
Technical Report LCA-REPORT-2007-008, EPFL, September 2007.
Artificial Immune System For Collaborative Spam Filtering

Artificial Immune System For Collaborative Spam
Filtering

Slavisa Sarafijanovic and Jean-Yves Le Boudec

EPFL, Switzerland
{slavisa.sarafijanovic, jean-yves.leboudec }@epfl.ch

Summary. Artificial immune systems (AIS) use the concepts and algorithms inspired by the
theory of how the human immune system works. This document presents the design and initial
evaluation of a new artificial immune system for collaborative spam filtering1.

Collaborative spam filtering allows for the detection of not-previously-seen spam content,
by exploiting its bulkiness. Our system uses two novel and possibly advantageous techniques
for collaborative spam filtering. The first novelty is local processing of the signatures cre-
ated from the emails prior to deciding whether and which of the generated signatures will
be exchanged with other collaborating antispam systems. This processing exploits both the
email-content profiles of the users and implicit or explicit feedback from the users, and it uses
customized AIS algorithms. The idea is to enable only good quality and effective information
to be exchanged among collaborating antispam systems. The second novelty is the represen-
tation of the email content, based on a sampling of text strings of a predefined length and at
random positions within the emails, and a use of a custom similarity hashing of these strings.
Compared to the existing signature generation methods, the proposed sampling and hashing
are aimed at achieving a better resistance to spam obfuscation (especially text additions) -
which means better detection of spam, and a better precision in learning spam patterns and
distinguishing them well from normal text - which means lowering the false detection of good
emails.

Initial evaluation of the system shows that it achieves promising detection results under
modest collaboration, and that it is rather resistant under the tested obfuscation. In order to
confirm our understanding of why the system performed well under this initial evaluation,
an additional factorial analysis should be done. Also, evaluation under more sophisticated
spammer models is necessary for a more complete assessment of the system abilities.

Key words: Artificial, immune, collaborative, email, spam, filtering, representation,
hashing, similarity signatures.

1 The authors are with EPFL, Lausanne, Switzerland. The work presented in this paper was
supported (in part) by the National Competence Center in Research on Mobile Information
and Communication Systems (NCCR-MICS), a center supported by the Swiss National
Science Foundation, under the grant number 5005-67322.

1

2 Slavisa Sarafijanovic and Jean-Yves Le Boudec

1 Introduction
1.1 Related Work

One of main problems not solved by the existing similarity-hashing based [2] and
other collaborative content filtering methods [3, 7, 11] is that the representation of
the email content used for spam filtering is vulnerable to the random or aimed text
additions and other text obfuscation, which leaves many obfuscated spam emails
undetected.

Also, the results of the queries to the collaborative-filtering databases have usu-
ally very constrained impact to the detection decision. For example, when comput-
ing an email spamminess score, the product offered to the students and employees
at EPFL (our university), which is based on SpamAssassin [9], weights the Razor’s
result [7] approximately the same as the rule “subject is all big letters”, and much
less then the Bayesian score [4]. This is probably done in order to avoid false detec-
tion of good emails, because the used similarity-hashing representation is not precise
enough for distinguishing well spammy patterns from normal email content.

Although the general idea of exchanging the exact or similarity signatures de-
rived from the emails for spam bulk detection has been well known for years [1, 5],
we do not find solutions that successfully address the above explained problems.

Damiani et al. [2] investigate the vulnerability of the Nilsimsa representation [5]
(used by DCC [3]) and show the results that suggest that the representation becomes
completely non-useful if enough random text is added by the spammer to the dif-
ferent copies of the same original spam message. They also find that, in case when
the hashing function used by the filters is known, the spammer can defeat Nilsimsa
representation by adding a much smaller (20 times smaller) amount of text.

Interestingly, though their results show major weaknesses of Nilsimsa, the au-
thors comment the results only in the region of small random additions for which
the representation is still good, i.e. the additions being up to 3 times longer then
the spammy message. Their comments were later misinterpreted by many people
who cited their work as proof of the representation’s strength. Nothing prevents the
spammer from adding more text and moving into the region where the representa-
tion does not work well, which could happen already with the added random text
5 times longer then the spammy message. The problem here is that the signature is
computed from all, or predefined but variable in length, parts of the email. This gives
enough room to the spammer for effective add-random-text and/or add-chosen-text
obfuscation. Our system is designed to avoid such problems.

Regarding the existing use of the artificial immune system algorithms for spam
filtering, we find that both the email representation and the algorithms are crucially
different from our solution. Oda and White [6] use a word-based representation. They
compute scores based on both good and bad words present in the email, which is, the
same as Bayesian filtering methods, vulnerable to the additions of good words or
phrases.

The representation used by Secker et al. [8], another artificial immune systems
based approach, is also word based and not resistant to the letter-level obfuscation
because the exact matching is used. As their method takes into account bulk evi-
dence per user bases, i.e. it uses accumulated emails of one user as the training set,

Artificial Immune System For Collaborative Spam Filtering 3

it discovers the repeated spam patterns and is good at finding repeated spam. On the
contrary, their system has no built-in mechanisms to detect new spam content based
on the bulkiness of spam messages, although bulkiness offers strong spam evidence
that should surely be exploited.

Another type of content-based filtering is Bayesian filtering, originally proposed
by Graham [4]. A good feature of Bayesian filters is that they adapt to the protected
user’s profile, as they are trained on the good and bad email examples of the protected
user. The disadvantages are vulnerability to the addition-of-good-words attack and
absence of mechanisms to exploit bulkiness of new spam. The system has only a
“local” view of a new ongoing spam bulk.

Usually the Bayesian filtering and collaborative filtering are done separately, and
then the results are combined, along with results from other methods, for the final
decision making. It might be advantageous for collaborative filtering if some local
spamminess processing is done before the information is exchanged for the collabo-
rative filtering, which the existing systems do not take into account.

The only solution known to us that uses the signatures on the strings of fixed
length is the work by Zhou et al. [11], a peer to peer system for spam filtering.
However, their signatures are exact and are not similarity signatures, as required
by the rest of their system to work. Even modest spam obfuscation is able to alter
some of the bits of such generated signatures, which prevents their system from
detecting spam bulks. Their analysis results in a different conclusion, because they
use rather unrealistic obfuscation (which alters the created signatures with a very
small probability) to test their solution.

1.2 Our approach
We design the antispam system using some analogies to the workings of the human
immune system. The system consists of the “adaptive” part, which is used for collab-
orative content processing to discover spammy email patterns, and the “innate” part.
Although the innate part is not discussed and evaluated in this paper, it is still im-
portant. It is assumed to consist of predefined and quick mechanisms, such as white
lists, black lists, and rules, which could be used to instruct to the adaptive part to
not process the email or to process it more intensively then usual. In this paper we
explain and evaluate the adaptive part, as it can work alone.

One instance of our system is added to an email server and it protects email
accounts of that server. The system preferably (but not necessarily) collaborates with
a few other such systems.

The adaptive part produces so-called detectors that are able to recognize spammy
patterns within both usual and heavily obfuscated spam emails. This is made possi-
ble by processing emails on the level of so called “proportional signatures”: the text
strings of the predefined length are sampled at random positions from the emails.
They are further transformed into the binary strings using our custom similarity-
preserving hashing, which enables both good differentiation of the represented pat-
terns and their easy and robust similarity comparison.

The adaptive processing looks at the bulkiness of the proportional signatures and
at the same time takes into account the users’ profiles and feedbacks from standard
users’ actions, thus using a maximum of the available information for this so-called

4 Slavisa Sarafijanovic and Jean-Yves Le Boudec

collaborative content processing. The profile of the user is taken into account by
excluding from further processing the proportional signatures that show similarity to
the examples of the “good signatures”. Good signatures are created from the good
emails received or sent by the user. Similar “processing” exists in the human immune
system and is called negative selection. Then the local processing is done on the
remaining signatures, the processing that takes together into account both the local
bulkiness of the signatures and the feedback from the users deleting their emails as
spam. Based on the results of this local processing, some of the signatures may be
decided to be exchanged with other collaborating systems.

We assume that some of the users have and use the “delete as spam” button when
they read their email, tough the system may work even if the assumption is released.
Similar so-called “danger signal” feedback exists in the human immune system when
there is damage to the body’s cells, and is used similarly as in the presented antispam
system, to help activating the detection. For creating and activating the detectors,
apart from the above explained evidence, the signatures obtained from other antispam
systems are also accounted for when evaluating the bulkiness. Similar clustering of
the chemical matches on the surface of the virus infected cells happens in the human
immune system.

Thanks to the combination of the custom representation and the local processing,
many good parts of the emails are excluded from further processing and from the
exchange with other collaborating systems. This enables the bad (spammy) parts to
be represented more precisely and better validated locally before they are exchanged.
This increases the chances for the bad patterns to form a bulk and thus create a
detector. They cannot be easily hidden by the spammer within the added obfuscation
text as in the case with the classical collaborative filtering schemes.

The local clustering of the signatures makes the so-called recurrent detection
feasible: the new emails are checked upon arrival, but also a cheap additional check-
ing is done upon creation of new active detectors during the pending time of the
email (before the user’s email client comes to pick it up). This further decreases non-
detection of spam. The randomness in sampling and user-specific processing ensure
the detectors to be diverse and unpredictable by spammers.

2 Description of the System

2.1 Where Do We Put the Antispam System

The antispam system, which filters the incoming e-mails for the users having their
accounts on the same e-mail server, is placed in front of that e-mail server towards
its connection to the Internet (Figure 1). This is the logical place of the filter, though
the deployment details might differ a bit.

The antispam system designated to one e-mail server and its users can be an
application added to the e-mail server machine, or it can be a computer appliance
running such an application. A few such antispam systems can collaborate with each
other, and each of them is also interfaced to the email server and accounts it protects.
The collaboration to other antispam systems can be trusted, like in the case of few
antispam systems administered by the same authority, or evaluated by the antispam

Artificial Immune System For Collaborative Spam Filtering 5

Fig. 1. The position of an antispam system with respect to other antispam systems, the pro-
tected email server and Internet.

system and correspondingly adapted, as it would probably be the case in a self-
organized collaboration of antispam systems with no inherent mutual trust.

2.2 What the system does, inputs, outputs.
The antispam system decides for the incoming emails whether they are spam or
not. If enough evidence is collected that an e-mail is spam, it is either blocked or
marked as spam and sent to the e-mail server for easy sorting into an appropriate
folder. Otherwise, upon a maximum allowed delay by the antispam system or upon
a periodic or user-triggered send/receive request from the user’s email client to the
email server, the email is passed unchanged to the e-mail server.

The first-type inputs into the antispam system are incoming e-mail messages,
before they are passed to the e-mail server.

The second-type inputs to an antispam system come from the access by the an-
tispam system to the user accounts it protects. The antispam system observes the
following email-account information and events for each protected email account:
text of the e-mails that the user sends; text of the e-mails that the user receives and
does an action on them; the actions on the e-mails processed by the antispam sys-
tem and received by the user, i.e. not filtered as spam, including deleting a message,
deleting a message as spam, moving a message to a folder; the actions on the e-mails
processed by the antispam system and filtered as spam, which could happen very
rarely or never depending on the user’s behavior and performances of the antispam
system; the send/receive request from the email client of the user to the e-mail server;
email addresses from user’s contacts. We assume that some of the users protected by
the antispam system have “delete” and “delete-as-spam” options available from its
e-mail client for deleting messages and use them according to their wish, but this
assumption could be released and another feedback could be incorporated from the
user actions on his emails, like moving the emails to good folder for example or
simply deleting the emails. Here “delete” means move to “deleted messages” folder,
“delete-as-spam” means move to “spam messages” folder. We also assume that all
the e-mails that the user still did not permanently delete are preferably on the e-mail
server, so the antispam system can observe the actions taken on them. Here “per-

6 Slavisa Sarafijanovic and Jean-Yves Le Boudec

manently delete” means remove from the e-mail account. The messages could be all
moved to and manipulated only on the e-mail client, but then the client should enable
all the actions on the e-mails to be observed by the antispam system.

The third-type inputs to the antispam system are messages coming from collabo-
rating antispam systems. The messages contain useful information derived from the
strings sampled from some of the e-mails that have been either deleted-as-spam by
the users having accounts on the collaborating antispam systems or found by local
processing as being suspicious to represent spammy part of an email from a new
spam bulk. The third-type inputs to the antispam system are especially useful if there
is small number of the accounts protected by the system. One of the factors that de-
termine the performances of an antispam system is the total number of the active
accounts protected by the antispam system and its collaborating systems.

The main output from the antispam system are the decisions for the incoming
emails whether they are spam or not.

Another output are the collaborating messages sent to other antispam systems.
These messages contain useful information derived from the strings sampled from
some of the e-mails that has been deleted-as-spam by the users having accounts on
the antispam system, or are locally found to be bulky. If the collaboration is self-
organized and based on evaluated and proportional information exchange, the an-
tispam system has to create these outgoing collaborating messages in order to get
similar input from other antispam systems.

2.3 How the System Does Its Job - Internal Architecture and Processing Steps
Internal architecture and processing steps of the antispam system are shown on Fig-
ure 2. Each block represents a processing step and/or a memory storage (database).
All the shown blocks are per user and are shown for only one user on the figure,
except the “Maturation” block which is common for all the users protected by the
same antispam system. The following processing tasks are done by the system.

Incoming emails are put into the pending state by the antispam system, until
the detection process decides if they are spam or not, or until they are forced to an
Inbox by pending timeout, by periodic request from the mail client, or by a request
from the user. The innate processing block might declare an email as non-spam and
protect it from further processing by the system. If an email is found to be spam, it
is quarantined by the antispam system or it is marked as spam and forwarded to the
email server for an easy classification. Otherwise it is forwarded to the email server
and goes directly to the Inbox. The user has access to the quarantined emails and can
force some of them to be forwarded to the Inbox, but is not required to do so.

A pending email that is not protected by the innate part is processed in the follow-
ing way. First, the text strings of predefined length are sampled from the email text at
random positions. Then, each sampled text string is converted into the binary-string
representation form called proportional signature (“binary peptide”). The details on
creating the proportional signatures are given in Section 2.3. To continue reading this
section, you just need to know that similar strings generate similar proportional sig-
natures, i.e. their signatures have small hamming distance, and that unrelated strings
with very high probability result in not similar proportional signatures (big hamming
distance). This explains why the term proportional signature is used.

Artificial Immune System For Collaborative Spam Filtering 7

Fig. 2. Internal architecture of the antispam system.

Each proportional signature is passed to the negative selection block. Another
input to the negative selection block are so called self signatures, the signatures ob-
tained in the same way as the proportional signatures of the considered incoming
email, but with the important difference that they are sampled from the e-mails that
the user implicitly declared as non-spam (e.g. outgoing emails). In the negative se-
lection block, the proportional signatures of the considered incoming email that are
within a predefined negative-selection-specific similarity threshold of any self signa-
ture are deleted, and those that survive become so called suspicious signatures.

Each suspicious signature is duplicated. One copy of it is passed to the matura-
tion block, and another to the detection block. Each suspicious signature passed to
the detection block is stored there as a pending signature. It is compared against al-
ready existing memory and active detectors and against the new active and memory
detectors potentially made during the email pending time. If a suspicious signature
is matched (found to be within a predefined detection-specific similarity threshold)
by an active or memory detector, the corresponding email is declared as spam. The
pending signatures are kept only as long as their corresponding email is pending.

The active detectors used in the detection process are produced by the matura-
tion (block) process. The inputs to this process are the above mentioned suspicious
signatures, local danger signatures and remote danger signatures. The local danger
signal signatures are created in the same way like the suspicious signatures, but from

8 Slavisa Sarafijanovic and Jean-Yves Le Boudec

the emails being deleted as spam by the users protected by the antispam system. The
remote signatures are obtained from collaborating antispam systems.

Except upon start of the system, when it is empty, the maturation block contains
so called inactive and active detectors. When a new suspicious signature is passed
to the maturation block, it is compared using a first maturation-similarity threshold
against the signatures of the existing inactive detectors in the maturation block. Syn-
tax of a detector is shown on the Fig 3. If the signature is not matching any of the
existing inactive detectors signatures, it is added as new inactive detector to the mat-
uration block. If it is matching an existing inactive detector, the status of that detector
(the first that matched) is updated, by incrementing its counter C1, refreshing its time
field value T1, and adding the id of that user. The same happens when a local danger
signature is passed to the maturation block, the only difference is that, if matching,
C2 and T2 are affected instead of C1 and T1 and DS bit is set to 1. Upon refreshing,
the T2 is typically set to a much later expiration time then it is the case with T1. The
same happens when a remote danger signature is received from a collaborating sys-
tem, with a difference that id and DS fields (see next paragraph for the explanation of
different fields) are not added and the affected fields are only C3, C4, T3, T4. Local
suspicious and danger signatures are passed to the maturation block accompanied
by id value, and remote danger signatures do not have the id value but have its own
C3 and C4 fields set to real number values (could be binary too), so the local C3
and C4 counters may be incremented by one or by values dependant on these remote
incoming signature counters.

Fig. 3. Syntax of a detector. ACT stands for activated/non-activated and this bit shows the
state of the detector. C1 is counter of clustered local suspicious signatures. C2 is counter
of clustered local danger signal signatures, i.e. signatures generated from emails deleted as
spam by users and negatively selected against user specific self signatures. Ti is time field for
validity date of counter Ci. “id” is a local (server wide) identification of the protected user
account that received email from which the signature originates, and is useful when deciding
how and which users this signature might impact once it becomes activated (explained later).
DS is so called danger signal bit of a local clustered signature. It is set to 1 if its corresponding
signature comes from an email deleted as spam, else it is set to 0.

Whenever an inactive detector is updated, a function that takes as input the coun-
ters of this detector is called that decide about a possible activation of the detector
(in the current simple implementation we use a threshold for each counter indepen-
dently). If the detector is activated, it is used for checking the pending signatures of
all the local users’ detection blocks (1 per user). We call this recurrent detection of
pending email messages. Optionally, only the detection blocks could be checked for
which id is added to the detector.

Upon the activation of a detector, its signature is copied to the memory detectors
databases of those users that had their id added to the detector and appropriate DS
bit set to 1. Memory detectors are also assigned a life time, and this time is longer
then for the activated detectors.

Artificial Immune System For Collaborative Spam Filtering 9

Whenever a new detector is added or an existing is updated by the local suspi-
cious or danger signature, a function is called that takes as inputs C1 and C2 and
decides if a signature should be sent to a collaborating system (in a simple imple-
mentation the counters may trigger the actions independently).

Both the inactive and active detectors live until all the lifetimes (T1-T4) are ex-
pired. The old proportional signatures and detectors in different blocks are eventually
deleted, either because of expired life time or need to make space for those newly
created.

Transforming the strings into the proportional signatures

There are several reasons and goals to transform the sampled text strings into binary
representation. First, in order to preserve privacy, it is important to hide the original
text when exchanging the information among the antispam systems. To achieve this
we use one way hash functions when transforming text string into its binary equiva-
lent. Second, it is important that the similarity of the strings, as it would be perceived
by the reader, is kept as similarity of the corresponding binary patterns that is easy
to compute and statistically confident. Similarity might mean small hamming dis-
tance, for example. “Statistically confident” means that the samples from unrelated
emails should with very high chance have the similarity smaller than a given thresh-
old, while the corresponding samples from the different obfuscations of the same
spam email, or from similar spam emails, should with high chance have the simi-
larity above the threshold. “Corresponding” means that they cover similar spammy
patterns (expressions or phrases) that exist in the both emails. Third, the binary rep-
resentation should be efficient, i.e. it should compress the information contained in
the text string and keep only what is relevant for comparing the similarity. Last, but
not least important, the binary representation should provide possibility to generate
the random detectors that are difficult to be anticipated and tricked by the spammers,
even if the source code of the system is known to the spammers.

To achieve the above listed goals, we design the representation based on so called
similarity hashing. Our custom hashing is similar to the Nilsimsa [5], with important
differences. It is illustrated on the Fig 4. The input is a string of the fixed length (sam-
pled at a random position from the email). The sliding window is applied through the
text of the string. The window is moved character by character. For each position of
the window 8 different trigrams are identified. A trigram consists of three characters
taken from the predefined window positons. Only the trigrams containing the char-
acters in the original order from the 5-character window and not spaced more then
by one character are selected. Then a parametric hash function is applied that trans-
forms each trigram into the integer from 1 to M, where M is the size of the binary
representation that must be the same for all the collaborating systems. The bit within
the binary string ”proportional signature” indexed by the computed integer is set to
1. The procedure is repeated for all window positions and all trigrams.

Unlike the Nilsimsa method that accumulates the results within the bins of the
proportional signature, and then applies a threshold to set most populated beans to
1 and other beans to 0, we just do overwrite a bit if it is already set, i.e. we fill the
proportional signature as if we would fill a Bloom filter. In the used transformation,

10 Slavisa Sarafijanovic and Jean-Yves Le Boudec

Fig. 4. Hashing of a sampled text string into the proportional signature (also called binary
peptide). Collaborating systems must use the same signature length (typically 256, 512 or
1024 bits).

M is determined as the smallest value that provides desirable small contention in
the Bloom structure. It is important to notice that the hash function could be any
mapping from the trigrams on the1 −M interval, preferably with a uniform distri-
bution of values for randomly generated text. The parameterp on the figure controls
the mapping. Preferably, the hash function produce the same values for the trigrams
containing the same set of characters, in order to achieve robustness against obfus-
cations that reorder letters within words.

Use of the Bloom filter rule for setting of the signature bits prevents from deleting
(by text additions) the bits that correspond to the spammy patterns. Contrary, with
a method like Nilsimsa it is possible to add text that will overweight the spammy
phrase trigrams and prevent them of being shown up in the signature.

3 Evaluation
Evaluation of the system is done using a custom simulator made in C programming
language. It simulates configurable number of servers and email users per server, and
implements the main functions of the proposed antispam system (some details are
missing, like detector timers for example, wich were not important for the performed
short simulations). User’s behavior of sending and reading emails is simulated using
a random (uniform) distribution of time between reading new emails and sending
random number of emails. The recipients are chosen at random. Network delay is
also a parameter (though its impact is small).

We tested how number of systems to which a system collaborates impacts the
detection results. We did it for two cases: without obfuscation, when spammer sends
many identical copies of the same spammy message, and with obfuscation, when
spammer changes each copy from the spam bulk. We tested the system only for one
obfuscation model in which letters inside words are rearranged completely randomly
for each new copy (such text is still readable by humans). Spammer sends spams in
bulks, as that is standard spamming-business model.

The length of sampled strings is 64, the length of binary peptides and detectors
is 256. We used spam and ham (not easy or hard ham) sets from SpamAssassin

Artificial Immune System For Collaborative Spam Filtering 11

Corpus [10] of emails for the evaluation. The length of simulation we used was 2h,
as constrained with the number of messagess from the used corpus.

4 Results Discussion

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
ue

 p
os

iti
ve

s
(T

P
)

sc
al

e

Number of servers to which a server collaborates

Detection Rates

0 2 4 6 8 10 12 14
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

fa
ls

e
po

si
tiv

es
 (

F
P

)
sc

al
e

TP, without obfuscation
TP, with obfuscation
FP, without obfuscation
FP, with obfuscation

0.93

1.7*10−3

0.96

3*10−5

(a)

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8
Antispam system traffic per received email

Number of servers to which a server collaborates

tr
af

fic
 [

S
N

U
 /

em
ai

l]

without obfuscation
with obfuscation

(b)
Fig. 5. (a) Detection results; (b) Traffic exchanged for collaboration. SNU stands for Standard
Nilsimsa Unit = 256 bits, i.e. the traffic is measured relatively to the amount of traffic produced
by a Nilsimsa query to centralized database upon receiving an email.

From the Figure 5(a) we can see that collaboration to up to 10 other antispam
systems already gives good results, and that the systems copes well against the tested
obfuscation. We were surprised that False Positives is bigger with non-obfuscated
messages, but we found that this detections happen with detectors that correspond
to header fields of emails. This can be explained with the fact that we did short
simulations and during that time self examples are still not learned well as number
of good email examples we start with is limited. Obfuscation of messages lessen
this artifact. We expect that this artifact will go away in longer simulations and with
larger initial number of emails in Inboxes.

From the Figure 5(b) we can see that the traffic created by an antispam sys-
tem upon receiving an email is only few times larger then for making one nilsimsa
database query, which is very moderate usage of the traffic. Upon inspecting number
of created candidate detectores and number of exchanged detectors, we found that
less than 10% is is exchanged from those created. This is due to the control done
by negative selection and maturation processes that put away the detectors that cor-
respond to the parts of the emails that are likely to be normal text (or obfuscation
component that is usually random) and allow the collaborating systems to concen-
trate on further processing of the suspicious patterns.

5 Conclusions
The initial evaluation shows that the system achieves promising detection results
under modest collaboration, and that it is rather resistant to the tested obfuscation.

The use of the artificial immune system approach to represent observed and pro-
cessed information (suspicious signatures) and a learned state (signatures that be-
came active or memory detectors) enables efficient information exchange among

12 Slavisa Sarafijanovic and Jean-Yves Le Boudec

collaborating systems. Only the relevant (locally processed) and independent small
units of information (the proportional signatures) need to be exchanged to achieve a
distributed and collaborative detection of email spam. These units are independent
and contain asummarized partial information observed and processed by a local
system. With the use of classical neural networks as a competitive approach, the lo-
cally learnt information specific to one input pattern is distributed among many links
of the local neural network and only the classification output from the local network
is available - which does not allow for the simple exchange of summarized informa-
tion learned locally from multiple strongly correlated observed input patterns.

Due to the complexity of the system and many parameters that might affect the
results, the proven conclusions about what the key things are that explain whether
and why the system is really working well or not would require a lot of additional
testing (simulations) and the use of factorial analysis methods.

Another important point that remains to be evaluated experimentally is thedy-
namic of the response to a new spam bulk by the network of antispam systems.
According to the design, we know that during a response to a new spam bulk more
resources are used, and that upon creating enough detectors in response to this spam
bulk and distributing them within the antispam network, all (or huge majority) of
the collaborating users are protected from the remaining spams from that bulk and
from repeated similar spams (note that this is very similar to the inflammation and
win over a virus by the human immune system). So, it is important to determine the
resources needed and the ability and limits of the system to cope with spam under
“stress” spamming conditions, when maybe the goal of the attacker is not only to
get spam through into the Inboxes, but also to defeat the antispam system(s) (and
its reputation) by putting it out of its normal working mode. A better understanding
and control of the mechanisms that start and stop the “inflamation” (reaction to spam
bulks) in the network of antispam systems is thus crucial.

References
1. Cotten W (2001), Preventing delivery of unwanted bulk e-mail, US patent 6,330,590.
2. Damiani E, et al (2004), An open digest-based technique for spam detection. In Proc. of

the 2004 International Workshop on Security in Parallel and Distributed Systems, San
Francisco, CA USA.

3. DCC project web page (Jan 2007), http://www.rhyolite.com/anti-spam/dcc/
4. Graham P (2002), A plan for spam, http://www.paulgraham.com/spam.html
5. Nilsimsa project web page (Sep 2006), http://lexx.shinn.net/cmeclax/nilsimsa.html
6. Oda T, White T (2003), Developing an immunity to spam. In: Genetic and Evolutionary

Computation Conference, Chicago(GECCO 2003), Proceedings, Part I. Volume 2723 of
Lecture Notes in Computer Science, 231-241.

7. Razor project web page (Sep 2006), http://razor.sourceforge.net/
8. Secker A, Freitas A, Timmis J (2003), AISEC: An Artificial Immune System for Email

Classification. In Proceedings of the Congress on Evolutionary Computation, Canberra,
IEEE, 131-139.

9. SpamAssassin project web page (Sep 2006), http://spamassassin.apache.org/
10. SpamAssassin email corpus (Sep 2006), http://spamassassin.apache.org/publiccorpus/
11. Zhou F, et al. (2003), Approximate object location and spam filtering on peer-to-peer

systems. In Proc ACM/IFIP/Usenix Int’l Middleware Conf., LNCS 2672, pp. 1-20.

