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Motivations
� Rank-based optimization methods are unpractical

-Discrete optimization
-Smallest non-zero singular value minimization is sensitive to noise
-A-priori knowledge of the minimum rank required

� Transform coding

-Compressibility of multivariate random sources
-Example: bivariate Gaussian distributions
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-Any measure of “effective dimensionality”?

Definition
� We consider a non all-zero matrix A of size M × N

� Singular value decomposition A = UDV where

-U is a M × M unitary matrix with columns uk for k = 1, 2, . . . ,M − 1

-V is a N × N unitary matrix with columns vl for l = 1, 2, . . . , N − 1

-D is a M × N diagonal matrix that contains the singular values

σ1 ≥ σ2 ≥ . . . ≥ σQ ≥ 0 where Q = min{M,N}

� Spectral distribution

pk =
σk

∑

k σk

for k = 1, 2, . . . , Q

� Spectral entropy

H (p1, p2, . . . , pQ) = −
Q

∑

k=1

pk log pk

� We define the effective rank as

erank(A) = exp
{

H
(

p1, p2, . . . , pQ

)

}

Interpretation
� A is a linear mapping from C

N to C
M (geometrical shaping)

� The range of A, denoted by R, is given by

R = span {wk} where wk , Avk =











σkuk for k = 1, 2, . . . , Q

0 otherwise

� rank(A) is the dimension of the range
� erank(A) endows the range with an “effective dimension” computed from

the spectral entropy

Example
� First-order autoregressive correlation matrix with parameter ρ ∈ (−1, 1)

� Rank (dashed) vs. effective rank (solid)
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� As |ρ| → 0, erank(A) → rank(A) = 4. As |ρ| → 1, erank(A) → 1.

Operational Meaning
� Stochastic operational meaning

-Similar interpretation as the entropy but in an approximation context
-Coefficient rate in discrete form [1]: fraction of significant coefficients in
an infinite product expansion

� Deterministic operational meaning?

Properties
Property 1 It holds that

1 ≤ erank(A) ≤ rank(A) ≤ Q .

Property 2 For all c 6= 0,

erank(A) = erank(A∗) = erank(AT ) = erank(Ā) = erank(cA) .

Property 3 A unitary transformation on A does not change its effective rank.

Property 4 For two positive semidefinite Hermitian matrices A and B,

erank(A + B) ≤ erank(A) + erank(B) .

Applications
� Subspace-based analysis methods
� Parametric estimation from tomographic sampling [2]

- Localization of diffusive sources relies on the estimation of an unknown
parameter α

-Estimation of α in noise-free (left) and noisy (right) conditions using
minimization of the smallest non-zero singular value (dashed) and mini-
mization of the effective rank (solid)
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� Superresolution [3]

-Unregistered set of samples with unknown offsets t1 and t2

-Estimation of t1 and t2 using minimization of the smallest non-zero
singular value (left) and minimization of the effective rank (right)
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