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Abstract. The correct functioning of a peer-to-peer network relies on cooperative behavior of peers
as service providers. Current approaches to detection and deterrence of non-cooperative behavior, such
as reputation systems, rely on (1) global sharing of observations about service provisioning and (2)
global authentication. These two factors severely impair the practical applicability. We propose a novel
forward feedback protocol that is completely local and authentication-free and where peers locally and
independently learn to avoid non-cooperative peers and routing failures.
We evaluate our system in a variety of failure scenarios. The convergence rates and failure resilience are
close to those of a fully centralized reputation system. High churn is tolerated without significant drop
in performance. For increased fault tolerance the system takes advantage of the service replicas existing
in the network. The proposed protocol is lightweight and can readily be integrated into any architecture
where service requests are recursively routed, which includes all modern structured overlays.

1 Introduction

In a peer-to-peer architecture peers provide various services to one another. Services include for-
warding a message to some destination, storing a key-value pair in a distributed hash table or
transferring a file. In a typical P2P network deployment each peer is owned and fully controlled by
a different user. Selfish users may choose to modify the peer software to only request and receive
services from other peers and never provide any services back. In this way the peer’s resources (e.g.
bandwidth) are conserved. Users may also be adversaries attempting to subvert the network by
generating superfluous or malformed traffic or providing fake services. Independently of the failures
caused by the user, a peer may also undergo an internal failure leading to a disruption in the mes-
sage passing protocols and consequently to service provisioning failures. In this paper we focus only
on protocol failures themselves regardless of their causes, be it selfish users, adversaries or chance.
We propose an architecture that detects failures in a service provisioning P2P network and learns
how to avoid them to maximize the fraction of successfully provided services and prevent service
requests from reaching the faulty service providers.

A number of approaches to protecting the P2P networks against service provisioning failures
rely on the universal authentication of the peers, i.e. the ability to reliably verify the identity of any
peer by any other peer in the network. For example in reputation-based approaches [1, 2] each peer
has a reputation associated with its identity and that identity has to be reliably verified by other
peers. The typical distributed authentication systems based on PKI are centralized and have a
single point of trust (e.g. the root certification authority) which limits the scaling and usability. On
the other hand, any decentralized P2P-based implementation of peer authentication, such as PGP
or other web of trust approaches, must deal with peers that fail to provide the authentication service
to other peers. Tolerating this type of failures is precisely the problem we are solving, a circular
dependency. In our approach we do not require any node authentication at all. When a connection
between two nodes is opened none of the neighbors have to prove their identity. Each node maintains
connections to a set of neighbors and exchanges feedback on the quality of service provisioning only
with them. The node learns which of its neighbors are faulty by listening to feedback from other
neighbors. No node identities are ever communicated over the network and thus never have to be



verified. The crucial difference between ours and the reputation-based approaches is that when
there is a service provisioning failure, in the reputation system the service provider is blamed for it,
while in our system it is the neighbor who forwarded the service request that is blamed. We show
in Section 4 that this simple strategy results in performance that closely trails that of a centralized
reputation system with global peer authentication.

In most of the existing approaches a peer that is detected as faulty is isolated from the network,
regardless of the extent or the type of the failure. Peers may be only partially faulty. For example,
in a P2P file sharing network a peer might choose to respond to requests for small files, while
dropping requests for large files to conserve bandwidth. Isolating such a peer completely instead
of still routing requests for small files to it decreases the overall availability of files in the network.
In our approach, the algorithm learns the nature of the partial failures and maximizes the use of
the faulty peer’s functionality that is still correct. We demonstrate this property in the context of
selective dropping of service requests and service replication (Sections 4.5 and 4.6).

Before a service can be provided, the peer that provides the service needs to be located. In
existing approaches service location is generally assumed to be a reliable black box, always perfectly
locating the service. In practice this frequently made assumption is not valid, the service location
as a distributed mechanism itself requires cooperation among the peers and tolerance to failures.
For example, in DHTs locating the peer that stores a specific key requires the cooperation of all
the peers that forward the key lookup message. If any of these peers drop the lookup message or
mutate it, it may never be delivered to the peer responsible for the key. The modern DHT design
mainly focuses on fault tolerance to crash-stop failures in which once a peer crashes or departs, no
more messages are sent or received to or from it. However, there is typically lack of fault tolerance
to selective message dropping or message mutation (Byzantine failures). Hence it is incorrect to
assume that a DHT is a reliable black box when using the DHT to store the critical information
in reputation-based approaches.

In this paper, instead of assuming the service location mechanism to be a reliable black box,
we assume a specific preexisting service location protocol (Section 2.2) in which the service request
originates at the requesting peer and is recursively routed hop by hop to a service provider that
is capable of providing the requested service. The definition of the service location protocol is
broad enough to encompass a large number of applications in which there exists a concept of
recursive routing, and to which our forward feedback protocol can be applied, e.g. structured and
unstructured overlays or ad-hoc networks.

A failure in the recursive service location may lead to the wrong service being provided or
not being provided at all. We do not require the service location to be fault tolerant, instead we
propose a system that learns how to ensure both (i) the successful delivery of the service requests
despite routing failures and (ii) preventing service requests from reaching faulty service providers.
The proposed forward feedback protocol (Section 2.3) integrates into the existing service location
protocol. Based on the gathered feedback, peers learn which routes lead to service provisioning
failures and the service location protocol selects alternative routes (Section 4.3). When services are
replicated, our protocol is able to learn which replicas are correct and route towards them (Section
4.6).

2 The model

Let the digraph G = (V, E) be the network of connections between the peers, where V is the set of
peers and E is the set of peer pairs representing unidirectional connections. Let outneigh : V → 2V

and inneigh : V → 2V be the set of peers pointed by respectively outlinks and inlinks of some
v ∈ V . Let S be the set of services and offeredServices : V → 2S be the set of services offered by
a given peer v ∈ V .



2.1 Architectural overview
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Fig. 1. The proposed system architecture

Figure 1 depicts the functional dependencies be-
tween the components of the system. We take
some existing service location protocol (Section
2.2) that locates the requested service in a hop-
by-hop manner and augment that protocol with
feedback messages reporting the success or fail-
ure of service provisioning (Section 2.3). These
successes and failures along with any deviations
from the protocol are reported to the failure
predictor. The failure predictor (Section 2.4) is
used when routing service requests to avoid for-
warding service requests to next hops that are
likely to lead to a failure in providing the ser-
vice. The failure predictor uses the p-concepts
learning algorithm [3] to make its predictions
(Section 2.5).

2.2 Service location

We assume the existence of a service location functionality which recursively routes service requests
from the requestor to some provider that offers the service specified in the service request. Services
are specified in the service request by means of a service descriptor. A single service descriptor can
be matched against not only one but many different services. The set of service descriptors is D

and matchedServices : D → 2S returns the set of services that the specified service descriptor
matches.

We represent service request routing as a function selectNextHop : S ×V × 2V → V that takes
the service descriptor of the service that needs to be located, the current node (self) and the set of
possible next hops and returns the chosen next hop. The routing paths generated by selectNextHop

are assumed to be loop-free. The set of next hops to which a request can be forwarded can easily
be constrained on a per request basis by the failure predictor (Section 2.4).

2.3 Forward feedback protocol
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Fig. 2. The operation of the forward feedback
protocol

When the service request successfully reaches
the provider, the provider is expected to pro-
vide the service to the requestor. We do not
make any assumptions about how the service is
provided, it is only assumed that this must hap-
pen within a bounded time. After a provisioning
failure or timeout, the service requestor initiates
the forward feedback protocol described below
to inform other peers about the success or fail-
ure of service provisioning.

The forward feedback protocol adds on to the existing service request routing protocol. After a
service request is forwarded by some node on the routing path it expects to receive feedback from
its previous hop. The feedback message contains a single bit describing whether the service was
provided successfully or not. The first feedback message is sent by the service requestor after it
has received the service. Then on, the service feedback message is forwarded following exactly the
same path as the service request has followed until the service provider is reached. This process is
depicted on Fig. 2 and Fig. 3 presents the complete algorithm with failure prediction.



initialize1

failurePredictor ← create new failure predictor2

nh ← empty array3

sd ← empty array4

5

function requestService(serviceDescriptor)6

rid← generateUniqueRequestID()7

expect call serviceProvided(rid,*) in Tservice8

forwardServiceRequest(null,rid, self , serviceDescriptor)9

10

receive ServiceRequest(rid, origin, serviceDescriptor) from src11

expect Feedback(rid, *) from src in Tfeedback12

if offeredServices( self) ∩ matchedServices(serviceDescriptor) �= ∅13

then

provide service to origin14

else15

forwardServiceRquest(src,rid, origin, target)16

end17

18

function forwardServiceRequest(ph,rid, origin, serviceDescriptor)19

candidateNextHops←outneigh(self) \20

failurePredictor.getSuspectedNextHops(ph,serviceDescriptor)
nextHop ← selectNextHop(serviceDescriptor, self ,21

candidateNextHops)
send ServiceRequest(rid, origin, serviceDescriptor) to nextHop22

nhrid ← nextHop23

sdrid ← serviceDescriptor24

25

function serviceProvided(rid,success)26

failurePredictor.reportObservation(null, nhrid, sdrid, success)27

send Feedback(rid,success) to nhrid28

29

receive Feedback(rid,success) from src30

failurePredictor.reportObservation(src, nhrid, sdrid, success)31

send Feedback(rid,success) to nhrid32

33

timeout on Feedback(rid,*) from src34

failurePredictor.reportObservation(src, nhrid, sdrid, false)35

send Feedback(rid,false) to nhrid36

37

timeout on call serviceProvided(rid,*)38

failurePredictor.reportObservation(null, nhrid, sdrid, false)39

send Feedback(rid,false) to nhrid40

Fig. 3. Forward feedback protocol

From the point of view of the service re-
questor, when the application calls requestSer-

vice (line 6) for some service descriptor, the
peer generates the ServiceRequest message and
sends it to the appropriate next hop. It then ex-
pects a serviceProvided call (line 8) from the ap-
plication that indicates whether the service has
been provided or not. If that call does not hap-
pen within the timeout of Tservice the service
provisioning is considered to have failed (line
38) and negative feedback is sent.

From the point of view of the service
provider, when it receives a ServiceRequest (line
11) with a service descriptor for which it can
provide the service, the service is provided to
the origin of the service request (line 14).

From the point of view of some forwarding
peer vc, when it receives a service request from
some previous hop vph, it forwards it to the next
hop vnh (line 16), vc then expects feedback from
vph (line 12) on whether the service provision-
ing was successful or not. If the feedback does
not arrive within the timeout Tfeedback (line 34)
the service provisioning is considered to have
failed. If the feedback arrives it is forwarded to
the same next hop that was taken by the corre-
sponding service request before (line 32), same
for the requestor when the service is provided
(line 28). This is implemented by assigning a
unique identifier to every service request (rid)
and remembering the next hops taken in the nh

array.

2.4 Failure predictor

As the events happen in the protocol they are reported to the failure predictor as observations. An
observation o = (ph, nh, sd, b) ∈ V × V × D × {0, 1} consists of the previous hop from which the
service request was received, next hop to which the request was forwarded, the request’s service
descriptor and the boolean flag indicating whether the hop led to a successful service provisioning.

Given a set of reported observations, the failure predictor returns the suspected next hops that
are likely to cause a failure in service provisioning. The suspected next hops are then excluded
from the list of candidate next hops and not taken (line 20). A next hop may be suspected only
temporarily, as observations are reported the set of suspected next hops returned by the failure
predictor may change. When all next hops are suspected, there is a next hop null event (NHnull)
and the service request is dropped.

2.5 Learning failures

The failure predictor accumulates observations and based on them makes predictions if a context

triple of the form (ph, nh, sd) ∈ V ×V ×D will result in successful service provisioning or not. The
context triple describes the previous hop from which the currently forwarded service request has
been received, the hypothetical next hop that can be chosen and the service descriptor contained



in the service request. The learning task is to learn the probability of success given a context triple
and the set of observations.

We employ the learning method called the probabilistic concepts (p-concepts) learning [3], which
is based on Rivest’s decision lists [4]. A concept is a boolean function defined over a domain set X.
Rivest [4] has shown that given a set of observations (x, b) where x ∈ X and b ∈ {0, 1} is the label,
an unknown concept can be learned efficiently if the concept belongs to the set kDL, i.e. decision
lists with conjunctive clauses of size k. The set kDL is expressive enough to include decision trees
and the sets kDNF and kCNF , i.e. respectively the disjunctive and conjunctive normal forms
with k literals per clause. Kearns et al. [3] extend this result to probabilistic concepts i.e. functions
of the form c : X → [0, 1] where c(x) is interpreted as the probability of observing a positive
observation (x, b = 1). Kearns defines the probabilistic decision list c over the set of predicates Fn

to be (f1, r1), . . . , (fs, rs), where fi ∈ Fn and ri ∈ [0, 1]. The value of c(x) is rj for the smallest
j such that fj(x) is true. The decision list is ω-converging if |ri − ω| ≥ |ri+1 − ω| for 1 ≤ i < s.
Such list is output by the Kearns’ algorithm. We use a special case of the list, for ω = 1

2
, which

corresponds to the list with decreasing certainty. The predicates that are most certain (i.e. those
with values of rj closest to 0 or 1) are in the front of the list and are matched against first.

In our case the domain X is the set of all context triples, X = V ×V ×D. The set of predicates
Fn has the following properties:
– each predicate is either a single literal or a conjunction between two or more literals
– there are three types of literals: (1) previous hop literals of the form ph = vi, vi ∈ V (2) next

hop literals nh = vi, vi ∈ V and (3) service descriptor literals sd = di. di ∈ D

– a predicate can refer to at most one literal of each type, from this it follows that a predicate
can have a maximum of 3 literals

For example, the predicate ph = v12∧sd = d4 belongs to Fn while the predicate ph = v12∧sd =
d4 ∧ ph = v15 does not.

The set of predicates Fn is induced from the observation set S before running the Kearns’
p-concepts algorithm. For every observation o = (ph = vi, nh = vj , sd = dk, b) ∈ S there can
be a maximum of 7 corresponding predicates generated: (1) ph = vi, (2) nh = vj , (3) sd = dk,
(4)ph = vi ∧nh = vj , (5) ph = vi ∧ sd = dk, (6) nh = vj ∧ sd = dk, (7) ph = vi ∧nh = vj ∧ sd = dk.
If either ph or the nh are null the corresponding predicates containing either the previous hop or
next hop literals are not generated.

Given the set of observations S and the set of predicates Fn induced from it the p-concepts
algorithm runs and produces the decision list (for the details of the algorithm the reader is referred
to [3]). With the set of predicates defined above, thanks to the expressiveness of kDL the failure
predictor can learn to predict the probability of success even if it depends on the context triples in
obscure, non-trivial ways.

When the function getSuspectedNextHops is called with arguments ph and sd then for each
possible nh a context triple (ph, nh, sd) is created and the the decision list is consulted to compute
the probability of success for that particular context triple. If that probability is lower than the
threshold pmin = 1

2
then nh is deemed suspected. When there is no matching predicate found on the

decision list, a probability of 1.0 is assumed. In particular this occurs for all context triples when the
decision list is empty at the beginning when S has no elements. This initial optimism property of
the failure predictor is necessary to bootstrap the system when there are no observations available.

The size of the set S of observations does not follow the minimal bounds described by Kearns,
as these bounds are impractical. Even if relatively large errors are allowed (γ = 0.1, ǫ = 0.1,
δ = 0.1) the minimum amount of required observations is on the order of 106. Instead we use a
simple FIFO queue for the observations with the maximum size set to 3000, which is sufficient for
good performance.

Recomputing the decision list every time a new observation is reported is costly. We recompute
the decision list periodically every nr-th observation.



3 Scaling & Performance

Despite the locality of the learning algorithm, we need to consider how it scales in terms of network
size and number of available services. Our implementation of the learning algorithm has the time
complexity of O(k2) and space complexity O(k), where k is the number of unique context triples
that are the input to the algorithm. The upper bound on the number of locally observable context
triples is equal to d2s, where d is the number of neighbors a node has and s is the size of the set of
service descriptors, hence the learning time is O(d4s2). The node degree d is typically logarithmic
in terms of the network size N and the log4 N factor still scales well with network size. We are left
with s as the main scaling limitation. In practice, rarely can one node observe traffic for all possible
destinations, especially in modern structured overlays in which the topologies are balanced and no
single node carries most of the traffic. If the problem of a large set of service descriptors exists it
can be greatly reduced by dividing the services into groups. Then the learning algorithm uses the
reduced set of service groups instead of the services. The division into groups should be done in
such a way that the services belonging to the same group fail in the same way (same correlations
with previous and next hop). This grouping can be done based on the attributes of the services,
e.g. location in some overlay identifier range, service type and QoS etc. The services can also be
dynamically categorized into groups by the very same learning process as used for failure prediction.
We leave this optimization as future work.

From the protocol performance standpoint, it may be argued that by making the feedback
messages compulsory instead of sending only the negative feedback, we are adding an unnecessary
overhead. This may be a problem if feedback is used for services that involve e.g. a delivery of a
single message to some destination. However, service provisioning in general requires the exchange
of a large amount of data between the requestor and the provider and the single bit feedback
message is negligibly small in comparison.

4 Evaluation

4.1 Experimental setup

We use [5], an event-driven simulator, the protocols are implemented in their full extent including
all types of messages and timeouts. Tfeedback and Tservice are both set to 10s.

For service location we use the small-world unit ring topology as in Chord [6]. The peers generate
service requests in a Poisson process. The generation rates are identical across all the nodes and
equal to one request per second. Each time a service request is generated its service descriptor
is selected uniformly randomly from the set of all possible descriptors. This simple workload is
sufficient to demonstrate the basic properties of our system and contrast it with other solutions.

We use the latency model based on King [7] measurements, the communication is lossless. For
most of the simulations there are no node arrivals or departures (churn). In Section 4.7 we measure
and discuss the impact of churn on the performance of our system.

Two different allocations of services to peers are considered: (i) one-on-one - each peer provides
only one service, each service is provided by only one peer and (ii) many-on-one - services are
replicated, the number of services is equal to the number of peers, each service is provided by an
average of 4 peers (Poisson distributed).

4.2 Convergence rate

In reputation-based approaches the local observations about service provisioning are shared with
all other peers in the network. In the forward feedback protocol the observations are only shared
with the peers along the routing path. This brings up the question whether such limited observation
sharing can ensure fast convergence of the system.



In the following experiment we compare how fast the system converges to the state in which
there are no requests sent to faulty service providers. We consider four cases: (1) LOCAL - each
peer runs an instance of its own simple local reputation system and learns to avoid faulty service
providers. After a single faulty service provisioning from some peer A the service is never requested
from A again. No reputation information is shared among the nodes. (2) GLOBAL - an idealized
global reputation system. Each peer A can place one report about another peer B 6= A in the
system. The report is a binary flag indicating either a successful or faulty service provisioning. The
report can be changed at any time by A. If the majority of reports about some B is faulty then B is
deemed faulty by all the peers, otherwise it is deemed correct. The reputation system is centralized
in our implementation and relies on global authentication. (3) FF - forward feedback - peers use
the forward feedback protocol and local learning and (4) DN - do nothing - the case in which there
is no fault-tolerance mechanism in place.

The service allocation is one-on-one. At the beginning of the simulation all the nodes are correct.
At 200s 30% of the nodes become DEFECTORs, uniformly randomly. A DEFECTOR is a peer
that behaves correctly in all aspects except it always provides a bad service when it is requested.
The goal is to minimize the number of service requests reaching the DEFECTORs, to prevent faulty
service provisioning. For each of the four cases we measure the fractions of service requests that
have reached faulty nodes. Only the service requests sent by correct nodes are taken into account.

The results on Fig. 4 show that when there is no fault-tolerance mechanism in place (DN),
then there is a stable failure rate of 30%. This is explained by two facts: (i) the destination
service providers are chosen uniformly randomly and (ii) 30% of service providers are faulty.
When nodes do not exchange any information about the success of their service requests (LO-
CAL) then the convergence is very slow, the curve for LOCAL reaches zero only after 6000s.
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Fig. 4. Convergence rate of FF compared to
other systems.

When peers share the information about their
observations (FF and GLOBAL) the conver-
gence is significantly faster. It takes 200s for both
mechanisms to ”forget” the previous good be-
havior of the DEFECTOR nodes. GLOBAL’s
transition from trusting DEFECTORs to dis-
trusting is slightly sharper than for FF but both
mechanisms eventually prevent all service re-
quests from reaching the DEFECTORs. This re-
sult demonstrates that limited feedback sharing
in our forward feedback protocol is sufficient to
have the same convergence rate as the central-
ized reputation system in which each feedback
report is immediately available to all other peers.

Similar convergence results were obtained in
other setups, we now turn to asymptotic perfor-
mance measurements.

4.3 Preventing service provisioning failures

In our measurement of the convergence rates we have fixed the fraction of faulty nodes to 30%.
In the following experiments we vary the fraction f of faulty nodes and observe how it affects
the performance of the system. We measure the asymptotic behavior of the system, i.e. after the
measured values have converged,which takes between 500s to 3000s depending on the configuration.
For each of the f values the simulation is run independently. We reduce the number of nodes to
256 due to the significant amount of simulation time required. We measure the fraction of service
requests sent by correct nodes that resulted in either faulty or correct service provisioning. The



”faulty” and ”correct” fractions do not sum up to 1, since there can be service requests that
never reach any provider. Figure 5(a) compares the performance of forward feedback (FF) with the
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(a) DEFECTORs
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(b) BADMOUTHERs
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(c) SMARTLIARs
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(d) DROPPERs
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(e) DEFECTORs with replication
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(f) SMARTLIARs with replication

Fig. 5. Resilience to different types of failures.

performance of the centralized reputation system (GLOBAL).
Until the fraction of DEFECTORs is lower than the half, the performance of forward feedback

is identical to that of the centralized reputation system. The linear drop in the number of correctly
provided services is related to the linear increase in the number of DEFECTORs in the population
(one-on-one service allocation). In both cases, FF and GLOBAL, all requests for correct services are
delivered. Both FF and GLOBAL successfully prevent the service requests from reaching any of the
faulty service providers (the ”faulty” curves). When more than half of the nodes are DEFECTORs,
GLOBAL is still able to tolerate this but the performance of FF decreases sharply. This is caused by
a self-propelling effect in FF: once the nodes observe more faults the failure predictor deems some
of the innocent neighbors as faulty, this leads to some routes being closed and causes additional
false positives to happen.

4.4 Resilience to lying

In both cases, GLOBAL and FF, the peers receiving service can falsely report to the system about
the success or failure of service provisioning. We first consider the simple case of a BADMOUTHER.
A BADMOUTHER is a peer that behaves correctly in all respects but always reports a service
provisioning failure to the system.

We rerun the resilience tests with the same conditions as previously (Section 4.3), but replacing
DEFECTORs with BADMOUTHERs (Fig. 5(b)). BADMOUTHERs can collapse cooperation in
the FF system when their fraction is larger than 0.33. For GLOBAL the collapse threshold is
obviously 0.5 due to majority voting.

We next consider a more complex, collusive form of lying. Assume that an adversary controls a
fraction f of SMARTLIARs. A SMARTLIAR always reports success when the service provider was



another SMARTLIAR, otherwise a failure is reported. When a SMARTLIAR forwards a feedback
message, the same rule is applied: the success flag in the feedback message is mutated to true if
the service was provided by a SMARTLIAR, to false otherwise. The SMARTLIAR also provides a
bad service whenever it is requested to. The adversarial strategy here is to use the SMARTLIAR
population to convince the other peers by selective lying that they should use SMARTLIARS as
service providers instead of correct peers.

Figure 5(c) presents the resilience test results. Collusive liars succeed in convincing peers to use
defective services, though for the attack to succeed a fraction of liars greater than 50% is needed.
For FF, there is a collapse in correctly provided services at 0.25, earlier than for BADMOUTHERs.
Below 0.25 the performance of FF is the same as for the centralized reputation system, the fraction
of correctly provided services is maximized and the faulty service provisioning is entirely eliminated.

4.5 Resilience to routing failures

While it is typically assumed in the state-of-the-art that the service location functionality is a
reliable black box we do not require the underlying recursive service location mechanism to be
reliable. First, let us consider message dropping.

When a service request is dropped, this causes a Tservice timeout at the requestor and negative
feedback is propagated along the path. Let DROPPER be a node that behaves correctly, but drops
all service requests. The resilience test results are on Fig. 5(d). We compare our system to the
case where no fault-tolerance mechanism is in place (DN). Over time, the nodes learn to associate
failure with their dropping neighbors, the droppers are routed around and the service requests are
successfully delivered to providers. The network also learns that DROPPERs are correct when asked
for services they are responsible for but are faulty for the services that require request forwarding.
Even when half of the nodes in the network are dropping requests, 80% of the services can be
reached even if some of them are provided by a DROPPER.

Other routing failures include mutating the fields in service requests and routing without making
progress to the destination. These failures result in timeouts and subsequent negative feedback, if
they occur consistently the can be tolerated with the same mechanism as for DROPPERs. The
resilience curves are similar to those for DROPPER and we do not include them.

4.6 Service replication

So far we evaluated the scenario of one-on-one service allocation. We now consider the case of
many-on-one service allocation in which services are replicated 4 times on average for increased
fault tolerance. We rerun the resilience tests for the SMARTLIAR and DEFECTOR behaviors .

In the case of DEFECTOR (Fig. 5(e)), bad service provisioning is consistently eliminated.
Replication dramatically shifts the point at which cooperation collapses as compared to one-on-one
service allocation (Fig. 5(a)). Even when 80% of the nodes are providing bad services, the FF
network learns to locate the correct replicas and routes towards them. The centralized reputation
system has the advantage of global knowledge and is more effective at selecting correct replicas.

Collusive lying even with replication (Fig. 5(f)) lowers the fraction of good service provisioning
and increases the fraction of faulty provisioning. Compared to the one-on-one case (Fig. 5(c)), the
collapse of cooperation occurs much later, at 50% instead of 25% for FF, however FF convinced
by SMARTLIARs fails to prevent faulty service provisioning which reaches its maximum of 10% at
the collapse point. Again, below 20% both GLOBAL and FF are performing optimally, all service
provisioning is correct.

4.7 Operation under churn

In all our simulations thus far there were no node departures or arrivals. Churn influences the per-
formance of the forward feedback protocol in the following ways. First, as the neighbor sets change,



the nodes must learn the behavior of their new neighbors. Second, we require in the protocol that
the feedback messages follow the same path as the corresponding service request. The path must
remain stable from the moment the service request is delivered to the provider to the moment the
provider receives the feedback message. If during that time one of the nodes on the path departs,
this causes feedback timeouts downstream from the departed node and consequently negative feed-
back is reported to the predictors. Lastly, when a node departs and the services it offered become
unavailable, then all the currently routed requests for these services fail and negative feedback is
propagated along the routing paths.

To test how the above effects influence the performance of the system we rerun the experiment
with the same setup as in Section 4.2. We compare two cases, with and without churn. The churn
model is based on the Kad4 data from the Stutzbach’s et al. [8] study, which measured churn
characteristics in live P2P networks. We increase the churn rate tenfold to accommodate for even
the highest churn fluctuations. When a new node joins after the 200s mark it has 0.3 probability
to take on the DEFECTOR behavior.
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Fig. 6. The performance of the FF protocol un-
der churn.

The results are on Fig. 6. Churn slightly low-
ers the fraction of correctly provided services, the
main reason for this is that the destinations of
service requests depart before the requests can
reach them. Paradoxically, the convergence rate
is faster under churn than without it. During
the first 200s when there are no DEFECTORs,
the network learns that some nodes are correct,
it then takes some time before this is ”forgot-
ten”, churn speeds up this process by making the
DEFECTORs depart. Overall, even a ten times
greater than realistic churn rate has minimal im-
pact on the performance of the forward feedback
protocol.

Similar effects of churn were observed in
other experimental setups, we omit these result.

5 Discussion

Evaluation shows that the forward feedback protocol despite its limited observation sharing con-
verges as fast as a fully centralized reputation system. We have also demonstrated our system to be
robust in face of provisioning of bad services, collusive lying and different forms of routing failures,
while also being able to tolerate churn. The performance of our system closely trails that of a fully
centralized reputation system. The performance is lower only in cases when the fraction of faulty
nodes is large (above 25%), which is unlikely to occur in Internet-scale systems.

In its current form the proposed system is vulnerable to the Sybil [9] and Eclipse [10] attacks,
especially when absence of authentication is taken into account. An adversary can insert an arbitrary
number of nodes that can open an arbitrary number of connections. We can either use some of the
existing solutions to the problem [11, 12], or replace the initial optimism of the learning algorithm
with limited initial trust so that newcomers are progressively probed before they become fully
trusted neighbors.

The system we proposed is fault-tolerant but not fault-deterrent. Deterrence is necessary when
failures are caused by selfish users trying to e.g. save on local peer resources such as network
bandwidth. An effective form of deterrence is reciprocity (e.g. tit-for-tat). The neighbor behavior
model learnt by p-concepts can be used for accurate reciprocation. We plan to build into the system
different forms of adaptive indirect and direct reciprocity to enforce P2P cooperation.



Our solution can be customized to the needs of a specific application. The predicate set in the
failure predictor can be tuned to be sensitive to any interdependencies between the attributes of
the service request. Each peer can adjust its failure predictor independently of other peers, to suit
the failure prediction to its own priorities and role in the network. The impact of such learning
heterogeneity on the performance needs further research.

6 Applications

The forward feedback protocol is general enough to be integrated into any architecture in which
there is recursive routing of service requests. This covers a wide range of applications. We focus
here on data-related P2P applications.

6.1 Secure DHT routing

The proposed forward feedback algorithm can readily be applied to the securing routing in DHTs
[13, 12]. The service is defined to be the delivery of an overlay message to the destination specified
in the service descriptor and the service provisioning is simply the acknowledgment of the message
delivery sent by the requestor. In this case the algorithm proposed in the paper can route around
message droppers. This application can be extended in a number of ways. First, not only the drop-
pers can be routed around but also nodes that do not ensure enough progress towards destinations
in the overlay identifier space. This can be implemented by checking that every hop makes progress
and penalizing the previous hops by bad feedback if the progress is slow. To go even further, if we
use the round trip latency as the measure of progress instead of using the distance in the overlay
identifier space, we essentially construct an overlay that learns the underlying latency model of the
network and adapts to changing network conditions.

6.2 Preventing data corruption

Providing data is by far the most common modern application of a P2P network. Data could be
files, key-value pairs in a DHT or data from a P2P sensor network. Data can be corrupted before
it arrives at the peer that requested it. This can happen in a number of ways, ranging from simple
corruption at the data source itself to mutation of the data by one of the forwarding peers. There
are many existing solutions to this problem, most notably data replication and coding techniques.
Forward feedback is a great addition to the existing methods in the following ways. When corruption
occurs repeatedly at some peer then using feedback the network can pinpoint the faulty peer and
either route around it when it is a forwarder or select alternative data providers when the corrupted
peer is the data source. In contrast, to the existing mechanisms which only detect or mask the data
corruption, the network running the forward feedback protocol actively prevents the corruption
from occurring again once it is detected.

7 Related work

The reputation-based approaches [1, 2] to the problem of cooperation in P2P networks are top-down.
The trust and reputation model is specified together with the mechanism of how peers exchange
the reputation information, which is typically shared through a distributed data structure such as a
DHT or propagated through gossiping. All these approaches strongly rely on persistent universally
verifiable peer identities.

The second class of approaches is based on trust graphs [14, 15, 16, 17]. A trust graph is a
digraph in which nodes represent peers and the arcs represent trust relationships. Aggregation
algorithms are run on the trust graph to determine the trust towards the service provider. The



trust graph is stored either in a DHT [14] or in the form of self-certifying reports stored locally by
each node (e.g. cookies in [15], tokens or stamps in [18]).

Our solution may fall into the latter category, however, in our case the overlay graph is the
trust graph and there is no need to store the trust graph in a distributed data structure, which
greatly simplifies the design. Perhaps, the closest to our approach is the work of Repantis et al. [19]
in which reputation information is stored in the neighbors and similarly to FF the neighbors of a
peer A act as failure detectors of A. However, [19] relies on flooding and works only in unstructured
networks.

8 Conclusions

The proposed architecture provides service provisioning P2P networks with fault tolerance to a
wide range of message passing failures including mutating the service requests, collusive lying, and
message dropping. Service requests are prevented from reaching faulty service providers, which
protects the requestors from the unnecessary waste of resources during faulty service provisioning.
When services are replicated the network learns to route to correct replicas and avoids the faulty
ones.

Our solution places few requirements on the underlying system. Neither a DHT nor authenti-
cation are needed. Most loop-free, recursive service routing protocols can be made fault-tolerant
using our solution, this widens the application domain beyond P2P networks and includes ad-hoc
wireless networks, sensor networks and inter-domain routing.
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