapted to capture local contours and are insensitive to
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Figure 7.4: Some of the first selected base functions.

Figure 7.5: Haar-like templates.

changes of the lighting conditions. In comparison, Haar filters [165] model global contrasts
that are more sensitive the the direction of the light source.

7.2.2 Gaussian vs. Haar-like

This section shows a comparison between the Haar-like filters (HF ) proposed in [165] and
the anisotropic Gaussian filters (GF ) described above.

The HF are made of 2, 3 or 4 rectangular masks and have 4 parameters: horizontal and
vertical scaling and the coordinates of the center. The templates are recalled in figure 7.5.
A very important advantage of the HF over GF is that they can be computed extremely
efficiently using a so-called integral image representation.

To give a quantitative comparison between HF and GF , two boosted classifiers have
been trained on the same training set containing face and non-face images using AdaBoost.
The results are evaluated on a large validation set extracted from some reference datasets
(see section 7.3).

Figure 7.6 gives a comparison of the intrinsic performances of each feature type. The
test error decreases quickly with the number of Adaboost iterations but it stops decreasing
after roughly 100 iterations in the case ofHF while it keeps decreasing withGF . Intuitively,
after several iterations, AdaBoost focuses on the hard-to-classify examples and the simple
HF are not discriminant enough to separate the two classes. In practice, after only few
iterations of AdaBoost, the weighted training error of the best HF selected becomes close
to 0.5. A Receiver Operating Characteristic (ROC) analysis (figure 7.7) clearly show the
better discrimination capabilities of the GF compared to HF . The operating points used
for drawing the ROC curves are found by changing the threshold of the final decision output
by AdaBoost.

Let us now evaluate the time needed for computing each feature. We trained two similar
classifiers with 200 HF on one hand and 200 GF on the other hand. By applying these
two classifiers on several images, we compared the average computation time for applying
a single HF and a single GF . We found that computing a GF takes in average 2.86 more
time than a HF . (Note that the Gaussian filters are precomputed in the model such that
the expensive computation of the generative function is avoided).
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Figure 7.6: Performance of GF and HF–based detectors on a separate test set.

An intersting point to notice here is the shape of the GF that are selected by AdaBoost
(figure 7.4). The first functions chosen have generally large scale parameters, they can
globally model the face appearance whereas more local features are extracted later in the
selection process.

HF are only binary filters, thus they may be able to well capture the contrast between
image regions but will be limited for modeling smooth transitions present in facial images.
GF are continuous functions more appropriate to model continuous natural images. The
flexibility due to the large number of parameters allows to model contour singularities as
well as intensity changes in large regions (using large scaling parameters).

7.2.3 Cascade of classifiers

As in [165], we use a cascade of classifiers speeding up the decision process by only applying
simple classifiers to candidates easy to discard while keeping the most complicated and
time consuming stages for the challenging examples. Moreover, training each stage of the
cascade on different subsets of the training set reduces the risk of overtraining the data as
described in section 3.5.2 by reducing the influence of potential outliers.

In figure 7.6 we can see that Haar-like features are comparatively efficient for building
the first linear classifiers. Up to roughly 90 iterations, generalization curves of GF and
HF are sensibly identical. The rectangular shaped filters are sufficient for discarding the
simple examples. In order to take advantage of their computation efficiency, a simple five
staged cascade of Haar-like features is added as a pre-processing to our final Gaussian-based
classifier. This efficiently reduces the search space such that only few remaining windows
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Figure 7.7: ROC curves for Gaussian and Haar-like features.

Figure 7.8: Reduction of the search space by a simple cascade of Haar features.

need to be tested with the Gaussian models. Figure 7.8 gives the average percentage of
negative windows discarded by each of these 5 first stages on the CMU/MIT test set [136].
For example, after only 2 stages of HF , only 0.4% of negative windows have still not been
rejected.
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Figure 7.9: Images that are generated from one original image taken from the BioID
dataset [47]. These transformations include shifts, slight in-plane rotations, scaling and

horizontal flipping.

7.3 Experiments and Results

7.3.1 Structure of the System

In order to test the performances of this system and compare it with other relevant methods
the following experiments have been performed.

Scanning Process

First, the size of the scanning window influences directly the quality of the detector [94].
According to previous empirical studies, we used 20× 15 pixels window to scan the images.
It is then dilated by powers of 1.2 in order to detect faces at any scale. Then, a very simple
arbitration method clusters the neighbor positive windows such that only one detection per
face is returned. We simply extract the mean window for each cluster (average position and
scale).

Datasets

To train the models, face images were collected from some classical face datasets: XM2VTS
[100], BioID [47], FERET [116]. In order to improve the robustness of the detector with
respect to slight shifts or in-plane rotation, we increased the size of the training set by adding
images extracted around the groundtruth positions. For each image, we also perform small
linear transformations like slight rotations of flipping. Figure 7.9 gives examples of small
transformations that are applied to each image.

The resulting complete face training set contained around 9500 images. The non face
dataset was bootstrapped from randomly selected images (without human faces). A total
of roughly 500000 non face images were finally used.

We also used a separate validation set made of roughly 10000 faces and 100000 non
faces images in order to tune the various hyperparameters. For example the number of
filters selected in each classifier is determined according to the desired detection rates on
this validation set.

Choice of the HF and GF Filters

The collection of HF and GF needed for training the classifiers has to be defined. The task
is to define the transformation parameters of the filters. These transformations would then
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condition the size of the set D of filters and, consequently, determine the training complexity
(the cardinality of D can be seen as the dimensionality of the feature space). The set of HF
that we used to train the cascade contained 37 520 filters (all possible combinations in a
20× 15 pixels window). In the case of GF , considering all the possible combinations of the
6 filter parameters would produce a huge set of filters. We thus decided to subsample the
complete set of filters in order to keep a manageable set for the training process. For this,
we noticed that slight variations of the 2 scaling parameters and the rotation parameter
do not change significantly the response of the filter. The other 3 parameters are more
unstable in the sense that small changes may have large effects on the response of the filter.
The parameter space has been subsampled according to these previous remarks. The final
set of GF that we used for training the classifiers contains 202 200 features. This set of GF
gives a good trade-off between training complexity and parameter flexibility.

Evaluation Protocol

An ambiguous point in face detection algorithms is the way the performances are measured.
Papers usually provide the detection rate and the false positive rate to show the quality
of their system, however they often consider different measures for those rates. It appears
to be very difficult to objectively compare different published results. In this work, the
problem is addressed using the evaluation protocol proposed by Popovici et al. in [122].
The evaluation is performed by taking into account several parameters between the detected
location and the ground-truth annotated positions. The scoring function measures the ratio
of the between-eyes distances, the angle between the eyes axis and of course the distance
between the annotated and detected eye positions. This method gives a more objective
scoring of the detection performances. See [122] for details on how to use the scoring
function.

7.3.2 Evaluation on BANCA Database

The system has been tested on two distinct datasets. On the one hand we considered
the BANCA database [4] which was built for training and testing multi-modal verification
systems. The face images were acquired using various cameras and under several scenarios
(controlled, degraded and adverse). Some examples of detection results of the so-called
adverse scenario are shown in figure 7.10. In this work, we used 12 480 images from the
so-called French and English datasets as we dispose of precise groundtruth annotations for
these ones.

Table 7.1 gives a comparison of four variants of the system tested on the BANCA
database. We first tested 5 stages of HF to evaluate the efficiency of the few first features
selected. Then a complete cascade of 12 stages of HF is compared to the same structure
using GF . Finally we tested a GF cascade preprocessed by the 5 first stages of a HF

cascade. First of all it confirms that a cascade trained with GF gives much better detection
rates than using HF . It is then interesting to notice that a very simple pre-processing by a
5 staged cascade of HF followed by a Gaussian based model does not affect significantly the
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Figure 7.10: Results on images of BANCA [4] in the complex adverse scenario.

Table 7.1: Comparisons of various methods tested on the BANCA [4] database. Results
are reported for the French and English parts following the evaluation protocol described

in [122]. Detections with a global score larger than 0.95 are considered as correct.
Classifier % of detections with score > 0.95

(following [122])
5 stages Boosted HF 52.08
12 stages Boosted HF 86.78
12 stages Boosted GF 91.02

5 st. Boosted HF + 12 st. Boosted GF 90.74

performances compared to GF alone. We thus can benefit from the computation efficiency
of the HF without decreasing the detection rates and then take advantages of the GF
discrimination to improve the classifier accuracy.

The evaluation protocol [122] allows to measure the main characteristics of our detector
in terms of precision of localization. Each individual criterion in figure 7.11 shows that when
a face is correctly detected, the bounding box returned by the detector is really precise both
in scale and shift. However, there is a bit more imprecision with respect to the shift score.
This can be explained by two main factors:

• The arbitration criterion that we use for merging the multiple detections around each
face very simple;

• The large variability that we voluntarily introduced in the face training set might
cause some imprecision in the detected locations.

Let us recall here that the purpose of this system is to detect faces in images which is
different to face localization. Face localization usually suppose the presence of one and only
one face in the input image. The task is then to return the precise positions of this face.

7.3.3 Evaluation on the CMU/MIT Test Set

We now consider a more challenging database commonly used to evaluate performances of
face detectors especially on very low resolution faces. The CMU/MIT Test set [136] was
first introduced by Rowley in [136] for testing a Neural Networks based detector. The first
version of this test set contained 23 images with a total of 155 very low resolution faces (it
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Figure 7.11: Detection scores using the evaluation protocol [122] including the two
individual scores (shift and scale) and the global score. Note that a logarithmic scale is

used.
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Figure 7.12: Examples of images that are considered as faces in some publications and
as non faces is others.

Table 7.2: Performances on the CMU/MIT test set [136]. 3 datasets configurations are
considered: Dataset 1: 155 faces, dataset2: 483 faces, Dataset 3: 507 faces. It shows the

Detection rate (D.R.) and number of false alarms (F.A) for each method.
Dataset 1 Dataset 2 Dataset 3Methods

D.R.(%) F.A. D.R.(%) F.A. D.R.(%) F.A.
Rowley [136] 87.1 15 92.5 862 90.5 570

Sung Poggio [158] 81.9 13 — — — —
Shneiderman [145] — — 93.0 88 94.4 65
Viola Jones [165] — — — — 91.4 50
12 stages HF 83.7 20 88.6 95 88.3 50

5 st. HF + 12 st.GF 88.3 17 92.8 88 91.7 50

is referred as Dataset 1 in table 7.2). The complete set contains 130 images with 507 faces
(Dataset 3 in table 7.2). However, some of these annotated faces are manually drawn or
sketches and they are counted as false detections in some publications.

To address this ambiguity, some papers only consider 123 images with 483 faces (Dataset
2 in table 7.2). Figure 7.12 gives some examples of such faces that are annotated in Dataset
3 but not in Dataset 2.

The three versions of the dataset are tested in this work to avoid any confusion. Fig-
ure 7.13 shows some detection results on images of this database.

Table 7.2 gives comparisons with the state-of-the-art methods on these datasets. It
gives global performances of two versions of the system: a cascade of HF and a cascade of
GF preprocessed by 5 stages of HF . The results in this table have to be taken cautiously
as they are affected by many factors: the scanning parameters (scaling factor, window
shifting step, etc,...), the technique chosen for merging overlapping windows, the number
of training patterns and so forth. In particular, the way the non-face training examples
are generated has a great impact on the decision functions. Finally some systems used
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Figure 7.13: Face detection results on some images of the MIT/CMU testset [136].



118 Chapter 7. Frontal Face Detection with Anisotropic Gaussian Filters

Figure 7.14: ROC analysis for comparing the algorithms on the MIT/CMU testset [136].

additional post-processing to improve the results. For example, Viola et al. in [165] used
a voting strategy between several cascades to reduce the false positive rate. This explains
why our cascade of HF has slightly lower performances than the implementation in [165].
However, the use of Gaussian filters gives roughly similar results with [165] without any
post-processing, especially since we used only 1260 features in our cascade instead of 6061
in [165]. Shneiderman et al. in [145] report good performances. However they use several
intensity corrections and a complex wavelets-based network that lead to extremely heavy
computation. This will be discussed more deeply in chapter 8.

The purpose of this chapter is to show the advantages of using the Gaussian filters
compared to Haar-like filters. Therefore, a Receiver Operating Characteristic curve (ROC)
is given in figure 7.14. The two models were trained using the same data and the evaluation
is performed with strictly identical parameters. It shows that the use of the new filters
brings an important improvement in term of detection capabilities on real world data. For
instance, considering a detection rate of 90 % for both classifiers, there are roughly twice
less false alarms with GF .

7.4 Conclusions

This chapter presented new Gaussian-based filters which lead to high detection perfor-
mances. These new local discriminant features are combined by boosting to model efficiently
the face class and images are preprocessed by Haar features easier to compute in order to
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speed up the detection. The complete system has been tested on classical datasets and
compared with other relevant methods. In a future work we will introduce the combination
of several parallel classifiers in order to reduce the false positive rate.
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Classifier Combination

for Frontal Face

Detection 8
8.1 Introduction

In this chapter we present how simple classifier combination techniques can be efficiently
used in a real face detection system. Classifiers used in this chapter are built from Haar-like
filters and anisotropic Gaussian filters presented in the previous chapter. We will see how
boosted classifiers combined by fixed probabilistic rules can be use in face class modelling
applications. It will clearly show that decomposing a learning task into lower complexity
problems can reduce training complexity and improve detection results. The complete face
detection system contains three levels of classifier combination techniques:

1. AdaBoost: base classifiers are built from Haar-like or Gaussian filters using Ad-
aBoost. The goal is to build a strong ensemble from a collection of weak classifiers
based on local discriminant filters (GF ans HF ).

2. Cascades: We still consider Cascades of boosted classifiers. They are sequential com-
binations of classifiers, mainly for improving the processing speed.

3. Mixture of boosted classifiers: Finally we consider a parallel combination scheme for
combining several cascades of Gaussian-based classifiers. The goal of this stage is to
simplify training process and improve generalization by reducing influence of noise
and potential outliers in the training set.

The two first combination strategies (AdaBoot and cascades) have been discussed widely
in the previous chapters. We will now concentrate on the third point which concerns
mixtures of boosted classifiers. The remaining of this chapter is structured as follows.
Section 8.2 presents the mixtures of boosted classifiers and how they are combined together

121
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to take the final decision. Section 8.3 reports some results as well as comparisons with
relevant existing face detectors. Finally, we draw some conclusions in section 8.4.

8.2 Mixtures of Boosted Classifiers

8.2.1 Motivations

This section introduces a structure that will improve the classification skills of the face de-
tection system presented in chapter 7. As already mentioned in chapter 6, one of challenges
of face detection resides in the fact that a very large set of face and non-face examples must
be collected, for two main reasons:

• Face class has a large variance as face is a deformable object whose appearance changes
according to various factors such as lighting conditions, changes in head pose, identity
of the person, age, etc.

• We need to add more variation in the face training set in order to detect faces with
slight in-plane rotations. Images with slight changes in scale and shift must also be
taken into account depending on the scanning parameters used.

Moreover, a large number of features is also needed to obtain a sufficiently low false
positive rates. AdaBoost minimizes an exponential loss function (see equation (3.11)) such
that after several iterations, many features have to be added for only slightly reducing the
false positive rate. Consequently, some weak classifiers potentially very efficient as experts
on subspaces of the training data might behave worse on the whole training set.

These motivations suggest to use a multi-classifier structure built in parallel. Instead
of training a single boosted cascade on the complete training set, we propose to build
several cascades on subsets of the original dataset. A similar technique was developed and
discussed in chapter 5 where Support Vector Machines were used for the parallel classifiers.
This is similar to Bagging introduced in [10], except that the size of the bootstrap samples
is smaller than the initial sample set.

This approach presents several advantages over a single classifier trained on the complete
training set. On the one hand, each classifier is trained on a subset of the training dataset
so that it can be seen as an expert that focuses on its own domain. This will thus decrease
the influence of potential outliers in the complete training set. More specifically, as the
power of AdaBoost resides in the fact that it focuses on the hard to classify examples,
the parallelization technique reduces the weight of the noisy examples or potential outliers.
This last point also reduces the risk of overfitting as mentioned above.

On the other hand, this parallelization technique also allows to decrease the classifier
complexity. The complexity of training AdaBoost varies linearly with the number of sam-
ples. Splitting the data and training several AdaBoosted classifiers on the subsets will thus
not affect the training complexity as compared to a single AdaBoosted classifier. How-
ever, as it will be shown in section 8.3, less features are needed for achieving equivalent
classification rates compared to a single classifier trained on the complete training set.



8.2. Mixtures of Boosted Classifiers 123

8.2.2 Splitting Strategy

We could imagine two strategies for splitting the dataset into several subsets: either random
sampling if we want to estimate several times the decision boundary or clustering if we want
to build experts on subsets of the face class. In our case, no information is available about
the distribution of the face class, our ultimate goal is to simplify the problem while trying
to improve the classification skills, that is why simple random sampling has been chosen for
creating the training subsets. Another reason why the clustering would not be appropriate
comes from the variations introduced in the training set. This variability is obtained by
slightly rotating, shifting and scaling the original face images. The clustering would even-
tually cluster examples resulting from similar transformations and thus the combination
would certainly fail.

8.2.3 Posterior Probability Estimation

The decisions of the parallel classifiers are then combined using simple probability rules.
For this, we need to obtain estimates of posterior probabilities of the boosted classifiers.
There are basically two approaches for estimating posteriors. On the first hand, let us
recall that AdaBoost can be interpreted as a soft margin classifier [126]. Using a similar
technique as for SVM in section 5.3 [118], we can fit a simple continuous model to the margin
distribution output by Adaboost (e.g. a sigmoid function like in equation (5.3)). On the
second hand, a more natural way of estimating posterior probabilities from AdaBoost is to
consider the probabilistic interpretation of boosting [68] presented in section 3.5.6. We recall
the main idea here. AdaBoost can be viewed as a simple additive model by considering the
criterion J(H) = E[exp(−yH(x))], where H(x) =

∑
t αtht(x) is the output of AdaBoost.

Friedman proved in [68] that the function minimizing J is the symmetric logistic transform
of p(y = 1|x). The posterior probabilities P (y = 1|x) and P (y = −1|x) are then given by:

p(y = 1|x) =
exp(H(x))

exp(−H(x)) + exp(H(x))
, (8.1)

p(y = −1|x) =
exp(−H(x))

exp(−H(x)) + exp(H(x))
. (8.2)

These posterior probabilities are directly used for combining the decisions of the par-
allel classifiers are the confidence level. We consider the fixed probability rules defined in
section 3.3.1. Previous studies [34, 76, 101, 120] noticed that the choice of the rule has
not a large influence on the overall performances. In this work we only consider the sum-
mation rule defined in equation (3.5) for combining the decisions of the multiple boosted
classifiers. The choice of this rule is influenced by the splitting method that is used. The
sum rule averages the decisions of the individual classifiers such that it sets a good trade off
for discarding false alarms while preserving the correct detection of faces. For example the
product rule is known to be a severe rule which risks to strongly penalize the true positive
rate.

A reason why simple probability rules are preferred for combining the expertise of each
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individual classifier is the stability of the parallel classifiers. The boosted cascades are stable
in the sense that small changes in the training set lead to small changes in the classifier out-
put [83]. More sophisticated combination techniques like Boosting need unstable classifiers
to improve the overall performance.

8.2.4 Discussion

This parallelization technique presents some advantages against the cascade structure. A
cascade of classifiers is a sequential combination of classifiers such that an example is rejected
if it is classified as negative at any stage of the cascade. It can be seen as a mixture of
classifiers but considering a product probability rule for combining the decisions. In fact if
we consider the parallel classifiers to be conditionally independent (which can be assumed
in this study as we use random sampling for generating the subsets), if one of the classifiers
considers an example as negative with probability close to 1, the probability that the final
decision is negative will be high. The only difference would be from the complexity point
of view as we would have to test all the classifiers whereas the cascade would directly stop
the processing chain.

One advantage of our parallel approach over the cascade is that if a positive example
is classified as negative by a given classifier, it can be reassigned to the positive class by
the overall system where in the cascade case it would be rejected. This would especially
happen in the last stages of the cascade as the remaining candidate examples are the most
challenging to classify. It is clear that the mixture approach will not reduce the testing
time as we roughly use the same features number as in a single layer classifier. However we
do not need to optimize the testing time as a simple pre-processing with a cascade based
on Haar-like features will discard a large majority of candidate windows. Thus only few
remaining critical windows will be tested by the mixture of boosted classifiers.

8.3 Experiments and Results

8.3.1 Structure of the System

The following experimental setup has been carried out in order to evaluate the performances
of the new system, in particular, the improvements brought by the paralellization technique.
As in the previous chapter introducing the new anisotropic filters, we scan images with a
20 × 15 pixels window and use a scaling factor of 1.2 for detecting faces at any scale.
For details on the training sets used and the choice of the hyperparameters of the various
classifiers, see section 7.3. The same pre-processing based on a cascade of HF is used in
order to speed up the detection. The structure of the complete system is shown in figure 8.1.
The final mixture contains 5 parallel classifiers which represents a good trade-off between
gain in robustness and both training and testing complexity.
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Figure 8.1: Structure of the complate face detector. It comprises a cascade of 5 HF
stages followed by a mixture of 5 GF cascades.
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Table 8.1: Comparisons of various methods tested on the BANCA [4] database. Results
are reported for the French and English parts following the evaluation protocol described

in [122]. Detections with a global score larger than 0.95 are considered as correct.
Classifier % of detections with score > 0.95

(following [122])
5 stages Boosted HF 52.08

5 st. Boosted HF + 12 st. GF 90.74
5 st. Boosted HF + Mix Boosted GF 96.37

8.3.2 BANCA Database

This section gives results on BANCA dataset [4] using the evaluation protocol defined in
[122]. Table 8.1 gives a comparison of different classifiers tested on the 12 480 images.
A first classifier is made of 5 stages of a cascade of Haar features. It discards a large
majority of negative windows but is not sufficient for being used alone. It is therefore used
as pre-processing to speed up the process. The thresholds are tuned in order to have a
very few positive windows rejected on the validation set (even if the false positive rate is
increased). Then a classifier trained using GF using the complete training set is added.
It is similar to the GF -based cascade presented in chapter 7. It significantly improves the
classification rates. Finally the parallelization strategy has been tested for training the
classifiers with GF , we improve the performances by roughly 6% compared to one single
GF classifier. The single Gaussian-based classifier was trained using the same data than
the complete mixture. However, the total number of features used in the mixture is much
lower than in the complete cascade. One could imagine that the parallelization technique
would increase the complexity of the system, but the mixture model is in fact sparser than
its single counterpart.

8.3.3 CMU/MIT Test Set

This section gives experimental results on the CMU/MIT Test set [136]. As in section 7.3,
we consider several configurations of the test set depending on the images that are considered
in various papers. Dataset 1 in table 8.2 contains 23 images with a total of 155 faces, Dataset
2 in table 8.2 contains 123 images with 483 faces and Dataset 3 in table 8.2 contains 130
images with 507 faces. Figure 8.3 shows some detection results on images of this database.
It compares the detector made of Gaussian filters with and without parallel combination.

We report in table 8.2 comparative results with other standard techniques on these
CMU datasets. Performances of two different techniques are reported. On the first hand,
a single cascade of GF and then a mixture of GF based classifiers. It comprises parallel 5
classifiers each made of roughly 100 filters. The number of classifiers in the mixture was
chosen in order to obtain a good trade-off between false positive rate and detection speed.
Each tested window is pre-processed using histogram equalization and simple illumination
correction.

This study shows the improvements due to the parallelization technique. The faces
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Table 8.2: Performances on the CMU/MIT test set [136]. 3 datasets configurations are
considered: Dataset 1: 155 faces, dataset2: 483 faces, Dataset 3: 507 faces. It shows the

Detection rate (D.R.) and number of false alarms (F.A) for each method.
Dataset 1 Dataset 2 Dataset 3Methods

D.R.(%) F.A. D.R.(%) F.A. D.R.(%) F.A.
Rowley [136] 87.1 15 92.5 862 90.5 570

Sung Poggio [158] 81.9 13 — — — —
Shneiderman [145] — — 93.0 88 94.4 65
Viola Jones [165] — — — — 91.4 50

5 st. HF +12 st. GF 88.3 17 92.2 88 91.7 50
5 st. HF + Mix. 89.2 15 92.1 68 93.9 60
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Figure 8.2: ROC analysis for comparing the algorithms on the MIT/CMU test set [136].
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Table 8.3: Detection speed in frames per seconds (fps) of 4 detectors. The measure is an
average over the 1500 frames of a sequence of 320 × 240 pixels images.

Detector fps
12 stages HF 28.63

5 st. HF + 12 st. GF 27.32
5 st. HF + 1 st. GF 27.18

5 st. HF + Mix of GF 27.22

that are drawings or sketches detected in Dataset 3 are counted as false detections in
Dataset 2, it explains why there are more false detections in the smallest version of the test
set. Table 8.2 only gives a single operating regime (i.e. single point on the The Receiver
Operating Characteristic (ROC) curve). We thus also include complete ROC curves in
figure 8.2. It shows that we gain several percents of detection rates compared to single
GF -based classifier, and this at any operating point on the ROC.

The Mixture of GF technique also compares favorably to state of the art. We recall here
that the results in this table have to be taken cautiously as they are affected by many factors
(e.g scanning procedure, technique for clustering overlapping windows, etc. ) Objective
comparison of detectors, while a desirable goal, is almost impossible in practice without
access to the programs used by authors to build the models and perform the detection.
However, one can have a rough idea about the relative time performance of various methods
by looking at the complexity of the detection task, which in case of Shneiderman [145]
comprises several intensity correction steps followed by a complex wavelets–based network.
That is why we consider that the proposed method being faster and better suited for a
low-latency system. We give in next section numerical comparisons of processing speed.

8.3.4 Processing Speed

As noted in section 7.2.2, computing the response of a Gaussian filter was roughly 3 times
more expensive than applying a Haar filter. Moreover the parallelization technique may
also increase the processing time as all the candidate windows are tested by each classifier
in the mixture (in opposition to the cascade architecture). However we show in this section
that the overall detection speed in not significantly reduced by these two contributions.

Let us consider 4 detectors, all pre-processed by a cascade made of 5 stages of HF : a
cascade of 7 other stages of HF , a cascade of 12 stages of GF , 1 stage of 500 GF , a mixture
of GF . We apply these 4 detectors on a sequence of 1500 images with 320×240 pixels, each
frame containing one or several faces. We then report in table 8.3 the average detection
speed (number of frames per seconds).

Detectors with GF are only slightly slower than the one only based on HF . Moreover
the speed of the GF -based detectors does not depend on the structure of the system after
the pre-processing step. Using a cascade of GF , a single stage of GF or a mixture of GF
lead to roughly equivalent detectors in terms of computation complexity. In fact the 5
stages of HF discard a large majority of non-face windows so that the computation of the
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(a) 1 stage of GF

(b) Mixture of GF

Figure 8.3: Comparison between 1 cascade of GF (a) and a Mixture of GF (b), both
pre-processed by 5 stages of HF . The image is taken from the CMU/MIT test set [136].

GF does not affect much the overall detection speed.

8.4 Conclusions

This chapter presents a complete frontal face detection system that implements a simple
classifier combination technique. The detector uses a combination of several boosted clas-
sifiers which leads to high detection performances and can be applied in real-time. Each
classifier is trained using local discriminant features based on anisotropic Gaussian filters.
The complete training set is randomly subsampled and separate classifiers are trained on
each subsets. They are then combined probabilistically. It has been shown that the mixture
of boosted classifiers decreases significantly the false positive rate without affecting the true
positive rate. The complete system has been tested on reference datasets and compared
favorably to state-of-the-art.
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Conclusions and Future

Work 9
In this thesis, we covered various aspects of pattern recognition techniques, from both
theoretical and practical perspectives. In particular, we studied classifier combination tech-
niques and showed how they can be applied with success to face detection. We will now
give a short summary of the main results described in this work. We also discuss the main
limitations of the present approach as well as possible future works.

9.1 Achievements

As mentioned in the introduction of this thesis, the work presented here is twofold. First,
we study classifier combination techniques, emphasizing of the notion of diversity between
classifiers. In the second part of the thesis, we focus on face detection application, showing
how classifier combination techniques can be used efficiently in a real-life problem.

In chapter 4, we introduce an information theoretic framework for studying classifi-
er combination. We show how the main relevant concepts of classifier ensembles can be
modeled by information theoretic measures. In particular, we propose to use mutual in-
formation to measure the dependency between classifiers in the ensemble and accuracy of
each individual classifier. Information theoretic tools help us to demonstrate that a perfor-
mant ensemble should contain classifiers that are both diverse and individually accurate.
However, these two quantities, diversity and average individual accuracy, appear to be con-
tradictory in the sense that we cannot maximize them both together. Two very accurate
classifiers cannot be diverse, and inversely, two very diverse classifiers will necessarily have
low classification rates. In order to tackle this contradiction, we propose a information
theoretic score (ITS) that fixes a trade-off between these two quantities. A first possible
use of this score is to consider it as a selection criterion for extracting a good ensemble in
a predefined pool of classifiers. We also propose an ensemble creation technique based on
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AdaBoost, by taking into account the information theoretic score for selecting iteratively
the classifiers.

In chapter 5, we propose a complete study of one particular application of classifier
ensembles: Multiple Support Vector Machines (MSVMs). We show that combining several
Support Vector Machines (SVM) trained on subsets of the complete training set can help
decreasing training complexity while increasing classification performances, in particular
for large scale problems. A MSVMs is defined by two main components:

• The splitting algorithm that splits the original training set into subsets. The most
common is simple random sampling but clustering techniques can also be applied.

• The combination rule that will combine the decisions of each parallel SVM .

In this work, we propose several combination rules for merging the parallel decisions.
The first possibility is to train a second layer SVM on the margins of the first layer SVM .
As the margin can be viewed as a measure of confidence about predictions, more weight
is given to the most reliable classifiers. However, this merging technique requires an addi-
tional training set for training the second layer SVM . To overcome this problem, we also
propose to use simple fixed probability rules. They directly combine decisions of the par-
allel classifiers from estimates of the posterior probabilities. We then propose algorithms
that find better partitioning of the initial training set, by taking into account the ITS.
The first algorithm uses Genetic Algorithm for optimizing the score. It leads to very high
classification performances compared to the previous combination techniques but is very
computationally expensive. The second algorithm trains jointly SVM such that the same
ITS level as Genetic Algorithm is reached, but with much lower computation requirements.
It based on Kernel Adaton algorithm that learns on-line SVM . We introduce the concept
of Ensemble Support Vectors that support the margin of the ensemble. Let us summarize
its concept here. The algorithm starts by randomly splitting the complete training set
into disjoint subsets. We then iteratively train the parallel SVM by taking into account
the predictions of the support vectors of other SVM . The support vectors that are not
classified correctly by the ensemble are iteratively added to training set of other classifiers,
thus becoming Ensemble Support Vectors. We give complete evaluation and comparison of
these various algorithms on several commom large scale datasets.

Finally, we also focus on the small sample case, for which the classical MSVMs structure
does not compares favorably with single SVM in terms of classification rates and training
time. We propose a variant of MSVMs that construct an ensemble of MSVMs by using
cross-validation techniques. Instead of acting on the training data, we generate several clas-
sifiers by changing the herparameters (e.g. kernel parameters of the SVM). The obtained
ensemble maximizes the ITS.

In the second part of this thesis, we focus on the face detection application. We first
introduce in chapter 7 new geometrical filters called anisotropic Gaussian filters, that are
more discriminant than the rectangular Haar-like filters. We give comparison with standard
techniques in terms of classification rates and processing speed. The new filters appear to
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discriminate much better faces and non face examples that are close to the face class. The
processing time is not much affected as we employ a short cascade of Haar-like filters to
efficiently reduce the search space. Finally in chapter 8, we apply classifier combination
paradigm to the face detection system. We propose a parallel mixture of boosted classifier
for reducing the false positive rate and decreasing the training time while keeping the testing
time unchanged. The complete face detection system is compared on several datasets,
showing that it compares favorably to state-of-the-art techniques.

9.2 Perspectives

There are basically two main directions future work can take: one the one hand, it would
be interesting to investigate how the information theoretic framework can be generalized to
other classifier combination techniques. On the second hand, the techniques presented in
this thesis on optimal classifier combination using ITS could be applied to the face detection
application. More specifically, here is a list of possible perspectives:

• First, the ITS score defined in this work is independent of the application. It has been
designed upon general theoretical considerations, so that it gives the main direction
how to obtain a good ensemble. However it does not imply that the obtained ensemble
is optimal. It would be interesting to investigate how this score could be adapted
specifically depending on the application. In particular, if the classifiers in a pool
have very different accuracies, the main hypothesis used for defining ITS may not
hold as the measure of average individual accuracy may not be relevant measure of
the global performance of the individual classifiers.

• The ITS has been tested on datasets with up to 10 classes. As it has been discussed
in section 4.5.3, the number of classes influences the relationship between average
individual accuracy and diversity. This phenomenon could be taken into account by
considering a diversity term that includes the number of classes.

• The main limitations of the information theoretic framework, as presented in this
thesis, is that it only applies for majority voting combination. Even if it has also been
extended to weighted majority voting, it would be interesting to consider extending
this framework to other combination rules.

• Multiple SVM as presented in chapter 5 produce very efficient ensembles of classifiers
in practice. However, a pertinent research direction could be to study more deeply the
influence of the the number of members in the ensemble. The number K of classifier
in the ensemble has been set generally between 3 and 7 in order to keep a moderate
training complexity while having enough data in each training subset. Setting the
optimal K a priori is always a challenging task. This direction could be explored in
order to further improve MSVMs.



134 Chapter 9. Conclusions and Future Work

• Concerning face detection application, several perspectives could be investigated.
First, from an algorithmic point of view, new Boosting strategies could be used
for training the classifiers: FloatBoost, RealAdaBoost, GentleBoost, or the ITS-
AdaBoost presented here. The techniques proposed for MSVMs based on ITS could
also be adapted to AdaBoost such that the mixture of boosted classifiers can reduce
even more the number of false alarms.

• The work on frontal face detection can be extended to multi-view face detection by
implementing the mixture of boosted classifiers into a tree of boosted classifiers. The
idea is to hierarchically build pose-specific classifiers.
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[9] J. D. Borda (1781). Mémoire sur les elections au scrutin. Histoire de l’Académie
Royale des Sciences .

[10] L. Breiman (1996). Bagging predictors. Machine Learning 24(2):123–140.

[11] L. Breiman (1998). Arcing classifiers. The Annals of Statistics 26(3):801–849.

[12] L. Breiman (2001). Random forests. Machine Learning 45(1):5–32.

[13] L. Breiman, J. Friedman, R. Olshen, C. Stone (1984). Classification and regression
trees. Wadsworth International Group.

139



140 Bibliography

[14] G. Brown, J. Wyatt, R. Harris, X. Yao (2005). Diversity creation methods: A survey
and categorisation. Journal of Information Fusion 6(1):5–20.

[15] S. C. Brubaker, M. D. Mullin, J. M. Rehg (2006). Towards optimal training of
cascaded detectors. In 9th European Conference on Computer Vision ECCV, Graz,
Austria, pp. 325–337.

[16] M. Burl, T. Leung, P. Perona (1995). Face localization via shape statistics. In
International Workshop on Automatic Face and Gesture Recognition (AFGR), 1995.

[17] T. Butz, J.-P. Thiran (2005). From error probability to information theoretic (multi-
modal) signal processing. Signal Processing 85(5):875–902.

[18] C.-C. Chang, C.-J. Lin (2001). LIBSVM: a library for support vector machines.
Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[19] J. Chen et al. (2004). Novel face detection method based on gabor features. In
Advances in Biometric Person Authentication, 5th Chinese Conference on Biometric
Recognition, SINOBIOMETRICS 2004, Guangzhou, China,, pp. 90–99.

[20] R. Collobert, S. Bengio, Y. Bengio (2002). A parallel mixture of SVMs for very large
scale problems. Neural Computation 14(5).

[21] T. F. Cootes, C. J. Taylor (1992). Active shape models: Smart snakes. In British
Machine Vision Conference (BMVC), pp. 267–275.

[22] T. Cover, J. Thomas (1991). Elements of Information Theory. John Wiley and Sons,
Inc., New York.

[23] I. Craw, H. Ellis, J. R. Lishman (1987). Automatic extraction of facial features.
Pattern Recognition Letters 5(2):183–187.

[24] I. Craw, D. Tock, A. Bennett (1992). Finding face features. In European Conference
on Computer Vision (ECCV), pp. 92–96.

[25] F. Crow (1984). Summed-area tables for texture mapping. Computer Graphics -
SIGGRAPH 18(3):207–212.

[26] P. Cunningham (2000). Overfitting and diversity in classification ensembles based
on feature selection. Technical Report TCD-CS-2000-07, Department of Computer
Science, Trinity College Dublin .

[27] P. Cunningham, J. Carney (2000). Diversity versus quality in classification ensembles
based on feature selection. In European Conference on Machine Learning (ECML),
pp. 109–116.

[28] P. A. Devijver, J. Kittler (1982). Pattern recognition: A statistical approach. Prentice
Hall, New York.



Bibliography 141

[29] T. G. Dietterich (1998). Approximate statistical tests for comparing supervised clas-
sification learning algorithms. Neural Computation 10(7):1895–1924.

[30] T. G. Dietterich (2000). Ensemble methods in machine learning. Lecture Notes in
Computer Science 1857:1–15.

[31] T. G. Dietterich (2000). An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning 40(2):1–19.

[32] R. Duda, P. Hart (1973). Pattern classification and scene analysis. John Wiley &
Sons, New York.

[33] R. Duin (2002). The combining classifier: To train or not to train? In International
Conference on Pattern Recognition (ICPR), pp. 765–770.

[34] R. Duin, D.Tax (2000). Experiments with classifier combining rules. In Multiple
Classifier Systems, pp. 16–29.

[35] R. Duin et al. (2004). Prtools4, a matlab toolbox for pattern recognition. Delft
University of Technology .

[36] D. Erdogmus, J. C. Principe (2004). Lower and upper bounds for misclassification
probability based on renyi’s information. Journal of VLSI Signal Processing 37:305–
317.

[37] T. Evgeniou, M. Pontil, A. Elisseeff (2004). Leave one out error, stability, and gener-
alization of voting combinations of classifiers. Machine Learning 55(1):71–97.

[38] R. Fano (1961). Transmission of Information: A Statistical Theory of Communica-
tion. MIT Press, Wiley, Cambridge.
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