LIGHT STRUCTURING FOR MASSIVELY
PARALLEL OPTICAL TRAPPING

THESE N° 3939 (2007)

PRESENTEE LE 9 NOVEMBRE 2007

A LA FACULTE DES SCIENCES ET TECHNIQUES DE L'INGENIEUR
LABORATOIRE D'OPTIQUE APPLIQUEE
PROGRAMME DOCTORAL EN PHOTONIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Johann ROHNER

ingénieur en microtechnique diplomé EPF
de nationalité suisse et originaire de Teufen (AR)

acceptée sur proposition du jury:

Prof. O. Martin, président du jury
Prof. R. Salathé, Dr J.-M. Fournier, directeurs de thése
Prof. K. Dholakia, rapporteur
Dr T. Grzegorczyk, rapporteur
Prof. P. Jacquot, rapporteur

(A

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2007






Abstract



v

Abstract

Optical trapping, discovered in the 70’s, allows moving and stabilizing small
objects which sizes varies from atoms to particles of several microns. This
technique, based on momentum conservation, is particularly well suited for
manipulating biological matter (cells, organelles, vesicles, functionalized par-
ticles, etc.) and offers interesting potentialities for research in biotechnologies
and biochemistry. The possibility to individually immobilize large numbers
of microscopic objects opens new ways for the downscaling of analysis tools
for drug screening, particles sorting or assessing statistical data. The com-
bination of optical trapping with microfluidics greatly increases the prospect
of the method.

This PhD work takes place in a research aiming at creating large arrays of
optical traps compatible with microfluidic devices in order to realize so-called
lab-on-a-chip. These miniaturized systems allow recreating at smaller time
scale, reduced resources and lower cost, experiments usually performed in a
macroscopic environment. This study proposes solutions based on light inter-
ference and on landscaping of light intensity. Setups combining several laser
beams are proposed to create interference patterns and various configura-
tion of light potential wells. Increasing the number of interfering beams, in
particular by using a multiple beams interferometer (Fizeau-Tolansky
interferometer) leads to a raise of the light intensity gradient, further in-
creasing the trapping efficiency. The quality of the optical traps is studied
and discussed in comparison with conventional laser tweezers. More com-
plex and original solutions using interference of electromagnetic fields are
suggested. Namely, the light diffracted by the objects themselves is used
to form new potential wells. Diffractive structures are devised to generate
three-dimensional arrays of traps. The periodicity of those planar structures
creates a self-imaging phenomenon, known as Talbot effect. The modula-
tion of the field in the Fresnel zone, i.e. some tens of micrometers behind
the diffractive element, reveals interesting properties for optical trapping, in
particular local intensity amplification and gradient enhancement.

When several particles are simultaneously immersed in an electromagnetic
field, interaction effects arise, that link the particles. This phenomenon
of optical binding, is studied and demonstrated here in the case of bi-
dimensional optical crystals.
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Résumé

Le piégeage optique, découvert en 1970, permet de déplacer et de stabiliser
des objets tres divers allant de l'atome a des particules de plusieurs mi-
crometres, en se basant sur la conservation du moment. Cette technique est
particulierement adaptée pour la manipulation d’objets biologiques (cellules,
organelles, vésicules, particules synthétiques fonctionnalisées,...) et offre de
séduisantes potentialités pour la recherche en biotechnologie et en biochimie.
La possibilité d’immobiliser individuellement un nombre important d’objets
microscopiques a analyser ouvre la voie a une miniaturisation des systemes
d’analyse pour le triage de particules, le dépistage de produits pharmaceu-
tiques ou la collection d’informations statistiques. L’association du piégeage
optique et de la microfluidique augment considérablement les atouts de la
méthode.

Ce travail de doctorat s’inscrit dans une recherche visant la création de larges
réseaux de pieges optiques compatibles avec des systemes de microfluidique
dans le but de réaliser des "laboratoires sur puce’. Ces systemes miniatur-
isés permettent de recréer, dans des gammes de temps, de ressource et de
cout nettement inférieures, des expériences exécutées aujourd’hui a 1’échelle
macroscopique. Cette étude propose des solutions basées sur les phénomenes
d’interférence de lumiere cohérente et sur I'idée d’utiliser la lumiere elle-méme
pour créer des modulation du champ. Des montages combinant plusieurs fais-
ceaux lasers produisant des interférences de formes diverses sont proposés
pour créer des puits de lumiere. En augmentant le nombre de faisceaux, entre
autre par l'utilisation d'un interférometre & ondes multiples (interfer-
ometre de Fizeau-Tolansky), les gradients d’intensité lumineuse sont aug-
mentés et ainsi 'efficacité de piégeage. La qualité des pieges optiques ainsi
créés est étudiée et discutée en comparaison d'une pince optique classique.
Des solutions plus complexes et originales mettant a profit I'interférence de
champs électro-magnétiques sont avancées, notamment 1'utilisation de la lu-
miere diffractée par les objets eux-mémes pour former de nouveaux puits de
potentiel. Des structures diffractives sont élaborées pour réaliser des réseaux
de pieges tridimensionels. La périodicité de structures planes permet de
générer des phénomenes d’auto-imagerie, connus sous le nom d’effet Talbot.
La modulation du champs dans le régime de Fresnel, c’est a dire quelques
dizaines de microns derriere ’élément diffractif, révele des qualités intéres-
santes pour le piégeage optique, en particulier ’amplification locale du champ
et I'augmentation du gradient.

Des que plusieurs particules se trouvent immergées simultanément dans un
champ électro-magnétique des effets d’interaction apparaissent liant les par-
ticules entre elles. Ce phénomene de cohésion optique est étudié et démon-
tré expérimentalement dans le cas de cristaux optiques bi-dimen-sionnels.
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Esse ea quae rerum simulacra uocamus ;

Quae quasi membranae summo de corpore rerum
Dereptae uolitant ultroque citroque per auras,
Atque eadem nobis uigilantibus obuia mentes
Terrificant atque in somnis, cum saepe figuras
Lucretius - De rerume natura - Liber IV (v. 30-34)

There exist those somewhats which we call

The images of things: these, like to films

Scaled off the utmost outside of the things,

Flit hither and thither through the atmosphere,

And the same terrify our intellects,

Coming upon us waking or in sleep

Lucretius (98-54 BC) - Of the Nature Of Things - Book IV (v. 30-34)
Translation: William Ellery Leonard
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Introduction



2 1 Introduction

In the Antiquity, common believe by the philosopher -who at that time were
also scientists- was that images and light could only be mechanical media,
wether by the Greeks, like Aristotle, who explained the vision by a ray going
out of the eye to touch and scan the objects, or by the Romans with Lu-
cretius, who considered that images are thin physical crusts hitting the eye.
Even if the theoretical explanations of physics have since changed, this poeti-
cal idea took a concrete form in 1970 when light beams were used to levitate,
move, accelerate and even trap particles. Since then the technique known
as optical trapping spread out, offering a tool to manipulate small objects,
in particular biological matter. This thesis constitutes a part of a research
in multiple trapping and in manipulating particles for biological and bio-
chemical applications. Different ways to create atypical light template using
interference properties are studied and presented in this dissertation. Com-
bination of beams, use of diffracted waves in the Fresnel diffraction regime
and self arrangement effects are exploited for structuring light field. All these
solutions take advantage of the constructive and destructive interference ef-
fects to generate new distributions of the electromagnetic field in order to
create multiple optical wells for trapping particles, differing from commonly
employed optical tweezers system which require high numerical aperture mi-
croscope objectives.

1.1 Optical trapping

By providing an easy source of coherent light, the advent of laser in the six-
ties’ modified in depth investigations on light properties and Physics. Thus,
in 1970, Arthur Ashkin demonstrated what Kepler had predicted more than
300 years before, as well as Maxwell and Lebedew. In the 17th century, Jo-
hannes Kepler deduced from his observations of comets that sunlight exerts
a force on matter, explaining why the dust tail of comets is turned away from
the sun. The first demonstration of the existence of radiation pressure was
realized at the beginning of the XX century by Nichols and Hull [1]. In
1970 Arthur Ashkin evidenced the possibility to use pressure exerted by light
first to levitate, then to accelerate and to trap small dielectric objets [2]. In
1986 he proposed a solution for trapping particles in a single highly focused
laser coining the term optical tweezers [3]. This still refers today to a laser
beam focused by a high numerical microscope objective to create a single
optical trap. In 1987, Ashkin and co-workers demonstrated the use of opti-
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cal tweezers for biological elements [4] opening the way to new manipulation
techniques. Then the importance that those could take for biologists and
chemists quickly realized. The possibility to individually trap single cells,
cell fragments or DNA molecules with optical forces presents major advan-
tages. Particles can be trapped, displaced and put in contact with each other
or with chemicals in a non-invasive way, without contamination and avoid-
ing sticking or mechanical damaging. Main applications that emerged in
the domain of biology and chemistry are: single molecule and DNA stretch-
ing [5, 6, 7], cell manipulation [4, 8], cell analysis [9, 10], and cell sorting
[11, 12, 13]. Nevertheless, a particular attention to the wavelength and the
power density of trapping electromagnetic wave has to be taken, in order not
to induce optical damages [14, 15]. Commercial products based on optical
trapping for cell or particles manipulation are available!.

Another wide application of optical forces lies in the field of atomic
physics, particularly in atom cooling and atom trapping [16]. The restriction
of the spatial motion of atoms by laser light was mentioned by Letokhov in
1968 [17], two years before Ashkin proposed to trap atoms [2]. Atom cooling
was suggested by Hansch and Schawlow in 1975 [18] and has been realized
by Wineland et al. in 1978 [19]. The Nobel Prize in Physics was attributed
in 1997 to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips for
their works on "development of methods to cool and trap atoms with laser
light"[20, 21].

The potential of optical trapping can be widely enhanced by multiply-
ing the number of traps in an experimental setup. Since the beginning of
laser trapping, many ingenious solutions have been put forward to generate
multiple traps. In 1985 Chowdhury and co-workers arranged particles in in-
terference fringes [22, 23]. The idea was first mentioned some years before by
Labeyrie who suggested in 1979 to trap particles to make pellicle telescopes
for astronomy [24]. In 1991, a time sharing solution was presented by Misawa
et al. using galvano mirror to scan the laser beam between several traps [25].
Further scanning systems used piezoelectric mirrors [26] or acousto-optic de-
flectors [27]. Prentiss et al. proposed in 1993 to trap particles between two

1
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opposing optical fibers, opening the way to integrated optical traps without
the need of microscope objectives [28, 29, 10]. The next innovation came with
the demonstration by Kawata and Tani of trapping in the evanescent field
of a waveguide [30], leading to studies on many body effect and on gradient
field in absence of radiation pressure [31, 32] and to sorting of biological cell
[33]. The use of a diffractive optical element to generate multiple spot out
of one single beam for optical trapping was proposed by Fournier et al. in
1995 [34]. It opened the way to holographic optical tweezers. The introduc-
tion in 1999 by Tiziani of spatial light modulators (SLM) led to the most
common system of multiple optical tweezers [35, 36, 37, 38, 39]. This system
presents the advantage to be dynamically configurable, computer controlled
and implementable in conventional optical microscopes. The acronym HOT,
for Holographic Optical Tweezers, is conventionally used to refer to systems
based on reconfigurable holographic optics. An alternate use of phase modu-
lators for trapping proposed by Gliickstad et al. relies on a generalized phase
contrast (GPC) method to generate multiple optical traps [40, 41]. In 1998
Fournier and co-workers took advantage of the Talbot effect to trap atoms
in 3-Dimensional arrays [42]. Static arrays of traps have also been generated
by VCSEL [43], microlenses [44, 45, 46] or high numerical aperture micro-
mirrors [47]. A non all-optical scheme for particles trapping has been recently
proposed by Chiou et al. [48, 49] based on a combination of optical images
and dielectrophoresis.

In the range of techniques using non optical forces for particles con-
finement, we find solutions based on electrokinetic forces (dielectrophore-
sis [50, 51], electrophoresis [52]), magnetic forces [53], hydrodynamic flows
[54], acoustic waves [55] or gel trapping [56]. Among these techniques, di-
electrophoresis is widely used for particles transport. However electrokinetic
based systems require chips and containers with built-in electrodes and elec-
trical circuits as well as special cell media for electrophoretic transport.

optical trapping has also been used as a tool for investigation of physical
phenomenon. Brownian motion can for example be analyzed and measured
in optical tweezers [57]. On a larger scale, multiple optical tweezers could
extend the analysis to fluctuation of mesoscopic systems out of equilibrium
and to optically induced forces [58].
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1.2 State of the art

Today, the most commonly used system for optical manipulation of multiple
objects is certainly the spatial light modulator in conjonction with a high
numerical aperture microscope objective to create holographic optical tweez-
ers. It offers not only the possibility to generate arrays of traps [35, 37, 59|
and to dynamically change the position of the optical traps [36] but also
the mean to create beams with particular functionalities like vortices which
can carry an orbital angular momentum [60, 61, 62, 63], or non diffractive
Bessel beams [64, 65]. Both advantages can be combined to create for exam-
ple arrays of vortices [66]. The principal benefit over concurrent techniques
is the possibility to dynamically change the vertical position of a trap and
to create three dimensional arrays of traps [38, 67, 39]. Arrangements of
up to 400 traps [68] have been reported, but traps number is limited due
to the insufficient diffraction efficiency of digital holograms and to limited
phase modulation systems affordable in SLM’s. Comparable results have
been obtained with an acousto-optic deflector (AOD) creating an array of
20x20 traps [69]. In 1995 however Fournier et al. already presented a so-
lution to create 300 traps by the mean of interference [34]. Interferometric
traps can be generated over large areas only restricted by the initial intensity
of the interfering beams. Interference traps have been created in evanescent
wave [32, 70] or through objective lenses [71, 72, 73, 74] but the largest ar-
rays presently reported are created by direct formation of the interference
fringes inside the sample [22, 23, 34, 75, 76]. The possibility to create large
arrays presents a great potential for life sciences. We present here among
the largest optical traps arrays for particles greater than the wavelength and
new solutions for trapping in the Fresnel diffraction regime which is not often
exploited in the conventional optical trapping experiments. We also report
experimental results adding to the comprehension of optical mechanisms.

1.3 Motivation

The need for biologists to be able to manipulate large numbers of particles
and to perform massively parallel experiments led us to develop schemes for
large arrays of traps. This thesis dissertation will focus on the control of light
for building optical traps, and on the patterning of light through interference.
Chapter 2 proposes various solution based on interference of two, three or



6 1 Introduction

more beams and particularly an original use of a Fizeau-Tolansky multiple
beam scheme for optical trapping. Chapter 3 concentrates on trapping in
the Fresnel regime and specially in self-images due to Talbot effect creating
multilevel 3D optical traps. Finally, chapter 4 presents an analysis of optical
binding and the first study of 2D self-arrangement of micron-size objects in
an electromagnetic field.

In order to achieve our goal to create massively parallel optical trapping,
we will be led throughout this dissertation to a better understanding of the
behavior of particles in optical wells weaker than conventional high numerical
aperture optical tweezers. Indeed, when generating high numbers of traps
out of the same laser source, the initial power distributed in all the traps can
be very week in each single optical well. It is then necessary to optimize each
parameter of the traps, mainly the intensity gradient (section 2.2), the size
(section 2.3) and the shape of the trap (section 2.4), as well as the influence
of other forces (scattering and contact forces) (chapter 3) and the collective
effects of many body present in the system (chapter 4).

Superimposition of coherent complex amplitude distributions emanating
from external optical elements (beam splitters, diffraction gratings) or from
the particles themselves lead to unconventional intensity landscapes. Such
light distribution presents interesting properties, like sharp gradients and
variable trap sizes, having a high potential for strong optical trapping.

In addition to the manipulation tool provided by optical forces for biologi-
cal experiment, a microfluidics environment allows for large scale experiments
and parallel investigations on biomaterial such as cells, vesicles, organella or
synthetic particles coated with functional molecules. Simultaneous analysis
in a chamber with controllable medium can give access to statistical infor-
mation and synchronous diagnosis while permitting sorting of large numbers
of objects. The concept of lab-on-a-chip, illustrated in figure 1.1 is detailed
in the appendix A.

In order to work in microfluidic flows, optical traps need to be stronger
than what is required in a still environment. The whole work of this thesis
dissertation is sustained by the idea to provide multiple traps strong enough
to be compatible with microfluidics, i.e. able to sustain flows speed of several
tens of micron per second. The study of traps characteristics and the design
of new optical trapping schemes presented in this work aim at lab-on-a-chip
applications.
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Figure 1.1: Lab-on-a-chip concept. Principle of microfluidics chip with optical traps
array inside a microchannel where three different inlet channels merge.

1.4 Optical forces

Optical forces can be divided into three components all due to the conserva-
tion of momentum when photons interact with matter. The literature usually
distinguishes the scattering force or radiation pressure that tends to push
the particle in the direction of propagation of light, the gradient force? that
acts as a spring to pull the particle towards the highest intensity area and
the binding force that is due to the interaction of many particles inside an
electromagnetic field. Optical trapping in two- or three-dimensions is due to
an equilibrium between these three components acting on a particles. Gen-
erally used to explain optical trapping, the gradient force is in many other
cases not the highest of the three ones. The optical forces are in the order of
some piconewtons.

Different models are employed to describe optical trapping depending on
the size of the particle with respect to the wavelength. When the particle
diameter is much larger than the wavelength, the geometrical optics model
applies and ray tracing method can be employed. On the contrary, when the
particle is very small with respect to the wavelength, it can be assimilated
to a dipole in a constant electrical field and behaves accordingly to Rayleigh
scattering theory. The last case covers the range where the particle and the
wavelength are in the same order of magnitude. In that case, referred as the
Lorentz-Mie scattering regime, the field is not constant over the particle; none
of the above mentioned models applies and rigorous calculations through
Maxwell’s stress tensor are necessary. The three models are detailed in the
next paragraphs.

2The gradient force is also called the "dipole force", particularly in atomic physics
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Figure 1.2: Geometrical representation of optical forces in the ray optics model.
a) in a collimated Gaussian Beam and b) in a strongly focused beam as used in
conventional single optical tweezers.

Ray Optics Model

In the geometrical optics model, light is represented as a sum of individual
rays. Let us consider one ray impinging on a single non absorbing particle
with a refractive index different from the one of surrounding medium. Due
to refraction, each ray changes its direction of propagation and thus photons
change their momentum. To defer to momentum conservation a part is trans-
ferred to the particle. The calculation of the resulting optical force exerted
on a dielectric sphere is made by integrating the effects of all beams includ-
ing their own reflections and refraction over the whole sphere [77, 78, 79, 80].
Figure 1.2 illustrates the case of a sphere trapped in a collimated Gaussian
beam (a) and in a highly focused beam (b). In the first scheme, the particle
is attracted towards the center of the beam due to intensity gradient over
the particle. This illustrates the action of the gradient force. At the same
time, the particle is pushed in the direction of propagation of the beam due
to the kicks given by each photon hitting the sphere. To keep the latter
in an axial equilibrium, conventional optical tweezers use a high numerical
aperture optical element to strongly focus the beam. The direction of the
external rays depicted in figure 1.2 (b) illustrates the forces that are acting
to stabilize the sphere in the vicinity of the focal area.
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Rayleigh Regime

In the Raleigh diffraction regime, the particle is represented by a dipole
and the field is considered constant over the size of the particle. The Lorentz
force exerted on it by the electromagnetic wave can be analytically calculated
[81, 82, 83, 84]. In the case of a single dipole immersed in an electromagnetic
field of intensity I, the total force F},; can be expressed as:

Ftot = Fgrad+Fscat (11)
with
1
Fgrad = §CEV[ (12)
1 2714
Focat = ga/ k1 (13)
where « is the polarizability
2
qn” —1
= 1.4

n is the relative refractive index, a the particle’s radius and k the wave num-
ber.

Unfortunately most of the particles handled in this opus are too big to be-
have according to this Rayleigh model. Likewise they are too small to be
correctly treated by the geometrical model. However those simple models
are often used in the literature to explain optical trapping and guide us in
the understanding of optical trapping mechanisms.

Lorentz-Mie scattering regime

The Mie scattering theory, or more precisely the Mie solution to Maxwell’s
equations, also referred as Lorentz-Mie or Lorentz-Mie-Debye theory, is rig-
orous and is valid for any value of d/\ where d is the diameter of the con-
sidered particle and A the wavelength [85]. It is the only model suitable
for the particles that we currently use, but it requires rigorous calculation
of either the Maxwell’s stress tensor or the Lorentz force. The present
study concentrates on experimental work and cannot include such tedious
calculations. Solutions have already been calculated for strongly focused
beams [85, 86, 87, 88, 89, 90, 91, 92] and for wide electromagnetic fields
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(93, 94, 95, 96]. We will further refer to several partners’ calculations for
simulations of the experimental conditions presented in this work.



2

Optical trapping in interference
patterns
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2.1 Introduction

The developments in biochemistry and biotechnology tend to downscaling
materials and products and the performance of bioanalytics can be consid-
erably augmented by the parallelization of operation and Analysis. Optical
tweezers offer the possibility to manipulate single biological elements, con-
siderably limiting the quantity requirements in expensive and rare reactant
and biomaterials. However, most of multiple optical traps system are lim-
ited to a few tenth of traps. The possibility to generate very high number
of traps is obviously of great interest. In this chapter solutions for creating
very large arrays of optical traps by the interference of several beams are
presented. Trap arrays generated this way cover very large fields of view
and fine light patterns can be achieved for the confinement of small objects.
The principle of trapping in interference is presented and different schemes
creating intensity gradient by interference are studied. The optimization of
the intensity gradient is essential for the trapping efficiency, since the optical
forces are proportional to it'. The advantages of the presented solutions are
emphasized by numerical simulations. An experimental setup allowing the
creation of different light pattern configurations is presented and studies of
optical trapping are reported and discussed. In a second part, a more sophis-
ticated interference trapping scheme is studied. Multiple beam interference,
also known as Fizeau or Tolansky fringes, are generated by multiple reflec-
tions inside an interferometer. These fringes provide a high flexibility and
sharper intensity gradients interesting for optical trapping.

2.2 Various types of interference

Light interference was first evidenced by Thomas Young in 1801 when he
established the wave theory of light with his double-slit experiment. The
invention of the laser in the 60’s brought a convenient source of coherent
light. Since then, interference has been a powerful tool for e.g. distance and
shape measurements, phase measurement (holography) or light structuring.
Meanwhile, when arising through spurious reflections, unwanted interference
pattern can also be a serious drawback. Interference occurs when at least
two spatially or temporally (or both) coherent monochromatic waves overlap

IThis assessment is valid in the Rayleigh regime and also in most situations in the
geometric optics
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and when both wave vectors and polarization states of the two waves are
not perpendicular. The first utilization on interference fringes for optical
freezing was reported by Chowdhury et al. in 1985 [22]. Optical trapping
in interference has been used also for the study of optical crystallization
and optical binding [23, 34, 70], for optical trapping of mesoscopic particles
[71, 73, 97, 74] and for sorting of particles [98, 99].

2.2.1 Intensity pattern formation

Let us consider two waves of complex amplitude F; and Fy with
—

B, = At (2.1)

Z;- (j = 1,2) being the complex amplitude, w the pulsation and i = —1.
The intensity is given by
I; =< E} > (2.2)

Where < - > indicates the temporal mean. The total electric field at a point
where F; and Fs are overlapping is

E=F +E (2.3)
and the total intensity is given by
I =1+ 1, + I (2.4)

where

Lo =2 < FEy-FEy >=2+/1115cos A¢ (25)
is the interference term with A¢ = ¢; — ¢, being the phase difference between
the two waves. If the intensity I; and Iy are the same (I} = I, = %’, the total
intensity is expressed as

I = Ih[1 + cos(A¢)] = 21, cos® (%) (2.6)

The intensity of the signal being a cos? function, it presents a total extinction
when A¢ = (2N +1)7, N being an integer. The cos? form provides a spatial
distribution of the potential with maxima in which dielectric particles, whose
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2 Beams 3 Beams

Figure 2.1: Schematic representation of the interference of (a) two and (b) three
beams focused on their overlapping area.

index of refraction is higher than the one of the surrounding medium, can be
trapped.

The quality of the traps depends on the interference characteristics, par-
ticularly on the fringe contrast, described by the visibility function V:

Imaz - [mm o 2\/ 11[2

V= —
Imax + Imin Il + [2

(2.7)

Optical forces are proportional to the intensity gradient in the Rayleigh
regime and also, to some extent, according to geometrical optics; consid-
ering this also for particles of size in the range of the wavelength, we will try
to maximize the gradient by varying the beams configuration. Besides, gradi-
ent optimization can also be achieved by increasing the number of interfering

beam.

In the case of three plane waves the total intensity distribution is given
by:

I = I1 +I2 +I3+2\/ I1I2 COS(¢2 —¢1) +2\/ 1213 COS(¢3 - ¢2) +2\/ I3.[1 COS(¢1 —¢3) (28)

and presents a three-fold symmetry. Its characteristics will be discussed later.

2.2.2 Beam configurations and optical templates

We will study different configurations with two and three beams. Let us first
examine the case of two interfering Gaussian beams. We consider them as two
plane waves at the interference zone since we are working within the Rayleigh

2
distancezq (zp = %, wo being the minimal radius of the beam) around the
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a) 2 Beams b) 3 Beams

Figure 2.2: Definition of interference fringes parameters

focal area of a slightly converging Gaussian beam. The two beams come from
the same laser source with sufficient coherence length to allow interference
over the whole area under investigation. The laser beam is separated in
two beams after the focusing element and these two beams are crossing each
other at an angle to generate interference. The beam path-lengths have to
be rigorously the same to ensure that both beams have the same divergence
and the same size at the interference area and that the path-length difference
is within the coherence length of the light source. The constructive and
destructive interference of the electrical field creates sinusoidal fringes that
persist in the z direction along the whole overlapping area of the beams.
The interference pattern can be considered as "wall" of light as shown in
figure 2.1 a).

The pitch of the interference fringes p, as defined in figure 2.2, depends
on the angle between the two interfering beams and on the wavelength A in
the medium, and is given by

A
= 2.9
p QSing ( )

Adding a third beam to the system allows the possibility of creating three
sets of fringes as shown in figure 2.3. The intensity pattern of the inter-
ference of the three beams presents hexagons (figure 2.1 b)). The expected
superposition of the three sets of fringes in a incoherent way would produce
hexagons as shown in figure 2.4 a). Meanwhile, the coherent superposition
of all three plane waves gives rise to the structure of figure 2.4 b) where the
hexagons are tilted by 30° in reference to the incoherent scheme. The size of
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Figure 2.3: Achievable interference patterns direction depending on the pair of

interfering beams.
a) b)
::; 3 é ; -
O o)
Figure 2.4: Schematic representation of a) incoherent and b) coherent superposition
of three sets of interference fringes.

the paved hexagons created by three sets of fringes with a pitch p is given by
(see figure 2.5)

2p
H=" 2.10
and
A= % (2.11)

The pitch ppera between two hexagon is then equal to H. Let us remark that
such hexagons represent the area over which the optical wells are centered.

When three beams of wave vectors E, k:_; and k_?,) are regularly disposed
along the ridges of a symmetrical tetrahedron of base (ABC) and converge to
the same point O (see figure 2.6), the interference creates a three dimensional
honeycomb-like structure stretched all over the overlapping area of the beams
along the z-axis.
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Figure 2.5: Dimension of the hexagonal interference pattern.
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Figure 2.6: Configuration of the three interfering beams of wave-vector k;. The
dashed arrows represent the reflected beams when a mirror is placed at the level of
the gray plane (trapping plane)

For convention, the z-axis is defined as the axis of the pyramid and the
xy planes is perpendicular to it at the level of the intersection of the three
beams.

2.2.3 Optical trapping in interference pattern

The intensity distribution in the interference area generates potential wells in
which particles can be trapped. The gradient force creates a lateral arrange-
ment in any plane perpendicular to the z-axis. Optical binding forces also
contribute to the lateral arrangement as we will discuss in the chapter 4.
The scattering force however pushes the particles along the z-axis. In order
to get a z-confinement, the solution of particles is contained within a closed
chamber and the top wall stops the particles in its plane. This plane will be
referred hereafter as the trapping plane.
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2.2.4 Numerical simulations and trap shape optimiza-
tion

The above mentioned configuration gives us the possibility to create various
types of light templates based on a basic sinusoidal shape of intensity. We
are now interested in finding the optimal shape for a trap of a defined size
assuming that the optical forces are proportional to the gradient of intensity
for Mie particles as in the Rayleigh regime (see equation (1.2) in section 1.4)
and as in the ray optics model. The following numerical simulations let us
predict the intensity gradient depending on the beam configuration.

The simulations are based on the scheme presented in the latter paragraph
where three beams are uniformly distributed around an axis and equally tilted
with respect to it. The tilt angle is determined by the desired size of the
interference fringes according to equation (2.9). The beams are considered
as waves with a planar phase and a Gaussian intensity distribution whose
waist is 50 to 100 times larger than the beads diameter. Figure 2.7 represents
the intensity level in a plane perpendicular to the z-axis. The optical traps
are 2 microns wide, created by coherent beams forming an angle 6 of 15.42°
in air (figure . The field is represented over 6 by 6 microns and the gray
level scale is the same for each image. The initial intensity I, is set to 1 and
is distributed evenly in each beam. The simulation is intended to analyze
the optimal beam configuration, i.e. when the intensity gradient inside an
optical well is maximal. The initial power can be split in two of the three
beams or in three equivalent parts. The gradient is calculated in x and y
directions. The maximal value of the gradient for each plot is summarized
in table 2.1.

In the literature, there is no particular criteria for defining the size of
a non Gaussian optical well. One could relate the distance g between two
symmetrical intensity gradient maxima to the trap’s size. In that case g4, =
P for a sinusoidal fringe paving and gheza = % for an hexagonal paving, p
being the pitch of sinusoidal fringes. Figure 2.8 gives the absolute value of
the intensity gradient along the x-axis corresponding to the cases presented
in figure 2.7 b) and c).

Recycling light

To increase the gradient and also to reduce the effect of radiation pressure, a
mirror can be placed at the beams intersection area. Reflecting the three in-
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Figure 2.7: Intensity distribution for different beam ratios and for various beam
configurations (see table 2.1)
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Max Max

Intensity repartition in beams | gradient x | gradient y
a) I1=1/3-1/3-0 1.12 0.00
b) I1=1/2-1/2-0 1.67 0.00
c) 1=1/3-1/3-1/3 1.96 1.93
d) I=1/2-1/2-0 - mirrored 3.32 0.00
e) I=1/3-1/3-1/3 - mirrored 4.88 4.80

Table 2.1: Maximal Intensity gradients of the interference pattern of three beams
along x an y axis depending on the intensity distribution in each beam for an initial
intensity Iy = 1 and a fringe’s pitch of 2 um. The gradient is expressed in multiple
of Iy = 1 per A\. The configurations are the one presented in figure 2.7. The two last
rows correspond to the case were the beams are reflected by a mirror placed in the
interference plane.

- -~ 2beams
— 3 beams

gradient [a. u.]

)
-4 -3 -2 -1 0 1 2 3 4
x [um]
Figure 2.8: Comparison between the absolute value of the intensity gradient along

the x-axis for 2 and 3 beam interference (figure 2.7 b) and ¢)) for a 2 pym fringe’s
pitch.

coming beams creates three beams with counter-propagating direction, tilted
by 180° with respect to the incoming beams. The radiation pressure that
tended to push the trapped object towards the wall is locally compensated.
In the ideal case, an equilibrium is reached on the central axis as shown in
figure 2.9. The figure was obtained by calculating the radiation pressure ef-
fects without taking interference into account. The two last lines of table 2.1
present the calculated intensity gradient for the configuration with reflected
beams. The intensity gradient is increased by a factor of almost three by
adding a mirror while keeping the same initial power. Moreover, minimizing
the scattering force by cancelling the radiation pressure effects allows dimin-
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Figure 2.9: Simulated radiation pressure due to the sum of three interfering beams
and of the their reflections on the mirror. The simulated plane is perpendicular to
the z-direction and located at the level of the gray plane of figure 2.6. The size of the
cones is proportional to the radiation pressure, the direction of the cones is the one
of the resulting vector of the sum of the three wave vectors and their color represents
the local intensity level according to the color bar. The simulation does not take
interference into account.

ishing the friction in the system; objects are now trapped in the bulk of the
cell instead of touching the upper wall.

2.2.5 Experimental setup

The basic setup divides the output beam of a laser in three beams whose in-
tensity and polarization are individually controlled and allows directing them
along the ridge of a pyramid. The laser source is a diode pumped solid state
Neodynium:Vanadate laser manufactured by Coherent (Verdi V-5 #A1450)
delivering up to 5W in cw mode at 532nm (intra cavity frequency doubled).
It is linearly polarized and delivers almost a TE Mo mode (M? = 1.1) with
slight ellipticity. The setup has evolved progressively with the undertaken
experiments and the principal configuration is shown in figure 2.10. The
beam intensity is controlled through a polarization rotator (Fresnel Rhomb)
followed by a polarizing beam-splitter. A second polarizing beam-splitter
helps cleaning the linear polarization. A positive lens (f=1000 mm) placed
before the division system focuses the beam at the trapping area, then re-
ducing its size to about 150 pm. In order to get a smaller spot at the focal
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area, the beam is enlarged by a telescope before impinging on the focusing
lens.

Another polarizing beam splitter placed after a A/2 zero order waveplate
splits the beam with a ratio adjusted by rotating the waveplate. 1/3 of
the intensity is sent in one beam and 2/3 in the other one. The following
beam-splitter is non-polarizing and divides the highest intensity beam in two
equivalent parts so that the total energy is equally distributed among the
tree beams. Additional A/2 plates are needed to rotate the polarization of
each beam. Since the three beams are not coplanar, a common polarization
state cannot be found in the interference area. The polarizations can only
be set identical two by two and the difference with the third one has to be
minimized. This is more easily achieved when the angle between the beams is
small, i.e. for large interference fringes. The polarization state is represented
by dark green arrows in figure 2.10.

A particular attention has to be paid to the different path lengths, on the
one hand to preserve the same size for each beam at the trapping area and on
the other hand to ensure maximum interference contrast in the trapping area.
This second criterion is not so critical with the Verdi laser used since this
model has a coherent length of several meters but could be important with
other types of lasers. The control of the light-path is realized by adjusting
the mirrors positions at the basis of the pyramid, taking into account the
optical path through elements of higher indices. A piezo electrical element
is mounted on a mirror folding one of the beams. The translation of this
mirror in the order of the micrometer induces a phase shift on this arm that
moves the fringes laterally in the trapping plane.

Because of convection and gravity effects, the sample cell is placed hori-
zontally and the optical axis must be set vertically. A 2" broadband dielectric
mirror is placed near the top of the pyramid to fold the apex in a vertical
position. A mirror mounted on a flip-flop element and placed before the
beam separation gives the possibility to illuminate the sample cell with a
single beam along the axis of the pyramid. This beam will be also used for
experiments on optical binding reported in chapter 4.

The cell holder is mounted on a motorized stage driven by two DC-motors
to laterally move the sample in x- and y-directions. The motors are supplied
by a manually controllable voltage generator. The position is given by en-
coders with an accuracy of 1 micrometer.
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Figure 2.10: Basic setup for generation of interference for optical trapping. The
output beam of a 5W Nd:Vanadate laser is split in three parts that are combined
at the trapping area where a sample cell is placed. Two objective lenses project the
image of the trapping area on a screen. The green arrows show the polarization states.

An He-Ne laser emitting at 632.8 nm with a power of 30 mW has been
inserted in the setup. Directed along the axis of the pyramid, it offers the
opportunity to image the sample independently of the trapping light. It
also allows the reading of the particles arrangement by observation in the
reciprocal space (k-space). This latter investigation method will be described
in paragraph 2.2.6 and in section 4.3.

An imaging system offers the opportunity to project the image of the
trapping plane both on a digital sensor and on a large screen. A long work-
ing distance microscope objective (Nachet x 20 infinity corrected, WD 17
mm, NA 0.3, N-20X-LD) makes a real image of the trapping plane which is
relayed by a large photographic objective (Pentax 50mm Macro), projecting
the image on the large screen. A camera records the projected images. A
dichroic mirror placed between the two objectives used for imaging selects
a part of the light and projects it directly on a CCD sensor. This latter is
positioned at the image plane of the Nachet objective; the image of the trap-
ping plane is focused simultaneously on both displays (CCD and screen).
Additional filters discriminate between the residual trapping light and the
red illumination, depending on the images that need to be recorded. An-
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other imaging system allows side observation of the trapping area. However,
it requires a special sample cell with a lateral optical window.

Sample preparation

Most optical experiments presented in this work are performed with spherical
polystyrene microparticles suspended in water. These objects have several
advantages.

e Polystyrene (latex) beads have a refractive index of 1.59 or 1.6 depend-
ing on the supplier. When immersed in water, they provide a relatively
large index modulation (1.2) which constitutes one of the most impor-
tant parameters for optical trapping as illustrated by equation (1.2)
and (1.4).

e The absorption of light by polystyrene in the visible and near infrared
domain is very low.

e Microparticles can be found in solutions sold by various manufactur-
ers. Our mains providers are Polysciences (polystyrene particles) and
Invitrogen-Molecular Probes (fluorescent or reactant coated particles).

e The size of the particles covers a range from a few nanometers to tenths
of millimeters with a large choice in the micron range (0.5-20um) cor-
responding to the optimal object sizes used in our optical trapping
experiments.

e Manufacturer produce polystyrene beads with a narrow size distribu-
tion. The coefficient of variation is in the range of 1-3%.

e Polystyrene has a density of 1.05, close to that of water. It allows
having colloidal solutions with slow sedimentation.

e The beads are furnished in solution (water) at a high concentration
(1-10% w/v) and can then be easily handled and diluted to the desired
concentration.

e Beads solutions can be stored for a long time at low temperature (4° C).

e Due to the fabrication process, polystyrene microparticles have an al-
most perfect spherical shape.

Manufacturers supply functionalized polystyrene spheres, electrically charged
or not. For the work reported in this PhD dissertation, we only use neutral
particles.
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Samples are prepared by diluting the high concentration beads suspen-
sions by about a factor 100 in deionized water which results in a concentration
of about 0.03% w/v depending on the desired final concentration and on the
beads size. Preparations of 2 to 5 milliliters are kept ready for experiments.
The test-tubes containing the solutions are shaken in an ultrasonic bath dur-
ing 15 minutes before each experiment. This degassing operation also breaks
up the aggregates of beads.

Sample cell

Sample solutions have to be contained in a closed cell since 2-dimensional in-
terference trapping configuration requires a surface for the confinement in the
third direction. Optical flatness is required in order to avoid phase distortion.
The top and bottom of the cell have to be of optical quality for sustaining
the high fluence needed for optical trapping and for a good imaging. The
height of the cell is critical. A too high container gives rise to convection
effects that can seriously disturb trapping experiments. A height of 200um
provides a sufficient volume, meanwhile reducing considerably the convec-
tion effects. We employ both commercial cells and home made containers
schematized in figure 2.11.

We use cells with detachable windows sold by Hellma, GmbH (catalog
Number 106) with a light-path of 0,2 mm. The two windows are clamped
by a cell holder. For a more flexible solution, a home-made silicone spacer
is squeezed between a standard microscope slide and a coverslip. Such a
spacer acts extremely well as an O-ring. The desired spacer shape is cut
in a 170pum thick PDMS sheet. This one is realized by molding a two-
components polydimethylsiloxane (Sylgard 184, Dow Corning, USA) between
two flat surfaces spaced by standard 170pm thick microscope coverslips and
then heating up at 70°C during two hours. This simple solution is flexible,
inexpensive and the cells present a much better sealing than the one of the
commercial cells. The different components of the cell can easily be cleaned
with ethanol.

For side viewing, we use a square Hellma cell (catalog number 131.050) with
a 200 pym channel.
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Figure 2.11: Two types of cell used for trapping. Particles are confined at the top
of the cell due to the radiation pressure.

2.2.6 Trapping polystyrene particles

Lets consider particles with a diameter in the micron range, typically 1 to
10 microns. In the case of interference trapping, particles can be trapped
as well in bright fringes as in dark fringes depending on the relationship be-
tween beads diameter, index modulation and fringes’size. The exact equilib-
rium position of dielectric object in interference pattern can only be reliably
calculated by rigorous implementation of Maxwell’s equations and no easy
prediction of the trapping of such objects can be made. A few calculation
of optical forces on Mie particles in extended electromagnetic fields can be
found in the literature [100, 94, 95, 96]. Simulations show that particles
will not necessarily be trapped at maxima of light intensity, but they will
place themselves at positions such that their volume encloses the maximum
of electromagnetic energy density [96].

We first study the behavior of polystyrene beads with a diameter of 2 ym
(Polysciences Inc. Cat# 19814) in 2-micron interference fringes. The Influ-
ence of the trap size on optical trapping will be presented later in section 2.3.
The setup described in paragraph 2.2.5 allows creating about 70 line traps
or 3400 hexagonal traps in the field of view of the objective that contains the
major part of the laser intensity. Under such conditions, beads settle down
at the highest intensity point in the center of the hexagons or in the center
of the bright sinusoidal fringes respectively as shown in figure 2.12.

After the modifications brought to the setup allowing changing the pitch
of the interference fringes (as it will be describe later on in paragraph 2.3.1),
we could create over 20,000 traps inside the field of view of the objective.
Figure 2.13 shows 24,000 traps generated by 1.26 pum fringes, partially filled
with 1 micron beads.
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Figure 2.12: Two-micron polystyrene spheres trapped in a) two-beam and b) three-
beam interference. c¢) Whole trapping area with 3400 Traps. The beads find an
equilibrium at the intensity maxima. d) Same as c¢) but almost totally filled with
2pm beads

Figure 2.13: Over 24’000 traps in an area of 240 um in diameter partially filled with
1 pm polystyrene beads
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Force measurements

In order to determine the strength of the traps we use the drag-force method
well known in the calibration of optical tweezers and described in [101, 102].
This method relies on the viscous force (Stokes’ formula) determined by
the fluid velocity that the trapped object can sustain while remaining in the
trap. Conversely to the case of conventional 3D optical tweezers, the trapped
particles in the present experiments are in the vicinity of a wall of the con-
tainer. In that case, the influence of the proximity of a surface is difficult
to estimate and the exact value of the Stokes force cannot be determined.
Multiple factors intervene such as friction, Van der Waals forces or the un-
known exact distance between the surface and the particle. However, the
trapping strength can be related to the drag speed and relative values can
be determined. One must notice that the drag method can be implemented
according to two different techniques. When the cell is dragged in a direction
perpendicular to the fringes, the optical forces oppose the liquid flux and the
influence of the proximity to the wall works against the trapping force. On
the other hand, when only the solution is flowing through the cell perpendic-
ularly to the fringes, for example in a fluidic channel, the proximity effects
help stabilizing particles in the traps.

K-space observation

Observing the Fraunhofer diffraction of the ensembles of particles gives an
information on the distribution of light in the k-space. To access this rep-
resentation, it suffices to place a screen in the far field, i.e. some tens of
centimeters behind the interference area. Regularly disposed particles, as
trapped in the interference pattern, will diffract light in specific direction ac-
cording to the pitch of the array. Even partially filled template will diffract
in well defined spots as visible in figure 2.14. The smaller the spot, the bet-
ter the trapping since irregular diffracting element will spread the diffraction
spots.

2.2.7 Radiation pressure compensation

In order to compensate for the radiation pressure that pushes the trapped
particles against a wall, a dichroic mirror has been added at the top of the
cell to reflect the incoming beams. The coated surface of the mirror is placed
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a)

Figure 2.14: a) Partially filled crystal of two-micron polystyrene beads trapped
in three beam interference pattern at 532 nm observed with red He-Ne light. b)
Diffraction pattern observed on a diffuser placed 252 mm behind the trapping plane.
The three bright green spots (B) are the propagating trapping beams. The central red
spot (C) is the illumination He-Ne beam and the small red (R) and green (G) spots
are the first diffraction order due to the illumination and trapping beams respectively.

in contact with the solution. Each beam is specularly reflected; this pro-
duces a six beam interference as shown on the simulations presented in para-
graph 2.2.4. Experiments with 2um beads show that effects of radiation
pressure can be minimized and beads can be stabilized for the time of ex-
periment (about 10 to 15 minutes) and stay at different depths in the cell.
In comparison, without back reflection, the same beads would reach the top
of the cell in several seconds (5 to 15 sec. depending on the laser power).
The radiation pressure compensation works better for a small concentration
of beads in the cell. Indeed, each bead scatters some of the light impinging
on it; this scattered light is lost from the incoming beams and therefore the
reflected beams are less intense than the forward beams entering the cell.

For 2.06 pum spheres in 2 pum fringes, a dragging speed of 37.3 um/s
could be reached when the mirror is used. This should be compared to the
dragging speed of 13.3 um/s reached when the beams are not reflected. For
this experiment the power incident on the cell was 2 Watts. This increased
trapping efficiency is due to the following reasons:

1. The presence of the mirror doubles the intensity in each trap (excepted
for the losses of the mirror and for effect of diffusion)

2. The gradient of the intensity pattern is theoretically almost three times
higher, as explained in paragraph 2.2.4.
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Figure 2.15: Schematic representation of the formation of clusters of beads where
the radiation pressure is only partially compensated.

3. The beads are not in contact with the walls of the cell, therefore they only
experience the viscous force.

Bigger 3um beads are more sensitive to radiation pressure and gravita-
tion. This is why they have been used to find the final equilibrium position
of trapped particles inside the volume of the cell. The beams have an angle
¢ of 8.8° in air with respect to the z axis (6.6° in water) as represented in
figure 2.6. Beads amass at four different places in the cell as shown in fig-
ure 2.15. A first accumulation occurs at the top of the cell on the z-axis.
Three other concentrations of beads are found where the three reflections
exit the trapping volume. Due to their inclination, the incoming beams and
their respective reflections only overlap at the surface of the mirror (see fig-
ure 2.9). At the bottom of the cell, a particular beam and its reflection
present a shift of over 40 pum, leaving space where the radiation pressure
is not totally compensated (see figure 2.16). Even if the radiation pressure
would be uniformly compensated, this would not suffice for a 3D trapping;
a gradient in the z direction is necessary. However, for short experiments,
beads could be trapped in the bulk of the cell. Creating a gradient in z over
a large area in the xy plane is not trivial. We will present a solution in the
chapter 3.

An ingenious solution for radiation pressure effects compensation was
experimented by Chiou et al. [103, 104], using photorefractive crystals to get
phase conjugation in a four wave mixing configuration.
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Figure 2.16: Schematic path of a beam with a waist of 100 um impinging on the
cell and its reflection at the top of the cell. The beam slant corresponds to a fringe
pitch of 2 um. The drawing shows area with lack of radiation pressure compensation
at the none overlapping area at the bottom of the cell. The beam size variation is
neglected over the thickness of the cell since the Rayleigh length is 60 mm.

2.2.8 Trapping in microfluidics

In biology, many experiments call for the reduction of consumption of matter
and of reactants. Optical tweezers provide a suitable tool for the manipu-
lation of small amounts of objects and microfluidic systems are excellent
complement for dealing with small quantities of products [105, 106, 107].
The concept of lab-on-a-chip also known as pTAS (Micro Total Analysis
System) is now particularly appreciated for biological studies. Low reagent
consumption, short reaction time, low cost, customable design and possibil-
ity for parallel operation are the major advantages of those systems. In-
formations on those systems are provided in appendix A. If a single opti-
cal tweezers in microfluidics has been often used for biological applications
[108, 109, 110, 111, 112], the combination of multiple optical trapping and
microfluidics is more powerful but difficult to implement. To our knowledge,
as of today, no biochemical experiment has ever been published using the
conjunction of microfluidics and multiple optical trapping. To some extent,
this is due to the high strength needed for optical traps to sustain microflu-
idics flows. Indeed many systems for creating arrays of optical traps generate
also important loss of power and are limited to a few number of traps (see
paragraph 1.2). More powerful schemes have been demonstrated when do-
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Figure 2.17: Two constructions of microfluidic chips. On a), channels are molded
in PDMS and bonded to a glass microscope slide. Holes for connecting tubes are
punched into the PDMS layer. The channels of the chip drawn on b) are engraved in
glass and the PDMS layer only acts for sealing the tubes connection. The assembly
is pinched with mechanical clamps.

ing sorting in optical landscapes without total confinement of particles [13].
Our goal is to generate interferometric traps inside microfluidics capable to
sustain flows and immobilize particles.

Microfluidic Chip

Microfluidic chips are characterized by fluidic channels having at least one
dimension in the sub-millimeter range, typically between 30 and 200 microns.
In a basic design, several inlet channels merge in one central channel that
lead to one or several outlets. The small dimensions allows fluids to flow in
a laminar regime at low Reynolds numbers. With sufficient flow velocities,
several different fluids can be flown parallel to each other over a long range
with little diffusion.

Two types of microfluidic chips have been used for experiments presented
in this dissertation. One sort is made out of silicone while the other one is
a glass component. For the first type silicone is molded on a master made
by photolithography (figure 2.17). The fabrication process is detailed in the
appendix A.

Some experiments required a chip with glass top and bottom to withstand
higher fluences than PDMS. In that case, Microchannels are engraved in a
glass plate. Connection holes are drilled and the plate is mounted on a Imm
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Figure 2.18: Microfluidic flows are controlled a) by regulators connected to an air
pressure network and b) by a syringe mounted on a manually controlled precision
SCrew.
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microscope slide with a PDMS block for fluidic connections. The whole
ensemble is pinched between mechanical clamps as shown in figure 2.17 b).

Microfluidic flows are either driven by external pressure regulators (Bellofram
type 70) connected to the air network or by a manually controlled micro-
mechanical syringe. Pressure regulators can be multiplied and control con-
stant flows in several inlets independently. On the contrary, the manual
syringe can not deliver a constant flow over a long period of time but of-
fers the possibility to quickly control flow changes. Teflon tubes allow direct
plugging to the holes punched in the PDMS layer. Beads solutions or chem-
ical reactants are sucked at the end of the tube (figure 2.18 b)) or put in a
reservoir under pressure (figure 2.18 a)).

The generation of interference fringes, not requiring bulky optics in the
vicinity of the sample, allows the use of a wide range of chips or contain-
ers. In our setup, the microfluidic chips do not specifically need to have a
thin bottom, as is generally necessary for trapping through high numerical
microscope objectives. The bottom layer of the chip must nonetheless be of
optical quality and supporting high fluences.

Experiment

A microfluidic chip is placed inside the interference volume. The optical
lattice covers a field larger than the channel’s width so that the colloidal so-
lution is flowing through the highest intensity zone of the template, which is
created by superimposing beams with Gaussian intensity distribution. Fig-
ure 2.19 shows a sequence of images taken by a CCD camera illuminated by
a red He-Ne laser at 633 nm. Green trapping light is filtered but is shown
on b).The array pitch is two microns and polystyrene beads have a diameter
of 2.06 microns. Beads flowing at velocities higher than 100 um/s could be
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Figure 2.19: Polystyrene Beads (¢ 2.06 um) flowing in a microchannel and trapped
in interference pattern. a) Sequence of images taken at 1 seconds intervals recorded
on CCD through a red He-Ne illumination. The trapping laser at 532 nm is turned
on between the first an the second image and is filtered before the camera sensor.
b) Optical template recorded without filtering. ¢) Schematic representation of the
microfluidic chip and the region of interest.

stopped by the optical traps. The initial power of the laser is 3.5 W. When
the laser is turned off, released beads flow away with a slower speed due to
their proximity to the top of the channel and due to Poiseuille flow speed
distribution.

2.3 Variation of trap size

A key issue when generating very large number of traps is the individual
efficiency of each trap, since the initial power is distributed all over the
traps. We have seen in paragraph 2.2.4 how to increase the intensity gradient
of each potential well. In this section we are interested in studying the
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Figure 2.20: Enhanced experimental setup for fringe modulation when compared to
the setup in figure 2.10. The three mirrors M1, M2, M3 can be translated to change
the angle between interfering beams.

optimal trap size for a fixed size of particle of given index. For the considered
particles’ sizes no simple analytic predictions can be made to determine the
optimal trap size. The resonance effects have important influence on the
trapping forces as theoretical works predict [86, 87, 89]. Several groups are
studying the comportment of particles in large optical landscape [93, 94,
95, 96]. Zemanek et al. have studied the behavior of sublambda particles
in standing-wave showing the influence of the size on the trapping effects
(84, 113, 114, 32]. They demonstrated how particles can be dragged or not
in travelling standing waves depending on their size. We are interested in
micrometric particles (typically 2 to 6 um) whose sizes are comparable to
the ones of targeted biological elements (some microns for prokaryotic cells
and 10-20 microns for eukaryotic cells). We present here under the first
experimental results of the influence of varying the sinusoidal trap sizes on
the trapping efficiency for a given size of particle.
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2.3.1 Setup modulation

The experimental setup is based on the scheme presented in paragraph 2.2.5
but requires to have an adjustable angle between interfering beams. Fig-
ure 2.20 presents an overview of the modified experimental setup. The ini-
tial beam is divided into three beams propagating parallel to each other and
impinging on three mirrors (M1, M2, M3) placed at the apex of an equilat-
eral triangular basis of the pyramid formed by the interfering beams. The
three mirrors are on a common mechanical base that can be translated along
the axis of the pyramid. Mirrors are mounted on kinematic mounts for fine
adjusting of the reflecting beams onto the sample which remains at a fixed
position. The interference pitch p can be varied as a function of the position

p=2A (E)QJF% (2.12)

of the three mirrors:

a

where a is the distance between the parallel beams and L the distance be-
tween the cell and the mirrors, corresponding to the height of the pyramid.
The easy positioning of the mirrors M1, M2 and M3 allows a relatively quick
adjustment of fringe spacing between 1 and 10 pm with a accuracy of 20nm.
The symmetry around the axis of the pyramid leads to similar optical path-
length for each beam for every longitudinal position of the three mirrors
basis. The telescope system composed of lenses L1 and L2 is also adjustable
in order to focus simultaneously the three beams into the sample cell.

2.3.2 Beads behavior in various fringe sizes

First observations were performed with beads of 2.061 microns in diameter
(Polysciences Inc. Cat# 19814) trapped in arrays with fringes spacing of 6, 5,
4, 3, and 1,74 microns. Beads were not electrically charged. Parallel line traps
and hexagonal traps have been studied. A single bead, when not in presence
of other particles, will set at the highest intensity peak of traps larger than
the beads diameter. However when the size of fringes was set to 1.74 pm,
i.e. smaller than the beads diameter, the trapping seemed to disappear. The
1.74 pm pitch value was set according to theoretical calculations performed
in the Mie regime with the exact parameters of the experiment?. This fringe’s
size was predicted by the model to achieve the maximal trapping force for

20. Moine, April 2006
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Figure 2.21: Polystyrene beads (2.06 pum in diameter) in hexagonal pattern of a)
4 pm and b) 1.74 pm. c) and d) FFT of images a) and b) respectively. Diffraction
spots are not present in d); this is evidenced by the lack of trapping.
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Figure 2.22: Intensity of spots in FFT image of beads arrays depending on the pitch
of the light template.

2.06 um spheres. The experiment did not confirm predictions. To check for
the trapping quality, we recorded images of beads in a still cell when various
traps sizes were applied and we processed the images through a Fast Fourier
Transform (FFT). A regular arrangement of the beads in the traps produces
more intense spots in the FFT image. Figure 2.21 presents an arrangement
of 2-micron polystyrene beads in a 4-micron and a 1.74-micron hexagonal
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Figure 2.23: Optical trap stiffness measurement as estimated with the maximal
drag speed sustainable by 2.06 micron polystyrene beads in sinusoidal (lozenges) and
hexagonal (square) pattern as a function of the array’s pitch. The laser power in the
cell is 1.8 W with 3 beams and 1.25 W with 2 beams. The vertical line indicates the
particles’ size.

2D array generated by the Nd:Va laser at 532 nm and illuminated by an
He-Ne light (green light is filtered). The FFT-image of the 4-micron trap
array clearly shows the arrangement of the beads in the hexagonal pattern.
Oppositely, no organization was observed with the 1.74 pym trap array. The
intensity of the peaks as a function of the fringe’s pitch is illustrated in
figure 2.22. The analysis of the diffraction spots in the FFT (intensity of the
peaks over the background) shows a decrease in the sharpness of the spots
with the increasing fringe sizes. At this stage, no external force was added
and particles” movement is due to Brownian motion. One can notice the
presence of Debye-Scherrer rings in figure 2.21 indicating the size dispersion
of the beads.

In the next paragraph, the dragging method will be employed to emphasis
the influence of the pitch of fringes on the trapping stiffness.

2.3.3 Influence of fringe’s size on trapping efficiency

Investigations were performed with two different sizes of beads (2.061 um
and 5.854 um, Polysciences, inc Cat#19814 and Cat#7312 respectively). For
each bead type, the fringe’s pitch (distance from peak to peak) was modified
in steps of 100 nm in a range between -0.5 micron to 4+ 1 micron around the
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Figure 2.24: Same experiment as in figure 2.23 performed with 5.8 pm polystyrene
beads in sinusoidal fringes only.

value of the beads’ diameter. The initial power at the laser output was set
to 3 W corresponding to an effective total power of 1.8 W in the trapping
area, divided in the three interfering beams. For experiments with sinusoidal
traps, when just two of the three interfering beams are used, only two third
of this power was available. Beads were observed at the top of a 200 um
thick cell made by two glass slides separated by a PDMS spacer. The light
template is fixed and the cell was laterally translated. Trapped beads stayed
in the template while other ones were dragged with the fluid. The maximal
speed at which the cell could be moved while particles remained trapped
was defined as the maximal trapping speed. In the case of sinusoidal fringes,
the dragging direction was set perpendicular to the fringe’s direction. In
the case of three beams, the dragging direction was perpendicular to the
fringe’s set created by the two beams whose polarization were collinear (see
paragraph 2.2.5). The cell was dragged by one of the DC motor and the
encoder permitted precise recording of the stage speed.

Figure 2.23 presents the maximal trapping speeds for 2-micron beads
as a function of the fringes’ pitch in the center of the gaussian shape of
the template’s intensity profile. This experiment is always performed with
very dispersed solutions of beads to avoid optical interactions between neigh-
boring spheres and to stay away from hydrodynamic effects. Every experi-
ment was repeated six time for each fringes’ size. The values illustrated in
figure 2.23 and 2.24 correspond to the average of those six measurements.
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One-dimensional (sinusoidal fringes) and 2-D (hexagonal) configurations were
studied. Figure 2.24 presents the result for 5.8 ym beads in sinusoidal fringes
only.

2.3.4 Discussion on force measurements

A first intuitive reasoning leads to the thought that a bead with a diameter
equal to a half of the fringes’ pitch will be trapped in a bright fringe; when
its size can covers two bright fringes it should sit in between, i.e. on a dark
fringe. This is also confirmed by theoretical calculation [96]. Between the
two cases (trapping in bright fringes or in dark fringes) there is one ratio of
beads’ size over fringes’ size where optical forces cancel. According to our
measurements there can be several fringes’ size for which the trapping force
is maximal.

In both studies (2.06 and 5.85 um beads), we observe two force maxima
for fringes’size slightly larger than the beads diameter. Although our trap-
ping scheme does not allow determining the effective optical force because
of the proximity between trapped particles and cell wall, the trapping speed
recorded is nonetheless directly proportional to the trapping efficiency. The
variation of trapping efficiency for both studied spheres’ sizes could be ex-
plained by resonance effects. One must notice that no reciprocity should be
expected with this curves. They give the trapping efficiency for one given
size of bead as a function of the fringe’s size, which differs from the efficiency
for particle varying in size in a fix interference pattern.

The graph of figure 2.23 also reveals the variation in trapping efficiency
due to the addition of a third beam. Although the template with three beams
is implied with 1.5 times more power than the template with two beams, the
trapping speed is indeed increased by a factor of about 1.95. This gain in
efficiency can be attributed to several reasons. The increase of intensity
gradient in the optical well created by three beams is higher than the one
formed with two beams (see Table 2.1). The ratio of the intensity gradients
between both cases is 1.75. Secondly, in the three beams configuration a
stable trapping is reached, whereas in the two beams configuration particles
are slightly pushed along the fringes due to the inclination of both beams with
respect to the trapping plane. Even though the force measurement direction
(dragging direction) is perpendicular to the fringes’ direction in which the
beads move, the lack of stability can lead to reduced efficiency.
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Figure 2.25: scattering (dotted line) and gradient (plain line) force acting on a 2-
micron polystyrene sphere depending on its position in sinusoidal fringes with a pitch
of 4 microns (background). The average laser power over the particle is 1 W. Calcu-
lation have been made according to the geometrical optics model. Results courtesy
of F. Merenda.

The highest maxima of the two curves in figure 2.23 are not reached for
the same fringe’s pitch. To understand this shift, one must keep in mind
that the distance between the intensity gradient maxima in an optical well
is bigger for the 3-beam interference than for the 2-beam interference as we
have seen in paragraph 2.2.4. Obviously the optimal trap’s size in the 3-
beam configuration is then reached for a smaller fringe’s pitch than in the
2-beam configuration. The sampling of the measurement do not allow to see
a similar discrimination between the position of the two first maxima of the
curves in figure 2.23.

At rest, the equilibrium position of a trapped sphere is located at the
peak of the bright sinusoidal fringe. When the cell is dragged, the parti-
cle finds a new equilibrium position, influenced by the viscous force. The
effective trapping force is measured for beads located at this position. It the-
oretically corresponds to the maximal intensity gradient. In that position,
the scattering force is also modified if compared to the one exerted at the
center of a bright fringe. The variation of the scattering force as a function
of the lateral position of the particle is shifted by 7/4 with respect to the
gradient force. Figure 2.25 presents the value of the scattering force and of
the gradient force for a 2-micron polystyrene sphere depending on its posi-
tion in 4-micron pitch sinusoidal fringes, according to the geometrical optics
model. A force measurement method based on the Brownian motion would
allow to determine the stiffness of the traps close to the equilibrium position
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but the dragging method is more representative of the working conditions in
a microfluidic environment. 3

2.4 Multiple beam interference

In most interferometric trapping setups, the intensity gradients are generated
by the interference of a few beams (most often 2 to 6). Whereas the interfer-
ence of two plane waves creates fringes with a sinusoidal profile, increasing the
number of interfering waves sharpens the intensity gradient. As stipulated in
paragraph 2.2.4 trapping forces can be increased by raising the intensity gra-
dient of the optical trap. Multiple-beam interference, like the one produced
in a Fabry-Pérot interferometer, provides very high intensity gradients and
can therefore constitute an interesting basis to generate templates for opti-
cal trapping or guiding of particles. Their use was first suggested for atom
trapping in the 90’s [116] but, to our knowledge, was never used for micron-
sized particles. In this chapter, we report on the first experimental trapping
in multiple beam interference for mesoscopic objects [117]. Here, a solution
to create high gradient fringes for trapping polystyrene spheres is presented.
Multiple-beam interference trapping gives access both to massively parallel
trapping and to the generation of high intensity gradient traps, and can be
used in combination with microfluidics systems.

2.4.1 Generation of Fizeau-Tolansky fringes

Multiple interference fringes are generated by many passes of a coherent light
beam through an interferometer [118, 119, 120, 121, 122]. Let us consider an
interferometer composed of two reflecting plates, one being semitransparent
and the other being highly reflective (figure 2.26).

3After the submission of this thesis manuscript, Mu et al. published an experimen-
tal study on the measurement of the trapping force for different bead sizes in fringes of
various sizes [115]. For the beads they investigated (sizes 1.5, 2 and 3 microns), no local
minima was found for fringe sizes bigger than the beads diameter; Also, their results fit
the theoretical models. Several parameters differ between their experiment and the ones
we performed: the trapping area is much wider in our setup, which causes the force to
be one order of magnitude smaller. Our results are then more sensitive to the influence
of other forces. Moreover the beam focus adjustment in our experiment can perhaps also
cause some variations that are avoided in the scheme presented by Mu and co-workers.
Nevertheless, our measurements are made in the same practical conditions than the ones
used to perform all experiments reported along this thesis.
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Figure 2.26: Multiple beam interferometer principle. Through a partially trans-
parent mirror, an incoming light beam is divided in many sub-beams with different
intensities and propagation directions.

The two plates form a dihedron with a small angle . A coherent laser
beam incident on the system is first reflected on the semi-reflective interface
and then reflected many times between the mirror and the semitransparent
surface. Each transmission through the semi-reflective plate creates a "new'
outgoing beam. Interference between the beams emerging from this system
generate fringes. Each passage between the two plates induces a phase shift
®. A bright fringe is created when ® = m2m, m being an integer.

Let us consider how the system evolves when the angle o between the mir-
ror and the semitransparent plate is modified. The evolution of the fringes
has been studied in depth in [123, 124] . Two different cases can be distin-
guished depending on whether o = 0 or not. The first case, when o = 0,
produces multiple beams having the same tilt: this corresponds to the well-
known Fabry-Pérot rings. In this case, the two mirrors are rigorously parallel
and a lens is placed after the interferometer. The phase shift is given by

2
o = ;2]\76 cost + W, + VU, (2.13)

e being the distance between the two layers; W,; and ¥, are the phase shifts
due to the reflections on the two reflecting surfaces, 6 is the angle of the
incoming beam and N the number of reflections on the mirror. The system
is working in air. The interference creates concentric circular fringes whose
radius grows as the square root of the order number k. The k' fringe is at



44 2 Optical trapping in interference patterns

1 T I ]
| ] T . .

il RN . 0l ..~-,.\~~-"f.r M

| I / (AT P o B |

Figure 2.27: Variation of the profile of Tolansky fringes when angle o between the
two mirrors varies by successive steps of 0.05 degrees. Images are recorded by a CCD
camera placed in the vicinity of the interferometer.

O = \/E\/% (2.14)

In the second case, the semitransparent plate makes a small angle o with the

an angle

mirror. Let us study the practical condition where the distance e between
them is as small as possible. Each outgoing beam will propagate with an
angle [-0—2Na]. This produces fringes sometimes called "of equal thickness"
to refer to the optical path difference being the same at each step. Such
fringes are known as Fizeau fringes or called also Tolansky fringes. They are
produced both in transmission and in reflection; obviously, their intensity
and profile depend on the reflecting coefficient of both plates and on the
angle a. Figure 2.27 shows some profile variation for different values of « at
a fixed plane located just after the interferometer.

According to Holden [125], the analytic expression of the profile in reflec-
tion is given by:

(t'31r9)2 + 2211 cos(® + @) — 2t 3r3ryrg cos ¢’

2,2
1 — 2ryrarg cos @ + rary

(2.15)

4This equation corresponds to the limit given by an infinite number of reflections
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Figure 2.28: Output beams of the interferometer are focused on the sample cell.
The trapping plane is imaged on a large screen.

r; being the amplitude reflection coefficient at the interface i and t/; the
amplitude transmission coefficient. ¢’ = W,q + ¥,; — 2W;; where Wy, is the
phase shift in transmission.

2.4.2 Experimental configurations

Two solutions have been tested to generate multiple fringes inside the trap-
ping area of a cell. On a first example, fringes are generated far away from
the trapping area and are projected to it by a relay optics. This system has
been combined with a microfluidic chip and results are presented in para-
graph 2.4.3. The other way out is to have the sample in contact with the
interferometer, to generate fringes directly in the cell where trapping occurs.
In that case, a converging beam is impinging on the interferometer. Eventu-
ally, a system composed by a double interferometer for generating of arrays
is proposed in the last paragraph.

a. Projection of multiple-beam fringes

An interferometer generating fringes of equal thickness that are projected by
a relay lens onto the sample is shown in figure 2.28.

The output of a the laser used in 2.2.5 is first expanded by an afocal sys-
tem. The size of the collimated beam at the output of the telescope slightly
overfills the aperture of the 1 inch interferometer mirrors. Multiple interfer-
ence can occur only on the overlapping areas of the various beams which exit
the interferometer; the wider the beams, the higher the number of overlaps,
then the higher the interference number. The interferometer is composed
of a 1 inch dielectric mirror and a 1 inch semitransparent plate which has
an intensity reflection coefficient of 50% at 45° incidence at 532nm. The in-
coming beam impinges on the system at an incidence angle 6 set to 11°. At
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Figure 2.29: a)l0um beads optically trapped and aligned on multiple-beam inter-
ference fringes. Beads are at the top of a 200um thick cell. b) Intensity profile along
the white line in a) compared to a sinusoidal shape.

this incidence angle, the reflection coefficient of the semi-transparent plate is
40%. The interference pattern generated at the output of the interferometer
is projected by a large plano-convex lens (l=250mm, ()=2") onto the cell
described on page 25 containing polystyrene beads suspended in water. The
lens can be moved in the z direction for adjusting its distance to the sample.
This distance should be slightly smaller than the focal length to allow over-
lapping of all beams on the trapping area. Obviously, at the focal plane of
the lens the beams are focused at distinct focal points corresponding to the
various directions of the individual beams: those are geometrically separated
in the focal plane, then forbidding any interference. The imaging system is
similar to the one exposed in the paragraph 2.2.5

The trapping area is 240um wide. Beads are laterally trapped by the
gradient force and align in the bright fringes as they are pushed by radiation
pressure towards the upper coverslip. They lay in a plane located at the
top of the cell, called hereafter the trapping plane. Figure 2.29 a) shows the
alignment of 9.6um polystyrene beads (Polysciences, Inc. polybeads CAT#
17136) in multiple-beam fringes. The comparison in figure 2.29 b) between
the profile of the interference and a sinusoidal shape illustrates the gain on
intensity gradient.

The two plates of the interferometer are mounted on kinematic mounts,
facilitating a fine tuning of the angle a and of the distance between the two
mirrors. Small variations of these two parameters rapidly change the pitch
and orientation of the fringes. This characteristic is of particular interest
when used in conjunction with microfluidics as it will be presented in para-
graph 2.4.3.
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Figure 2.30: Crossing area of multiple reflections occurs in the sample. The use of
a lens focusing in the same region concentrates energy inside of the sample area and
leads to fringes’ sizes in the micron range.

b. Generation of multiple-beam fringes in the sample

High optical gradients are due to the large number of interfering beams gen-
erating high order interference. Using a focusing element after the interfer-
ometer generating multiple beams however blocks higher spatial frequencies.
Also, as mentioned previously, each beam focuses to distinct points separated
from each other in the focal plane, preventing the formation of interference
fringes in that particular area. These constraints add to the physical limita-
tion of the system, when one attempts to decrease the fringe sizes within a
restricted area. Indeed, to reduce the pitch of the fringes, the angle o must
be increased. However, the larger the angle, the larger the separation of the
focus points in the focal plane.

The configuration presented in figure 2.30 allows increasing the interfer-
ence order and avoids the use of relay optics between the interferometer and
the sample. By choosing a negative angle 6, the absolute value of 0y de-
creases as « increases and the beams are crossing in a defined area whose
size can be comparable to the beam cross-section. When the incoming beam
is focused and the intersection area of multiple reflections coincides with the
focal area, intense fields can be obtained without sacrificing the contribution
of high spatial frequencies, overcoming the problem presented in the former
paragraph. Obviously, the focal length and the numerical aperture of the
focusing element should be appropriately chosen to produce a sufficiently
long Rayleigh range in order to produce small variations of the beam radius
between the intersecting reflected beams. Figure 2.31 shows the intensity



48 2 Optical trapping in interference patterns

c) 13 um ‘

200 3.8 um it

= 150 ']

=

E 100 |

£ T ]
s0 f\\ 7/ \\// 1 Ho\k ! <.
o \ ” P AP \“'. W, - y ¥ o\ ~ \ M

0 40 80 120 160

Figure 2.31: a) Multiple fringes generated directly at the output of the interferome-
ter with a converging beam. b) 5-micron polystyrene beads trapped in multiple-beam
interference fringes. ¢) Fringe intensity profile (bold continuous line) along line cross
section in a) compared to a sinusoidal function with a similar envelope (bold dashed
line). Thin lines at the bottom of ¢) show the absolute values of the gradient of the
intensity profile (continuous) and of the sinus function (dashed).

profile of the fringes obtained with this scheme. The beam is focused by a
200mm focal length lens and the interference area covers about 200um. The
intensity gradients shown in figure 2.31 ¢) (thin lines) has been raised up to
a factor of 2.5 compared to a sinusoidal function. The width of the fringes
has also been reduced by a factor of ~2 with respect to the pitch of the pat-
tern. When an optical landscape of such multiple-beam fringes is applied,
polystyrene beads with a diameter of 5 microns are trapped laterally and can
sustain a flow of few microns per second. Meanwhile they are pushed axially
towards the top of the cell by radiation pressure.

c. Two dimensional lattices

Combining two multiple-beam interferometers allows creating 2D light pat-
terns as illustrated in figure 2.32 a) and b). The experimental configuration
resembles a Michelson interferometer with two multiple-beam interferometers
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Figure 2.32: a) and b) Multiple interference fringes at the output of a double
interferometer for different values of tilt angles o and «’. ¢) Setup scheme.

replacing the mirrors (figure 2.32 ¢)). This system could offer the opportu-
nity to create asymmetrical traps of distinct shape and pitch in the x— and
y—directions, since the parameters o and e of both crossed interferometers
can be adjusted independently. Figure 2.32 a) shows a regular pattern when
the angle a of both interferometers is set at the same value in two perpendic-
ular planes. In contrast, in figure 2.32 b) the angle a of one interferometer
is bigger than in the previous system and fringes spacing gets smaller only
in one direction.

2.4.3 Bead steering in microfluidic channel

The fringes generated by the setup presented in figure 2.28 have been pro-
jected into a microfluidic channel to deflect particles in a flow. A glass chip as
presented in figure 2.17 b) is used and flows are regulated by a micromechani-
cal syringe (figure 2.18 a)). The solution of polystyrene beads is contained in
a polymer tube used as a reservoir and plugged to one entrance of the chip.
Other inlets are blocked. Once injected in the chip, the solution of beads
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Figure 2.33: Ten micron polystyrene beads flowing in a glass microchannel and
deflected by structured light shaped by multiple interference

flows through the main channel toward the outlets. The interfering beams
create vertical "walls" of light inside the channel. A slight change in the ori-
entation of the interferometer’s semitransparent plate not only changes the
width of the interference fringes but also modifies their orientation. The two
parameters can be controlled independently. When the fringes’ orientation is
neither parallel nor perpendicular to the flow direction, the beads trajectory
gets deflected due to the optical gradient force. Such guiding is shown in
figure 2.33, highlighting two different directions of beads deflection. In this
experiment fluid flows from 10 to 20 microns per second were used to carry
particles. The simple control of the orientation of the fringes allows a quick
and dynamic change of particles’ trajectory.

2.4.4 Discussion on multiple beam interference trap-
ping

The results presented in paragraph 2.4.2 show how multiple-beam interfer-
ence can sharpen the intensity gradient profile of fringes compared to the
interference produced by two beams only. The implementation of Fizeau-
Tolansky fringes by multiple beam interferometers generates fringes with
high intensity contrast and gradient. However, "square" profiles obtained at
a macroscopic scale (see figure 2.27) can not be replicated for fringes whose
size is in the order of the wavelength. Indeed, the width of the fringe’s edge
always extends over a distance > \. It seems essential here to remember that
this work relates to mesoscopic sized spheres. In case of Rayleigh particles,
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the optical field can be considered uniform over the entire spheres. For large
objects one must consider variations of the field (gradient) all over the par-
ticle. Compared to a sinusoidal fringe which has a local flat intensity at its
maximum, multiple beam fringes present a high gradient also at the center
of the trap which provides a high gradient force at the equilibrium position.
The sharp profiles presented in figure 2.27 are measured just behind the in-
terferometer where the interference pattern area is several millimeter wide
and the corresponding fluence is far too low for efficient optical trapping. In-
creasing the fluence by focalization is difficult due to the intrinsic separation
of individual beams at the focal plane of the focusing lens. Figure 2.29 shows
that, despite some loss in gradient sharpness due to the diminution of the
number of crossing beams, the fringes’ profile presents better characteristics
for trapping than the sinusoidal shape of Young’s fringes. The physical limits
of the system prevent reducing the size of the fringes without reducing the
intensity gradient. However, the forces are sufficient to deflect particles in
microfluidic flows.

The approach described in 2.4.2 b significantly reduces the limitations of
the precedent configuration. It presents two main advantages: smaller fringe
pitches can be produced and many outgoing beams can overlap within the
same area. This system is not aperture limited. The size of the trapping
area depends directly on the beam size and convergence at the entrance of
the interferometer. Although the light-path inside the interferometer is dif-
ferent for each outgoing beam, the difference in beam size can be neglected
with respect to the focal length of the focusing lens and the beams have a
comparable size in the overlapping area. One must notice that the solid state
laser used in experiments has a coherence length of several meters. There-
fore, coherence is not an issue in our experiments (except for the fact that we
have to prevent undesired reflections which could create unwanted interfer-
ence). Moreover, the superposition of spatially displaced beams modifies the
intensity over the whole light field. One could take advantage of this feature
to flatten the envelope of the overall intensity distribution. This would lead
to a more uniform trapping efficiency over a large field, compared to the
pseudo-gaussian shapes more often encountered in trapping.

As seen in section 2.3, the width and the profile of fringes are two key
parameters for trapping mesoscopic objects. Multiple interference devices
can control the fringe width with a very fine sensitivity, by adjusting the tilt
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angle between the two reflectors and by modifying the incident angle. This
can be taken into consideration to modify considerably the trapping efficiency
of mesoscopic particles, with potential applications in sorting and in trapping.
Alternatively, the fringes may be directly generated in the microfluidic system
if the interferometer were integrated at the bottom of the chip.

2.5 Conclusion

Interference presents a great potential for multiple optical trapping, espe-
cially for very large number of traps (up to thousands) since the number of
optical wells that can be created only depends on the width of the beam and
on the relative width of the traps. Optical templates created by interference
have been used to trap polystyrene spheres in a static environment and to
stop particles flowing in a microluidic flow. The traps’ shape and size can
be optimized for the particles to be trapped. The width of the interference
trap for a particle of a given size can dramatically influence the trapping
efficiency. Numerical simulations have shown the interest of increasing the
number of interfering beams, confirmed by experimental results and led to
the creation of Fizeau-Tolansky fringes. The implementation of a multiple
beam interferometer allowed a simple control over the width and the ori-
entation of the fringes. Multiple beam fringes have been successfully used
to deflect particles in a microfluidic channel. Interferometric traps are not
aperture limited and do not require bulky optics. They can be generated in
a wide range of containers, including cells with thick bottom, microfluidic
chips and commercial fluorescence and absorption cells. Trapping schemes
presented in this chapter allow creating two-dimensional arrays of objects.
The confinement in the third direction is realized by mechanical contact to
a wall of the container. The influence of the vicinity to the surface is still
poorly understood and needs to be the subject of further investigations.
The high number of traps achievable is obviously energy costing. Indeed,
the total available laser power is spread out over all individual traps. Al-
though weak traps can even generate an arrangement of particles in a static
environment, in fluidic system strong traps are required to sustain flows. A
laser power of several watts (3-4 W) is needed for about 500 traps in a mi-
crofluidic environment to allow micron-size particles sustaining flows of some
tens of micrometer per second. However, the generation of traps array by
interference can be done with minimal loss of energy since no microscope
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objective with very limited transmission, nor diffractive elements producing
unwanted diffraction order are used. Losses can occur due to shape and
size mismatches between the optically patterned area and the microchannel
containing the sample. Ultimately, interferometric system could be directly
embedded in a lab-on-a-chip, e.g. by engraving diffraction gratings directly
on the bottom of a fluidic chip [126].
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3.1 Introduction

In the previous chapter, we have seen how to trap particles in interference
pattern and we have emphasized the advantages of avoiding the use of high
numerical aperture microscope objectives. We have also seen how demag-
nifying optics can be a drawback when one wants to generate high optical
gradients. In the Fresnel diffraction regime, i.e. just behind a diffractive
element, wave propagation directions are not filtered and all spatial frequen-
cies can propagate and therefore contribute to enhance intensity gradients.
Unlike most optical trapping schemes working in the far field, through a mi-
croscope objective, or in evanescent wave, we present original solutions for
taking advantages of diffraction in the Fresnel regime.

In this chapter, several cases are treated where particles are trapped in
intensity distributions generated in the Fresnel diffraction regime. First ob-
servations concern particles trapped in diffraction patterns produced by other
colloidal particles, trapped or not. The use of particles to generate optical
traps is reported for the first time. In the second section, diffraction is gen-
erated by a diffractive optical element especially designed to generate, by
Talbot restructuration, periodic fields used as optical templates for optical
trapping. We present what is, to our knowledge, a remarkable solution for
3-dimensional multiple optical trapping without the need of microscope ob-
jectives. The influence of the diffractive optical element’s properties on the
self-imaging Talbot effect is studied through numerical simulation according
to the Fresnel diffraction theory.

3.2 Trapping in diffraction patterns

The field diffracted by particles immersed in an electromagnetic field inter-
feres with the illumination field, creating a new intensity distribution among
which one founds optical potentials. Polystyrene spheres are very sensitive
to light intensity variations and can be trapped at local maxima or in areas
where their volume contains the maximum of electromagnetic energy density.

3.2.1 Trapping in diffraction rings

A common diffraction pattern is the one created by a single spherical particle
immersed in a plane wave. It creates diffraction rings, as described by Fres-
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Figure 3.1: a)-c) 2.06 um polystyrene beads trapped in the diffraction of a same
bead sticking at the bottom of the cell. d) Schematic representation of the trapping
in the diffraction of a single bead. e) Diffraction rings of a single polystyrene beads
in Fresnel regime

nel’s theory. Figure 3.1 e) shows diffraction rings from a polystyrene particle
at the border of a Gaussian beam. In the center of the Gaussian shape, i.e.
at the maximal intensity, the intensity variations due to the presence of a
particle are hardly visible by human eye. However polystyrene beads are
very sensitive to the intensity variation and get trapped along the rings as
visible in figure 3.1 a)-c). In a single closed chamber, diffraction rings at the
trapping level (top of the chamber) are due to beads sticking at the bottom
or rising up because of radiation pressure. In order to control the diffraction
pattern, a double chamber with two trapping levels is proposed in the next
paragraph.

3.2.2 Two levels optical trapping

Various diffraction patterns are created by arrays of trapped particle. Fig-
ure 3.2 b) shows the principle of trapping in the light diffracted by a crystal
of trapped beads. In order to use the diffracted light as a mean to build op-
tical traps, a second cell is built over the first trapping chamber. We use two
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Figure 3.2: Schematic representation of two cells separated by a thin film. a)
The two chambers are filled with beads at different concentrations. b) Trapping in
impinging beam and in light diffracted by trapped beads.

bottoms of commercial cells with detachable window, Hellma # 106 (see page
25). The two etched grooves (200 um deep) face each other and are sepa-
rated by a thin stretched plastic membrane (10pm thick). The two chambers
are filled with polystyrene beads in suspension at different concentrations as
schematized in figure 3.2 a).

Figure 3.3 presents the result of three experiments. The images on the
first column (inserts a), d) and g)) show the beads at the lower chamber of
the cell sketched in figure 3.2. The two columns on the right present beads
trapped and/or bound at the top of the upper chamber.

At the lower level, beads are trapped by a large Gaussian trap. The waist
of the beam is about 50 microns in diameter. A single bead will sit at the
center of the Gaussian distribution and create diffraction rings as described
in the precedent paragraph. The Brownian motion of the beads makes the
diffraction pattern move slightly, forcing a perpetual rearrangement of the
trapped beads at the upper level. Insert of figure 3.3 b) clearly shows the
alignment of particles along the curvature of diffraction rings. In the wide
central spot, a non perceptible ring (visible only on the graph of figure 3.4)
prevents the beads to all accumulate at the center.

Several beads trapped in a single large Gaussian beam (> 10 x beads
diameter) will self-organize to form a crystal in a close-packed form. This
self-organization due to trapping and binding forces will be described in detail
in chapter 4. Since the close-packed arrangement has a three-fold symmetry,
the light is diffracted in six first order directions. In the Fresnel regime
the diffraction pattern forms interference fringes along the six orientations.
Particles are trapped in the fringes and hop from one the the other depending
on the movement of the pattern (figure 3.3 e) and f)). At the limit of the
Fresnel regime, distinct spots characteristic of Fraunhofer diffraction appear.
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~20 um

Lower chamber Upper chamber

Figure 3.3: Trapping in a two-level cell according to scheme of figure 3.2. a), d),
g) Trapped beads at the top of the lower chamber (left column) and corresponding
diffraction patterns with trapped particle at the the top of the upper chamber. Images
in the middle column and in the right column are taken at different periods.

Particles are also trapped in theses spots (figure 3.3 h) and i)). The flexibility
of the separation film between the two chambers allows a variation in the
height of the chambers. The images in the second (e, f) and third rows (h,
i) are taken at two different heights of the second chamber. The intensity
profile shows important variations as plotted in figure 3.4. On graph a) the
fringes amplitude is increasing monotonously towards the center. Beads can
jump from one fringe to the next. On the contrary, on graph c) potential
barriers are too high and beads remain trapped in one fringe.
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Figure 3.4: a)-c) Intensity profiles of diffracted pattern along lines in figure 3.3 ¢)
f) and 1) respectively.

3.3 Trapping in Talbot lattices

Using a static diffractive optical element (DOE) allows generating fixed 3D
light intensity distributions for optical trapping. In optical trapping ex-
periments, they are often used to work in the far field in conjunction with
microscope objectives, but they can also be designed to create traps array in
the Fresnel diffraction regime, in particular by exploiting the Talbot effect.

3.3.1 The Talbot effect

Self-imaging of periodic structure was first observed by William Henry Fox
Talbot in the beginning of the 19" century. Talbot is one of the pioneers
of photography; he realized the first negative image that could be replicated
in many positive images through a process called calotype (also sometimes
called talbotype). Working on image propagation, he found that an object
presenting periodicity in its lateral dimensions creates, when illuminated,
a periodic field in the z propagating direction. The pattern of the grating
is repeated at regular intervals, multiple of the so-called Talbot distance.
Talbot published his results in 1836 [127] but did not pursue this research, as
he was concentrating on photography. It is only in 1881 that the phenomenon
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was explained by Lord Rayleigh [128] as a consequence of Fresnel diffraction.
He showed that the Talbot distance Zr is given by

2d?
=y

(3.1)
where d is the pitch of the periodic object and A the operating wavelength.

The periodicity of the object can be either in amplitude or in phase. In
the first case, the grating is replicated at integer multiples of the Talbot
distance Zr, whereas at halves of Zy the same modulation occurs but with a
contrast inversion; moreover, at a fourth of the Talbot distance a modulation
of twice the frequency of the grating is produced [129, 130, 131]. Figure 3.5
presents a simplified schematic superposition of the diffracted pattern of a set
of slits emphasizing the reconstruction of the grating pattern. The diffraction
order of each slits are represented by a vanishing stroke. Indeed, destructive
interference can not be represented on the image, but the presence of pattern
with a spatial frequency double of the original one is easily understandable.

In the case of the diffraction by a periodic phase structure, an amplitude
modulation is generated at fractions of the Talbot distance as described by
Lohmann [132, 133].

P
z=DN - ZT -+ éZT (32)

Where N, P and @) are positive integers and P < Q).

With a pure phase grating, the whole light is redistributed in the ampli-
tude pattern with some field enhancement. This local increase of intensity
will be exploited later for optical trapping. The optical wells are confined
laterally according to the periodicity of the structure and axially according to
positions of sub-Talbot planes. The technique has been proposed for so-called
Talbot array illuminators (TAIL), taking advantage of fractional-Talbot ef-
fects, generating Talbot sub-images, sometimes referred as Lohmann images
or Fresnel images [134, 135, 136, 137, 138]. The basic principle of a TAIL is
schematized in figure 3.6.

The self-image phenomenon occurs also with incoherent light and was
described by E. Lau in 1948 [139], and is now coined the "Lau effect" [140].
It has to be noted that speaking of images (or self-images) for the Talbot
effect is actually a misnomer. Indeed, if the reconstructed intensity pattern in
the Talbot plane reproduces the one of the illuminated structure, no "images"
are produced in the optical meaning of the term; there is no amplitude and
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Figure 3.5: Talbot Effect: schematic superposition of the diffracted pattern of in-
dividual slits distributed along regular intervals. The periodicity in the z-direction is
clearly visible and reconstructions of the initial pattern are manifest.
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Figure 3.6: Principle of a Talbot array illuminator with a two level phase grating.
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phase conjugation from one Talbot plane to the other one as described in P.
Latimer’s article [141]. The term 'intensity pattern' are more rigorous than
"self-images". We will however sometimes refer to the terms of self-images
and self-imaging, since they are commonly used in the literature.

The Talbot effect acts also sometimes as a prejudice creating unwanted
outcomes in many applications in optics, when dealing with periodic elements
like microlens arrays [142], VCSEL arrays, etc. The effect has however been
exploited in different ways for example for imaging [143], phasing of arrays
of semiconductor lasers [144] or distance measurement [145, 146]. Three di-
mensional light patterns generated by Talbot effect have been successfully
replicated by photolithography in photopolymer to create physical 3D struc-
tures [147].

In the present work, the field created by a two dimensional phase grating
illuminated by a plane wave is used to trap dielectric particles. Optical
trapping in Talbot lattices was experimented with microspheres by Fournier
et al. in the 90’s and also used as a tool for selective atom cooling [34, 42].
Walker and al. have carried out several experiments with cold atoms in
Talbot structures [148]. Later on we applied the effect to microbeads trapping
[76]. Talbot effect is also mentioned as a based for optical trapping due to
periodicity of an optical lattice formed by the interference of multiple plane-
waves generated by a spatial light modulator [97]. Talbot images have also
been recently used to sort polystyrene particles in microfluidics with two
dimensional traps [149].

In this report, a simple way to generate Talbot images just by project-
ing one beam on a diffracting structure is proposed for trapping mesoscopic
particles. Three dimensional arrays of traps are generated and, for the first
time, particles were trapped at different levels. In a first paragraph, the self-
imaging effect is first illustrated by an example of the diffraction by an array
of trapped particles. A second part focuses on the study of the diffraction
of different structure in the Fresnel regime through numerical calculations.
Finally, experiments on optical trapping in Talbot 3D-traps are presented
and discussed.
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Figure 3.7: Self-images of an array of beads over and under the real position of the
beads.

3.3.2 Self-imaging effect of an array of trapped parti-
cles

Spherical particles trapped in a single wide Gaussian beam arrange them-
selves in a close-packing form as seen previously. As the crystal formed by
the spheres reaches a sufficient size, the periodicity created by the alignment
of beads in an hexagonal shape generates a Talbot effect such that self-images
of beads are present at several levels above the real "physical" array. Since
the trapped array is not infinite, edge effects occur and a good reconstruction
of self-images only appears above the center of the crystal; the borders get
fuzzier as we consider planes further away from the array. The observation
of self-images of trapped beads is illustrated in figure 3.7. Measurement have
been performed over a range from -50 ym to +100 pum away from the physi-
cal beads’ plane and Talbot images of the beads array are reconstructed over
this entire distance. According to theory, the first Talbot plane is located at
Zr = 3d?/2)\ = 45.9 pum for beads with a diameter of 3.5 ym. Figure 3.8 a)
shows the evolution of sub-images over 60 microns above the beads’ plane.
These images are captured through a long working distance microscope ob-
jective focused at various planes of observation. It is to be noted that the
objective itself makes a spatial filtering preventing the imaging of the real
intensity in the observed planes. The progressive restriction of the area dis-
playing a sharp reconstructed image is clearly visible and emphasized on two
images with a bold white line.

Talbot effect occurs both above of and below the periodic object. The
column b) of figure 3.8 shows the reconstructed pattern under the plane of
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Figure 3.8: Self images of a close-pack crystal of 3.5 microns polystyrene beads. a)
images taken every 7.5 um over the beads planes. b) images taken with the focal
plane of the objective position under the array. c¢) evidence of the contrast inversion
in the self images.

spheres, where images are taken with the focal plane of the microscope ob-
jective below the real array. The large number of diffraction directions above
the array, i.e. in the direction of propagation of the beam, can reconstruct a
virtual image which "seems" to be behind the real periodic structure.

It should be noticed that for a spherical shape of the individual elements
forming the optical crystal, sub-images positions are not as well defined as
in step-case phase variation. Indeed, the beads act as microlenses and they
create a first array of intensity maxima which is much more intense than the
following Talbot sub-images. Several contrast inversions occur between the
Talbot planes as visible in figure 3.8 c).

Figure 3.9 presents a simulation of the Fresnel diffraction over 100 microns
above the array. Sub-figure b) shows the intensity distribution in the yz
planes corresponding to the black line drawn on a). The sphere have a
diameter of 3.5 microns and their refractive index is 1.6.



66 3 Optical trapping in Fresnel diffraction

y [pm]

0 20 40 60 80 100
z[pm]

Figure 3.9: Simulation of the diffraction generated by an hexagonal array of
polystyrene beads. a) Phase shift in the xy plane due to the 3.5 pum diameter
polystyrene spheres (false colors). b) Intensity distribution over 100 microns in the
yz plane corresponding to the black line visible on a).

3.3.3 Numerical simulations and creation of periodic
light templates

The Talbot effect presented in the last paragraph occurs from periodic arrays
formed by trapped particles. Obviously, the same effect can be generated by a
fixed element designed to create a desired light template for optical trapping.
A good understanding of the Talbot effect is necessary to predict the position
and the intensity pattern of the sub-Talbot images in order to design the
appropriate diffractive elements. The next pages present the method used
to simulate the light propagation in the Fresnel regime, and the results of
the simulation for various diffractive phase structures designed for generating
controlled arrays of optical traps.

Fresnel propagation algorithm

The diffraction of the electromagnetic field behind a complex amplitude dis-
tribution was simulated by calculating the propagation in the Fourier domain
and transforming back in the spatial domain by performing fast Fourier trans-
forms (FFT) [150, 151].

The Rayleigh-Sommerfeld formula, giving the diffraction of a wave pass-
ing through an arbitrary aperture, is written as:

e’L

1 ikr
Ulx,y,z) = a//S(](:c',y’,O) . cosBdzdy, (3.3)
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with r = \/(z — 2/)2 + (y — ¥/)® + 22; 2/, being in the plane of the diffrac-
tive element and z,y, z in the plane of interest. Let us write U(z,y, z) as a
function of the spatial frequencies distribution:

—+o00
Ula,y, = / Afor fy, 2)e> =50 dy af, (3.4)

f» and f, denote the spatial frequencies along both x- and y-axis. Equa-
tion (3.3) can be rewritten as:

+oo
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PV i being the Rayleigh-Sommerfeld propagation kernel. The am-
plitude in the Fourier domain at position z, A(f,, fy, ), is calculated by mul-
tiplying the amplitude at z = 0 by the kernel. The value of the field U(x,y,z)

is obtained by calculating the inverse Fourier transform of A(f,, fy, z). The

@=2)?+(y=y")* i) the

Fresnel approximation consists in replacing r by z + 5

exponential term and r by z otherwise. We get:

Ulz,y, Ux',y,0)e® [(x—2') + (y — y)?) durdy,  (3.6)

z/\z

and sa a function of the distribution in the Fourier plane:

+o00
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e~™=(f2+1)) is the kernel of Fresnel propagation. One can notice

where e
that the propagation is reduced to a simple multiplication in the Fourier
domain. Thus, to obtain the field at a desired z position, the wave ampli-
tude is first calculated in terms of spatial frequencies in the Fourier domain,
affected by a multiplication factor in the Fourier domain and then inverse
Fourier transformed to get the propagated field in the spatial domain. The

program’s block diagram is presented in figure 3.10.

In the simulations presented in this chapter, the diffractive element is
illuminated by a plane wave with a uniform amplitude distribution. Such
simplifications are acceptable since, in the experimental conditions, the dif-
fractive plate is illuminated with a beam focused on it by a low NA lens, and
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Figure 3.10: Block diagram of the propagation algorithm for simulation of the dif-
fraction at a distance z of a diffractive element with uniform plane wave illumination.

thus observation are made over a distance of about one tenth of the Rayleigh
length, which is in the order of the centimeter. The diffractive element is
illuminated by a Gaussian beam over a large area (hundreds of microns)
and the observed zone is located at the center of the Gaussian shape where
intensity variations are neglected for the calculation. In the following simula-
tion, only the Fresnel propagation kernel is employed. Although the results
it gives are slightly differing from the one obtained with the more precise
Rayleigh-Sommerfeld kernel, they are nevertheless sufficient for our study.

Simulation for 2D three-level ruling

The simulation algorithm is applied to predict the intensity modulation cre-
ated by a known diffractive element. The DOE is a three level phase mask
made with engraved parallel ridges in two orthogonal directions. It has been
etched over an area of 2 x 2 cm, in two steps, on a 1 mm thick and 2 inches
diameter quartz wafer at M.I.T. Lincoln Labs (USA) by M. Holz and co-
workers. The corresponding phase profile is represented in figure 3.11. The
plate was designed for use with an Argon laser at 514.5 nm. The grooves in
each direction are 3.6 yum wide and have a height of 0.560 ym which pro-
vides a 7 phase shift for this wavelength when immersed in air. The quartz
substrate has a refractive index of 1.462 (@ 514.5 nm). The zones that have
been etched twice during the two successive steps of the process generate a
27 phase shift (see illustration in figure 3.11 ¢)). The light passing through
these zones is in phase with the one passing through the non graved zones.
The grating can be considered as binary for the designed wavelength.
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Figure 3.11: Talbot plate: 2D phase Ronchi ruling used as DOE for generation of
Talbot and Lohmann images. a) Schematic of the engraved surface on a 2" quartz
wafer. b) SEM images of the Phase Ronchi ruling; the ridges are 3.6 um wide. c)
Representation of the 3-level profile with 7 induced phase shift for illumination at
514.5 nm in air.

Simulations for A = 514 nm give the intensity in Talbot sub-images with
very sharp gradients and the Talbot effect also creates a local field enhance-
ment. Figure 3.12 presents the simulated intensity pattern at different z
levels (a) and c)), as well as a profile through the xy plane located 50 pm
after the plate () (b)) simulated at 532 nm in water. The initial intensity
is uniform and set to 1 (arbitrary units).

The trapping laser at our disposal for the present study is a doubled
Nd:Vanadate emitting at 532 nm and the ruling had to be used in water for
generating the Talbot planes inside the cell. The performance of the plate was
then calculated for a wavelength of 532 nm illuminating the DOE immersed
in water, even though the plate was designed for another use (514 nm in air).
The simulation showed that the discrepancy in the wavelength was not so
critical. The wavelengths ratio is 514.5/532 = 0.96 which leads to a small
contrast diminution in the interesting sub-Talbot planes. On the other hand,
the use of water instead of air considerably affects the phase difference since
the phase shift A¢, given by 2% (ny — ng)h, is only 0.567 in water instead of
7 in air.

Although this phase plate already gives interesting light intensity pat-
terns, it seemed important to find the optimal characteristics for designing
new diffractive elements for optical trapping. The next part presents the
study of the influence of the parameters of the diffractive plate on the Talbot
images.
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Figure 3.12: Numerical simulation of intensity at different levels behind a three level
phase plate illuminated by a plane wave whose wavelength is 532 nm. The Fresnel
propagation has been simulated in water. a) 50 pm and c¢) 60 pym behind the plate.
b) Intensity profile in the plane displayed in a). d) 3D representation of the intensity
of one element in the plane displayed in ¢).

Phase mapping in Talbot images

The Talbot images, and more particularly the sub-images in the case of
Lohmann images, depend directly on the structure of the periodic object.
If the first Talbot plane is always located at the Talbot distance Zr, the
sub-images positions vary as a function of the parameters of the ruling, in
particular the induced phase shift and the duty cycle %, where w is the width
of the phase shifted area and d the pitch of the grating (see figure 3.6). The
study is restricted to a two level diffractive plate of infinite dimensions with
rectangular grooves in one and two dimensions. The duty cycles studied are
11

2, 3 and }1. The illumination is an infinite plane wave with constant intensity

whose value is set to 1.

In the case of a uniform illumination, the intensity pattern in Talbot
images (i.e. at a distance Zr from the grating) is also uniform since self-
images are similar to the original intensity distribution at the ruling level.
The same consideration is valid at half the Talbot distance. This can be easily
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Figure 3.13: Representation of simulated phase plate patterns for generation of
Lohmann images. The phase shift is induced by the steps.

understood when having in mind what happens in the case of the Talbot
effect with an amplitude ruling as presented on page 60 and following. At
Z—QT, the amplitude image of the grating is inverted. With a uniform amplitude
distribution, no difference is visible between the two planes (Zr and %) On
the other hand, in between these particular planes, sharp intensity patterns
appear; their contrast strongly depending on the phase shift induced by the
diffractive element.

We observe two main cases, particularly interesting to us, providing dif-
ferent structures in the z direction for two phase shifts A¢, namely 7 and 7.
For other values of A¢ between 7 and m we observe a fading superposition
of the two intensity patterns generated by the phase shifts of § and 7. For
simplicity and for generalization, the following simulations are performed for
a wavelength of A = 1000 nm and a ruling pitch d = 20 ym. The observed
area extends between z = 0 and z = Zp. Obviously, the same pattern is
repeated every Zp. The algorithm makes no discrimination between near
and far Talbot planes; in reality, if the illuminated area is limited, border
effects arise and are non negligible for Talbot planes located far away from
the diffractive plate.

Let us first consider a one dimensional phase Ronchi ruling whose profile
is presented in figure 3.13 b). The fresnel propagation simulations for this
phase grating are represented in figure3.14 (a)-f) are xy sections whereas g)
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Figure 3.14: Simulation of the Fresnel diffraction over the Talbot distance (800 pm)
behind a 1D phase Ronchi ruling with A¢ = 7 for A = 1000 nm and d = 20um. a)-f)
intensity distribution in the xy-plane at different distances z. g) intensity distribution
over the yz-plane along the black line in a); the Talbot distance is showed by the red
stroke.

is a yz section). When the height of the groove is such as to generate a
5-phase shift for the used wavelength, a sharp intensity profile appears at
z=Zr and » = 22T (figure 3.14 ¢) and e)). The intensity pattern is inverted
between the two sub-images as given in figure 3.14 c¢) and e). At multiple
of % the same pattern appears but presents a weaker intensity contrast
(figure 3.14 b)). All bright areas are centered at the same lateral positions
over the first half of the Talbot distance (between z = 0 and %) whereas

over the second half (from Z—2Tto Zr) they are inverted. This forms several
Zr
16 7
but with a pitch being half of the one of the original ruling [152]. Figure 3.15

displays a "zoom" on the first quarter of the Talbot distance (200 pm). The

"cages" of light over Zr. At the intensity pattern is still a Ronchi ruling

plots along the z-axis (figure 3.15 b)) and along the y-axis (figure 3.15 c))
show the intensity profiles. Peaks show how the field is locally enhanced.
Compared to the initial intensity value set equal to one, at fractional Talbot
planes, the intensity is doubled over every other square; in between, the
intensity can reach over 4 times the initial value. The Talbot effect creates
a high gradient in both y- an z- directions and the field enhancement is a
key for optical trapping. The frequency doubling is obviously another very
interesting characteristic that can be taken advantage of in trapping schemes.
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Figure 3.15: Detailed view and intensity profile of the Fresnel diffraction of a 1D
phase Ronchi Ruling with phase shift A¢ = 7.

In the case of a phase shift A¢ = 7, the phase plate generates eight times

the same intensity pattern inside Zr, instead of two for A¢ = 7 and the
eight patterns are placed one after the other without contrast inversion. The
lateral shift observed between two sub-Talbot planes observed in the 7 case
does not take place with a 7 phase shift (figure 3.16). Nevertheless the inten-

sity maximum is the same as for A¢ = 7 and reaches about four times the

value of the illumination intensity. Detailed plots can be found in appendix B.

The gain in intensity can be still increased by using a two-dimensional
array like the one presented in figure 3.13 a). The diffractive plate resembles
a chessboard with engraved squares. For a 7 phase shift a doubling of the
number of sub-Talbot planes is observed. The same intensity pattern is re-
peated four times along one Talbot distance (figure 3.17 ¢)). This doubling
can be explained by the effect of the periodicity in both directions. However,
the doubling of the number of sub-Talbot planes does not occur with a w
phase shift (figure 3.17 d)). On the other hand, for this latter phase shift,
the intensity maxima reaches over 16 times the value of the uniform illumi-
nation (figure 3.17 g) and h)). This intensity increase makes the chessboard
pattern a good candidate for optical trapping. Moreover, it presents a sec-
ond advantage in the § case. In comparison with the field diffracted by a 1D
ruling (figure 3.14 g)) where the high intensity areas have a very elongated
shape (aspect ratio ~1/10), the potential wells created with the 7 2D chess-
board are more confined (figure 3.17 ¢)) and the intensity gradient along the

z axis is stronger. The aspect ratio depends on the pitch of the ruling since
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Figure 3.16: Simulation of the Fresnel diffraction over the Talbot distance (800 pm)
behind a 1D phase Ronchi ruling with A¢ = 7.

the periodicity in z varies quadratically with d. The longitudinal confinement
is the strongest in the 2D chessboard 7 phase shift case (figure 3.17 g).

The simulation of the diffraction generated by patterns with duty cycles
different from %, which seemed to be good candidates for optical trap arrays,
did not show interesting intensity schemes. Figure 3.18 displays the intensity
distribution along the z axis behind a plate with duty cycles of }L and a phase
shift of 7/2. Unfortunately, the sub-Talbot planes are not well defined and
the gradients in the z direction are not sufficient for generating trapping
planes and the local intensity enhancements are much lower than in the
chessboard case. Other results concerning various duty cycles can be found
in appendix B.

Discussion on numerical simulation

The Fresnel formula used for the calculation of diffraction in the vicinity
of the phase plate is an approximation and some assumptions have been
made. The calculation is performed with all mathematically possible spa-
tial frequencies but this model does not take into account the optical limits
imposing a cut-off frequency of % These simplifications led to very sharp
profiles in intensity planes with spatial variations that are smaller than A,
which is physically not possible. Even though the sharpness of the results
is too high, the Fresnel algorithm gives pertinent results for the positions of
Talbot sub-images with a good approximation of the patterns.

Figure 3.19, kindly provided by E. Maréchal, presents a comparison of
two simulations of the diffraction by a phase Ronchi ruling with a 7 phase
shift and a pitch of 10 pum, performed in the same conditions (sampling
steps, etc.). A width of 40 microns is illuminated and light propagation is
represented over 30 microns only. Figure a) is calculated with the Fresnel
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Figure 3.17: Simulation of the Fresnel diffraction over the Talbot distance (800 pm)
behind a chessboard-like phase grating with phase shift of § (a), c), e), f)) and 7 (b),

d), g), b))

kernel and figure b) by the more rigorous Rayleigh-Sommerfeld formula. The
latter gives a smoother results, closer to the real intensity pattern.

Regardless of its small variations to Rayleigh-Sommerfeld kernel, the Fres-
nel calculation provides an easy and useful tool for the conception of optical
traps. In addition to Talbot planes localization, intensity maxima positions
and gradient strengths, the simulations give relevant predictions on the in-
fluence of various parameters of the systems like the phase shift variation,
the influence of the wavelength, the pitch of the pattern or also the impact
of the size of the illuminated area. It has been shown on page 68 that re-
placing a 514.5 nm laser line with a 532 nm one is not so critical for trapping
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Figure 3.18: Intensity distribution along the z-axis behind a plate with duty cycles
of % and a phase shift of 7/2 as illustrated in figure 3.13 g).
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Figure 3.19: Comparison between Fresnel (a) and Rayleigh-Sommerfeld (b) prop-
agation kernel on the diffraction of a phase Ronchi ruling with 7 shift and 5 pum
grooves.

experiments. In the same line of tolerance an error as high as 10% on the
height of the engraved area of the plate is acceptable. This precision is easily
achievable by the technologies at our disposal (see appendix C).

3.3.4 Three dimensional trapping in Talbot lattices
Experimental optical templates

The Talbot simulations are in good agrement with images recorded in the
experimental setup, as demonstrated by figure 3.20 comparing simulated and
experimentally recorded intensities at different levels of the diffracted field.
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500 pum

200 um

Figure 3.20: Comparison of fields diffracted by the three level phase plate illumi-
nated with a 532 nm laser: a), b)simulations and c¢), d) experimental.

-

Figure 3.21: Setup for trapping particles in Talbot lattices. The diffractive element
is illuminated from below and the fractional effect creates several traps arrays at
different heights inside a chamber. A long working distance MO allows observation

from above.
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Figure 3.22: Fresnel propagation in the z-direction behind a diffractive plate. a)-c)
experimental data recorded over half of the Talbot distance (about 100 pm) behind
a phase chessboard with a pitch of 7.2 um. d)-f) simulated intensity profile in z-
direction.

The diffractive element tested here is the three level plate presented in fig-
ure 3.11 with a pitch of 7.2 ym. A stack of images of the x-y planes are
recorded by moving the microscope objective mounted on a motorized stage
in the z-direction as schemed in figure 3.21. The stack is then numerically
sliced to get the x-z (or y-z) intensity propagation. The greater number of
contrast inversions present in the experimental image of figure 3.20 is due to
an unwanted lateral shift caused by creeping when moving along the z axis.

Figure 3.22 compares the simulation by the Fresnel kernel propagator
with the recorded intensity profile. The experimental data (figure 3.22 a)-c))
are taken with a diffractive plate designed and manufactured at EPFL (see
appendix C). The structure is a 2D chessboard (figure 3.13 a)) immersed in
water with a pitch of 7.2 ym and a phase shift of 7 at 532 nm. The images
were recorded by a 1 Megapixel CMOS camera (MV-D1024E, Photonfocus,
Switzerland). Images reconstruction was performed as described above. One
can notice a very good agrement with the theoretical case. The small vari-
ations between the simulated and experimentally measured intensity curves
are due to artifacts in the Fresnel calculations, as discussed previously. The
observed dynamic is very comparable to the theoretical one, showing that
the desired intensity gradient have been achieved.
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Optical trapping results

Trapping in Talbot planes, or more precisely in Talbot sub-images, is achieved
by placing the sample on the diffractive area and by illuminating the phase
plate with a smoothly focused beam. The solution of suspended particles
is deposited directly on the structure inside a chamber made by a PDMS
spacer and closed by a microscope coverslip as sketched in figure 3.21. Sev-
eral traps planes are created inside the chamber, their number depends on
the distance between Talbot sub-images. Particles in the diffracted field are
extremely easily trapped laterally in the lattice. An intensity as small as a
few nanowatts per trap is sufficient for the confinement in x an y directions.
At such low power, the weight of polystyrene spheres is sufficient to coun-
terbalance the radiation pressure, then the particles remain near the bottom
of the cell where they get trapped in arrays. However as soon as the power
increases, the gradient force in the z direction is weaker than the scattering
force. For a stable 3D trapping, a compensation of the radiation pressure is
thus necessary. A reflective surface at the top of the cell has been used for
this purpose leading to an equilibrium at several fractional planes. Images
of particles trapped simultaneously at different levels are presented in fig-
ure 3.23 a)-c). The beads remain trapped in their respective planes while the
imaging system is focusing at the three different depths in the cell. The white
arrow points to a bead trapped in the middle level (b)) whereas a) is a level
above it and ¢) under. On d) a superimposition of the grating structure and
an image of a trapped plane shows the lateral confinement in the pattern.
Most experiments have been performed with the M.I.T. Lincoln lab’s three
level diffractive plate, simply because this was the sole diffractive element at
our disposal for a long time during the course of this thesis.

Discussion on Talbot trapping

With weak concentrations of objects in the solution, the Talbot effect is well
suited to create multi layers of traps. It has the capability of creating stacks
of trap arrays even if some of the lower traps are occupied, the effect being
self-healing. However, the density of particles in the solution must not be too
high. Indeed, when too many particles are trapped in one of the trapping
planes, they considerably disturb the wave front, thus preventing a good
reconstruction of the Talbot images at upper levels.
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Figure 3.23: Polystyrene beads (3.5 microns in diameter) trapped at three different
fractional Talbot planes. a) upper level, b) middle level and c) lower level. The arrow
points to the same bead in each image. d) superimposition of the image of trapped
particles with an image of the grating’s pattern. The lateral alignement over the
pattern is visible.

The manufacturing of diffracting plates with different pitches allows gen-
erating traps of various lateral sizes, selected according to the dimensions of
the particles to be trapped. Meanwhile, the size of the trap in the z direction
do not vary linearly since it is proportional to the square of the pitch. The
traps are then very asymmetrical, particularly for sizes much bigger than the
wavelength. Nevertheless, with the help of radiation pressure compensation,
the z-gradient is sufficient to stabilize particles in Talbot planes.

3.4 Conclusion

Compared to an imaging system, the Fresnel diffraction regime exploited in
this chapter presents the advantage to avoid filtering of any spatial frequen-
cies. As expected, this feature is very interesting for optical trapping since
it allows the construction of high intensity gradients.

We first exposed the modulation of the field created by a single sphere.
This simple structuring of light was sufficient to trap and arrange a large
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number of particles in the Fresnel domain. This principle has been exploited
in a two-level chamber, using the diffraction pattern of an ensemble of beads
to create optical traps. The diffracted field of a self-assembly of polystyrene
particles has been studied. We have described the clear manifestation of a
Talbot effect generated by the scattering of the ensemble of trapped beads.
To take advantage of the self-imaging effect, the Fresnel diffraction of various
periodic structures has been numerically simulated. The structuring of light
due to a periodic phase distribution is much more interesting for optical
trapping than the one produced by an amplitude distribution, since it avoids
intensity losses. Moreover, it has been theoretically shown that an intensity
increase of a factor 16 could be achieved. The design of periodic phase
diffractive elements has been optimized. A chessboard like pattern is the
more appropriate scheme among the ones we studied to create local field
enhancement. Square posts in 1D and 2D separated by a distance greater
than their width (duty cycle # %) did not provide any pattern with well
defined traps.

The periodization of the electromagnetic field generated by the Talbot
effect allows creating three dimensional optical wells. The optical trapping
of micron-sized polystyrene particles at different heights has been demon-
strated. Such a stable 3D trapping has been obtained by adding counter-
propagating light. Further experiments with unstructured counter-propagating
light would be interesting for the continuation of this study.
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4.1 Introduction

In chapter 1 we have mentioned three types of optical forces. The gradient
force and the scattering force are well known and commonly used to describe
trapping phenomenons by the communities manipulating atoms and meso-
scopic particles. The third one, referred to as the optical binding force, is
not so widely discussed in the literature but can be very important in many
body systems and has to be taken into account as soon as several particles
are simultaneously immersed in an electromagnetic field. These interactions
and their consequences on stable multiple optical trapping are studied in this
chapter.

4.2 Optical binding forces and optical matter

First reported in 1989 by Fournier et al. [58, 23], optical binding forces are
today studied by several groups but they probably remain not taken into
account in numerous studies of multiple trapping. Binding forces arise when
several particles are in presence of an intense optical field. In section 3.2
we have seen how one particle can influence the trapping of other particles
situated in its vicinity due to the interference of its own scattering with the
impinging wave. Indeed, the optical interaction between particles is always
mutual and manifests itself through self consistency. The explanation can
be formulated in the Rayleigh regime considering two or more particles as
oscillating dipoles [58, 153, 154].

IQM

Fbinding = Q/ka (41)

,
« is the polarizability given by equation (1.4), r is the distance between the
two oscillators, I the intensity of the field and k£ the wave number.

Optical binding has been observed in line traps created by cylindrical
lenses [58, 155], by counter-propagating beams [156], by interference fringes
(34, 157], or between facing optical fibers [158, 159, 160, 161] and also in two
dimensions within the evanescent field [31, 70].

Theoretical work on optical binding has been performed by many re-
searchers and it is still a popular subject of investigation. Particle behavior
and binding forces have been simulated in one dimension [153, 162] or in
two dimensions either in a uniform field [163, 164] or in a large interference
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Figure 4.1: Setup for study optical binding. A beam is focused inside a cell con-
taining dielectric particles in solution. A secondary laser is used to probe the crystal
at another wavelength.

field [93, 94, 165, 166]. The influence on optical binding of a dielectric sur-
face [154] or of a near-field scanning microscope probe [167] has also been
theoretically analyzed. However, today’s computer calculation power is not
sufficient to simulate the most common experimental cases with a rigorous
model. The simulations are restricted to small particles or to a very few
number of particles in the micrometer range.

4.3 Study of self assembly

4.3.1 Experimental setup

Optical binding forces may arise in any light intensity distribution. Exper-
imentally, the simplest one is a gaussian beam. We propose a setup with
a single beam slightly focused in a cell containing polystyrene particles sus-
pended in water. In order to use the cell in an horizontal position, the beam
coming out of the Verdi laser presented in page 21 is folded by a mirror as
represented in figure 4.1. The focusing lens (f=150 mm) is mounted on a
translation stage to adjust the position of the focal area thus varying the
size of the beam at the top level of the cell where beads are trapped. The
focusing lens also controls the intensity of the electromagnetic field in the
cell. The low intensity probe He-Ne laser allows non perturbing illumina-
tion and investigation of the behavior of beads. The beads plane can be
observed through the imaging system described in figure 2.10; investigation
on the beads behavior in that plane can also be performed by taking advan-
tage of the diffraction in the far field, e.g. by looking at a diffuser placed as
represented in figure 4.1.
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Figure 4.2: Self arrangement of 5 um polystyrene beads at the center of a Gaussian
beam

4.3.2 Creation of optical crystals

When the Gaussian beam illuminates the cell containing a solution of polystyrene
spheres, the beads that "perceive" the gradient of intensity are trapped in the
beam and agglomerate at the center. Due to trapping and binding forces,
they self arrange close-packing to form 2D-optical crystals characterized by
an hexagonal pattern. Figure 4.2 presents the formation of a crystal made
of 5 ym beads. The observation plane is located at the top of the cell where
beads are pushed due to the scattering force. Particles experience differently
the radiation pressure depending on their distance to the beam axis. This
phenomena is evidenced in figure 4.2 where rings of unfocused beads at the
border of the Gaussian light distribution correspond to particles rising more
slowly to the top due to lower intensity. When this picture was taken, the
crystal was still growing.

The diffracted light field by particles immersed in the impinging field
interferes with this one. Due to the periodicity of the alignment, the resulting
diffraction pattern creates fringes in six directions corresponding to the three
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Figure 4.3: Fringes created by the interference between the impinging plane wave
and the field diffracted by the crystal of 3.5 um polystyrene beads

axis of the crystal. Those fringes are visible at the border of the beads
array in figure 4.3. They are more easily distinguishable when the image
is slightly defocused. Particle surrounding the crystal are sensitive to these
field variations and can be momentarily trapped in the fringes.

Since the Gaussian distribution extends to infinity (even though, in the
practical case, it is clipped by the optical system), beads located far away
from the optical axis are also attracted to the beam center. This slow process
brings continuously particles to the system. Each new particle arriving in
the crystal imposes a whole reorganization of this one and leads to a new
configuration. Due to Brownian motion, the crystal is perpetually stirred
(rotating, expending or contracting). Figure 4.4 presents the evolution of
the movement of a crystal of 3.5 um beads. The dotted line indicates the
fringes’ orientation and the solid line, the orientation of the crystal.

As in solid crystals, dislocations may arise, particularly when the array
reaches a critical size. Depending on the crystal size, sub-crystals are formed
with similar or with different pattern orientations (figure 4.5 b) and a) respec-
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Figure 4.4: Rotation of an optical crystal of 3.5 um beads in a single Gaussian
beam. Images are recorded at five second intervals.
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Figure 4.5: Dislocations in optical crystals made of a) 6 um beads and b) 5 pm
beads.

tively). "Melting" of the crystal can be observed when the power is turned
down, as soon as cohesion forces vanish. As of today, the physics causing such
dislocation has not been elucidated. Phase transitions have been suggested
as a possible explanation [168, 169].

Intrinsic characteristics of the crystal and binding formation can be ob-
served in its diffraction pattern. The k-space image gives statistical infor-
mation on the pitch of the pattern (i.e. the distance between particles), the
stability of the crystal, the presence of dislocations, etc. Compared to the
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Figure 4.6: Diffraction pattern of beads arrays: trapped in a) hexagonal optical
pattern , self arrangement in close-packing of b) 3.5 um beads and d) 5 pm beads;
¢) dry close-packing array of 2.06 um beads with dislocations (manifested through
the the presence of double spots indicated by the arrows). This latter is not created
optically.

Figure 4.7: Variation of beam size for optical binding experiments. The cell is moved
along the z-axis to work at different beam sizes. The focal length of the system is
150 mm.

diffraction of an array of beads trapped in an hexagonal interference pattern
(figure 4.6 a)) the diffraction spots of a self array are fuzzier due to the inho-
mogeneous movement of the crystal (figure 4.6 b)). Dislocations are revealed
by the presence of double diffraction spots in the k-space (figure 4.6 c)).
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Power At waist 750 ym above 1250 ym above
the waist the waist
2wy =~ 24pm 2w, =~ 32um 2w, =~ 43um
0.5W 44 Beads - -
1W 64 Beads 113 Beads 142 Beads
3W 68 Beads 199 Beads 198 Beads

Table 4.1: Maximal crystals sizes of 3.5 um polystyrene beads as a function of the
input power

4.3.3 Generation of various sizes of crystals

Optically bounded crystals arise easily in a Gaussian trap. Since the Gaussian
beam can be endlessly extended, it seems that the crystal could grow end-
lessly. However, the intensity required for forming and stabilizing the crystal
is high and the optical binding between particles could also have a limited
acting range [168, 169]. The following experiments show some of the limi-
tations of such systems to create large assemblies of microscopic particles.
Table 4.1 gives the characteristics of the largest crystals of 3.5 pm polystyrene
beads (n=1.6) achieved depending on the input power and on the beam size.
The crystals were formed according to the scheme of figure 4.1 with a slightly
more complex focusing system. A ~10 mm diameter collimated beam com-
ing out of a telescope impinges on the focusing device which is composed of
two plano-convex lenses (1000 mm and 200 mm focal length). The resulting
effective focal length is about 150 mm. In order to change the beam width at
the level of the crystal formation, the distance along the z-axis between the
cell’s top and the beam waist is varied between 0 and 1.250 mm as illustrated
in figure 4.7.

The results presented in table 4.1 reveal the maximal crystal sizes that
have been obtained by varying the width and the intensity of the beam.
They show that the formation of stable self-arrangement requires both high
intensity and high gradient. A half-watt extended over an area of about 40
micrometers in diameter does not provide a sufficient power for forming a
compact crystal in water. At this power level, beads tend to slightly move
away from each other in a disorganized manner. The loss of intensity gradient
and the diminution of local fluence on each particle taking part in the binding
reduce the possibility to expand the crystal. Figure 4.8 presents the Gaussian
intensity profiles of for each trap’s size at different power levels. Increasing
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Figure 4.8: Intensity of the beams of table 4.1 depending on z and on three beam
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Figure 4.9: Dry 2D crystal of five um polystyrene spheres obtained after evaporation
and illuminated by He-Ne laser light. Particles are in contact with each others.

the beam size implies a loss of fluence: the intensity over each single bead
is reduced and the gradient decreases. It has also been theoretically shown,
in the dipolar approximation, that the binding force collapses for a large

number of particles [168].

4.3.4 Beads spacing in self assembly

The close-packing form of the crystal is partially due to the gradient of the
gaussian trap. Microscopic particles arrange in the potential well as macro-
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Figure 4.10: Close-packing array of spherical particles and associated spatial fre-
quencies (3 and ) .

scopic beads would do in a bowl, minimizing the space between them to
minimize the energy of the system. However, due to multiple scattering of
the particles and to the periodicity of the beads array, optical binding occurs
and counteracts the gradient force. This implies that beads will not neces-
sarily sit in contact with each other. The demonstration of the influence of
the optical binding is made by comparing the distance between particles in
an hexagonal array in a laser trap with the distance between particles in a
dry close-packing array. This latter is obtained by evaporating a droplet of
beads diluted in a solution of water and isopropanol deposited on a glass
microscope slide. In order to obtain a monolayer of beads in contact with
each other, the evaporation process has been adjusted by heating the sub-
strate and by varying the concentration of isopropanol and water. A dry 2D
crystal of 5 yum polystyrene spheres is visible in figure 4.9. The inter-particle
distance was evaluated by measuring the diffraction angles in the reciprocal
lattice. The setup sketched in figure 4.1 shows the principle of measurement
of the diffraction on a diffuser placed at a known distance of the diffracting
array. The beads spacing is calculated using the diffraction of the trapping
laser at 532 nm and the one of the additional red He-Ne laser at 632.8 nm.
The pitch of the array b is given by:

mA\ / d?
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Figure 4.11: Comparison of inter-beads distance in dry close-packing arrays and
optically bound crystals for different polystyrene bead sizes.

where m is the order of diffraction, d the distance between the array and the
diffuser, and r the measured distance of diffraction spots from the optical
axis (see figure 4.1).

It does not matter if we measure the distance of beads immersed in water
or in air. Taking refraction into account, the directions of diffraction in air
of a set of beads immersed in water are identical to the ones of the same set

immersed in air. Indeed, with sin 0,4, = % and Ayater = n’\‘“'t’“ we get:
water water
b - )\air/nwater . )\air o b 4
water — — Vair ( 3)

Sin(eair)/nwater B Sin(‘gaiT)

Since the beads are arranged in hexagonal arrays due to close packing in
a single Gaussian beam, we get two distinct diffraction directions (modulo
7/3): the first diffraction order gives the distance b represented in figure 4.10
which corresponds to the distance between two lines of beads; the order
tilted by & gives the distance b’ in figure 4.10 which would correspond to the
radius of the beads, in the special case when spheres touch each others. The
additional spacing between beads in optical crystals is obtained by calculating
the difference between the measured distance d and the theoretical distance
corresponding to spheres being in contact dy = 2a, a being the radius of the
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Beads @ [pm] | B/D| Measured Error [um] Difference Difference in
distance d with @ [pm] Awater
[pom]

0.77 D 0.779 +0.012 0.009 0.024
0.77 B 0.865 +0.010 0.095 0.238
0.98 D 0.983 +0.018 0.002 0.006
0.98 B 1.281 +0.001 0.301 0.753
2.06 D 2.045 +0.058 -0.015 -0.038
2.06 B 2.214 +0.114 0.154 0.382
3.5 D 3.542 +0.044 0.042 0.104
3.5 B 3.500 +0.137 0.000 0.000
5 D 5.281 +0.099 0.281 0.703
5 B 5.096 +0.219 0.096 0.240

Table 4.2: Measurement of the pitch of close-packing arrays of polystyrene beads.
Comparison is made between self-organized beads in intense optical field (B) and in
dry close-packed monolayer array (D). Measurement have been done on the first order
of diffraction at two different wavelengths (532 nm and 632.8 nm) and averaged.

particles.

2%
== (4.4)

The results measured with the first order of diffraction, recorded at two
different wavelengths, are presented in table 4.2 and on the graph of fig-
ure 4.11. In the case of dry close-packing arrays, no spacing between the
beads are noticed, while for beads assembled in an intense optical field, ad-
ditional gaps are perceived. For 2.06 um beads, the difference corresponds
to 154 nm; for 0.98 pum beads it corresponds to 301 nm; and for 0.77 pum
beads it corresponds to 95 nm. The presence of a gap between particles is
clearly a manifestation of optical binding. In the present case, the binding
forces act against the gradient force and tend to separate the beads while
the gaussian potential well try to get them in contact. A variation of the
crystal pitch due to size distribution and size discrimination during the two
different processes (binding and drying) can be excluded. Indeed, the beads
diameter variation in the sample is smaller than the value of the gap found
in the experiment (according to the manufacturer, standard deviation are
0.025, 0.029 and 0.024 pm for 0.77, 0.98 and 2.06 um beads diameter re-
spectively).For large beads, measurement errors are bigger due to smaller
distance between diffraction spot. This explains the variation between B/D
cases. For particles with a diameter greater than 2-microns (0=3.5 ym and
(=5 pum) no spacing was observed in optically bound crystals. This fact was
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also reported by Singer et al.[159] in a one-dimensional case, although their
work relates to a very different configuration. Obviously, lateral scattering
in our case is much weaker than the forward scattering used for binding in
an inline trap between two fibers. On the other hand, the large number of
objects taking part in the process enhances the binding effect. The numerical
values of the gap should be compared with theoretical simulations; this was
unfortunately not feasible in the frame of this study.

4.4 Conclusion

The influence of optical binding on two-dimensional arrangement of particles
has been presented through different experiments. The manufacturing of
large crystals of particles is limited in size and leads to formation of disloca-
tions in the optical arrangement. Observations and measurements performed
in the k-space gave information on the crystal properties. By this mean, the
inter-particle spacing has been studied and gaps between spheres depending
on their size has been observed for particles up to two microns in diameter.
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5.1 Summary and Conclusions

In this thesis, we presented new schemes to sculpt light intensity distribu-
tion in order to create new templates adapted to multiple optical trapping.
In particular we proposed and studied solutions to address simultaneously
extremely large number of traps. This work relies essentially on the phe-
nomenon of interference, particularly on its endless possibilities to shape the
whole electromagnetic field. This is achieved by superposition of waves com-
ing either from several laser beams, from dedicated phase structures or from
the trapped objects themselves. By unconventional uses of diffraction, we
built novel intensity landscapes to confine particles in two and three dimen-
sions. The originality of this work relies on the unusual method employed
for optical trapping.

In chapter 2 we studied different configurations for amplitude division and
beams superposition. For linear and hexagonal traps, no a priori knowledge
could serve as a guide for adapting trap’s size to particle’s dimension. The
influence of the interferometric trap’s size has been investigated for the first
time and we reported that, in the studied cases, a fringes’size slightly bigger
than the particle diameter was the most suited for an efficient trapping. It
is well known that the intensity gradient is a key parameter for trapping
particles in the Rayleigh and ray optics regimes. We showed experimentally
how the gradient of intensity influences the trapping strength also in the Mie
regime. In order to generate very sharp gradients, a novel approach using
multiple beam interference has been proposed and tested to trap micron-sized
particles.

Interferometric traps have been successfully implemented in a microflu-
idic environment giving promising solutions for lab-on-a-chip applications.

More complex interference schemes making use of a diffractive element
have been realized in the Fresnel diffraction domain. The utilization of the
diffraction of trapped particles has been exploited in an atypical way to cre-
ate optical potential for trapping other particles. Another interesting feature
of the Fresnel diffraction is the "self imaging" properties known as Talbot
effect. It has been observed from a periodic array of trapped spheres. This
phenomenon has been studied and revealed remarquable properties for op-
tical trapping; the three dimensional landscaping, the high lateral intensity
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gradients, the simplicity of the setup and the huge number of traps pro-
duced at once are among the assets of the system. The investigation through
numerical simulations of Fresnel diffraction of periodic structures and the
analysis of Talbot sub-images led to the optimization of structures for opti-
cal trapping. Diffractive plates with a chessboard like phase pattern show
to be the most suited for trapping and offer up to a 16 times theoretical
localized intensity enhancement.

Inevitably as soon as several particles are immersed in the same elec-
tromagnetic field, interaction effects due to optical binding have also been
studied. Creation of large 2D arrays of spheres by self arrangement has been
described and their limitations have been highlighted. Optical binding has
been observed in 2D crystals for particles with diameter as big as two microns.

Trapping schemes presented in this work provide solutions for creating
very large numbers of trapped objects, settling the possibility for rapid and
massively parallel screening as often required in biotechnology. Up to 24,000
traps have been realized to trap 1-micron spheres simultaneously. All solu-
tions proposed in this work to create traps avoid the need of high numerical
aperture microscope objectives, this renders them easily implementable in
microfluidics environment.

5.2 Perspectives

Our experimental results have shown the potential of various systems suscep-
tible to perform massively parallel trapping. Combining optical manipulation
and microfluidics was a constant concern over the entire work. Some further
experiments are suggested hereunder to move forward a deeper understand-
ing of optical mechanisms and to implement them in dedicated systems.

As explained earlier, a compensation of radiation pressure is necessary
in several cases for trapping in the z direction. The reflecting interface used
in some experiments could be advantageously replaced by an independent
counter-propagating beam allowing a better control of the equilibrium in the
optical axis, at the price of not recycling light. In the same idea, a four wave
mixing setup, using photo-refractive crystals, could be used for a precise
compensation of scattering force.
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Talbot trapping has not yet been tested in microfluidics; insertion of Tal-
bot structures in a microfluidic chip would allow further measurements of
the trapping forces.

Finally, optical binding in two dimensions still lets a lot of room for re-
search. The study of optical crystals with smaller particles, particularly with
diameter smaller than the wavelength, would add to the comprehension of
optical interactions. The suppression of the Gaussian intensity profile, for
example by the use of "top-hat" beam shaper, could dissociate the effect of
the gradient force of the one of the binding force and lead to a better under-
standing of this latter. The analysis of optical binding in interference fringes
would be interesting to compare with the one dimensional case studied in
other theoretical works.

Very large arrays of particles have been proposed and studied for the
purpose of making extremely large mirrors for space telescopes. So-called
"Laser Trap Mirrors" should be build in space. The concept still needs ample
investigation.

The potential of coherent light to create interference still offers a wealth
of promising opportunities to manipulate small objects.
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A Lab-on-a-chip

A.1 State of the art

In the late 80’s, thanks to the huge development of microtechnologies, many
groups have started integrating several functions into a single chip. The
idea to perform pre-treatment, analysis, cleaning and sorting of biological
objects at a small scale has rapidly spread out giving birth to the concept
of micro total analysis system(uTAS) or lab-on-a-chip (LOC). The first lab-
on-a-chip was a chromatograph realized by Terry in 1975 [170]. Since then
multiple functionalities have been integrated on LOC such as micropumps,
microvalves and chemical sensors ([105, 106]). Very large scale of integration
of microfluidics in a chip have been realized by Quake’s group [171, 172, 173].
The addition of an integrated manipulation tool, thanks to optical tweez-
ers, [11, 108] allows a increasingly more precise control, up to the single
element level. Optical manipulation of passive elements can add features
to a simple chip, for example optically driven micropumps or microvalves
[109, 174, 175]. But the main advantage of the use of optical tweezers is the
immobilization and transportation of biological objects in a non invasive way
[176, 110, 107, 112, 177, 178]. Light template created through interference
have bean used for particles and cells sorting in microfluidics [13].
Microfluidic chips are generally molded in silicone elastomer by soft lithog-
raphy. Figure A.1 shows a picture of a three-ways chip.

Figure A.1: Silicone microfluidic chip with three inlets and one outlet. Holes are
punched for the connection to fluidic control tubes.
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Figure A.2: Additionnal features on microfluidic chips. a) Filtering posts at the
entrance of a channel. b) Three layer PDMS chip with pressure driven on-chip valves.
¢) Cross section of a valve.

A.2 Microfluidic chip fabrication

Soft photolithography used to build microfluidic chips could be made through
the facilities provided by the Centre de Microtechnologies (CMI) at EPFL.
Standard process is summarized in this paragraph. A polydimethylsiloxane
(PDMS) elastomer (Sylgard 184, Dow Corning, USA) is molded on a positive
master of the channels made in SU-8 photoresist on silicon wafer by stan-
dard photolithography. The detailed technique of fabrication can be found
in [179]. The 3 mm PDMS layer is cut in pieces after having been heated
in oven for 2 hours at 70°C. Inlet entrances are punched by small tubes of
1 mm diameter. The cut piece of PDMS is bounded by surface activation
in an oxygen plasma chamber to a standard thin microscope coverslip (ca.
170 pm thick) which constitute the bottom of the chip. A schematic cut of
a PDMS chip is presented in figure 2.17 a).

Simple microfluidic chips can be improved by adding other features. The
addition of filters, at the inlets, consisting of PDMS posts prevents contami-
nation and blocking of the channels (figure A.2 a)). A three-layer technique
has been developed at the Laboratory of Microsystems to build on-chip valves
for the independent control of each inlet’s channel and is presented in fig-
ure A.2 b) and ¢).
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A.3 Lab-on-a-chip concept

The combination of microfluidic chips with micromanipulation tools and di-
agnosis systems such as fluorescence techniques (labelling with fluorescent
marker, fluorescence lifetime imaging (FLIM), fluorescence resonant energy
transfer (FRET), fluorescence recovery after photobleaching (FRAP)) or Ra-
man spectroscopy provides a miniaturized analysis factory often combined
in a standard inverted microscope used by biologists. Figure A.3 presents
a setup combining various features of the lab-on-a-chip mounted on an in-
verted microscope. We built and used this system for online monitoring
of hybridization of DNA immobilized on trapped beads. It was a simple
multiple optical trapping systems, composed of independent laser diodes, as-
sociated with micro-biochemistry tools. This section of the thesis work is not
reported in the present dissertation.
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Figure A.3: a) Inverted microscope b) microfluidic chip connections: reactants
reservoirs (larger tubes) and gas pressure (smaller tubes) ¢) Microfluidic chip with
on-chip valves and flow sequence illustrated with colored solutions d) Microfluidic
control (computer driven valves actuation and manual flow pressure regulation) and
on-chip valve construction e) Construction of 3-layers valves f) Optical traps and
fluorescence excitation g) Four 5-pm polystyrene beads trapped in the central channel
and observed in transmission h) Multiple optical traps generation (4 independent laser
sources).
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B Fresnel calculations

The following figures present the results of numerical simulations of the Fres-
nel diffraction behind various structures calculated according to the method

described in paragraph 3.3.3.

Phase shift in xy plane Fresnel difffraction along yz
axis
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Figure B.1: Fresnel diffraction of beads or infinite cylinders. Left column: repre-
sentation of the phase shift due to the beads or cylinders (n=1.6). Right column:
Fresnel diffraction calculated over 100 microns
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Figure B.2: Representation of simulated phase plate patterns for generation of
Lohmann images.
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Figure B.3: Scale bar of intensity level [arbitrary units]- (illumination level is 1) for
following simulation (except for figure B.5 and B.7 where maxima is 16)



Appendix 113

Figure B.4: Phase plate of figure B.2 a), A¢p = 7/2, d = 20um
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Figure B.6: Phase plate of figure B.2 a), A¢ = 7, d = 20um



114 Appendizx

it Phistp 2T-800pm 2ot yplot

¥ml

zm] i 2[m) Sipd i 0t

10" DNE gt 08

STTTiT1

o

S-
5 0 5

 |m|

w10”

Figure B.9: Phase plate of figure B.2 b), A¢ = /2, d = 20um
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Figure B.11: Phase plate of figure B.2 b), A¢ = 7, d = 20um
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Figure B.12: Phase plate of figure B.2 b), A¢ = 7, d = 20pum
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Figure B.15: Phase plate of figure B.2 d), A¢ = 7, d = 20um
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Figure B.18: Phase plate of figure B.2 g), A¢ = 7/2, d = 20pm



118 Appendix

Figure B.19: Phase plate of figure B.2 g), A¢ = 7, d = 20pum
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C Diffractive plate fabrication

Diffractive plates have been realized through facilities at the Centre de Mi-
crotechnologies (CMI) at EPFL following our design. Chess-board-like pat-
terns with next pitches have been etched in silica wafer: 1, 1.6, 2, 3, 3.6, 4,
5, 6, 7.6 and 10 pgm. For each pitch, two plates have been created on the
wafer at different positions. This ensures that at least one of them has the
desired depth, despite the concentric anisotropy in the etching depth uni-
formity. The patterns have been transferred on photoresist through direct
laser writing. Since the scanning laser beam has a width of 200 pm, the
half of each graved pattern has been etched only on 180x180 pm squares to
prevent misalignment. The steps of the process are summarized hereunder.
Figure C.1 shows the detailed layout and figure C.2 an optical and a SEM
image of 3.5 ym and 2.5 um structure respectively. Two wafers have been
prepared with phase shift in water of 7 and 7/2 for a 532 nm wavelength
according to following parameters:

Substrate: SiO,

Lambda A: 532 nm

n Substrate: ng, = 1.46077

n Water: n,=1.33585 (25°C)

Ridges’ Pitch :1-10 pm

Ridges’ Depth:

Ap=BAS

Ad = (nsubstrate - nwat@?”) h
For A¢=r,

b= 0.532 = 2.129um

2(1.46077—1.33585)
Process

e Processing on fused silica 100mm wafer

e Desorption by plasma O2 activation

e Coat and soft-bake AZ1512 photoresist (1.5 pum)

e Direct laser writing of dense 2D draughtboard pattern

e Pattern transfer using AMS200 dry etcher

e Resist to silica selectivity PR:Si02 1:7

e Etching depth uniformity 1.1% (structures inside 40mm radius circle)

e Final dicing of individuals chip
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Figure C.1: Layout of a 4 inch SiO5 wafer with position of the diffractive structures.
Numbers correspond to the half of the pitch of each pattern.

Figure C.2: a) Optical image of the top view of a 3.6 um chessboard structure. b)
SEM image tilted by 83° of a 2 um structure.

The profile of the engraving was measured with an Alphastep 500 profiler
on extension at the 4 angles of the pattern (the pattern itself being too fine
to be measured) and is given in figure C.3. Table C.1 resumes measurements
performed on two structures (1.6 pym and 2 pm) disposed at two different
positions of the wafer. The etching depth corresponds to a /2 phase shift
in water (1.0645 pm for A =532 nm).

Plate 2 microns Plate 1.6 microns
Depth [pm] Depth [pm]
1.066 0.995
1.053 0.99
1.069 1.005
1.068 0.995

Table C.1: Etching depth at the 4 corners of two structures (pitch = 2 pm and
1.6 pm, and A¢ = 7/2) disposed at different positions on the wafer.
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