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Motivations

» Rank-based optimization methods are unpractical

- Discrete optimization
- Smallest non-zero singular value minimization is sensitive to noise
- A-priori knowledge of the minimum rank required

= Transform coding

- Compressibility of multivariate random sources
- Example: bivariate Gaussian distributions

- Any measure of “effective dimensionality”?

Definition
» We consider a non all-zero matrix A of size M x N

= Singular value decomposition A = UDV where

-Uis a M x M unitary matrix with columns v, for k=1,2,..., M — 1
-V isa N x N unitary matrix with columns y;for{=1,2,... N —1
-DIs a M x N diagonal matrix that contains the singular values

o, >09>...200>0 where @ =min{M,N}

= Spectral distribution

— fork=1,2,...,
PE= @
= Spectral entropy
Q
H (plap27 I 7pQ) — Zpk 1ng/€
k=1

» We define the effective rank as

erank(A) = exp {H(p17p27 - apQ)}

Interpretation

» A is a linear mapping from ¢¥ to ¢ (geometrical shaping)
= The range of A, denoted by R, Is given by

O LU fork;:l,Z,...,Q

R =span{w;} where w2 Av, = |
0 otherwise

= rank(A) is the dimension of the range

= erank(A) endows the range with an “effective dimension” computed from
the spectral entropy

Example

= First-order autoregressive correlation matrix with parameter p € (—1,1)
» Rank (dashed) vs. effective rank (solid)
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= AS |p| — 0, erank(A) — rank(A) = 4. As |p| — 1, erank(A) — 1.
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Operational Meaning

= Stochastic operational meaning

- Similar interpretation as the entropy but in an approximation context

- Coefficient rate in discrete form [1]: fraction of significant coefficients In
an infinite product expansion

= Deterministic operational meaning?
Properties
Property 1 It holds that
1 < erank(A) <rank(A) < Q.
Property 2 For all ¢ #£ 0,
erank(A) = erank(A*) = erank(A") = erank(A) = erank(cA) .

Property 3 A unitary transformation on A does not change its effective rank.
Property 4 For two positive semidefinite Hermitian matrices A and B,

erank(A + B) < erank(A) + erank(B) .

Applications

» Subspace-based analysis methods
= Parametric estimation from tomographic sampling [2]

- Localization of diffusive sources relies on the estimation of an unknown
parameter «

- Estimation of o In noise-free (left) and noisy (right) conditions using
minimization of the smallest non-zero singular value (dashed) and mini-
mization of the effective rank (solid)
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= Superresolution [3]

- Unregistered set of samples with unknown offsets ¢; and ¢

-Estimation of ¢; and ¢, using minimization of the smallest non-zero
singular value (left) and minimization of the effective rank (right)
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