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Abstract

The evolution of cooperation is a fundamental and enduring puzzle in biology

and the social sciences. Hundreds of theoretical models have been proposed, but

empirical research has been hindered by the generation time of social organisms

and by the difficulties of quantifying costs and benefits of cooperation. The sig-

nificant increase in computational power in the last decade has made artificial

evolution of simple social robots a promising alternative.

This thesis is concerned with the artificial evolution of groups of cooperating

robots. It argues that artificial evolution of robotic agents is a powerful tool to

address open questions in evolutionary biology, and shows how insights gained

from the study of artificial and biological multi-agent systems can be mutually

beneficial for both biology and robotics. The work presented in this thesis con-

tributes to biology by showing how artificial evolution can be used to quantify

key factors in the evolution of cooperation in biological systems and by providing

an empirical test of a central part of biological theory. In addition, it reveals the

importance of the genetic architecture for the evolution of efficient cooperation in

groups of organisms. The work also contributes to robotics by identifying three

different classes of multi-robot tasks depending on the amount of cooperation

required between team members and by suggesting guidelines for the evolution

of efficient robot teams. Furthermore it shows how simulations can be used to

successfully evolve controllers for physical robot teams.

Keywords: Artificial evolution; multi-agent systems; social insects; evolutionary

robotics; team composition; task allocation; division of labor; fitness allocation;

cooperation; altruism.
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Zusammenfassung

Die Evolution von kooperativem Verhalten ist ein grundlegendes Problem der

Biologie und der Sozialwissenschaften. Die empirische Überprüfung der zahlre-

ichen theoretische Modelle wird durch die Generationszeit sozialer Organismen

und die Schwierigkeit Kosten und Nutzen sozialen Verhaltens zu quantifizieren

erschwert. Der dramatische Anstieg der Rechnerleistung in den letzten zehn

Jahren macht die künstliche Evolution von einfachen sozialen Robotern zur viel-

versprechenden Alternative.

Diese Dissertation beschäftigt sich mit der künstlichen Evolution von Grup-

pen kooperierender Roboter. Sie schlägt vor die künstliche Evolution von Ro-

botern als mächtiges Werkzeug zur Bearbeitung offener Fragen der Evolutions-

biologie zu verwenden und zeigt, dass Erkenntnisse aus der Erforschung natür-

licher und künstlicher Multi-Agenten-Systeme gleichzeitig einen Nutzen für die

Biologie und die Robotik bringen können. Die vorliegende Arbeit leistet einen

Beitrag zur Biologie, indem sie zeigt wie künstliche Evolution benutzt werden

kann um Schlüsselfaktoren der Evolution sozialen Verhaltens in biologischen Sys-

temen zu quantifizieren und liefert einen empirischen Test für eine zentrale Theo-

rie der Evolutionsbiologie. Zusätzlich verdeutlicht sie den wesentlichen Einfluss

der genetischen Architektur auf die Evolution effizienter kooperativer Gruppen

von Organismen.

Die Arbeit leistet auch einen Beitrag zur Robotik, indem sie drei verschiedene

Klassen von Multi-Roboter-Problemen identifiziert und diese anhand des unter-

schiedlichen Masses an Zusammenarbeit, das zur Lösung des Problems notwen-

dig ist, unterscheidet. Ausserdem schlägt sie Richtlinien zur Evolution effizienter

v
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Roboterteams vor und zeigt wie Computersimulationen genutzt werden können,

um erfolgreiche Steueralgorithmen für reale Roboterteams zu erhalten.

Schlüsselwörter: Künstliche Evolution; Multi-Agenten-Systeme; Soziale Insek-

ten; Robotik; Arbeitsverteilung; Arbeitsteilung; Kooperation; Altruismus.
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1 Introduction

Remember that we are picturing the animal as a

robot survival machine with a pre-programmed

computer controlling the muscles.

Richard Dawkins (The Selfish Gene, 1976)

In this chapter I will introduce the underlying questions that have motivated

this thesis. I will present the background and concepts for our current under-

standing of the evolution of cooperation and discuss the key factors. In partic-

ular, I will highlight the challenges in studying the evolution of cooperation in

biological groups such as multi-cellular organisms or social insect colonies, and

in groups of artificial agents such as teams of software agents or robots. A more

detailed introduction to each of these subjects is included in the pertaining chap-

ters. A glossary at the end of this thesis serves as a quick reference and provides

clarification for terms whose definition differs between research fields.

1.1 Natural Selection and the Evolution of Coopera-

tion

The evolution of cooperation is a fundamental and enduring puzzle in biology

and the social sciences. If evolution is based on the survival of the fittest, how

can it lead to cooperation? Individuals should, then, behave in ways that increase

their own chances of reproduction and strive to reduce those of others. In many

cases they do: Animals fight for mating opportunities and plants overshadow

1



2 1. INTRODUCTION

each other in the struggle for light. Yet, cooperation is ubiquitous. It is found

across all biological taxa and pervades all levels of biological organization, from

genes to cells to organisms to societies. Cooperation has played a central role in

the evolution of life: Higher organisms are the result of a succession of ever more

complex replicating individuals created by combination of initially independent

units (Maynard Smith and Szathmáry [146]). Cooperation has acted as a driv-

ing force in the evolution of higher organisms by unlocking fitness benefits not

available to single units. Many fascinating examples illustrate this process: The

independent cells of the cellular slime mold Dictyostelium aggregate to form a

slug that allows cells to migrate, covering large distances (Kessin [122], Strass-

mann et al. [211]). Individuals in many social insect species cooperatively build

elaborate nests that protect them against adverse environmental conditions and

predators (Hölldobler and Wilson [104]). Wolves and many other predators hunt

in packs and can subdue prey many times the size of an individual animal. Vervet

monkeys elicit specific alarm calls to warn group members of different types of

predators (Seyfarth et al. [202]).

Rather than the exception, cooperation seems to be a common and fundamen-

tal form of interaction between individuals. How is this fact compatible with our

understanding of natural selection? A deeper understanding of this question re-

quires a closer look at the factors that influence cooperation.

1.2 Factors Influencing the Evolution of Cooperation

Cooperation is a social behavior that increases the reproductive fitness of other

individuals. This means that cooperative behaviors are those that increase the

expected number of offspring of other individuals. Explanations for the evolution

of cooperation fall into two categories, cases that lead to a reproductive fitness

increase of the cooperator (“direct selection”) and cases that do not lead to such

an increase (“indirect selection”).

1.2.1 Direct selection

It is easy to see why natural selection would lead to the evolution of cooperation

if it increases the reproduction of cooperators. Several situations can lead to direct

fitness benefits for cooperators. The simplest involve group activities where the
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benefits of cooperation are shared among group members. Classical examples

include cooperative hunting or cooperative nest building.

Although many authors have suggested that situations where cooperators

gain fitness benefits have played a key role in driving the evolutionary transi-

tions from the first simple replicators to higher organisms (Corning [56], Keller

[117], Michod [150]), for many examples the evolution of cooperation cannot be

explained by direct selection alone. One important reason is that cooperating

groups are always at risk from exploitation by selfish individuals who benefit

even more by not taking part in the group activity, yet reaping its benefits. For

example, wolves hanging back during a dangerous group hunt should increase

their chances of survival and thus be favored by selection. Cooperation of this

form is often unstable and thwarted by selfish individuals (Maynard Smith [145]).

This, along with the observation that many examples of cooperation involve so-

cial behaviors that do not increase the cooperators’ fitness, explains why direct

selection has received less attention compared to indirect selection (Hammerstein

and Leimar [93]).

1.2.2 Indirect selection

It is more difficult to see how cooperation can evolve in the absence of direct

fitness benefits to the cooperator. This is because selection of behavior that de-

creases an individual’s fitness seems to run against the very idea of natural selec-

tion.

The key insight into this apparent dilemma goes back to J.B.S. Haldane in the

1930s, and was formalized by W. D. Hamilton in two landmark papers in 1964

(Hamilton [89, 90]). It has since been developed into a theory that forms much of

the conceptual basis of our current understanding of social evolution and is now

known under the name of “kin selection”. Haldane’s and Hamilton’s key insights

concern cooperative interactions that are directed towards relatives, i.e., towards

individuals that are genetically similar to the cooperator. They realized that a

gene for cooperative behavior can not only spread in a population by increasing

the fitness of the cooperator, but also by increasing the fitness of a beneficiary

carrying the same gene and thus perpetuating its own existence. This is because

a gene will spread in a population if it can successfully create copies of itself, irre-

spective of whether copies are made by increasing the reproduction of its bearer,

or by increasing the reproduction of other bearers of the same gene (related indi-
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viduals). Cooperative interactions with relatives can thus indirectly increase the

fitness of the cooperator by increasing its chances of spreading its genes. The co-

operator’s fitness gain obtained by helping related individuals is called indirect

fitness.

Hamilton argued that interactions with related individuals can result in two

ways. First, relatives might be distinguished from other individuals that are en-

countered. This can happen through transitory patterns of association such as

being hatched in the same nest. It can also happen through kin recognition, i.e.,

when individuals can make a better than average estimate on their genetic simi-

larity with other individuals. A special case that allows such an estimate are coop-

erative genes that are linked to a specific phenotypic trait (Keller and Ross [120]).

Such genes are often called “green-beard” genes, a term coined by Dawkins [58]

to describe a gene that will lead to a conspicuous phenotypic feature such as

causing the bearer to have a green beard. In case of a perfect linkage between the

gene coding for the cooperative behavior and the phenotypic trait, bearers of the

gene can reliably direct their behavior towards other bearers of the same gene by

recognizing this feature. Green-beard genes are an example for the importance

of the underlying genetic architecture for the evolution of social groups. We re-

turn to the influence of genetic architecture on the evolution of social behavior in

Chapter 3.

The second way to preferential interactions between related individuals sug-

gested by Hamilton is limited dispersal from the natal group. This is because

average relatedness between individuals in the same natal group is higher than

between individuals in the whole population, and therefore non-dispersing in-

dividuals will interact more with kin. It has been argued that limited dispersal

has played a key role in the evolution of cooperation in many different scenar-

ios, from cooperative breeding in birds, mammals and insects to decreased vir-

ulence in parasites such as malaria. This idea is important because many social

organisms are thought to lack the sensory or cognitive abilities necessary for kin

recognition. However, recent research has warned that the importance of lim-

ited dispersal has likely been overestimated (see e.g., Queller [180], West et al.

[234]). The reason is that limited dispersal can also lead to increased competi-

tion between related individuals, which counters or even negates the effects of

increased relatedness. One way to see how this can happen is to think of an

isolated group (i.e., no dispersal) of related individuals sustained by a limited
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amount of resources. While a cooperative action can help a related neighbor pro-

duce more offspring, this increase in offspring must come at the cost of another

related individual’s offspring. In this case, the cooperative social behavior cannot

lead to a net increase in the number of offspring and the competition between

related individuals exactly cancels the reproductive benefit of cooperation.

This example reveals a conceptual difficulty of Hamilton’s theory that has led

to deep confusion and hindered progress in our understanding of the evolution of

cooperation: To understand the spread of a cooperative gene by indirect selection,

it is not enough to consider its presence in other members of the social group,

but also whether it is present in competitors. A complete theory of kin selection

needs to account for genetic similarity in a social group with respect to the genetic

similarity to competitors. The effects of competition between relatives will be

discussed in detail in Chapter 2. A brief outline of its mathematical formulation

for a simple case can be found in Appendix A.

1.2.3 Group selection

To conclude the brief review of the theoretical foundation of todays understand-

ing of the evolution of cooperation, we must discuss a related theoretical frame-

work which goes by the name “group selection” or “multi-level selection”.

Group selection goes back to an idea first proposed in the 1960s by Wynne-

Edwards (Wynne-Edwards [243]), who argued that cooperation between indi-

viduals could evolve by selection acting between populations of individuals. Ac-

cording to his formulation, populations consisting of selfish individuals might

overexploit their available resources and thus go extinct. The only populations to

survive would be populations of individuals who did not necessarily have traits

that were best for their own survival and reproduction, but which were good

for the survival and reproduction of the population. While Wynne-Edwards’ ba-

sic reasoning was correct, it soon became clear that this type of selection would

only work under very restrictive conditions and did not have much practical im-

portance. As numerous authors, including himself, pointed out in the 1980s this

is because selection at the population level is much slower than selection at the

individual level (Grafen [81]).

Wynne-Edwards’ original idea was replaced by a different framework for

competition between social groups called multi-level selection, which is centered

around the idea that selection can be partitioned into different components acting
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between groups at different levels. For example, selection may simultaneously

operate at the level of genes, cells and organisms. We return to the importance of

the level of selection for the evolution of cooperation in Chapter 4.

Numerous authors have pointed out that Hamilton’s theory of kin selection

and multi-level selection theory do not point to fundamentally different processes

(e.g., Bourke and Franks [37], Keller [118], Lehmann et al. [126]). This is linked to

the fact that a complete theory of kin selection must incorporate both the effects of

genetic relatedness and of selection acting at all levels. Both theories have led to

identical results in all considered cases, and modern versions of both theories are

mathematically equivalent (Bourke and Franks [37], Lehmann and Keller [125]).

However, multi-level selection theory and its predecessors have created a sub-

stantial amount of controversy and semantic confusion (West et al. [232], Wilson

[237]). Its history has been likened to a minefield (Bourke and Franks [37, p. 40])

and issues surrounding its correct application continue to cause misunderstand-

ings and confusion to this day (compare, e.g., Alonso and Schuck-Paim [5], Wil-

son [240], Wilson and Hölldobler [241] with Foster et al. [75], or Traulsen and

Nowak [218] with Lehmann et al. [126] for current controversies). Part of the

reason may be found in the lack of underpinning empirical research.

1.3 Empirical Research

While hundreds of theoretical models have been proposed (for recent reviews see

e.g., Lehmann and Keller [125], Sachs et al. [198]), it has proven very difficult to

provide empirical data needed to match the theoretical models with empirically

known examples of the evolution of cooperation. Many practical difficulties in

studying evolution are due to the long generation times of social organisms. This

makes the use of guided evolution, a process where the evolution of a trait can

be followed by breeding organisms, impractical. Ideal empirical tests would in-

clude a direct, quantitative measure of all factors that affect the evolution of co-

operation. Unfortunately, such tests would require detailed information on the

lifetime interactions between individuals in a population as well as measures of

costs and benefits associated with cooperation, and it has been pointed out that

such empirical tests could be extremely difficult to carry out (West et al. [232]).

These difficulties in conducting empirical tests of the evolution of cooperation
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in natural systems have led many researchers to try to approximate biological

systems using increasingly sophisticated models of cooperating agents (Axelrod

[12, 14], Doebeli and Hauert [60]). In Chapter 2 I show how some of these limita-

tions and difficulties can be overcome by using artificial robotic systems to model

the evolution of complex social interactions.

1.4 Modeling Cooperation

Modeling of biological systems has a long history (Charnov [52], Kauffman [115],

May [144], Pyke et al. [179]). Ideally, models capture the key features of a natural

phenomenon and lead to new hypotheses and a deeper understanding. However,

in many cases the key features to be included in a model need to be estimated by

its designer (Husbands et al. [108], Jakobi et al. [112]). This is problematic because

if a model does not capture the essential parameters it can lead to wrong results.

It is important to note that models are always simplified, abstracted versions of

reality, but considering salient features in isolation may fail to capture key prop-

erties of biological systems. In spite of these shortcomings, models have been

essential in understanding many biological processes (Flake [69], Webb [228]).

Current modeling approaches to explaining the evolution of cooperation range

in complexity from analytic mathematical descriptions to complex computational

models (Flake [69]). The simplest models are analytic descriptions, which attempt

to find analytical solutions for the conditions needed for the evolution of coop-

eration (see e.g., Frank [76], Hamilton [91], Queller [180]). While such models

excel at describing and capturing essential properties of biological systems, their

design requires a deep understanding of the underlying phenomena. In addi-

tion, this approach is ill-suited to describe the complete dynamics of system with

many parameters (Flake [69]). The effects of individual variability and proba-

bilistic events can be difficult to model analytically and are usually not included

in these models.

Computational models can supplement and extend purely analytic models,

especially for discrete phenomena (see, e.g., Maynard Smith [145]). Many authors

have used simulations of very simple agents engaged in iterative games to study

cooperation (see e.g., Axelrod [11], Axelrod et al. [13], Cohen et al. [54], Doe-

beli and Hauert [60], Hauert and Doebeli [97], Hauert and Stenull [98], Nowak

[163], Nowak and Sigmund [164, 165], Riolo et al. [191], Sigmund and Nowak
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[203]). In these models agent behavior is often reduced to a binary choice be-

tween cooperation and no cooperation. The appeal of such models is illustrated

by the prisoner’s dilemma, which captures the essential dilemma of the evolution

of cooperation in a simple game, where two players (the prisoners) are given a

choice to either cooperate or not cooperate (Axelrod [11]). These simple compu-

tational models are useful to study situations where the optimal behavior (often

called an optimal “strategy”) depends on the behavior of other agents. How-

ever, they often only consider a single isolated aspect of an agent and have been

criticized for their limited predictive power, because it is often unclear how they

relate to real world phenomena (Rowell et al. [196], West et al. [233]).

Some of these shortcomings are corrected by more complex agent-based mod-

els (Axelrod [12, 14], Axtell [15]). Agent-based modeling refers to simulation

models that treat individuals as unique and discrete entities which have at least

one property in addition to age that changes during their life cycle, e.g., weight or

rank in a social hierarchy. This type of modeling has been used effectively in the

field of ecology where individual variability between agents and their complex

life-cycles cannot be neglected (see e.g., Grimm [86] for a review). However, in

many cases large difficulties in linking simulation results to real world dynamics

remain (Grimm [86]).

The significant increase in computational power in the last decade has allowed

to further increase the complexity of computational models and to build richer

and more complete models for the evolution of cooperation. The research in this

thesis extends this work by modeling the evolution of simple artificial social or-

ganisms, such as teams of robotic agents in an evolutionary robotics setup. While

this approach cannot overcome all shortcomings of current approaches, it has

two advantages. A key advantage of modeling robotic agents is that results can

be validated in the real world. This guarantees that models are robust against pa-

rameter variations and provides an important safeguard against computational

artifacts. The latter point is of special importance for complex computational

models which may depend on many parameters and specific initial conditions

(Webb [227, 228]). A key advantage of using artificial evolution is the reduced

number of model features that need to be estimated by a designer (Husbands

et al. [108], Jakobi et al. [112]). This is important for phenomena that emerge from

complex interactions of many levels of an agent’s existence rather than resulting

from a small number of salient features (Brooks [39, 40]). For example, it has
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been stressed that an organism’s individual or social behavior emerges from the

interaction of all levels of an organism’s existence including its morphology, sen-

sory apparatus, cognitive abilities and genetic architecture (Keijzer [116], Pfeifer

and Bongard [175]). Both advantages are combined in the use of evolutionary

robotics, which creates emergent agent behaviors by combining robotic agents

with artificial evolution.

1.4.1 Evolutionary Robotics

Evolutionary robotics is a relatively new technique for the automatic creation of

robot controllers (Cliff et al. [53], Harvey et al. [95], Nolfi and Floreano [161])

and for the study of the evolution of adaptive behavior (Floreano et al. [72]). It

uses artificial evolution, a process inspired by Darwinian evolution, to create con-

trol systems for robots. This is accomplished by encoding robot control systems

in artificial genomes. First, an initial population of different, random genomes is

created. These genomes are then evaluated by decoding the genomes into control

systems, downloading them into a robot and monitoring the robot’s performance

on various tasks. Once all genomes have been evaluated, the best genomes are

selected according to a predefined metric called a “fitness function”. Selected

genomes are reproduced by creating copies with the addition of some changes

introduced by genetic operators such as mutation and/or cross-over. In most im-

plementations the reproduced genomes are used to form the subsequent popula-

tion, which is again evaluated, selected and reproduced. This process is repeated

until a predefined criterion, such as a certain level of performance has been met

(Nolfi and Floreano [161]).

Bio-inspiration in robotics has a long history, dating back to Grey Walter’s tur-

tle robots (Holland [101]). A neurophysiologist, Grey Walter wanted to prove that

complex looking behaviors did not require a large number of brain cells but that

the secret of how the brain worked lay in the rich connections between neurons.

His first two turtle robots were constructed between 1948 and 1949 and used a

mere two electronic brain cells, which gave rise to a rich behavioral repertoire.

The robots showed complex patterns of interactions with obstacles and “danced”

when presented with mirror images of themselves or with another robot. They

used phototaxis to autonomously return to a docking station to recharge their

batteries. Walter’s work has been credited as the creation of the first electronic

autonomous robots and his turtle robots were one of the first ancestors of mod-
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ern robotics, inspiring subsequent generations of robotics researchers (Holland

[101], Pfeifer [174]).

In many ways evolutionary robotics builds on Walter’s work. Evolutionary

robotics typically uses simple neural networks to produce complex robot behav-

iors. It considers the robot and the environment as a tightly coupled dynami-

cal system, and behavior is an emergent property of the interaction between the

robot and the environment (Nolfi and Floreano [161]). Similar to Grey Walter’s

turtle robots, evolutionary robotics draws its key elements from the study of bio-

logical systems.

Evolutionary robotics has proven to be a successful alternative to program-

ming robots manually when it is difficult to de-compose desired robot behaviors

into simple behaviors to be implemented as separate modules of the control sys-

tem (Baldassarre et al. [20], Quinn et al. [185]). This is because humans excel

at designing very complex systems if they can be split up into small, modular

subunits, but lack experience and intuition with complex behaviors (Braitenberg

[38]). One class of robotic control problems that leads to particularly complex

robot behavior is collective robotics (Husbands et al. [108]). This is because the

behavior of multiple robots depends not only on interactions with the environ-

ment, but also on the behavior of other robots. As the number of interacting

robots grows, or when robot behaviors become more sophisticated, the design

of suitable control rules rapidly becomes very complex. This is especially true

when agents are expected to coordinate or cooperate to collectively achieve a de-

sired task. Chapter 4 discusses the application of evolutionary robotics to the

control of teams of cooperating robots.

1.5 Structure of the Thesis

In this thesis I use artificial evolution to conduct selection experiments in simple

artificial social organisms. Chapter 2 uses robotic experiments to conduct a quan-

titative test of Hamilton’s rule. The results support current evolutionary theory

and validate the feasibility and usefulness of this approach. Chapter 3 uses a

computational model to study the influence of genetic architecture on the evo-

lution of social behavior. It shows that the genotype to phenotype mapping can

be a key factor for the evolution of efficient cooperation and division of labor in

social insect colonies. The results also reveal that groups of interacting agents are
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much more efficient when their behavior depends on the behavioral phenotypes

of other group members. Chapter 4 reviews the current state of the art in the evo-

lution of artificial multi-agent systems. It shows that multi-agent tasks can be di-

vided into three categories by drawing on research of the evolution of cooperation

in biological systems. The results demonstrate that genetic team composition and

the level of selection significantly influence the performance of multi-agent sys-

tems. This chapter also provides a more in-depth discussion of the relationship

between biological and robotic multi-agent systems. It concludes with suggested

guidelines for the optimal combination of genetic team composition and level

of selection for the artificial evolution of efficient multi-agent systems. Chapter

5 shows how agents evolved in simulation perform when tested on real robots.

The results show that simulation is an essential tool for evolving controllers for

real robots in spite of behavioral differences between simulation and the hard-

ware platform. Chapter 6 summarizes the main achievements of this thesis and

provides an outlook on future work.



12 1. INTRODUCTION



2 A Quantitative Test of
Hamilton’s Rule

The importance of Hamilton’s work cannot be

overstated - it is one of the few truly fundamental

advances since Darwin in our understanding of

natural selection.
Stuart A. West et al. (2007, [233])

Hamilton’s theory of kin selection (Hamilton [91]) explains the evolution of

cooperation using indirect selection, i.e., by considering the benefits of coopera-

tion in groups of related individuals. In biology, this type of cooperation is known

as altruistic cooperation or altruism. As pointed out in Chapter 1, it has proven

very difficult to provide empirical data supporting Hamilton’s theory and even

40 years after its introduction, no quantitative test of its role in evolution has

been possible. Here we use a group of artificial social agents, implemented as au-

tonomous foraging robots, to perform controlled selection experiments that are

difficult or impossible to realize in biological organisms. We investigate the evo-

lution of altruism in groups with different, well-defined levels of within-group

relatedness, and across different costs and benefits for social actions. We illustrate

the interactions of relatedness, costs and benefits for the evolution of altruism and

provide the first quantitative test of Hamilton’s rule.

2.1 State of the Art

Altruism takes a pivotal role in explaining the evolution of complex life. It is

thought to have catalyzed major evolutionary transitions, such as the transition

13
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from single-celled organisms to multi-cellularity (Maynard Smith and Szathmáry

[146]), and it is central to social interactions in all social species including hu-

mans. The framework used to understand altruism is built around Hamilton’s

rule (Equation 2.1), which provides a condition for the spread of a gene for a

social action in a population (Bourke and Franks [37], Dawkins [59], Hamilton

[91]), where we define a social action as a social behavior directed towards, or

taking place between, members of the same species. It invokes three terms: the

actor’s reproductive cost c of the social action, the recipient’s reproductive benefit

b gained by the social action, and the genetic relatedness r between the actor and

the recipient. According to Hamilton’s rule, a gene for a social action will spread

in a population if the relatedness r times the benefit b is greater than the cost c,

r · b − c > 0. (2.1)

This rule explains how a gene will spread in a population if the number of

individuals carrying the gene increases, irrespective of the fact whether this hap-

pens by increasing the reproduction of the bearer (actor), or by increasing the

reproduction of other bearers of the same gene (related recipients).

Reproductive competition between relatives can influence the outcome of so-

cial interactions (Griffin and West [84], Taylor [214]). Since social groups in most

social animals include relatives, a complete understanding of the evolution of al-

truism must consider both, the effects of kinship and the effects of competition.

Recent theoretical models include the effects of competition and make predictions

for the evolution of altruism (Frank [77], Queller [180], Appendix A).

Although the importance of empirical tests of these models has been acknowl-

edged (Johnson and Gaines [114], West et al. [235]) and a methodology for such

tests has been proposed (Oli [167]) such tests have been hindered due to practical

difficulties. An ideal empirical test would include a direct measurement of all pa-

rameters that affect the evolution of altruism. However, even in the most primi-

tive social species known (bacteria such as Myxococcus or Pseudomonas (Griffin

et al. [85], Rainey and Rainey [187]) and social amoebae such as Dictyostelium

(Strassmann et al. [211])) social interactions are complex and competition may

vary in degree and over time and space. The only direct empirical test comes

from a comparative study of 25 fig wasp species (West et al. [234]). Fig wasp taxa

offer a unique population structure, with non-dispersing, wingless males con-

fined to a single fruit and in fierce reproductive competition for winged females.
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Relatedness between competing males varies greatly across species, owing to the

number of females laying eggs into each fruit. By comparing levels of aggression

in a range of average relatedness levels, the authors could confirm the detrimental

effects of competition between relatives on the evolution of altruism. However,

the difficulties in quantifying benefits and costs of social interactions did not al-

low a quantitative test of the theory.

Another way to perform an empirical test of Hamilton’s rule is through selec-

tion experiments that carefully manipulate relatedness and competition during

evolution. In an elegant example of such an experiment, Griffin et al. [85] sepa-

rately varied competition and relatedness in a strain of bacteria that metabolize

growth-enhancing iron as an altruistic trait. The authors also investigated the

effects of competition between relatives and their data provided experimental

proof that increased competition between relatives leads to lower levels of al-

truism. However, difficulties in quantifying benefits and costs for social actions

again impeded a quantitative test.

Here we use a group of artificial social agents with precisely defined within-

group relatedness for a quantitative analysis of the evolution of altruism. So-

cial agents are implemented as small mobile robots. By independently vary-

ing within-group relatedness and the costs and benefits of social actions, we can

quantify the relative importance of both factors for the evolution of altruism. Im-

portantly, our setup allows us to study the evolution of simple artificial social

organisms while retaining full control over the experimental parameters govern-

ing evolution.

2.2 Materials and Methods

Our experimental setup used a physics-based simulation of a group of micro

robots (Magnenat and Waibel [132], Magnenat et al. [133]). The simulation was

modeled on a parallel hardware setup (Appendix E), where social agents were

implemented as small, autonomous mobile robots (Figure 2.1).

2.2.1 Experimental setup

We chose a collective foraging task to investigate the evolution of altruism, be-

cause foraging efficiency is a key factor for many biological social groups such as
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(a) (b)

Figure 2.1: (a) The software setup. 8 randomly positioned robots (black squares

with arrows) searched for 8 randomly positioned tokens (small circles) and trans-

ported them into the target area (hatched area at bottom) under the white wall

(the other three walls were black). (b) The same setup in hardware.

ant or bee colonies (Seeley [201], Traniello [217]), as well as an important applica-

tion for collective robotic systems (Cao et al. [48]). Groups of 8 micro-robots and

8 food tokens were randomly placed in a 50 × 50 cm2 arena (Figure 2.1). A robot

could forage a food token by pushing it into a pre-defined area at one side of the

arena marked by a white wall (the “nest”).

The robots (Caprari [49]) were small (2×2×4 cm3), two-wheeled autonomous

mobile robots equipped with three infrared sensors at the front, which could

sense obstacles up to 3 cm away (Figures 2.1 and 2.2). An extension module

adding a fourth infrared sensor with a range of up to 6 cm and a linear camera

was mounted higher on the robot, overlooking food tokens.

Each robot’s behavior was controlled by a feed-forward neural network con-

sisting of six sensory inputs, one bias input and six artificial neurons (Figure

2.2). Inputs and neurons were connected by synaptic weights representing the

strength of the connection. The sensory inputs were given by the robot’s four in-

frared sensors providing distance information on tokens, walls and other robots,

and the robot’s camera sensor providing visual information on the location of the

target area. The camera sensor was split into two parts consisting of the left and
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right part of the robot’s field of view, respectively. It only provided binary color

information (0 or 1) for the white or black walls. The bias input was connected to

a constant input with value -1. Sensor inputs were scaled to a range of [−1; 1] and

fed to the neurons. The activation of each of the neurons was computed as the

sum of all inputs multiplied by the weight of the connection and passed through

the continuous tanh(x) function (i.e., their output was between -1 and 1). A sin-

gle output neuron was used to control each, the left motor speed, the right motor

speed, and a token sharing switch, which allowed robots to choose between the

selfish or altruist payoffs at the moment of successful token foraging and which

was ignored otherwise. The 33 genes of an individual robot each encoded an

integer value from 0 to 255 (i.e., 8 bit resolution) which controlled the synaptic

weights of the 33 neural connections. The genome given by the neural network’s

connection weights determined a robot’s behavior.

2.2.2 Costs and benefits of altruism

When a robot had foraged a token, it could choose between either of two types of

payoffs: A selfish payoff c that was only added to the robot’s individual fitness, or

an altruist payoff b that was awarded to each of the 7 other robots in the group. In

other words, a robot had to forego its selfish payoff c to cooperate and thus paid a

cost c for cooperating. At the same time the cooperating robot bestowed a benefit

b on each group member except itself. This corresponds to a situation where

individuals face a choice between investing resources into their own reproductive

fitness or costly investment into that of their social group.

The evolution of altruism depends on the relative fitness gained for selfish

versus altruistic social behavior, i.e. on the relative size of costs c versus benefits

b. In all experiments presented here the size of costs c was arbitrarily fixed to

c = 1 and the ratio of costs to benefits c
b

in Equation 2.1 was varied by varying the

benefits b for altruistic social actions, except for c
b

= 0 where c = 0.

All evolutionary experiments presented here were conducted with 200 groups

of 8 individuals each. Since individuals competed for reproduction with all mem-

bers of the population, including those of their own group, our experiments re-

sulted in a small amount of competition between related individuals from the

same group. Since reproductive competition between related individuals can in-

fluence the outcome of social interactions (Griffin and West [84], Taylor [214]),

cost to benefit ratios were corrected for this small effect (Frank [77], Queller [180],
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(a) (b)

Figure 2.2: (a) The robots were equipped with three infrared (IR) sensors at the

front to detect obstacles and a linear camera to identify the white nest. A fourth

infrared sensor overlooking food tokens allowed robots to distinguish tokens

from walls and other robots. (b) Robot behavior was controlled by an artificial

neural network. Inputs (black circles) were given by the robot’s four infrared (IR)

sensor activation values and two camera readings. Six neurons processed infor-

mation (large white circles). Their firing threshold values were set by connections

to a constant input value (“bias”, small white circle). Two outputs were used to

control the speed of the left and right wheel motors and a third output allowed

the robots to choose whether to share a food token pushed into the nest. The 33

connection weights (lines connecting circles) were encoded to form the artificial

genome (see text).

Appendix A).

2.2.3 Relatedness and artificial evolution

To investigate the role of relatedness, costs and benefits on the evolution of altru-

ism, we used artificial evolution to create, test and select groups of robots. Since

relatedness of biological groups varies widely, we compared 5 different levels of

relatedness r = {1; 0.75; 0.54; 0.25; 0} spanning a wide range of relatedness val-

ues. Since the spread of genes for a social action depends on the relative sizes of

costs c, benefits b and relatedness r linked by Hamilton’s rule, we considered 5

different cost to benefit ratios c
b

= {1; r − 0.1; r; r + 0.1; 0} with special focus on

the predicted transition point c
b

= r.
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For the case of highly related individuals (r = 1) each of the 200 groups was

initially founded by a single individual with a random genome. This genome was

duplicated 7 times to obtain 8 identical individuals per group. All groups were

evaluated 10 times in the foraging task and the fitness of each individual was

recorded. After evaluation one individual of all individuals of all groups was

randomly selected with a probability proportional to its fitness (roulette wheel

selection with replacement, Bäck [16]). A random portion of the genome of this

individual was exchanged with that of another, different individual selected in

the same fashion, with a “crossover probability” of 0.005. The resulting genome

was subjected to mutation with a “mutation probability” of 0.005 per bit, i.e. 0.04

per gene and then duplicated 7 times to found a new group. This procedure was

repeated 200 times to produce 200 new groups, each of which thus comprised

8 genetically identical (clonal) individuals. However, the genomes were always

different between groups, hence leading to a within-group relatedness of 1.

To obtain groups with an average relatedness of r = 0.75 we used the same

procedure, but founded each group using two individuals. The first genome was

duplicated 6 times to obtain a total of 8 genomes. This led to the formation of

groups comprising two types of individuals with frequencies 7:1, resulting in an

average relatedness of 0.75 (see Appendix A).

To obtain groups with an average relatedness of r = 15

28
≃ 0.54 we followed

the same procedure, but initiated groups with three individuals. The first genome

was duplicated 5 times to obtain groups with a 6:1:1 frequency distribution of the

three genomes, corresponding to an average relatedness of ≃ 0.54.

To obtain groups with an average relatedness of r = 0.25 we followed the

same procedure, initiating groups with three founding individuals. Groups were

composed of three types of clones in frequencies 3:3:2 as to result in an overall

relatedness of 0.25.

To obtain groups with a relatedness of r = 0 we followed the same procedure

but initiated each group with 8 different individuals. Under this type of group

formation individuals were, on average, not genetically more similar to individ-

uals in their group than to individuals of other groups. Hence, the within-group

relatedness was 0.

The genetic composition of groups thus differed from that of most animal

groups in that some individuals were clones (r = 1) rather than belonging to kin

classes such as full siblings (r = 0.5) or cousins (r = 0.125). However, in the
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absence of preferential interactions between kin, social evolution is influenced by

the average group relatedness and not the exact relatedness between pairs of indi-

viduals. This is because genetic relatedness depends on interaction probabilities

of genes (Bourke and Franks [37]) which in our model is equivalent to interaction

probabilities of individuals. Our experimental setup prevented preferential in-

teractions between individuals by randomizing starting positions (Section 2.2.1)

and by using a neural network that did not allow individuals to memorize past

interactions (Figure 2.2).

Overall, there were therefore five times 200 groups of 8 robots each for the

five different within-group relatedness values. For each relatedness value groups

were evaluated for the five corresponding cost to benefit ratios (with the excep-

tion of c
b

= r − 0.1 for groups with relatedness r = 0 as the cost to benefit ratio

cannot be negative). To evaluate groups we tested them in the foraging task for

10 separate 60-second evaluations. A fitness value F was calculated for each in-

dividual as the averaged sum of all its payoff values obtained through its own ac-

tions and altruistic actions of its group members. The level of altruism A was es-

timated for each group as the proportion of collected food tokens that was shared

with group members, A = na

na+ns
, where na was the number of collected food to-

kens individuals shared and ns the number of tokens individuals did not share.

All selection experiments were repeated 20 times (20 independent replicates) and

evolved for 500 generations for each experimental condition. To compare fitness

and the level of altruism, we averaged the performance of the 200 groups over

the last 10 generations of the 20 replicates. These 20 values per condition were

compared with Student’s t-tests. Data are first presented for groups of highly re-

lated individuals (r = 1), next for groups with intermediate relatedness (r = 0.75,

r ≃ 0.54 and r = 0.25), and finally for groups with low relatedness (r = 0).

2.3 Results

All experiments led to the evolution of foraging behavior (Appendix B). Fig-

ure 2.3 shows the mean level of altruism Ā in groups (averaged over the last 10

generations) after 500 generations of artificial selection. As predicted by Hamil-

ton’s rule, high levels of altruism resulted for high levels of within-group related-

ness relative to the cost to benefit ratio for token sharing (r ≫ c
b
). Conversely, low

levels of altruism were linked to low levels of within-group relatedness relative
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to the cost to benefit ratio (r ≪ c
b
). Note that at generation 0, the initial levels of

altruism in groups were, by configuration, symmetrically distributed in the inter-

val [0; 1], with an expected mean level of altruism Ā = 0.5 (see Figures B.1 and B.2

in Appendix B).

To quantitatively assess the ratio c
b

at the transition point Ā = 0.5 for a given

within-group relatedness r, we used multiple linear regression on data at c
b

=

r − 0.1, c
b

= r, and c
b

= r + 0.1. We estimated c
b

from our data by intersecting the

obtained regression line with the expected level of altruism at the transition point,

Ā = 0.5. We then analyzed the deviation of this estimate from to the theoretical

prediction ( c
b

= r).

2.3.1 Groups with high relatedness

For groups with a relatedness of r = 1, low cost to benefit ratios ( c
b

= 0) led

to a very high proportion of shared food tokens (Table 2.1). In accordance with

Hamilton’s rule, our results indicate a transition from high to low levels of al-

truism when the within-group relatedness is equal to the cost to benefit ratio,

r = c
b

= 1. When r = c
b

there was no selection for altruism, and after 500 gen-

erations of artificial evolution the mean level of altruism was not significantly

different from its initial value Ā = 0.5 (one-sample t-test, df = 19, P = 0.690).

High cost to benefit ratios ( c
b

= 1.1) led to a very low proportion of shared food

tokens. Multiple linear regression of data at c
b

= 0.9, c
b

= 1, and c
b

= 1.1 led to

an estimated transition point at c
b

= 0.994 for groups with r = 1 (multiple linear

regression, 95% confidence interval [0.768; 1.285], slope of regression line −3.604).

Table 2.1: Mean levels of altruism Ā for different cost to benefit ratios c
b

in groups

with different within-group relatedness r (compare Figure 2.3).

c
b

= 0 c
b

= r − 0.1 c
b

= r c
b

= r + 0.1 c
b

= 1

r = 1 0.983 0.875 0.478 0.110 0.478

r = 0.75 0.978 0.890 0.527 0.126 0.054

r ≃ 0.54 0.976 0.875 0.457 0.095 0.030

r = 0.25 0.959 0.901 0.469 0.061 0.021

r = 0 0.558 - 0.558 0.017 0.014
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Figure 2.3: Altruism Ā after 500 generations of artificial evolution for different

relatedness values r and cost to benefit ratios c
b
. Data shown are the mean and

standard deviations of 20 replicates per condition. For r = c
b

= 0 (data point

marked with a ∗ in graph (e)) six populations went extinct and the data point

shown is an average of 14 experiments. The dashed line is the result of multiple

linear regression on data for c
b

= r − 0.1, c
b

= r, and c
b

= r + 0.1 (see text).
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2.3.2 Groups with intermediate relatedness

For groups with intermediate relatedness values (r = 0.75, r ≃ 0.54 and r =

0.25), low cost to benefit ratios ( c
b

= 0) again led to a very high proportion of

shared food tokens, and a similar pattern of transition from high to low levels

of altruism persisted. For r = c
b

artificial evolution for 500 generations did not

affect the expected mean level of altruism Ā = 0.5 (one-sample t-tests, df = 19,

P = {0.596; 0.452; 0.526} for r = {0.75; 0.54; 0.25}). As predicted by Hamilton’s

rule, a decrease in within-group relatedness led to a shift of the transition point

towards lower ratios of c
b
. High cost to benefit ratios c

b
= 1 again resulted in

very low levels of altruism (Table 2.1). Linear regression led to estimated cost to

benefit ratios of c
b

= 0.753 (95% confidence interval [0.603; 0.940], slope −3.855),
c
b

= 0.533 ([0.430; 0.661], slope −4.058), and c
b

= 0.242 ([0.204; 0.287], slope −4.250)

for relatedness values of r = 0.75, r ≃ 0.54 and r = 0.25, respectively.

2.3.3 Groups with low relatedness

When group members were unrelated (within-group relatedness r = 0), low cost

to benefit ratios ( c
b

= 0) led to the extinction of 6 out of 20 replicates, i.e. in 6 out

of the 20 replicates artificial selection could not be completed for the entire 500

generations, because all individuals in the population had a fitness of 0. Popula-

tions went extinct at generations 63, 90, 287, 374, 459, and 490 in these 6 replicates.

The mean final level of altruism of the remaining 14 replicates at generation 500

for c
b

= 0 = r was not significantly different from the initial value of Ā = 0.5

(one-sample t-test, df = 13, P = 0.631). High cost to benefit ratios ( c
b

= 1) in this

condition resulted in the lowest values of the level of altruism observed in all our

experiments (Table 2.1). Due to the lack of data for c
b

= r−0.1 no linear regression

estimate was performed for this condition.

2.4 Discussion

Our results provide a clear experimental demonstration and a quantitative test of

Hamilton’s rule.

High within-group relatedness and low cost to benefit ratios resulted in high

levels of altruism. This was because when cost to benefit ratios were much smaller

than within-group relatedness, altruism was highly beneficial and led to large fit-
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ness benefits for altruists. As the value of the cost to benefit ratio increased and

approached the value of within-group relatedness, the size of benefits for altru-

ism decreased. This led to lower selection pressure on altruistic behavior and

higher behavioral variation. When cost to benefit ratios equalled within-group

relatedness the reproductive success of a genotype did not depend on the level

of altruism and the level of altruism was subject to random drift. This was be-

cause in this case the direct fitness benefits gained by selfish behavior were ex-

actly equal to the indirect fitness benefits gained by increasing the reproduction

of related group members, c = b · r. When cost to benefit ratios exceeded within-

group relatedness, altruism became costly. Increasing cost to benefit ratios led

to increased costs for altruism and strong selection for selfish behavior. This ex-

plains the low levels of altruism for low within-group relatedness and high cost

to benefit ratios.

Hamilton’s theoretical model predicts an instantaneous transition between se-

lection for and selection against altruism based on the inequality c
b

< r (Appendix

A). However, under natural (and, here, artificial) conditions traits vary, with the

size of a trait’s variation depending on the strength of selection. In our experi-

ments we varied cost to benefit ratios by a constant absolute value (±0.1), which

led to different relative changes for different within-group relatedness. Thus a 0.1

increase to the cost over benefit ratio corresponded to a 10% increase for r = 1,

but to a 40% increase for r = 0.25. The effects of the resulting changes in selec-

tion pressure on the transition between high and low levels of altruism can be

seen from the regression analysis. The slope of regression lines was highest for

experiments with high within-group relatedness and decreased for experiments

with lower within-group relatedness. Simultaneously variation in the level of al-

truism of data points for c
b

= r − 0.1 and c
b

= r + 0.1 decreased with decreasing

relatedness.

Our results illustrate that even slight alterations in the benefits and costs of

altruism that do not lead to significant changes in group fitness can translate into

drastic shifts in the amount of altruism. For example, for r = 1 a 10% increase

or 10% decrease in the benefits of altruism in our setup resulted in an up to 83%

increase or 77% decrease in the level of altruism.

When within-group relatedness and cost to benefit ratios were 0 (r = c
b

= 0)

evolution led to the extinction of some populations. This was because in the

absence of related recipients, genes could not spread by increasing the reproduc-
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tion of other bearers of the same gene, i.e., there were no indirect fitness benefits.

In this condition robots could only improve their relative fitness with respect to

other individuals by opting for the selfish payoff rather than increasing the fit-

ness of their competitors. At the same time, cost to benefit ratios of zero meant

that there was no selfish payoff to actors (c = 0) and therefore no direct fitness

benefits. Robots could therefore not increase their own fitness directly and thus

genes could not spread by increasing the reproduction of their bearer. However,

this led to the collapse of altruism and fitness and thus resulted in the extinction

of populations.

In our experiments competition between relatives was a negligible factor (Ap-

pendix B). However, previous work has shown that for some cases competition

between relatives can have a large effect on the evolution of altruism (Griffin et al.

[85]). The influence of this factor requires additional simulations and is a subject

of further study.

2.5 Conclusion

Our experiments have allowed a quantitative test of Hamilton’s rule in a robotic

system. Similar tests in biological systems have been hindered due to practical

difficulties in measuring relatedness, costs and benefits. Quantitative estimates

of genetic relatedness of natural organisms commonly use pedigrees or genetic

markers (Queller and Goodnight [181]). However, both methods are suscepti-

ble to biased estimates and often result in large sampling errors (Pamilo [170]).

Here we avoided problems linked to a-posteriori estimation of genetic relatedness

by artificially constructing social groups with precisely defined within-group re-

latedness. Similar results could be obtained by using guided evolution of social

organisms but are only feasible in organisms with sufficiently short generation

times (Griffin et al. [85], Velicer and Yu [221]).

Quantifying the costs and benefits of cooperative social actions in natural or-

ganisms is significantly more difficult. Such tests require detailed information on

lifetime social interactions between individuals, which may vary over space and

time (Johnson and Gaines [114], MacColl and Hatchwell [131], West et al. [235]).

Here these requirements could be met by fixing the values of costs and benefits

of social actions, and by restricting social interactions to well defined groups. It

remains to be seen whether similar approaches can be used to overcome these
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problems in biological systems (Oli [167]).

While the robotic model used here allowed us to avoid many of the practical

difficulties encountered in biological systems, the social behaviors resulting from

the evolution of robotic agents are inevitably much simpler than those found in

their biological counterparts. The embodied nature of robotic agents neverthe-

less allows for richer and more plausible behaviors than purely computational

models.

This study demonstrates that social behaviors such as altruism can evolve in

groups of robots with simple neural networks. Our experiments indicate parallels

between the evolutionary principles governing the evolution of biological and

artificial social organisms. They also illustrate that knowledge transfer between

the fields of evolutionary biology and evolutionary robotics can provide insights

into the evolution of social behavior.



3
Division of Labor and Colony

Efficiency in Social Insects:
Effects of Interactions between

Genetic Architecture, Colony
Kin Structure and Rate of

Perturbations

[...] the brain of an ant is one of the most

marvellous atoms of matter in the world, perhaps

more so than the brain of a man.
Charles Darwin (The Origin of Species, 1859)

In the previous chapter we have discussed Hamilton’s theory of kin selection,

and we have shown that the evolution of sociality critically depends on the fit-

ness benefits of social life. Hamilton’s theory defines conditions for the spread of

social genes, however it provides no information on the size of costs or benefits

which determine the evolution of cooperative social actions. As pointed out in

Chapter 1, the underlying genetic architecture can be an important factor that in-

fluences the costs and benefits of cooperation and therefore shapes the evolution

of sociality. In this chapter we use a computational model to investigate how the

genetic architecture affects fitness benefits in social insect colonies. The remain-

der of this chapter is based on a publication (Waibel et al. [222]).

27
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3.1 Division of Labor and Colony Efficiency in Social

Insects

Social insects (ants, wasps, bees and termites) take a special role in the study of

the evolution of cooperation and altruism. This is because they provide the most

advanced examples of social organization known, matched in scale and complex-

ity only by human societies. Single colonies can consist of more than a million

individuals and are marked by a high degree of specialization and by an effi-

cient division of labor. Social insect societies base their success on a worker caste

who forego their own reproduction and devote their whole lives to caring for the

queen, constructing and protecting the nest, foraging for resources, and tending

to the larvae. Such behavior is maximally altruistic: sterile workers do not leave

any offspring of their own, but solely enhance the reproductive fitness of the

queen. Other examples include the evolution of soldier castes with “kamikaze”

weapons such as detachable stings (Seeley [201]) and exploding abdomens used

in defense of the colony (Hölldobler and Wilson [104]).

It has been argued that the complex social organization of social insect soci-

eties is the cause of their ecological success (Hölldobler and Wilson [104]). Social

insects compose about 15 percent of the entire animal bio-mass of most terrestrial

environments (Wilson [238]), and this rate has been estimated to be as high as

one third of the entire animal bio-mass in the Amazon rainforest and an astonish-

ing 80 percent of the total insect bio-mass (Maynard Smith and Szathmáry [147]).

However, out of the 750’000 insect species recognized by biologists only 2 percent

are social (Hölldobler and Wilson [104]).

Colony level flexibility in response to external changes and internal perturba-

tion is an essential feature of division of labor in social insects (Calabi [44], Robin-

son [193]). A colony has to perform a number of tasks, such as feeding the brood,

foraging for resources, maintaining the nest, and defending the colony. Efficient

allocation of individuals to these different tasks requires continuous dynamic ad-

justments in response to external changes such as risk of intra- and interspecific

competition and amount of food available. The colony must also be able to re-

spond to internal perturbations, such as specific mortality of individuals under-

taking foraging or another task.

Considerable work has focussed on identifying the mechanisms which allow

an efficient colony response to information that exceeds the sensory range or cog-
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nitive capacity of any given individual (Bonabeau et al. [32]). The large majority

of these models are built on the observation that individuals in a colony vary

in their propensity to perform the various tasks. Experimental studies in bees,

wasps and ants have revealed that workers vary genetically in their sensitivity

to task stimuli (Fewell and Page Jr [67], O’Donnell [166], Page et al. [168]). Thus,

within a colony workers from the same genetic background (same patriline or

matriline) are more likely to perform similar tasks than are less related work-

ers. To explain this association several response threshold models have been de-

veloped (Bertram et al. [26], Bonabeau [29], Gautrais et al. [78], Theraulaz et al.

[215]). In these models, individuals vary genetically in the stimulus (threshold)

for a given task at which they begin to perform that task. Only a few workers

(those with low thresholds) will perform a task when the stimulus is very low.

However, as the stimulus level increases, the thresholds of more individuals are

exceeded and those workers begin performing the task.

While numerous models have investigated the mechanisms allowing efficient

task allocation under situations where individuals in a colony vary in their re-

sponse thresholds (Bertram et al. [26], Bonabeau [29], Gautrais et al. [78], Ther-

aulaz et al. [215]), little attention has been devoted to the mechanisms responsi-

ble for variation in response thresholds. Most models assume that variation in

task sensitivity is a consequence of additive effects of genotype and environment

(Bonabeau et al. [31], Robinson et al. [194]) and that the distribution of genetic

thresholds in the group is continuous and normally distributed. However, stud-

ies in the honey bee suggest that genotypic variation in tasks may involve a few

major loci (Hunt et al. [107], Page et al. [169]) and also implicate genetic architec-

tures with non-additive gene interactions (Rüppell et al. [197]). As pointed out

by Bertram et al. [26], a better understanding of division of labor requires infor-

mation on how genotypic variation relates to differences in intra-colony response

threshold distributions. In a first step toward this goal, these authors developed

a model and showed important effects on task allocation and colony behavior

for differences in the number of loci and alleles controlling individual response

thresholds.

The aim of the present study is to understand how different genetic archi-

tectures of threshold response may affect colony efficiency. While the work of

Bertram et al. revealed that the genetic underpinning of response thresholds im-

pinges on the pattern of task allocation, their static analytical model did not al-
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low them to study the impact on colony efficiency, nor how variation in genetic

architecture influences the evolutionary trajectory of division of labor. To address

these issues we used artificial evolution to compare the performance of three sim-

ple genetic architectures underlying within colony variation in response thresh-

olds of workers. We evolved five different types of colonies (colonies in which

individuals are genetically identical (r=1), colonies with intermediate relatedness

values (r≃0.25, r≃0.5 and r≃0.75) and colonies formed by individuals randomly

selected in the population (r=0)). The performances of the three genetic archi-

tectures and five types of colonies were compared under different rates of envi-

ronmental perturbation. Our approach helps to bridge the gap between studies

aiming at understanding the genetic basis of behavioral differences among colony

members and evolutionary studies focusing on how individual differences in re-

sponse thresholds may lead to efficient division of labor. Importantly, our ap-

proach also allows us to study task distribution when there are more than two

tasks and how departure from an optimal distribution affects overall colony per-

formance.

3.2 Materials and Methods

3.2.1 Colony tasks

We use a simple agent-based model to compare performance of colonies consist-

ing of 100 individuals. Individuals can engage in five different tasks. We model

sub-linear return functions typical for tasks as foraging or scouting using the five

exponential functions

fi = 1 − exp(−ixi), (3.1)

where i = 1, 2, 3, 4, 5 are the tasks and xi is the percentage of the colony perform-

ing the task (Figure 3.1). Hence, the optimal allocation of workers to the five tasks

has a non-trivial solution depicted in Figure 3.1. Importantly, the results of our

simulations are not affected by the shape of payoff functions for each task, the

general issue being that deviation from a given optimal task allocation results in

decreased overall colony fitness.
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Figure 3.1: Proportion of the maximum colony fitness provided by each of the

five tasks in function of the proportion of workers engaged in this task. Squares

indicate the optimal allocation of workers between the five tasks (i.e., the distri-

bution yielding maximum colony fitness).

3.2.2 Genetic architecture

We consider a simple situation where there are five genes (g1−g5), each encoding

an integer value from 0 to 255 (i.e., 8 bit resolution) for one of the five tasks. We

compare three mapping systems between genes and the behavioral phenotype of

workers.

In the first genetic architecture (deterministic mapping), individuals engage in

the task with the highest genetically encoded value max(gi). This mapping sys-

tem represents a situation where individual response thresholds are genetically

determined with no environmental or social influence on individual responses. In

the second genetic architecture (probabilistic mapping), the five genes influence

the probability of engaging in a task. The corresponding gene value gi is propor-

tional to the probability Pi to engage in task i, Pi = ( gi
P

j gj
). This system is similar

to a situation where, in addition to a genetic component, the response thresholds

of workers are also influenced by developmental noise or fluctuating environ-

mental factors. Finally, in the third genetic architecture (dynamic mapping), the

propensity of individuals to engage in each of the five tasks depends not only on
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their genotype but also on the behavioral phenotypes of other colony members.

Thus, individuals will perform the task i that maximizes the ratio gi

ai
, where ai is

the number of colony members already working on task i, i.e., max( gi

ai
). This sys-

tem corresponds to the observed pattern of worker-worker inhibition where the

likelihood of individuals to perform a given task is inversely proportional to the

proportion of colony members already performing that task (Huang [105], Huang

and Robinson [106], Wilson [239]). This system also mimics a situation where the

stimulus for a given task decreases with increased number of individuals per-

forming this task.

3.2.3 Environmental and internal perturbations

To study the ability of colonies to respond to perturbations in worker task alloca-

tion we studied evolution in environments with different degrees of perturbation.

Colony life-span was divided into 100 time-steps. At each time-step we randomly

selected one of the five tasks and with probability Pr removed all individuals

performing this task to replace them with new individuals with genomes created

from the same parents. The new individuals were then assigned to a given task

according to their genome and genetic architecture. We used five different prob-

abilities (0.0, 0.1, 0.2, 0.3 and 0.4) of perturbation per time-step. In other words,

colony size was held constant over the 100 time-steps and, for each step, all indi-

viduals engaged in one of the five tasks (randomly selected) were replaced with

probability Pr. Total colony fitness F was obtained by adding the fitness obtained

at each time-step:

F =

100
∑

t=1

Ft. (3.2)

and colony fitness at each time-step (Ft) was quantified as the sum of the pay-

off of each task i,

Ft =

5
∑

i=1

fi(x). (3.3)

The minimum fitness of the colony is obtained when all 100 individuals en-

gage in the least rewarding task during the entire colony life. Inversely, maxi-

mum fitness is obtained when there is an optimal ratio of individuals engaging

in each of the five tasks. With the task payoffs chosen here the optimal solution is
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at xi = (0, 0.198, 0.267, 0.272, 0.262) as indicated by the squares in figure 3.1. For

simplicity all fitness values are presented on a scale of 0-100, with 0 being the

minimal possible fitness and 100 the maximum value.

3.2.4 Colonies and selection algorithm

We conducted selection experiments over 1000 generations in 100 colonies with

five different levels of relatedness (r ≃ 0, 0.25., 0.5, 0.75 and 1). Similar to the

creation of groups in the previous chapter, colonies were again composed of dif-

ferent proportions of clones. However, since groups consisted of 100 individuals

rather than 8 individual the exact relatedness values differed. For r=0 the 100

colonies of unrelated individuals were initially formed by using 100 randomly

generated genomes for each colony. The fitness of these colonies was compared

and we randomly selected one individual of one of the 30 colonies with highest

fitness. The genome of this individual was subjected to mutation (probability

0.2% per bit, i.e. 1.6% per gene) to form one individual of the next generation of

colonies. This procedure was repeated 10’000 times to produce 100 new colonies,

each consisting of 100 individuals. Under this type of colony formation individ-

uals are, on average, not genetically more similar to individuals in their colony

than to individuals of other colonies. Hence, the within-colony relatedness is

0. To construct colonies with highly related individuals (r=1) we followed the

same procedure but initiated each colony with only one individual which was

duplicated 99 times after having been subjected to mutation. Each of the 100

colonies thus comprised 100 genetically identical (clonal) individuals. However,

the genomes were always different between colonies, hence leading to a within-

colony relatedness of 1. To obtain colonies with an approximate relatedness of ≃
0.25 we used the same procedure but started colonies with four founding individ-

uals that were each clonally copied 24 times after having been mutated. Colonies

thus consisted of four types of clones in equal frequency, leading to an overall re-

latedness of ≃ 0.25 (as in Chapter 2, the precise relatedness can be calculated from

equation A.2 in Appendix A). To produce colonies with relatedness ≃ 0.5 we fol-

lowed the same procedure but initiated colonies with two individuals. This led

to the formation of colonies comprising two types of clones in equal proportions

(i.e., a relatedness of ≃ 0.5). Finally, colonies with a relatedness of r ≃ 0.75 were

created in the same way but using unequal proportions of the two types of clones.

The proportion p of the most frequent clone was estimated so that the probability
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of an individual to interact with another individual with the same genome was

on average ≃ 0.75 (r = p2 + (1 − p)2, see equation A.2 in Appendix A).

While constructing colonies out of different proportions of clones does not reflect

the haplodiploid mode of reproduction present in real social insects, the model

does accurately preserve interaction probabilities of genes.

Overall, there were therefore five groups of 100 colonies. The selection experi-

ments were repeated 10 times over 1000 generations for each of these five groups.

To compare performance of the three genetic architectures we averaged the per-

formance of the 100 colonies over the first and last 10 generations in 10 separate

simulation runs. These 10 values per genetic architecture were compared with

Student’s t-tests. Data are first presented for colonies of unrelated individuals,

next for colonies of highly (r=1) related individuals and finally for colonies of

intermediate (r ≃ 0.25, 0.5, and 0.75) relatedness.

3.3 Results

3.3.1 Colonies of unrelated individuals

When colonies did not experience perturbations (i.e., there were no instances

of selective mortality of individuals performing a given task) there were only

small differences between the three genetic architectures in performance during

the 10 first generations of selection (Figure 3.2). The lower fitness values were

obtained with the deterministic and probabilistic architectures. By their configu-

rations, these two genetic architectures initially lead to a random distribution of

individuals among the three castes and, accordingly, fitness values close to the

value expected under such a distribution (expected value under random distri-

bution of workers, 10’000 simulations: 90.86; dyn: F̄ = 92.10; det: F̄ = 90.78;

prob: F̄ = 90.89). During the first 10 generations, the dynamic mapping system

(F̄ = 92.18) led to a significantly higher fitness than the two other mapping sys-

tems (two-sample t-tests, dyn vs. det: F̄ = 91.91, t = 4.25, df = 18, P < 0.001;

dyn vs. prob: F̄ = 91.09, t = 33.31, df = 18, P < 0.001) because this genetic archi-

tecture leads to a relatively equivalent distribution of workers to each of the five

tasks, which results in a slightly higher overall fitness than a random distribution.

During the 1000 generations of selection there was an increase in colony fit-

ness for each of the three genetic architectures (Figure 3.2). At the end of evolution
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Figure 3.2: Mean fitness for colonies of unrelated individuals (r=0) for three ge-

netic architectures (dynamic: solid line; deterministic: dashed line; probabilistic:

dotted line) without perturbations (Pr = 0.00).

there was a significant difference in colony fitness between the three genetic ar-

chitectures, with the highest performance achieved by the deterministic and the

lowest with the probabilistic system (Table 3.1).

Evolution with selective removal of individuals engaged in a given task led to

a significant reduction in colony fitness and a shift in the relative performances of

the three genetic architectures (Figure 3.3). For each of the four levels of perturba-

tion, the dynamic mapping system led to an initially greater colony fitness com-

pared to the two other genetic architectures (dyn: F̄ = 91.74/91.67/91.51/91.36;

det: F̄ = 81.07/74.15/67.78/ 62.44; prob: F̄ = 80.55/72.63/65.45/59.32 for Pr =

0.10/0.20/0.30/0.40, all P < 0.001, Figure 3.3). During the 1000 generations of se-

lection there was an increase in fitness for each of the three genetic architectures.

However, there were still marked differences in performance with, in all cases,

the dynamic system performing significantly better than the two others and the

probabilistic system performing significantly worst (Table 3.1).



36 DIVISION OF LABOR AND COLONY EFFICIENCY

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50

C
o
lo

n
y
 f
it
n
e
s
s

Generation

 950  960  970  980  990  1000
 50

 60

 70

 80

 90

 100

Generation

Dynamic mapping
Deterministic mapping
Probabilistic mapping

(a) Pr = 0.10
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(c) Pr = 0.30
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(d) Pr = 0.40

Figure 3.3: Mean fitness for colonies of unrelated individuals (r=0) for three ge-

netic architectures (dynamic: solid line; deterministic: dashed line; probabilistic:

dotted line) for four degrees of perturbation (Pr = 0.10, Pr = 0.20, Pr = 0.30,

Pr = 0.40).



3.3. RESULTS 37

r = 0 r = 1

F̄ p-values F̄ p-values

dyn, Pr = 0.00

det, Pr = 0.00

prob, Pr = 0.00

95.97

98.14

94.51

]

< .001
]

< .001

]

< .001

99.87

21.97

98.68

]

< .001
]

< .001

]

< .001

dyn, Pr = 0.10

det, Pr = 0.10

prob, Pr = 0.10

94.20

86.11

82.32

]

< .001
]

< .001

]

< .001

99.88

21.95

87.60

]

< .001
]

< .001

]

< .001

dyn, Pr = 0.20

det, Pr = 0.20

prob, Pr = 0.20

94.46

84.50

78.02

]

< .001
]

< .001

]

< .001

99.91

21.96

85.57

]

< .001
]

< .001

]

< .001

dyn, Pr = 0.30

det, Pr = 0.30

prob, Pr = 0.30

94.85

83.83

75.22

]

< .001
]

< .001

]

< .001

99.87

21.93

84.70

]

< .001
]

< .001

]

< .001

dyn, Pr = 0.40

det, Pr = 0.40

prob, Pr = 0.40

95.16

83.55

73.45

]

< .001
]

< .001

]

< .001

99.89

21.95

84.34

]

< .001
]

< .001

]

< .001

Table 3.1: Fitness average of the last 10 generations (F̄ ) for the three genetic

architectures in unrelated (r=0) and highly related (r=1) colonies with different

reallocation probabilities Pr. P -values were calculated using two-sample t-tests

(df = 18).

3.3.2 Colonies of highly related individuals

The presence of highly related individuals (r=1) within colonies had important

consequences on the performances of the three genetic architectures. When colonies

did not experience perturbations, the dynamic and probabilistic systems led to a

very high fitness, while the deterministic system performed very poorly (Figure

3.4). At generation 1, the overall difference between the dynamic and probabilis-

tic system was very small but significant, with a small advantage for the dynamic

system (dyn: F̄ = 82.74; dyn vs. prob: F̄ = 81.54, t = 2.87, df = 18, P = 0.011).

The deterministic system performed poorly with a fitness significantly lower than

for the two other systems (F̄ = 15.23, both P < 0.001). During the first 10 gen-

erations, the difference between dynamic (F̄ = 96.22) and the two other map-
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ping systems was highly significant (two-sample t-tests, dyn vs. det: F̄ = 21.32,

t = 405.45, df = 18, P < 0.001; dyn vs. prob: F̄ = 94.35, t = 5.03, df = 18,

P < 0.001).
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Figure 3.4: Mean fitness for colonies of highly related individuals (r=1) for three

genetic architectures (dynamic: solid line; deterministic: dashed line; probabilis-

tic: dotted line) when there were no perturbations (Pr = 0.00).

During the 1000 generations of selection there was an increase in colony fit-

ness for each of the three genetic architectures (Figure 3.4). During the last 10 gen-

erations there was a significant difference in colony fitness between the three ge-

netic architectures; the highest performances were achieved by the probabilistic

and dynamic mapping systems, the latter performing slightly better than the for-

mer (Table 3.1). By contrast, the deterministic system performed poorly because

all individuals within a colony had the same genome and therefore engaged in

the same task.

Perturbations led to decreased fitness in the probabilistic system but not in the

two other systems. For each of the four levels of perturbation, the dynamic map-

ping system led to an initially greater colony fitness compared to the two other

mapping systems while, again, the deterministic system showed the worst per-

formance (dyn: F̄ = 96.19/96.14/96.03/95.68; det: F̄ = 21.36/21.31/21.33/21.37;

prob: F̄ = 83.09/80.64/79.51/77.65 for Pr = 0.10/0.20/0.30/0.40, all P < 0.001,

Figure 3.5). During the 1000 generations of selection there was an increase in fit-
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ness for each of the three mapping systems. However, in the last 10 generations

there were marked differences in performance with, in all cases, the dynamic

system performing significantly better and the deterministic system performing

worst (Figure 3.5, Table 3.1).
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(b) Pr = 0.20
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(c) Pr = 0.30
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(d) Pr = 0.40

Figure 3.5: Mean fitness for colonies of highly related individuals (r=1) for the

three genetic architectures (dynamic: solid line; deterministic: dashed line; prob-

abilistic: dotted line) for four degrees of perturbation (Pr = 0.10, Pr = 0.20,

Pr = 0.30, Pr = 0.40).

3.3.3 Colonies with intermediate relatedness

At the end of the selection experiments, the performance of colonies with inter-

mediate relatedness (r≃0.25, r≃0.5, r≃0.75) was intermediate between colonies
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with unrelated (r=0) and highly related (r=1) individuals. This was true for each

of the three genetic architectures and for each of the five levels of perturbation

(Figure 3.6).

For each for the three relatedness values and each of the five levels of pertur-

bation, the dynamic system performed better than the probabilistic system (all

P < 0.001) which itself invariably performed better than the deterministic sys-

tem (Figure 3.6, all P < 0.001). The difference in performance between the dy-

namic and probabilistic system was marked only when there were perturbations.

By contrast, the dynamic and deterministic systems were more efficient than the

deterministic system whatever the rate of perturbations.

3.4 Discussion

Our simulations revealed that the type of genetic architecture had very important

effects on colony performance. When colonies consisted of unrelated individu-

als and were not subjected to perturbations, the three genetic architectures per-

formed well, with a slight advantage for the deterministic mapping system, an

intermediate performance for the dynamic and the lowest fitness for the proba-

bilistic system. The relatively good performance of the deterministic system can

be explained by the fact that when there are no perturbations and colonies com-

prise unrelated individuals, it is possible to select for a good ratio of genotypes

specialized in each of the five castes. This is because this genetic architecture leads

to a clear association between genotype and task so that frequency selection at the

population level can lead to the optimal ratio of individuals specialized in each

of the five tasks. The slightly lower performance of the dynamic system prob-

ably stems from the greater complexity of this system and the greater difficulty

faced in keeping the optimal mix of genotypes within the population. Finally, the

lowest performance of the probabilistic system can be explained by the fact that

when colonies consist of completely unrelated individuals there is no benefit de-

rived from increasing phenotypic variance. Rather, such variance leads to greater

deviations from the optimal allocation of workers among the five tasks compared

with the deterministic model.

Repeated perturbations had very different effects on the three genetic archi-

tectures. The performance of the dynamic mapping system was only minimally

affected by the selective removal of workers performing a given task. The high
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(b) Pr = 0.10
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(c) Pr = 0.20
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(d) Pr = 0.30
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(e) Pr = 0.40

Figure 3.6: Mean fitness values with standard deviations at generation 1000 for

intermediate relatedness values (dynamic: solid line; deterministic: dashed line;

probabilistic: dotted line) with five different degrees of perturbation (Pr = 0.00,

Pr = 0.10, Pr = 0.20, Pr = 0.30, Pr = 0.40).
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resilience of this mapping system can be explained by the fact that when all work-

ers doing a specific task were removed, there was a high stimulus for the replace-

ment workers to engage in that task. As a result, colony perturbations led to

almost no change in colony task allocation. By contrast, the two other genetic ar-

chitectures were much more affected by the perturbations because the task choice

of the replacement workers was genetically determined and independent of the

type of workers removed. Hence, when workers performing a given task were

removed, allocation of the new individuals almost invariably resulted in a sub-

optimal number of workers performing that task. For both, the deterministic and

probabilistic mapping systems, the decrease in performance was proportional to

the frequency of perturbations.

Genetic relatedness significantly influenced the performance of the three ge-

netic architectures. In contrast to the results with unrelated individuals, high

relatedness (r=1) always resulted in a very low fitness for the deterministic map-

ping system. This can be explained by this genetic architecture inducing all work-

ers to perform the same task when they have an identical genome. Hence, the sta-

ble optimal solution was one that induced workers to engage in the most reward-

ing task and this is indeed the solution to which the selection experiments con-

verged. This feature also explains why the performance of this mapping system

was not significantly influenced by perturbations. Since the replacement workers

had the same genome as the removed workers, they always performed the same

job as those they were replacing, thus yielding no effect on colony fitness.

Unlike in the deterministic mapping system, high relatedness in the proba-

bilistic and dynamic mapping systems translated into very high performances

when there were no perturbations. In fact, the performance of these two systems

was higher than in the situation of low relatedness. This can be explained by high

colony relatedness allowing for a more efficient mode of selection of genotypes

than in the situation where nest-mates were unrelated. In our experiments, the

individuals that were selected to create the new generation of colonies were ran-

domly chosen from the 30% of colonies with the highest fitness. Such a mode of

selection is very efficient when nest-mates are highly related (r=1) because indi-

viduals with a bad genome are unlikely to be selected. However, when individ-

uals are not related, there is only very weak heritability of colony efficiency and

very low selection for more efficient genomes.

Repeated perturbations led to a major decrease in fitness with the probabilis-
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tic, but not with the dynamic mapping. The explanation for this difference is

again because the dynamic mapping system allowed for the replacement of work-

ers doing a particular task by new workers also performing that same task. The

probabilistic mapping system on the other hand did not allow for a preferen-

tial replacement of workers doing the same task, hence resulting in a fitness de-

crease. Importantly, the dynamic mapping system allowed colonies to achieve

fitness values close to the maximum value possible, regardless of the frequency

of perturbations.

Colonies with intermediate relatedness values (r ≃ 0.25, 0.5 and 0.75) invari-

ably had performances between those of colonies with high and low relatedness.

This was true for each of the three genetic architectures and for each of the five

levels of perturbation. A comparison of colonies with different relatedness val-

ues showed that the performance of the deterministic system decreased sharply

with increasing relatedness. The reason is again that task choice is entirely genet-

ically determined and increased genetic similarity decreases the number of tasks

performed by colony members. Thus, colonies consisting of only two types of

individuals (r≃0.5, r≃0.75) could only perform two out of the five tasks, while

colonies with r≃0.25 performed the four most rewarding tasks. The effect of

changes of relatedness was lower for the two other systems because they were

more efficient at conducting all tasks, independent of the genetic similarity of

colony members.

The dynamic system obtained fitness values close to the maximum and signif-

icantly higher than those of the probabilistic system. In both systems, increased

relatedness again resulted in increased task performance, because in addition to

frequency selection of specialists at the population level, relatedness also allowed

the more efficient frequency selection at the colony level, with all colonies reach-

ing near optimal solutions after 1000 generations of selection.

As in the case of high relatedness, repeated perturbations for intermediate re-

latedness values led to a severe performance drop for the probabilistic system

and important effects for the deterministic system, but had no effect on the dy-

namic system because of the ability of the latter to preferentially replace missing

workers.
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3.5 Conclusion

The results of these simulations have important implications for our understand-

ing of division of labor. First, and most importantly, they demonstrate that the un-

derlying mechanisms responsible for the production of a behavioral phenotype

from a given genotype have major effects on task partitioning and colony perfor-

mance. Thus, under certain circumstances, there were up to five-fold differences

in fitness between colonies, depending on the mapping system. Second, they

demonstrate that the relative performance of the mapping systems varied greatly

depending on the rate of colony perturbation and kin composition of colonies.

Thus, while the deterministic mapping system performed very well with colonies

containing unrelated individuals when there were no perturbations, it resulted in

a very low fitness when colonies consisted of related individuals. Also, the rate

of perturbation had important consequences on colony performance for both the

deterministic and probabilistic mapping systems. By contrast, the dynamic map-

ping system was highly resilient to colony perturbations because it allowed for

the replacement of workers performing a given task by new workers also per-

forming this task. Our simulations also demonstrate that performance can be

influenced by colony relatedness, in particular for the deterministic system. This

is important, because in social insects there is important variation in relatedness

both within and between species (Bourke and Franks [37], Crozier and Pamilo

[57], Ross and Keller [195]).

Our model made two important assumptions. First, to simulate perturbations

we removed all individuals of a randomly chosen task group. The removal of

only a portion of the individuals doing a task does not qualitatively affect the

results of the simulations as demonstrated by simulations where only 25, 50 or

75% of the individuals were removed (see Figure C.1 in Appendix C). Second,

due to computational constraints, we conducted our experiments in colonies con-

sisting of 100 individuals. However, additional simulations showed that colony

size does not significantly change the relative performance of the three mapping

systems. For example, there was very little difference in colony fitness between

colonies of 100 and 10’000 individuals for each of the three genetic systems and

for all of the levels of perturbation investigated (see Figure C.2 in Appendix C).

In this study we considered three genetic architectures. We selected these ge-

netic architectures because they represent simple possibilities of how a genotype
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can produce a behavioral phenotype. An important message emerging from their

comparison is that high colony relatedness selects for higher phenotypic plastic-

ity. Thus, a system such as our deterministic architecture which corresponds to a

direct mapping between genotype and behavior leads to low colony fitness when

nest-mates are highly related because the vast majority of individuals will engage

in the same task. Under high relatedness, it is therefore better if task specializa-

tion also depends on the effects of other factors such as noise during develop-

ment and age specific variations in response thresholds (Calderone and Page Jr

[45], Huang and Robinson [106]).

Our simulations revealed that the dynamic system always performs better

than the two others when there are perturbations. Under natural conditions,

colonies of social insects frequently experience perturbations because of the selec-

tive death of individuals engaging in particular tasks or environmental changes

requiring rapid adjustments of the number of workers engaged in various tasks.

Hence, this should select for a genetic architecture allowing workers to respond

to changes in perturbations in the distribution of individuals engaged in the dif-

ferent tasks and changes in colony needs. The frequency and magnitude of per-

turbations are probably influenced by many factors such as colony size, number

of tasks performed by colony members, type of nest structure and type of food

collected. Hence, it is likely that there is important variation among species in

the frequency and magnitude of perturbations, possibly resulting in interspecific

variation in the genetic architecture providing the best colony efficiency.

In conclusion, this study revealed that the type of mapping between genotype

and individual behavior greatly influences the dynamics of task specialization

and colony productivity. Our simulations also revealed complex interactions be-

tween the mode of mapping, level of within colony relatedness and frequency

distribution. It is likely that the most successful mapping differs across species

depending on their kin structure, risk of colony perturbation and degree of vari-

ation in colony needs.
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4
Genetic Team Composition and

Level of Selection in the
Evolution of Multi-Agent

Systems

Many hands make light work.

John Heywood (English Playwright, 1497-1580)

In Chapter 2 we used evolutionary robotics as a research tool for biology.

However, the application of evolutionary robotics to teams of robotic agents in

particular and agent teams in general is itself an interesting and still largely un-

explored research field. In addition, due to the parallels between the evolution

of biological and artificial organisms, insights gained from the study of artificial

and biological multi-agent systems can be mutually beneficial for both research

fields.

In this chapter we are concerned with the evolution of efficient artificial agent

teams. Chapter 3 discussed three important factors that can influence the effi-

ciency of cooperation and division of labor. Here we focus our attention on the

two central factors for the evolution of cooperation already mentioned in Chap-

ter 2: Genetic relatedness and the level of selection. While both factors are in-

timately linked in most biological systems (see Section 1.2.2), they can be freely

and independently varied in artificial systems. Here we exploit this fact to opti-

mize the performance of artificial agent teams on three different classes of tasks.

The remainder of this chapter is based on a publication currently pending peer

review (Waibel et al. [223]).

47
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4.1 State of the Art

Multi-agent systems (MAS) span a large number of research fields, from software

agents to robotics, and play a key role in several industrial applications, such as

ground and air vehicle control, supply chains or network routing. The design of

control rules for multi-agent systems is challenging because agent behavior de-

pends not only on interactions with the environment, but also on the behavior

of other agents. As the number of interacting agents in a team grows, or when

agent behaviors become more sophisticated, the design of suitable control rules

rapidly becomes very complex. This is especially true when agents are expected

to coordinate or cooperate to collectively achieve a desired task. Evolutionary

computation has been advocated as an effective and promising strategy to gener-

ate control parameters and decision rules for collective agents (Baldassarre et al.

[20], Nolfi and Floreano [161]).

In addition to the methodological issues of evolving agents that operate in

isolation (Nolfi and Floreano [161]), the evolution of agent teams must address

two major issues: (1) It must determine optimal team composition. Agents of a

team may either share control rules (genetically homogeneous teams) or employ

different ones (genetically heterogeneous teams). (2) It requires a suitable method

for selective reproduction of desired team behavior. Selection may operate either

on individuals (individual-level selection) or on teams (team-level selection). In

the simplest case, one must decide between genetically homogeneous or hetero-

geneous teams, and between selecting agents at the individual or at the team

level.

Figure 4.1 shows a sample of previous work on the evolution of multi-agent

systems in robotics, combinatorial optimization, cellular automata, artificial life,

genetic programming and others, plotted according to the chosen genetic team

composition and level of selection. The majority of work uses genetically homo-

geneous teams, usually created from a cloned individual genome, with team se-

lection. In some cases, authors created behaviorally heterogeneous agents out of

a single team genome: Luke (Luke [128], Luke et al. [129]) decoded team genomes

into six separate sub-teams with one or two identical players each. Other authors

(Bongard [33], Hara and Nagao [94], Haynes and Sen [99], Miconi [151], Robinson

and Spector [192]) decoded one team genome into different single agent genomes.

Yet another approach was taken by work using distributed, embodied evolution
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Figure 4.1: A sample of approaches to the evolution of agent teams.

to evolve heterogeneous teams (Bianco and Nolfi [27], Ficici et al. [68], Simoes and

Barone [204], Spector et al. [207, 208], Watson et al. [226]). In these cases selection

and replication were entirely distributed among agents, with dynamics reminis-

cent of the replicator dynamics observed in bacterial evolution (Griffin et al. [85])

and game theoretic models (Hauert et al. [96]). In some cases, teams were evolved

using a continuously updated gene-pool rather than separate gene-pools for sub-

sequent generations (“steady state evolution”) (Reynolds [189], Werner and Dyer

[229, 230]). Finally some authors have conducted more detailed comparisons of

the influence of genetic team composition or level of selection alone: Martinoli

(Martinoli [136]) also considered more complex methods of selection. Stanley et

al. (Stanley et al. [209]) clustered genetically similar individuals into sub-teams
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that shared fitness, which resulted in partially heterogeneous teams. Mirolli et al.

(Mirolli and Parisi [156]) also compared partially heterogeneous teams. Quinn

(Quinn [182]) evaluated individuals in different heterogeneous teams to create

robust homogeneous teams.

In addition to work cited in Figure 4.1, some authors have used cooperative

co-evolutionary algorithms (CCEAs; Potter and De Jong [176]) to evolve hetero-

geneous control rules for teams of agents (Blumenthal and Parker [28], Jim and

Giles [113], Potter and De Jong [177], Wiegand et al. [236]). CCEAs are applied

by decomposing problem representations into subcomponents and then creating

a separate population of individuals for each subcomponent. This approach al-

lows teams to be composed of specialized sub-groups and corresponds to the

biological co-evolution of multiple species. In their basic form, CCEAs require

the designer to manually decompose the multi-agent task, and thus to solve part

of the optimization problem beforehand. Work that used machine learning tech-

niques other than evolutionary computation (e.g., reinforcement learning) was

not considered in this review.

Figure 4.1 suggests that the majority of current approaches to the evolution of

multi-agent systems use genetically homogeneous teams evolved with team-level

selection. Where the reasons for the choice of genetically homogeneous teams

are made explicit, it is argued that homogeneous teams are easy to use (Baray

[22], Trianni et al. [220]), require fewer evaluations (Luke et al. [129], Richards

et al. [190]), scale more easily (Bryant and Miikkulainen [42]) and are more ro-

bust against the failure of team members (Bryant and Miikkulainen [42], Quinn

et al. [184]) than heterogeneous teams. Many other approaches use genetically

heterogeneous teams evolved with individual-level selection. Genetically het-

erogeneous teams are sometimes seen as providing more behavioral flexibility

(Luke et al. [129]) and as allowing specialization (Baldassarre et al. [21], Bongard

[34], Luke et al. [129], Quinn et al. [184]). The reasons for the choice of team-level

or individual-level selection are rarely made explicit.

The terms “homogeneous team" and “heterogeneous team" used in the cur-

rent literature cover many different aspects. It is important to note that while all

agents in genetically homogeneous teams share the same genes, agents can nev-

ertheless be behaviorally heterogeneous. This can happen when agents differen-

tiate during their lifetime, for example due to varying initial conditions (Quinn

et al. [185]), or due to developmental processes or learning (Yao [244]). This can
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also happen when agents “activate" different parts of their genome, for example

when each agent’s behavior is controlled by a different section of a single team

genome (Bongard [33], Haynes and Sen [99], Miconi [151], Robinson and Spector

[192]). In this case, agents can specialize on different functions, yet be genetically

identical, just like specialized cells in a biological organism. Conversely, it is im-

portant to note that genetically heterogeneous teams are those in which agents

are, on average, not genetically more similar to team members than to agents

in the rest of the population (Queller [180], West et al. [234]). This means that

teams resulting from embodied evolution or common versions of steady state

evolution are usually genetically heterogeneous although these algorithms often

generate multiple offspring from a single parent, resulting in genetically simi-

lar (but not identical) agents. In some cases, teams consist of clonal sub-teams

(Luke [128], Luke et al. [129]) or of agents that share only part of their genome.

Teams with agents that are, on average, genetically more similar (but not identi-

cal) to members of their team than to members of the rest of the population are

termed “partially heterogeneous”. The effects of partial genetic heterogeneity on

the evolution of agent teams are not yet fully explored in evolutionary computa-

tion (Mirolli and Parisi [156]), but have been deeply studied in biology (Hamilton

[91], Lehmann and Keller [125]).

The choice of level of selection is rarely discussed explicitly. Some research

has addressed the related issue of credit assignment for the evolution of multi-

agent systems (Agogino and Tumer [4], Martinoli [136]). In the context of multi-

agent systems, credit assignment is concerned with distributing fitness rewards

among individual agents. Fitness distribution leads to credit assignment prob-

lems (Grefenstette [83], Minsky [155]) in many cooperative multi-agent tasks, be-

cause individual contributions to team performance are often difficult to estimate

or difficult to monitor (Panait and Luke [171]). Selection is usually performed on

the basis of accumulated individual or team fitness, which may be the result of

many fitness rewards with different types of credit assignment. Therefore an op-

timal choice of level of selection is not only influenced by the type of task but also

by the types of credit assignment used.

Genetic team composition and level of selection have long been identified as

two important factors for the evolution of biological agent teams such as groups

of genes, cells, individuals or other replicators (Hamilton [91], Keller [118]). In

particular the evolution of altruism (West et al. [231]), in which agents cooperate
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to increase team fitness in spite of an individual fitness cost to the cooperator, has

received a lot of attention (Hamilton [92], Lehmann and Keller [125]). Here we

define cooperation as a behavior that increases the fitness of other agents, and

altruistic cooperation (altruism) as a behavior that increases the fitness of other

agents and decreases the cooperator’s fitness.

In this study, we compare the performance of robot teams evolved in four evo-

lutionary conditions: genetically homogeneous teams evolved with team-level

selection; genetically homogeneous teams evolved with individual-level selec-

tion; genetically heterogeneous teams evolved with team-level selection; and ge-

netically heterogeneous teams evolved with individual-level selection. We evalu-

ate the performance of robot teams evolved in these four evolutionary conditions

for three classes of multi-robot tasks: a task that does not require cooperation;

a task that requires cooperation but does not imply a cost for cooperators; and

a task that requires altruistic cooperation, i.e., a task that implies an individual

fitness cost for cooperators.

4.2 Evolutionary Conditions

The four possible combinations of genetic team composition and level of selec-

tion were formalized into four evolutionary algorithms (Figure 4.2). For the re-

mainder of the paper we will use the terms “homogeneous” and “heterogeneous”

to designate genetically homogeneous and genetically heterogeneous teams, re-

spectively, and the terms “individual selection” and “team selection” to designate

teams evolved with individual-level selection and team-level selection, respec-

tively. We considered populations composed of M teams, each composed of N

individuals. Population size and team sizes were kept constant across genera-

tions. At each generation, the old population was entirely replaced by a new

population of offspring. Individuals’ genomes were binary strings.

Algorithm 1 - Homogeneous teams, Individual selection

Each of the M teams at generation 0 was formed by generating one random

genome and cloning it N − 1 times to obtain N identical robot genomes (clones)

per team. Teams were evaluated in the task and an individual fitness determined

for each of the N robots. For a new generation, each of the M new teams was
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Figure 4.2: The four evolutionary conditions. A population (large oval) was com-

posed of several teams (medium ovals), each of which was composed of several

robots (small circles) evaluated together. Genetic team composition was varied

by either composing teams of robots with identical genomes (homogeneous, iden-

tical shading), or different genomes (heterogeneous, different shading). Level of

selection was varied by selecting teams (team selection), or selecting individuals,

independent of their team affiliation (individual selection).

Algorithm 1 Homogeneous teams, Individual selection
for each of M new teams do

select two individuals from all old teams

recombine their genomes to create one new genome

mutate new genome

clone new genome to obtain N genomes for new team

end for
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created from two individuals selected among all individuals of all old teams in

the population using roulette wheel selection. The two genomes of the selected

individuals were recombined (crossover probability of 0.05) to produce one new

genome. The resulting new genome was mutated by flipping the value of each

bit with a probability of 0.05 and then cloned N − 1 times to generate the N robot

genomes of the new team. Teams evolved using this evolutionary condition were

thus genetically homogeneous.

Algorithm 2 Homogeneous teams, Team selection
for each of M new teams do

select two old teams

recombine their genomes to create one new genome

mutate new genome

clone new genome to obtain N genomes for new team

end for

Algorithm 2 - Homogeneous teams, Team selection

Each of the M teams at generation 0 was formed by generating one random

genome and cloning it N − 1 times to obtain N identical robot genomes (clones)

per team. Teams were evaluated in the task, and for each team, a team fitness was

determined as the sum of the individual fitnesses of all N robots. For a new gen-

eration, each of the M new teams was created from two old teams selected using

roulette wheel selection. The two genomes of the selected teams were recom-

bined (crossover probability of 0.05) to produce one new genome. The resulting

new genome was mutated by flipping the value of each bit with a probability of

0.05 and then cloned N − 1 times to obtain the N robot genomes of the new team.

Teams evolved using this evolutionary condition were thus genetically homoge-

neous.

Algorithm 3 - Heterogeneous teams, Individual selection

Each of the M teams at generation 0 was formed by generating N random genomes.

Teams were evaluated in the task and an individual fitness determined for each

of the N robots. For a new generation, each of the N × M new individuals was

created from two individuals selected among all individuals of all old teams in
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Algorithm 3 Heterogeneous teams, Individual selection
for each of M new teams do

for each of N new team members do

select two individuals from all old teams

recombine their genomes to create one new genome

mutate new genome

add new genome to new team

end for

end for

the population using roulette wheel selection. The two genomes of the selected

individuals were recombined (crossover probability of 0.05) to produce one new

genome. The resulting new genome was mutated by flipping the value of each

bit with a probability of 0.05. This process was repeated N ×M − 1 times to form

M new teams of N individuals each. In this evolutionary condition robots were

not, on average, genetically more similar to team members than to robots in the

rest of the population, and thus teams were genetically heterogeneous.

Algorithm 4 Heterogeneous teams, Team selection
for each of M new teams do

for each of N new team members do

select two old teams

randomly select two old team members

recombine their genomes to create one new genome

mutate new genome

add new genome to new team

end for

end for

Algorithm 4 - Heterogeneous teams, Team selection

Each of the M teams at generation 0 was formed by generating N random genomes.

Teams were evaluated in the task, and for each team, a team fitness was deter-

mined as the sum of the individual fitnesses of all N robots. For a new genera-

tion, each of the N×M individuals was created from two old teams selected using

roulette wheel selection. Two genomes, each randomly selected among the mem-
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bers of a selected team, were recombined (crossover probability of 0.05) to pro-

duce one new genome. The resulting new genome was mutated by flipping the

value of each bit with a probability of 0.05. This process was repeated N ×M − 1

times to form M new teams of N individuals each. In this evolutionary condition

robots were not, on average, genetically more similar to team members than to

robots in the rest of the population, and thus teams were genetically heterogeneous.

4.3 Experimental Method

4.3.1 Scenario

The experimental setup (Figure 4.3) consisted of a 50×50 cm2 arena with 10 micro-

robots and two types of tokens, small and large. We chose to study a foraging

task, because foraging combines several aspects of multi-agent tasks (distributed

search, coordinated movement, transportation) and relates to many real-world

Figure 4.3: Left: The experimental setup for task 3, the altruistic cooperative

foraging task. Ten micro-robots (black squares with arrows) searched for small

and large tokens and transported them to the target area (hatched area at bottom)

under the white wall (the other three walls were black). An identical setup was

used in the other two tasks, except that the arena contained either only small

tokens in task 1, or only large tokens in task 2. Right: Three micro-robots in task

3, the altruistic cooperative foraging task. The robot in the background could

transport the small token by itself. The robot at the left could not transport the

large token by itself and needed to wait for the arrival of a second robot.
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Figure 4.4: Left: Side and top-view schematics of a simulated micro-robot. The

robot was equipped with four infrared (IR) distance sensors (three at the front,

one at the back) to detect tokens, and a camera to identify the target area. A

fifth infrared distance sensor (high IR) was mounted higher on the robot and

thus overlooked tokens. This allowed robots to distinguish tokens from walls

and other robots. Right: The neural network architecture, a feed-forward neural

network with a single layer of three hidden neurons. Inputs were given by the ac-

tivation values of five infrared (IR) sensors and two vision sensors with activation

values computed from left and right camera pixels (see text).

problems (Balch [18], Cao et al. [48]). In addition, foraging is a wide-spread and

well-studied behavior of many biological societies (Krieger et al. [124], Reyes Lopez

[188], Traniello [217]).

Robots foraged tokens by transporting them into a 4 cm wide region at one

side of the arena marked by a white wall. A single robot was sufficient to trans-

port a small token. At least two robots were required to transport a large token,

thus retrieval of large tokens required cooperation. Cooperating agents had to

coordinate their behaviors to successfully align their positions before and during

token transport.

The micro-robots (Caprari [49]) were small (2×2×4 cm3), two-wheeled robots

equipped with three infrared distance sensors at the front and one at the back,

which could sense objects up to 3 cm away (Figure 4.4 left). An extension module

with a fourth infrared distance sensor with a range of up to 6 cm and a linear

camera were mounted higher on the robot, overlooking tokens but sensitive to

other robots and walls.
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4.3.2 Control and genetic architecture

Robots were controlled by a feed-forward neural network with a single layer of

three hidden neurons (Figure 4.4 right) and a sigmoid activation function (tanh).

The inputs were given by the activation values of five infrared sensors, two vision

sensors, and a constant bias value of −1. Infrared sensor activation values were

scaled in the range [−1; 1]. Vision sensors were an average of three equi-distally

spread camera pixels spanning a field of view of 18°, for the left or right side of

the image, respectively. The averages were thresholded to yield 0 for a white or 1

for a black arena wall. Using the average value of three pixels rather than a single

pixel allowed a robust detection of the white foraging target area in spite of the

presence of other robots in the field of view. The two output units were used to

control the left and right wheel motors. The activation values in the range [−1; 1]

were mapped into speeds in the range [−4; 4] cm/s, with speeds in the interval of

[−2.5; 2.5] cm/s set to 0 because of unreliable motor response at low speeds.

The neural network connection weights were in the range of [−2; 2] and coded

on 8 bits. The genome of one individual was thus 8x32 bits long.

4.3.3 Collective tasks

We devised three types of foraging tasks that differed in the amount of coopera-

tion required from agents.

Task 1 - Individual foraging

The arena contained 6 small tokens, which each awarded 1 fitness point to the

foraging robot. This task did not require cooperation, because a single agent was

sufficient to transport a small token.

Task 2 - Cooperative foraging

The arena contained 4 large tokens, which each awarded 1 fitness point to each

team member, irrespective of its participation in the token foraging. This corre-

sponded to a situation where the individual contributions to team performance

were not known, i.e., a situation with credit assignment problems (Grefenstette

[83], Minsky [155]), which is the case for many cooperative multi-agent tasks
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(Panait and Luke [171]). This task required cooperation because it could not be

accomplished by a single agent.

Task 3 - Altruistic cooperative foraging

The arena contained 6 small and 4 large tokens. Small tokens each awarded 1

fitness point to the foraging robot and large tokens each awarded 1 fitness point

to each team member, irrespective of their participation in the token foraging.

In this task cooperation was costly for individuals, because individuals that did

not cooperate always had higher fitness than their cooperating team mates. This

meant that cooperators suffered a relative individual fitness cost and therefore

this task required altruistic cooperation(Lehmann and Keller [125]).

4.3.4 Evolutionary experiments

Due to the large number of evaluations required for the evolution of robot be-

haviors, all evolutionary experiments were conducted using a physics-based 2D

simulator (Magnenat and Waibel [132]), which is available as part of an open

evolutionary framework (Magnenat et al. [133]). All simulation parameters, in-

cluding robot size, shape, speed and weight, as well as collision dynamics, fric-

tion forces and sensor and actuator modalities, were based on the micro-robots

described in Section 4.3.1.

We evolved teams of robots under the four evolutionary conditions sepa-

rately for each of the three tasks, making a total of 12 experimental lines. Evo-

lutionary experiments lasted for 300 generations. Twenty independent runs were

performed for each experimental line. Populations consisted of 100 teams of 10

agents each. Each team was evaluated 10 times for three minutes with random

token and robot starting positions and orientations. Fitness was averaged over

the 10 evaluations.

To compare the efficiency of the four evolutionary conditions, we re-evaluated

the best teams at generation 300 for 1000 times and compared their team fitness.

Since the distributions of fitness values were unknown fitness differences were

analyzed using the non-parametric Wilcoxon rank sum test. All fitness values

were normalized for each task, with 0 being the minimal possible fitness and 1

the theoretical maximum value.
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4.4 Results

4.4.1 Task 1 - Individual foraging

Successful foraging behavior evolved for all four evolutionary conditions (Fig-

ure 4.5). After 300 generations of artificial evolution, heterogeneous teams evolved

with individual selection collected all 10 tokens in most evaluations and achieved

fitness values close to the maximum value achievable. These fitness values were

higher than those of homogeneous teams evolved with individual selection and

homogeneous teams evolved with team selection (Wilcoxon rank sum test, df =

38, P < 0.001 and P < 0.006, respectively). Performance of homogeneous teams

evolved with individual selection and homogeneous teams evolved with team

selection did not differ significantly (P = 0.337). Heterogeneous teams evolved

with team selection performed significantly worse than all other evolutionary

conditions (all three P < 0.002).

4.4.2 Task 2 - Cooperative foraging

Successful foraging behavior evolved for all four evolutionary conditions (Fig-

ure 4.6). The experiments with a cooperative task led to a change in the rela-

tive performance of the four evolutionary conditions. The highest performance

was now achieved by homogeneous teams evolved with individual selection

and homogeneous teams evolved with team selection. Performance of homoge-

neous teams evolved with individual selection and homogeneous teams evolved

with team selection did not differ significantly (P = 0.839), but was significantly

higher than that of heterogeneous teams evolved with individual selection and

heterogeneous teams evolved with team selection (all four P < 0.001). Perfor-

mance of heterogeneous teams evolved with individual selection and heteroge-

neous teams evolved with team selection did not differ significantly (P = 0.365).

4.4.3 Task 3 - Altruistic cooperative foraging

Successful foraging behaviors evolved for all four evolutionary conditions (Fig-

ure 4.7). Homogeneous teams achieved significantly higher fitness values than

heterogeneous teams (all four P < 0.001).

Performance of homogeneous teams evolved with individual selection and
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Figure 4.5: Task 1 - Individual foraging. Left: Evolution of the best team fitness

averaged over the best teams in 20 independent evolutionary runs over 300 gen-

erations. Right: The best team at generation 300 of each of the 20 independent ex-

periments per evolutionary condition and per task was evaluated 1000 times. The

mid line in the box is the median, while the box represents the upper and lower

quartile above and below the median. The bars outside the box generally repre-

sent the max and min values, except when there are outliers, which are shown

as crosses. We define outliers as data points which differ more than 1.5 times the

interquartile range from the border of the box. The notches represent the uncer-

tainty in the difference of the medians for box-to-box comparison. Boxes whose

notches do not overlap indicate that the medians differ at the 5 % significance

level (McGill et al. [148]). In this task, which did not require cooperation, het-

erogeneous teams evolved with individual selection performed best, followed by

homogeneous teams evolved with individual selection and homogeneous teams

evolved with team selection. Heterogeneous teams evolved with team selection

performed significantly worse than all other evolutionary conditions.
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Figure 4.6: Task 2 - Cooperative foraging. Left: Evolution of the best team fitness

averaged over the best teams in 20 independent evolutionary runs over 300 gen-

erations. Right: The best team at generation 300 of each of the 20 independent

experiments per evolutionary condition and per task was evaluated 1000 times.

Homogeneous teams performed significantly better than heterogeneous teams.

Boxplot explanations see Figure 4.5.
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Figure 4.7: Task 3 - Altruistic cooperative foraging. Left: Evolution of the best

team fitness averaged over the best teams in 20 independent evolutionary runs

over 300 generations. Right: The best team at generation 300 of each of the 20

independent experiments per evolutionary condition and per task was evaluated

1000 times. Homogeneous teams performed significantly better than heteroge-

neous teams. Boxplot explanations see Figure 4.5.
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homogeneous teams evolved with team selection did not differ significantly (P =

0.310). Performance of heterogeneous teams evolved with individual selection

and heterogeneous teams evolved with team selection did not differ significantly

(P = 0.490).

However, the four evolutionary conditions resulted in different foraging strate-

gies in this task (Figure 4.8): While homogeneous teams evolved with individual

selection and homogeneous teams evolved with team selection as well as het-

erogeneous teams evolved with team selection collected a significantly higher

proportion of large tokens than small tokens (all three P < 0.001), heterogeneous

teams evolved with individual selection collected a significantly higher propor-

tion of small tokens than large tokens (P < 0.001). In comparison to the other

three evolutionary conditions, heterogeneous teams evolved with individual se-

lection collected the significantly highest proportion of small tokens (all three

P < 0.001), but the significantly lowest proportion of large tokens of all four

evolutionary conditions (all three P < 0.003).

4.5 Discussion

The three types of tasks resulted in significant performance differences for teams

evolved under the four evolutionary conditions.

4.5.1 Task 1 - Individual foraging

In the individual foraging task, heterogeneous teams evolved with individual se-

lection led to the best team performance. A possible reason could be the dispari-

ties in genome evaluation in homogeneous and heterogeneous teams. For a team

size of N agents, heterogeneous teams evaluated N times more genomes than ho-

mogeneous teams. This was because each heterogeneous team consisted of N dif-

ferent genomes, whereas homogeneous teams consisted of N identical genomes.

On the other hand, homogeneous teams evaluated each genome N times more of-

ten than heterogeneous teams. This was because each team evaluation evaluated

an identical genome N times. Our results suggest that higher evaluation accuracy

may have been less important than a larger number of different genomes in this

task. The larger number of genomes may have allowed heterogeneous teams to

discover solutions faster than homogeneous teams, which could explain the steep
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Figure 4.8: Task 3 - Altruistic cooperative foraging. The plot shows the aver-

age proportion of the six small tokens and four large tokens collected by the best

teams at generation 300 for each of the 20 independent experiments and for each

of the four evolutionary conditions. Heterogeneous teams evolved with individ-

ual selection pursued a different foraging strategy than teams of the other three

evolutionary conditions, collecting very few large tokens but most small tokens.

initial fitness increase. It may also have allowed heterogeneous teams to discover

better solutions than homogeneous teams, which could explain the higher final

fitness obtained with this evolutionary condition. To test whether these dispar-

ities in genome evaluation caused the high team performance of heterogeneous

teams evolved with individual selection we performed a set of additional exper-

iments (see below).

Homogeneous teams evolved with team selection and homogeneous teams

evolved with individual selection performed similarly. This was because with

roulette wheel selection, the probability of a team to be selected was the same as

the sum of the probabilities of each individual team member to be selected. Since

all team members of homogeneous teams shared the same genome, selection

probabilities for a given genome were equal for both homogeneous evolutionary

conditions. It should be noted, however, that this is not necessarily true for other

types of selection. Selection mechanisms where the fitness of a genome is not di-
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rectly proportional to its probability to be selected (e.g., truncation or rank-based

selection) may lead to differences in the number of selected individuals with

a given genotype and consequently affect the relative performance of homoge-

neous teams evolved with individual selection and homogeneous teams evolved

with team selection. In these cases individual selection may select for genomes

that lead to higher maximum but lower average individual performance.

Heterogeneous teams evolved with team selection performed worse than all

other evolutionary conditions. This was because, unlike all other three evolution-

ary conditions, this evolutionary condition did not allow a direct link between the

performance of a genome and its probability to be selected. Instead, selection of

good genomes could only happen indirectly, by selecting those teams that con-

tained a better mix of genomes than other teams. Since good genomes could be

part of bad teams or bad genomes part of good teams, selection for good individ-

ual genomes was inefficient. This explains the slow initial fitness increase and the

lowest final fitness of heterogeneous teams evolved with team selection.

To test the hypothesis that the high team performance of heterogeneous teams

evolved with individual selection was caused by disparities in genome evalua-

tion, we performed a set of additional experiments. First, we evolved homoge-

neous teams in the same task, but used only 1 evaluation per team rather than 10

evaluations (Figure 4.9 (a)). Second, we evolved heterogeneous teams in the same

task, but used only 100 agents per population rather than 1000 agents (Figure 4.9

(b)). In this set of experiments homogeneous and heterogeneous teams therefore

evaluated the same number of genomes and had the same number of evaluations

per genome.

Without disparities in genome evaluation, heterogeneous teams evolved with

individual selection performed similarly to homogeneous teams evolved with

individual selection and homogeneous teams evolved with team selection (all

three P > 0.597). Heterogeneous teams evolved with team selection performed

worse than all other evolutionary conditions (all three P < 0.001), because the

efficiency of selection was not affected by the changes in genome evaluation.

4.5.2 Task 2 - Cooperative foraging

In the cooperative foraging task, homogeneous evolutionary conditions dramat-

ically outperformed heterogeneous evolutionary conditions, with the best fitness
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Figure 4.9: Task 1 - Individual foraging without disparities in genome evalua-

tion. (a) Homogeneous teams evolved with 1 evaluation per team (instead of 10)

and (b) heterogeneous teams evolved with 100 agents per population (instead of

1000). Heterogeneous teams evolved with individual selection performed simi-

larly to homogeneous teams evolved with individual selection and homogeneous

teams evolved with team selection in this task. Boxplot explanations see Fig-

ure 4.5.

values in homogeneous teams up to 70% higher than in heterogeneous teams.

Heterogeneous teams evolved with individual selection performed poorly in

this task. A possible reason are disparities in genome evaluation between ho-

mogeneous and heterogeneous teams. Another possible reason is that selection

of good genomes could only happen indirectly in this task, which may have led

to inefficient selection just as in heterogeneous teams evolved with team selec-

tion in task 1 (Section 4.5.1). This could have been because fitness in this task

was assigned to all team members, irrespective of their participation in the token

foraging.

Homogeneous teams evolved with individual selection and homogeneous

teams evolved with team selection performed similarly, because selection proba-
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bilities for a given genome were again equal for both homogeneous evolutionary

conditions.

Heterogeneous teams evolved with team selection performed poorly in this

task. This was again because selection was inefficient.

To test the hypothesis that the differences in performance of heterogeneous

teams evolved with individual selection and homogeneous teams evolved with

individual selection and team selection were caused by disparities in genome

evaluation or by the fitness assignment to all team members, we performed two

sets of additional experiments. First, we again corrected for the disparities in

genome evaluation. However, correcting for this factor alone did not eliminate

the performance differences (see Figure D.1 in Appendix C). Second, we per-

formed experiments where we again corrected for the disparities in genome eval-

uation and where fitness was only assigned to team members that participated in

the token foraging. In these experiments, each of the 4 large tokens awarded 5

fitness points to each of the two transporting robots, rather than 1 fitness point to

each of the 10 team members. This second additional set of experiments therefore

corresponded to a situation where the individual contributions to team perfor-

mance were known, i.e., a situation without credit assignment problems.

Without the disparities in genome evaluation and without credit assignment

problems, heterogeneous teams evolved with individual selection outperformed

heterogeneous teams evolved with team selection (P < 0.001). This was because

selection of good genomes could now happen directly, which allowed for effi-

cient selection. However, the performance of heterogeneous teams evolved with

individual selection remained lower than that of homogeneous teams evolved

with individual selection and homogeneous teams evolved with team selection

(P < 0.001 and P < 0.002, respectively, Figure 4.10). A possible reason is that

heterogeneous teams had to solve a more complex optimization task than ho-

mogeneous teams. Successful cooperation in heterogeneous teams required indi-

viduals to evolve behaviors to coordinate their actions with N − 1 different team

members, while individuals in homogeneous teams only had to evolve behaviors

to coordinate with a single type of team member. In other words, homogeneous

teams led to a smaller search space because all team members were per definition

identical, and thus only a subset of the total number of possible team composi-

tions was considered in these teams. Furthermore, individuals in heterogeneous
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teams were not just different in a team, but team members changed from one gen-

eration to the next. Both factors may have hindered the evolution of cooperative

behavior in heterogeneous teams.

The performance of homogeneous teams evolved with individual selection

and homogeneous teams evolved with team selection did not differ significantly

(P = 0.441) in this second additional set of experiments.

Heterogeneous teams evolved with team selection performed worse than all

other evolutionary conditions due to inefficient selection (all three P < 0.001).
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Figure 4.10: Task 2 - Cooperative foraging without disparities in genome evalu-

ation and without credit assignment problems. (a) Homogeneous teams evolved

with 1 evaluation per team (instead of 10) and (b) heterogeneous teams evolved

with 100 agents per population (instead of 1000). The performance of heteroge-

neous teams evolved with individual selection was higher than the performance

of heterogeneous teams evolved with team selection, but did not reach that of

homogeneous teams in this task. Boxplot explanations see Figure 4.5.



4.5. DISCUSSION 69

4.5.3 Task 3 - Altruistic cooperative foraging

As for the previous two tasks, successful foraging behavior evolved for all four

evolutionary conditions. Team performance in the altruistic cooperative foraging

task was systematically lower than in the cooperative foraging task. This may

seem surprising because the larger number of tokens in the arena increased the

total number of fitness points available. A possible reason is that the increased

number of tokens led to more clutter in the arena, which made successful token

transport more difficult.

Heterogeneous teams evolved with individual selection again performed poorly

compared to homogeneous teams. Possible reasons are disparities in genome

evaluation and inefficient selection for the foraging of large tokens because fitness

points gained from large tokens were assigned to all team members, irrespective

of their participation in the token foraging.

Homogeneous teams evolved with individual selection and homogeneous

teams evolved with team selection performed similarly, because selection proba-

bilities for a given genome were again equal for both homogeneous evolutionary

conditions.

Heterogeneous teams evolved with team selection performed poorly in this

task because of inefficient selection.

To test the hypothesis that the differences in performance of heterogeneous

teams evolved with individual selection were caused by disparities in genome

evaluation or by the fitness assignment to all team members, we performed two

sets of additional experiments similar to those described in Section 4.5.2. First,

we again corrected for the disparities in genome evaluation. However, correcting

for this factor alone did not eliminate the performance differences (see Figure D.3

in Appendix C). Second, we again performed experiments where we corrected

for the disparities in genome evaluation and for credit assignment problems.

Without the disparities in genome evaluation and without credit assignment

problems heterogeneous teams evolved with individual selection outperformed

heterogeneous teams evolved with team selection (P < 0.001). This was because

selection of good genomes could again happen directly, which allowed for effi-

cient selection. However, the performance of heterogeneous teams evolved with

individual selection remained lower than that of homogeneous teams evolved

with individual selection and homogeneous teams evolved with team selection
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(P < 0.015 and P < 0.003, respectively, Figure 4.11). This may have been because

heterogeneous teams had to solve a more complex optimization task.

In this second additional set of experiments, the performance of homogeneous

teams evolved with individual selection and homogeneous teams evolved with

team selection did not differ (P = 0.133).

Heterogeneous teams evolved with team selection performed worse than all

other evolutionary conditions due to inefficient selection (all three P < 0.001).
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Figure 4.11: Task 3 - Altruistic cooperative foraging without disparities in

genome evaluation and without credit assignment problems. (a) Homogeneous

teams evolved with 1 evaluation per team (instead of 10) and (b) heterogeneous

teams evolved with 100 agents per population (instead of 1000). The performance

of heterogeneous teams evolved with individual selection was higher than the

performance of heterogeneous teams evolved with team selection, but did not

reach that of homogeneous teams. Boxplot explanations see Figure 4.5.

Importantly, the altruistic cooperative foraging task led to the evolution of a

different foraging strategy in heterogeneous teams evolved with individual selec-

tion than in the other three evolutionary conditions (Figure 4.8). A possible rea-

son is that cooperation to collect large tokens now implied a cost for individuals.
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To test this hypothesis we performed additional experiments with this evolution-

ary condition. First we repeated the experiments with a setup identical to that of

task 3, i.e., with 1000 agents per population and 10 evaluations per team, but with

known individual contributions to large token foraging, i.e., a situation without

credit assignment problems. Each of the 4 large tokens awarded 5 fitness points

to each of the two transporting robots, rather than 1 fitness point to each of the

10 team members. Then, at generation 300, we changed the fitness assignment

and assumed unknown individual contributions to large token foraging, i.e., a

situation with credit assignment problems. Each of the 4 large tokens awarded

1 fitness point to each team member, irrespective of their participation in token

foraging.
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Figure 4.12: Task 3 - Altruistic cooperative foraging in heterogeneous teams

evolved with individual selection. For the first 300 generations, individual con-

tributions to the cooperative foraging of large tokens were known (no credit as-

signment problems). From generation 300 onward individual contributions to

the foraging of large tokens were presumed unknown (credit assignment prob-

lems). The introduction of credit assignment problems led to the rapid collapse

of cooperation and a decrease in team fitness.

This change in fitness assignment resulted in a drastic change in foraging

strategy (Figure 4.12). While at generation 300 heterogeneous teams evolved with

individual selection collected a significantly higher proportion of large tokens
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than small tokens (P < 0.001), at generation 500 they collected a significantly

lower proportion of large than small tokens (P < 0.001). As a direct result of

this change, team performance decreased significantly (P < 0.001) between gen-

eration 300 and generation 500. This was because after the introduction of credit

assignment problems, fitness points gained from large tokens were assigned to

all team members, and therefore individuals collecting small tokens gained a fit-

ness advantage over their team mates. This led to the selection of individuals

that foraged for small tokens and resulted in fewer and fewer individuals for-

aging for large tokens. The observed drop in team fitness also implies a drop

in average individual fitness. This illustrates that fitness is a relative measure of

performance and therefore evolution selects for performance increase relative to

the performance of competitors, rather than for absolute performance. The sim-

plicity of the neural network controllers did not allow individuals to accurately

discriminate large and small tokens, which explains the incomplete collapse of

large token foraging.

In contrast, the foraging strategy in homogeneous teams evolved with indi-

vidual selection and in homogeneous teams evolved with team selection was not

affected by the costs implied in large token foraging (see Figures D.4 and D.5 in

Appendix C). This was because relative fitness differences between team mem-

bers could not have an influence on the selection of genomes when individuals

were genetically identical.

Foraging strategy in heterogeneous teams evolved with team selection was

not affected by the costs implied in large token foraging (see Figures D.4 and

D.5 in Appendix C). This was because relative fitness differences between team

members did not have an influence on selection of genomes when selection acted

at the level of the team.

4.6 Conclusion

This study provides an experimental demonstration of how the choice of genetic

team composition and level of selection influences the performance of multi-

agent systems. We have identified three different classes of multi-agent tasks

depending on the amount of cooperation required between team members. Our

results demonstrate that different combinations of genetic team composition and

level of selection lead to significant performance differences. No combination
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achieved optimal performance in all three classes of tasks.

The main results of this study are summarized in Table 4.1. The symbol “
√

”

indicates a suitable method, “◦” a method with potential drawbacks and “×” a

method that can not be recommended.

Table 4.1: Suggested guidelines for the choice of genetic team composition and

level of selection

Hom., Hom., Het., Het.,

Ind. S. Team S. Ind. S. Team S.
Single agent tasks,

no credit ass. problems
◦ ◦

√
×

Cooperative agent tasks,

no credit ass. problems
◦

√
◦ ×

Altruistic cooperation,

no credit ass. problems
◦

√
◦ ×

Single agent tasks,

credit ass. problems
◦

√
× ×

Cooperative agent tasks,

credit ass. problems
◦

√
× ×

Altruistic cooperation,

credit ass. problems
◦

√
× ×

In tasks that did not require cooperation, heterogeneous teams evolved with

individual level selection achieved the highest team performance. Team hetero-

geneity allowed to evaluate a high number of different genomes in parallel, and

individual selection allowed efficient selection of good genomes. However, these

teams performed poorly in tasks that required cooperation and in tasks with

credit assignment problems.

For multi-agent tasks that required cooperation, the highest team performance

was achieved by homogeneous teams. These teams led to efficient cooperation

between team members and they were not affected by credit assignment prob-

lems or costs associated with cooperation. Our results suggest that homogeneous

teams are a safe choice when the requirements for agent cooperation are difficult

to estimate. Compared to heterogeneous teams, homogeneous teams evaluate
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less genomes, which may result in premature convergence to sub-optimal solu-

tions. Our experimental results indicate that a simple way to prevent this prob-

lem is to use populations made of a large number of homogeneous teams.

Heterogeneous teams evolved with team selection were inefficient at selecting

for good performance in all three classes of tasks and can not be recommended.

This study has two notable limitations. First, it did not address tasks that re-

quire specialization and division of labor. There is evidence that behavioral het-

erogeneity can lead to significant performance advantages for such tasks (Balch

[17], Bongard [34], Potter et al. [178], Quinn [182], Tarapore et al. [213], Waibel

et al. [222]). Also, our study did not consider teams with intermediate genetic

similarity. Biological research has shown that such teams can overcome individ-

ual fitness costs of cooperation (Griffin and West [84], Griffin et al. [85]), thus

combining the best of both worlds, enhanced genetic diversity with readiness to

adopt altruistic behaviors. A good understanding of those conditions will require

significant further research.



5 Artificial Ants Scale Reality Gap:
Cooperative Robot Foraging

In theory, there is no difference between theory

and practice. In practice, there is.

Albert Einstein (1879-1955)

In the previous chapter we used evolutionary robotics to optimize the per-

formance of a team of robots. All optimization experiments were carried out

in simulation, because the large number of evaluations required by the evolu-

tionary process would have been too time-consuming in hardware. This chapter

focuses on the application of evolutionary robotics to physical robot teams. It

first reviews current approaches for the design of control strategies for physical

robot teams and the position of evolutionary robotics in this context (Section 5.1).

This is followed by an overview of the current state of the art in using evolution-

ary robotics for physical robot teams (Section 5.2). The software and hardware

setup used in the experiments in this chapter is detailed in Section 5.3. In Sec-

tion 5.4.1 we use simulation to evolve controllers for robot teams and transfer the

best evolved controllers to the hardware setup. Section 5.4.2 presents a second

set of such transfer experiments to gauge the potential of evolving physical robot

teams without the use of simulation. An analysis and discussion of the results in

Sections 5.5 and 5.6 concludes this chapter.

5.1 Control strategies for multi-robot systems

Collective robotics holds the promise of overcoming many limitations of single

robot systems and has a wide range of applications (see Arai et al. [10], Cao

75
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et al. [48], Dudek et al. [63, 64], Farinelli et al. [66], Panait and Luke [171], Parker

[172], Stone and Veloso [210], Sycara [212] for reviews of multi-robot systems and

their applications). Potential advantages of multi-robot systems are numerous

and include concurrent vs. subsequent task performance, simultaneous sens-

ing and action in multiple places, task dependent re-configurability, inherent ro-

bustness, collective power increase, smooth task allocation, and easy scalability

(Bonabeau et al. [30], Holland et al. [103], Keller and Chapuisat [119], Martinoli

[136], Mondada et al. [157]).

Control of robot teams has proven to be a difficult task (Mataric et al. [138]).

Centralized control is appealing because it corresponds to the hierarchical nature

of human reasoning (Baldassarre et al. [19], Bonabeau et al. [30]). However, it

requires continuous communication between all robots (or all robots and a cen-

tralized controller), with a bandwidth and range related to the complexity and

the size of the team. This can severely limit the scale of such systems. In addition,

a centralized controller leads to comparably less robust systems than distributed

control systems.

This is why most current attempts to control teams of robots use distributed

control schemes, which fall into two broad categories: “Top down” architectures

simplify control tasks by designing separate modules for subproblems (e.g. com-

munication, decision making, task execution) and combining them using individ-

ual and global rules (Parker [172]). Due to their modularity and clear structure,

these collective systems are relatively easy to understand and design. Further

advantages include good compatibility with standard engineering toolkits (e.g.

integration of optimized image processing algorithms) and comparatively easy

analysis and debugging. On the down side, such modular solutions often have

high demands on sensor quality and processing power, which reduce their appeal

for collective systems with a large number of units (Panait and Luke [171], Parker

[172]).

“Bottom up” approaches on the other hand try to avoid problem decompo-

sition and instead attempt to find holistic solutions by exploiting invariants of

the collective system and its interactions with the environment (Nolfi and Flo-

reano [161]). Such simple solutions to apparently complex problems abound in

nature (see e.g. Anderson et al. [7] for a review), which has raised hopes for

success of similar strategies in robotics and other engineering applications (Beck-

ers et al. [25], Bonabeau et al. [30], Camazine et al. [46], Dorigo et al. [62], Hol-
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land and Melhuish [102], Nolfi and Floreano [161]). However, this class of solu-

tions typically relies on complex interactions between individual robots based on

local rules and local information, and can not easily be decomposed into func-

tional units (Bonabeau et al. [30]). Global effects of individual decisions are often

unpredictable and difficult to understand, and exploiting potentially useful self-

organizing properties of such systems with classic explicit design methodologies

seems impractical (Baldassarre et al. [19]).

An important example for a bottom up approach is evolutionary robotics,

which allows the automatic creation of autonomous robot controllers (Floreano

[70], Harvey et al. [95], Nolfi and Floreano [161]) and eliminates the need for task

decomposition into simple basic behaviors or modules. By selecting desired be-

haviors according to a predefined metric (“fitness function”), suitable controllers

emerge as the best (“fittest”) members of a pool of possible solutions.

Evolutionary robotics has been shown to provide solutions for a number of

single robot tasks (see Nolfi and Floreano [161] for a review). It has been argued

that evolutionary robotics may also offer advantages for the design of multi-robot

systems. Evolution is a slow, but powerful way of adaptation and may find un-

intuitive ways to overcome the high amount of noise and interference charac-

teristic of multi-robot systems (Nolfi and Parisi [162]). In addition, evolutionary

robotics can produce unexpectedly simple solutions with minimal hardware re-

quirements by exploiting hidden features of the software or hardware platform

(Floreano et al. [71], Martinoli [135], Zufferey et al. [246]). This is important be-

cause many key advantages of distributed robotic systems, such as simultaneous

action and sensing in multiple places or robustness, are linked to team size and

simpler solutions with low hardware requirements are more cost efficient.

5.2 Related work

The roots of collective evolutionary robotics go back to attempts to generate con-

trollers for teams of artificial birds or fish. In a seminal work, Reynolds [189]

evolved controllers for a team of agents (boids) that fled from a predator in an en-

vironment with obstacles. This work was taken up and continued by Ward et al.

[224], whose e-boids were capable of displaying schooling behavior in a 2D envi-

ronment while successfully avoiding a predator and collecting food. Werner and

Dyer [230] reported interesting results on a similar task, but with a co-evolved



78 5. ARTIFICIAL ANTS SCALE REALITY GAP: COOPERATIVE ROBOT FORAGING

predator. Zaera et al. [245] were able to evolve aggregation and dispersal for fish

in a more realistic 3D simulation. Spector et al. [207] have investigated the evo-

lution of altruistic food sharing in flocks in a population of flying agents. This

historically relevant body of work has exclusively focussed on computer simula-

tion of swarm behavior in idealized conditions.

Since its beginnings, considerable progress in the simulation of robotic agents

has been made. Current simulations (Chaimowicz et al. [51], Gerkey et al. [79],

Michel [149], Minar et al. [154], Noda [160], Pettinaro et al. [173]) allow to simulate

multiple interacting robotic agents with a high degree of realism. However, most

implementations are still too slow or too inaccurate to allow efficient evolution-

ary robotics experiments. These difficulties arise from the fact that the successful

evolution and transfer of controllers to physical robots must meet two opposing

goals: First, the simulation must be sufficiently fast to allow for the evolution of

efficient robot controllers. This is especially challenging for the evolution of robot

teams, because the number of potential interactions I (e.g., collisions or social be-

haviors) increases with the square of the number of robots N , i.e., I(N) = O(N2).

Second, it must be sufficiently accurate. This is challenging because the evolu-

tionary process typically exploits inaccuracies of the simulation such as perfect

object geometries (e.g., circles, squares) and simulation artifacts such as discrete

time steps (Floreano et al. [71], Jakobi [109, 110]). These inaccuracies seem partic-

ularly large for the simulation of collisions.

Although there are several examples of successful transfer of evolved con-

trollers for single robot tasks (see e.g., Jakobi [111], Jakobi et al. [112], Miglino

et al. [152], Smith [205], Zufferey et al. [247]), only very few examples of suc-

cessful transfer of evolved multi-robot teams exist. Quinn et al. [183, 184, 185]

reported on the evolution of role allocation and team work for a team of three

Khepera robots. Using infrared sensors, robots assembled into a chain with a

leader and two followers and collectively moved away from their starting loca-

tion. Fitness was calculated as a function of distance covered and team cohesion.

Robot collisions were penalized by freezing robot position and orientation if their

movement would lead to a collision. Since the controllers used infrared sensors

to coordinate movement, they were evolved in a specifically tailored simulation

using accurate sensor modeling. In addition, the physical robots were covered

with a white reflective box to simplify sensor modeling.

As part of the SWARMBOT project (Mondada et al. [158]), Ampatzis et al. [6]



5.3. EXPERIMENTAL SETUP 79

used robots to study the transfer of controllers evolved in simulation to physical

robots. The authors evolved two robots in a phototaxis/anti-phototaxis task con-

sisting of a light source obstructed by obstacles. Robots were evolved to recog-

nize whether a path to the light source was open or obstructed. Both robots could

communicate their findings using visual cues. After testing various evolved con-

trollers on the physical robots, the authors transferred a single hand-picked con-

troller. Forty tests with this controller resulted in correct obstacle recognition in

all cases. Again, robot collisions were penalized, in this case by terminating the

simulation if robots came within 2.5 cm of a collision more than 3 times. Unfor-

tunately no details on the type of simulation used were given.

Floreano et al. [72] used robot teams to study the evolution of communication

in a foraging task. Robots used light and omnidirectional vision as a communi-

cation channel. The authors evolved robot controllers in simulation for 500 gen-

erations and subsequently transferred them to a team of physical robots. Results

showed a qualitatively similar behavior to that of the simulated robots, however

no quantitative data for the robot performance in the hardware setup was given.

The simulations used (Magnenat and Waibel [132]) allowed for one-point colli-

sions between circular robots and a circular immobile foraging target, however

collision outcomes were not essential for foraging success.

Unlike previous work, the experiments presented here purposely minimized

hardware adaptations (e.g., simplified robot shapes (Floreano et al. [72], Quinn

et al. [183, 184, 185])) and common software shortcuts (e.g., eliminating agents

on wall collisions or ad-hoc defined “poor behaviors” (Ampatzis et al. [6], Nolfi

and Floreano [161], Zufferey et al. [247])) that could limit the range of evolved

behaviors. The foraging task studied in our experiments also explicitly included

collisions and made them a central, essential component for foraging success.

5.3 Experimental Setup

The experiments presented in this chapter used a cooperative altruistic foraging

scenario similar to the one described in Section 4.3.3 of Chapter 4 with 6 micro

robots, 8 small and 2 large tokens. The experimental arena and token payoffs

as well as the robots, their control architecture and their genetic encoding were

identical to those described in Section 4.3. Based on the results in Chapter 4, we

chose a homogeneous team composition with team level selection.
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5.3.1 Software platform

Simulations were conducted in a physics-based 2D simulator (Magnenat and

Waibel [132]), available as part of an open evolutionary framework (Magnenat

et al. [133]). All simulation parameters were modeled based on the hardware

platform (see below). Simulations were designed to be sufficiently fast to allow

an extensive number of multi-agent team experiments (300 − 500× as fast as real

time on a state-of-the-art desktop computer).

5.3.2 Hardware platform

The hardware setup consisted of micro-robots (Caprari [49], Caprari and Sieg-

wart [50]) and an experimental arena (Figure 5.1). The arena was equipped with

a camera tracking system to identify arena positions of robots and tokens in the

arena, an infra-red communication system to remotely program and drive robots,

and a magnetic x-y table to automatically reposition tokens in the arena (not vis-

ible in Figure 5.1). All sub-systems were fully integrated to allow automatic and

unsupervised evaluation of multiple robot teams for up to 15 hours (i.e., for the

duration of robot battery autonomy). During automated experiments, approxi-

mately equal amounts of time were dedicated to the evaluation of robot teams

and to the automatic repositioning of robots and tokens to random starting posi-

tions. The automatically collected data was verified using direct supervision, log

files, and video recordings of all experiments.

5.3.3 Experimental method

We performed two sets of experiments. The first set used simulation to evolve

controllers for a team of robots and subsequently transferred the best evolved

controllers to a hardware platform. The second set of experiments tested ran-

domly generated controllers in hardware without prior evolution in software.

Evolved controllers

For this first set of experiments, controllers were evolved for 150 generations.

Evolution used the corresponding algorithm described in Section 4.2 with a pop-

ulation of M = 200 teams of N = 6 robots each. Each team was evaluated 25 times
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Figure 5.1: Top image: Three micro-robots with a small food token. Bottom

image: Micro-robots during an initial, exploratory transfer experiment with 10

robots per team (results not shown). The three robots at the front cooperate to

push a large token towards the foraging goal (white wall visible in the left bottom

corner). In the background another robot transports a small token. The other

robots drive around the arena looking for tokens to forage.
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for 90 seconds each, using random token and robot starting positions and orien-

tations. All evolutionary experiments were independently replicated 40 times.

At the end of evolution we compared the performance of the best evolved

teams in simulation to their performance on the hardware platform by transfer-

ring the evolved controllers to physical robots. For comparison we selected the

team with the highest fitness at generation 150 of each of the 40 replicates. Since

these best teams were likely to have benefitted from favorable robot starting po-

sitions in the initial 25 evaluations, all 40 teams were re-evaluated in simulation

using a new set of random token and robot starting positions and orientations.

Evaluations were repeated for 25 times for 120 seconds each in both the simulated

foraging task and after transfer on the hardware platform. Overall, we therefore

performed 1’000 foraging evaluations (25 evaluations for 40 teams) of 120 sec-

onds each in the hardware platform and compared them to an identical number

of evaluations in the software simulation.

Random controllers

For this second set of experiments, we performed 20 replicates of experiments

where we generated a random controller for one team of 6 robots. Random con-

trollers were created by generating a random number in the range [0; 255] for

each of the 32 connection weights of the robot’s neural network control architec-

ture (Section 4.3.2). Performance of each robot controller in simulation and on the

hardware platform was again compared by repeating evaluations for 25 times for

120 seconds for each of the 20 teams in both the simulated foraging task and on

the hardware platform. Overall, we therefore performed 500 foraging evaluations

(25 evaluations for 20 teams) of 120 seconds each in the hardware platform and

compared them to an identical number of evaluations in the software simulation.

Analysis

For analysis, we compared the mean fitness values, the mean proportion of col-

lected small tokens, and the mean proportion of collected large tokens of the

25 evaluations per team. For comparability and statistical analysis identical ex-

perimental parameters (experiment duration, number of evaluations, number of

robots and tokens, etc.) were used for evaluations in simulation and on the hard-

ware platform. The fitness values and the proportions of small and large tokens
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collected per team were compared using Student’s t-tests. All fitness values were

normalized, with 0 being the minimum possible fitness and 1 the theoretical max-

imum fitness value.

5.4 Results

5.4.1 Performance of teams with evolved controllers

Figure 5.2 shows the foraging performance for the 40 best teams and the popu-

lation average of 40 independent experiments over 150 generations of artificial

evolution in simulation.
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Figure 5.2: Evolution of the fitness of the best teams (“Best fitness”) and of the

population average (“Mean fitness”) for 40 independent evolutionary runs over

150 generations of evolution in simulation. The error bars show standard devia-

tions at the end of simulation.

Transfer of the 40 best teams in simulation at generation 150 and evaluation on

the hardware platform led to important changes in the proportions of collected
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small and large tokens and in team fitness (Figure 5.3). In the majority of cases

(27 out of 40 teams) transfer led to a reduction of fitness. The overall, significant

fitness loss (simulation versus hardware platform: −35.4%, paired t-test, df =

39, P = 0.019) was caused by the performance drop in the collection of small

tokens (−73.0%, P < 0.001) after transfer. Large token collection on the other

hand increased significantly after transfer (+355.0%, P < 0.001).

5.4.2 Performance of teams with random controllers

The evaluation of the 20 randomly generated teams in simulation led to the col-

lection of some small tokens in 11 out of the 20 teams, but did not result in the

collection of large tokens in any team (Figure 5.4). Transfer and evaluation of the

20 randomly generated teams on the hardware platform led to important changes

in the proportions of collected small and large tokens and in team fitness. In half

of the cases (10 out of 20 teams) transfer led to a fitness increase. However, there

was no significant overall change in fitness (simulation versus hardware plat-

form: +40.4%, paired t-test, df = 19, P = 0.515). Transfer from simulation to

the hardware platform did not significantly affect the proportion of small tokens

collected (+87.5%, P = 0.254). Evaluations did not result in the collection of

large tokens in any team in simulation and transfer did not result in a significant

increase in large token collection (n/a, P = 0.072).

5.4.3 Performance of teams with evolved controllers versus teams

with random controllers

To evaluate the usefulness of evolving controllers in simulation we compared

the performance of the evolved controllers to that of the random controllers.

In simulation, the fitness and the number of small tokens collected in teams

with random controllers was significantly lower than that of evolved teams (ran-

dom controllers in simulation versus evolved controllers in simulation: −89.9%

and −95.9%, respectively; two-sample t-tests, df = 58, both P < 0.001). The

proportion of large tokens collected by teams with random controllers did not

differ significantly from that collected by evolved teams when tested in simu-

lation (P = 0.206). On the hardware platform, the fitness of teams with ran-

dom controllers was significantly lower than that of evolved teams (random con-

trollers on the hardware platform versus evolved controllers on the hardware
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Figure 5.3: Mean fitness and proportions of collected small and large tokens of

the best teams at generation 150 for 40 independent replicates of the experiment

(25 trials per team). The black bars show the performance of teams in simula-

tion, white bars the performance after transfer to the physical robots. For better

readability teams were sorted by their mean fitness in simulation.
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Figure 5.4: Mean fitness and proportions of collected small and large tokens of

randomly generated controllers for 20 independent replicates of the experiment

(25 trials per team). The black bars show the performance of teams in simula-

tion, white bars the performance after transfer to the physical robots. For better

readability teams were sorted by their mean fitness in simulation.
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platform: −79.6%, P < 0.001). The proportion of small and large tokens collected

in teams with random controllers was significantly lower than that of evolved

teams tested in hardware (random controllers on the hardware platform versus

evolved controllers on the hardware platform: −73.0% and −84.0%, respectively;

both P < 0.003).

5.5 Discussion

When evolving controllers in simulation, successful foraging behavior evolved

in all 40 experimental replicates during the 150 generations of artificial evolution.

Overall, the robots only collected a small proportion of all tokens during foraging.

This was due to the relatively short evaluation time (compare results in Chapter

4).

The evaluation of the foraging strategies evolved in simulation on the hard-

ware platform resulted in an overall fitness decrease caused by the reduction of

the number of small tokens collected. The same evolved foraging strategies led

to a significant increase in the number of large tokens collected after transfer.

A closer qualitative analysis of the evolved controllers transferred to the physical

robots was conducted using video recordings. It revealed pronounced differences

in the outcomes of collisions between robots in simulation and the outcomes of

similar collisions on the hardware platform. Due to robot and token geome-

try, such collisions were difficult to avoid for robots that cooperatively pushed

large tokens (see Figure 5.1). On the hardware platform collisions between robots

had highly unpredictable outcomes because of the complex shapes of the robots

which featured protruding sensors and connectors (Figure 5.1). The outcomes

of collisions between physical robots often depended on small changes in robot

behavior. In simulation the outcomes of such collisions were approximated by

introducing a probability to stop robot movement. In spite of efforts to create a

model that could predict collision outcomes for all robot behaviors (Appendix E),

no accurate model could be built given the requirements for simulation speed to

allow artificial evolution in software.

The comparison of the performance of random controllers in simulation and

on the hardware platform did not lead to significant differences in fitness or the

proportion of small and large tokens collected.
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The comparison of controllers evolved in simulation and transferred to the

hardware platform with random controllers showed no clear pattern. Random

controllers fared worse than evolved controllers for the collection of small tokens

and obtained lower fitness values in both simulation and reality. However, this

comparison did not show significant differences for the proportion of large tokens

collected in simulation. This is likely to be linked to the generally low proportion

of large tokens collected in simulation rather than intrinsic limitations of evolved

controllers (compare results in Chapter 4).

Our experiments also illustrated the high amount of time required for real

robotic experiments when compared to experiments in simulation. The fully au-

tomated hardware setup described in Section 5.3.2 completed 1’500 foraging eval-

uations corresponding to 50 hours of continuous robot evaluation in less than

12 days, allowing for robot repositioning, recharging and occasional hardware

problems. In comparison, the evolution of robot controllers used in the transfer

experiments amounted to a total of 781 days of continuous robot evaluation, but

took less than a day to complete using twenty computers.

5.6 Conclusion

Previous work on single robot systems has shown that transfer of robot con-

trollers evolved in simulation to a hardware platform can lead to significant dis-

crepancies in robot performance and behavior (Jakobi et al. [112], Miglino et al.

[152, 153]). Our results suggest that these discrepancies may be similarly large in

multi-robot systems.

Our observations suggest that the discrepancies observed in this study were

due to the difficulties in accurately modeling the outcomes of collisions. Indeed,

we are not aware of successful transfers of evolved controllers for tasks that go be-

yond instant one-point collisions, such as kicking a soccer ball (Smith [205]). Cur-

rent work that relies on physical interactions often uses hand coded controllers in

combination with evolution to avoid such discrepancies (Marco Dorigo, personal

communication).

Our experiments show an example where the necessary tradeoff between sim-

ulation accuracy and simulation speed led to discrepancies between foraging be-

havior predicted by simulation and observed on the hardware platform. This re-

iterates the importance of validating controllers evolved for robotic applications
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on a hardware platform (Ampatzis et al. [6]).

While simulation did not lead to high behavioral correspondence in the for-

aging experiments presented here, it has been shown to be sufficiently accurate

for some multi-robot applications (Quinn et al. [185]). At the start of this project

none of the available simulators met the requirements for simulation accuracy

and simulation speed for this study, which led to the development of a custom-

built solution (Appendix E). Recent years have seen a dramatic increase in the use

of physics simulators. Rapid progress in robot simulation promises to reduce the

discrepancies between simulation and reality by allowing for faster simulation of

more accurate models (Michel [149], Pettinaro et al. [173]). Future work will show

whether improved simulation will allow to overcome the limitations revealed by

this work and if simulation in robotics will follow the trend set by the aircraft

and automobile industry, where simulation has largely replaced prototypes and

real-world experiments.
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6 Concluding Remarks

The world is its own best model.

Rodney Brooks (Elephants don’t play chess, 1990)

6.1 Main Achievements

The work in this thesis indicates how parallels between the evolution of biological

and artificial social organisms can lead to useful synergies between the research

fields of evolutionary biology and evolutionary robotics. On the one hand the

use of artificial social organisms presents an important step towards richer and

more complete models for the evolution of cooperation. Most current modeling

approaches for the study of the evolution of cooperation are limited to modeling

frequency changes of isolated, predefined processes. The use of artificial evolu-

tion allows agent behavior to emerge from a large range of possible behaviors

constrained by a minimal set of assumptions. This raises the prospect of mod-

eling social behaviors as emergent phenomena, which result from an organism’s

genetic, cognitive and morphological features embedded in a rich (social) envi-

ronment.

On the other hand this work illustrates how evolutionary robotics can bene-

fit from the parallels to evolutionary biology by building on the broad spectrum

of knowledge gained from the study of biological social organisms. Our experi-

ments provide clear evidence that biological theory can equally apply to the evo-

lution of robotic agents. They also show how biological insights can guide the

design of multi-agent systems and lead to more efficient robot teams.
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In Chapter 2 the evolution of artificial social organisms was used to test a

fundamental part of biological theory for the evolution of cooperation, namely

Hamilton’s theory of kin selection. Our approach allowed us to overcome critical

limitations in biological systems and to quantify the influence of genetic related-

ness and cost to benefit ratios on the evolution of cooperation. Problems linked to

the a-posteriori estimation of genetic relatedness in biological social groups could

be sidestepped by artificially constructing social groups with precisely defined

within-group relatedness. The even more daunting task of correctly estimating

lifetime costs and benefits of social interactions could be avoided by fixing the

values of costs and benefits of social actions, and by restricting social interactions

to well defined groups.

In Chapter 3 we used the evolution of simple artificial agents to study the

importance of the genetic architecture for the efficiency of cooperation and divi-

sion of labor in social insects. This chapter revealed that the genotype to pheno-

type mapping can be a key factor for the success of biological teams. The com-

parison of three types of mapping showed that groups of interacting agents are

much more efficient when their behavior depends on the behavioral phenotypes

of other group members.

In Chapter 4 we used insights gained from the study of biological teams to

identify three distinct classes of multi-agent tasks. By varying two key factors

for the evolution of cooperation identified by biologists, we could compare the

efficiency of teams and suggest guidelines for the evolution of agent teams for all

three classes of tasks.

Chapters 2, 3 and 4 used simulation to evolve agent teams. Chapter 5 tackled

a critical aspect for the applicability of evolutionary robotics to physical robot

teams by transferring evolved teams from simulation to a hardware platform.

Our experiments showed that artificial evolution in physics-based simulations

can result in efficient physical robot teams. The experiments on the hardware

platform constituted an important step towards evolving robot teams directly in

hardware.

The behaviors resulting from the evolution of artificial social organisms in this

thesis were inevitably much simpler than those found in their biological counter-

parts. Future work will show how the evolution of artificial social organisms can

lead to far more complex social behaviors.
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6.2 Future work

This thesis has shown the effects of several key parameters, including genetic

relatedness and the costs and benefits of social actions, on the evolution of coop-

eration. Recent research has emphasized that other factors such as competition

between relatives can significantly alter Hamilton’s original predictions (Queller

[180], West et al. [234]). While the experimental setup presented here included

the effects of competition between relatives, it did not directly address this issue.

We are currently working on extending our setup in order to study the effects of

varying levels of competition between relatives on the evolution of cooperation.

Chapter 5 uncovered significant differences between behavior in simulation

and reality. Evolution in simulation is appealing because of the large amount

of time required for evolution in hardware and the high degree of hardware

robustness required to withstand extensive evaluations on a robotic platform

(Ficici et al. [68], Floreano and Urzelai [74], Mataric and Cliff [137], Thompson

[216], Watson et al. [225, 226]). However, “the world is its own best model”

(Brooks [41]), and can only be approximated by simulation. This is important

because of the potential shortcomings of computer simulations (see Section 1.4)

and because the usefulness of evolutionary robotics as a design tool for robot

applications critically depends on its applicability to physical robot teams. An

alternative approach to the transfer of teams evolved in simulation (Chapter 5)

is to conduct artificial evolution directly on the hardware platform. This can be

achieved by either conducting all evaluations directly on the hardware platform

(Nolfi and Floreano [161]), by continuing the evolutionary process after transfer-

ring robot controllers to the hardware platform, or by alternating between eval-

uations in simulation and on the hardware platform. Additional work is needed

to gauge the potential of these approaches for multi-agent systems.

Individual and social behaviors of robotic agents in this work emerged as a

subset of a large, but deliberately limited range of possible behaviors. For behav-

ioral studies of the evolution of social behavior such restrictions may be undesir-

able because they incorporate assumptions that restrict the total range of possible

behaviors. Recent work has shown promising methods to reduce all three types

of restrictions (Bongard et al. [35], Dürr et al. [65], Mattiussi [139], Mattiussi et al.

[142]).
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The experiments presented in this thesis have demonstrated knowledge trans-

fer between the fields of evolutionary biology and evolutionary robotics. They

have revealed synergies, which have led to significant contributions in both fields.

Although our explorations were limited to interactions between a small number

of artificial organisms with comparably simple morphologies and simple behav-

iors, they have allowed to test a critical part of biological theory for the evolution

of cooperation in a rich model. This constitutes an important first step to show the

potential of evolutionary robotics for the study of social behavior. By drawing on

biological insights, this work has also significantly extended our understanding

of the application of evolutionary robotics to robot teams.

We expect the cooperative interaction of these two complementary research

fields to evolve over time and to lead us to a deeper understanding of the evolu-

tion of social behavior in animals and in robots.



A Genetic Relatedness in
Groups of Clones

This appendix provides the mathematical background for Chapters 2 and 3. It

first explains within-group relatedness in groups of clones. Next it discusses how

competition between relatives affects the evolution of cooperation and shows

how its effects can be integrated into Hamilton’s rule. It then shows how the ef-

fects of competition between relatives are accounted for in our experiments and

concludes with a quantitative estimate of the corrections.

A.1 Relatedness in Groups Composed of Different

Proportions of Clones

Let a group of n individuals be composed of k types of clones with respective

frequencies xi ǫ [0; 1], i = 1 . . . k. Given random interactions between individuals

in a group, the probability that an individual of type i interacts with a clone is

then

Pi =
nxi − 1

n − 1
. (A.1)

The average probability to encounter a clone corresponds to the average within-

group relatedness r and is then given by

r =
k

∑

i=1

xi · Pi, (A.2)
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with

k
∑

i=1

xi = 1. (A.3)

In our experiments all groups consisted of 8 individuals. To create groups

with a relatedness of r = 1 we composed groups entirely of individuals with the

same genotype (clones). To create groups with an average relatedness of r = 0.75

we used two different types of clones, A and B. Each group contained both types

of clones with proportions A : B = 1 : 7. Using equation A.2, the resulting

average relatedness in these groups was thus r = 0.75. To create groups with an

average relatedness of r ≃ 0.54 we composed each group of three types of clones

in proportions 6 : 1 : 1, which led to r = 15

28
≃ 0.54. To create groups with an

average relatedness of r = 0.25 we again composed each group of three types

of clones, but this time using proportions 3 : 3 : 2, which resulted in an average

relatedness of r = 0.25. To create groups with a relatedness of r = 0 we composed

groups of genetically different individuals, so that individuals were, on average,

not genetically more similar to individuals in their group than to individuals in

other groups.

A.2 Genetic Relatedness with Competition Between

Relatives

In its basic form, Hamilton’s rule is given by

rb − c > 0, (A.4)

i.e., individuals will be selected for altruistic behaviors if the fitness benefit b to

the beneficiary times the genetic relatedness r between actor and beneficiary is

greater than the actor’s fitness cost c of the altruistic behavior.

However, if individuals compete for reproduction with all members of their

own group, the beneficial effects of altruism towards relatives are reduced by the

amount of benefits that increase competition. Numerous authors have proposed

enhanced versions of Hamilton’s rule to incorporate the effects of competition be-

tween relatives (Frank [77], Grafen [82], Queller [180]). Here we follow Queller’s
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approach (Queller [180]) with Hamilton’s rule rewritten as:

rb − c − rc(b − c) > 0, (A.5)

where r is the focal individual’s average relatedness to a random individual in its

group, and rc is the focal individual’s average relatedness to a random individual

in its competitive neighborhood. The term b − c is the general fitness increase of

the competitive neighborhood resulting from the altruistic act. For a constant

population size (“inelastic population regulation”, West et al. [235]), the fitness

increase of relatives in the competitive neighborhood rc(b−c) corresponds exactly

to the increase in competition between relatives.

Alternatively, the effects of competition between relatives can be integrated in

the relatedness term. Relatedness coefficients measure genetic similarity as de-

viations from the population mean. By rearranging equation A.5 we can rewrite

Hamilton’s rule as

r − rc

1 − rc

b − c > 0. (A.6)

This corresponds to the regression definition of relatedness (Queller [180]),

with within-group relatedness r measured with respect to the baseline related-

ness in the competitive neighborhood rc.

The spatial scale at which competition occurs can be conveniently expressed

by a single parameter a according to Frank [77], which links the relatedness r

measured with respect to the group, to the relatedness rc measured with respect

to the competitive neighborhood

rc = ar. (A.7)

Note that if the focal individual is unrelated to its competitors (rc = 0) or if

competition is global (a = 0) the basic form of Hamilton’s equation holds. Con-

versely, if the focal individual is equally related to the beneficiaries of its altruism

and to its competitors (r = rc, a = 1), no altruism can evolve.

A.3 Costs and Benefits of Cooperation

To correct for competition between relatives in our model, we adjusted the pay-

offs b distributed to group members. Using equation A.5, the choice of perform-
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ing a selfish or an altruistic action will have no effect, if

rb − c − rc(b − c) = 0, (A.8)

or if

b =
c(1 − rc)

r − rc

=
c(1 − ar)

r − ar
. (A.9)

To conduct experiments with c
b

= 1, r − 0.1, r, r + 0.1 and 0 for groups with

different relatedness values r, we adjusted the benefits b according to equation

A.9, while keeping costs c as well as the within-group relatedness r and the re-

latedness in the competitive neighborhood rc constant, except for c
b

= 0 where

c = 0. The resulting corrections to benefits b and cost to benefit ratios c
b

for our

experimental setup with 200 groups of 8 individuals each can be found in Table

A.1.

Table A.1: Corrected benefits b and cost over benefit ratios for c
b

= r.

Benefits Corrected Correction Costs to Corrected Correction

b benefits b benefits c
b

c
b

r = 1 1 1 0% 1 1 0%

r = 0.75 ≃ 1.333 ≃ 1.335 ≃ 0.110% 0.75 ≃ 0.749 ≃ −0.110%

r ≃ 0.54 ≃ 1.866 ≃ 1.870 ≃ 0.204% ≃ 0.536 ≃ 0.535 ≃ −0.204%

r = 0.25 4 ≃ 4.013 ≃ 0.330% 0.25 ≃ 0.249 ≃ −0.330%

r = 0 7 7 0% 0 0 0%



B Supplementary Data for
Chapter 2

This section shows the evolution of fitness and the level of altruism for the exper-

iments presented in Chapter 2. Section B.2 provides data including statistics for

the mean fitness and the mean level of altruism after 500 generations of artificial

selection over 20 replicates.

B.1 Evolution of Fitness and Level of Altruism

(a) (b)
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Figure B.1: Evolution of the mean group fitness (a) and the mean level of al-

truism (b) during 500 generations of artificial selection for the 20 independent

replicates per condition. Fitness values are normalized so that the maximum fit-

ness of selfish groups is 1. The maximum fitness of altruistic groups is b
c

times

higher. Statistics can be found in Table B.1. (Figure continues on next page.)
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Figure B.2: (Figure continued from previous page.)
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B.2 Statistics for Fitness and the Level of Altruism af-

ter 500 Generations of Artificial Selection.

Mean fitness Mean level of altruism

F̄ p-values Ā p-values

r = 1, c
b

= 0.90

r = 1, c
b

= 1.00

r = 1, c
b

= 1.10

0.198

0.166

0.174

]

< .001
]

< .305

]

< .004

0.875

0.478

0.110

]

< .001
]

< .001

]

< .001

r = 0.75, c
b

= 0.65

r = 0.75, c
b

= 0.75

r = 0.75, c
b

= 0.85

0.232

0.199

0.186

]

< .001
]

< .012

]

< .001

0.890

0.527

0.126

]

< .001
]

< .001

]

< .001

r ≃ 0.54, c
b
≃ 0.44

r ≃ 0.54, c
b
≃ 0.54

r ≃ 0.54, c
b
≃ 0.64

0.328

0.236

0.191

]

< .001
]

< .001

]

< .001

0.875

0.457

0.095

]

< .001
]

< .001

]

< .001

r = 0.25, c
b

= 0.15

r = 0.25, c
b

= 0.25

r = 0.25, c
b

= 0.35

0.646

0.312

0.200

]

< .001
]

< .001

]

< .001

0.901

0.469

0.061

]

< .001
]

< .001

]

< .001

r = 0, c
b

= 0.00

r = 0, c
b

= 0.10

0.026

0.214

]

< .001∗
0.558

0.017

]

< .001∗

Table B.1: Mean group fitness F̄ and mean level of altruism Ā of the last 10

generations of evolution for different cost to benefit ratios c
b

and different within-

colony relatedness values r. Mean values between experimental conditions were

compared using two-sample t-tests (df = 38) on the 20 independent replicates per

condition. Due to missing data points for r = c
b

= 0 (tests marked with a ∗), t-tests

with this condition were performed on the 14 remaining data points (df = 26; see

Sections 2.3 and 2.4).
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C The Effects of Colony Size and
Reallocation on Colony

Efficiency

This section contains the results of additional simulations to confirm the robust-

ness of our results with respect to two important model parameters. Section C.1

demonstrates that our results do not lead to marked differences in relative per-

formance for variations in colony size. Section C.2 shows that variations in the

proportion of reallocated individuals do not significantly affect our results.
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C.1 Colony Fitness for Large Colony Sizes

(a) 100 individuals (b) 10000 individuals
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Figure C.1: Mean fitness values (10 runs) for the first 50 and last 50 generations

in colonies with 100 or 10’000 individuals. Values are given for three different

reallocation probabilities Pr and each of three genetic architectures (dynamic: red

solid line, deterministic: green dashed line and probabilistic: blue dotted line).

Increased colony size does not lead to marked differences in relative performance

of the three genetic architectures.
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C.2 Colony Fitness for Varying Proportions of Real-

located Individuals

(a) Pr = 0.00 (b) Pr = 0.20 (c) Pr = 0.40
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Figure C.2: Effect of the proportion of individuals reallocated (100%, 75%, 50%

and 25%) on mean colony fitness. Mean fitness values (10 runs) are given for the

first 50 and last 50 generations in colonies with 100 individuals for three different

reallocation probabilities Pr and each of three genetic architectures (dynamic: red

solid line, deterministic: green dashed line and probabilistic: blue dotted line).

When a lower proportion of individuals is reallocated to a new task, differences

between the three genetic architectures decrease but always remain highly signif-

icant (all P < 0.001).



106 C. THE EFFECTS OF COLONY SIZE AND REALLOCATION ON COLONY EFFICIENCY



D Supplementary Data for
Chapter 4

This section contains additional data for simulations without disparities in genome

evaluations (i.e., homogeneous teams with a single evaluation per team (instead

of 10) and heterogeneous teams with 100 agents per population (instead of 1000))

and with credit assignment problems (CAP) for all three foraging tasks. Sections

D.4 and D.5 show data for the foraging strategy in the altruistic foraging task (task

3) for simulations without disparities in genome evaluation and with/without

credit assignment problems.
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D.1 Task 1 - Individual Foraging: Performance with-

out disparities in genome evaluation and with

credit assignment problems

Figure D.1: Task 1 - Individual Foraging without disparities in genome evalua-

tions and with credit assignment problems. (a) Homogeneous teams with a single

evaluation per team (instead of 10) and (b) heterogeneous teams with 100 agents

per population (instead of 1000). Performance of homogeneous teams was higher

than that of heterogeneous teams (all four P < 0.001). Performance of homoge-

neous teams evolved with individual selection and homogeneous teams evolved

with team selection did not differ significantly (P = 0.797). Performance of het-

erogeneous teams evolved with individual selection and heterogeneous teams

evolved with team selection did not differ significantly (P = 0.882). For boxplot

explanations refer to Figure 4.5.
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D.2 Task 2 - Cooperative Foraging: Performance with-

out disparities in genome evaluation

Figure D.2: Task 2 - Cooperative Foraging without disparities in genome eval-

uations. (a) Homogeneous teams with a single evaluation per team (instead

of 10) and (b) heterogeneous teams with 100 agents per population (instead of

1000). The performance of heterogeneous teams with individual fitness assign-

ment does not reach that of homogeneous teams (both P < 0.001). Performance

of heterogeneous teams evolved with individual selection and heterogeneous

teams evolved with team selection did not differ significantly (P = 0.989). Per-

formance of homogeneous teams evolved with individual selection and homoge-

neous teams evolved with team selection did not differ significantly (P = 0.525).

Performance of heterogeneous teams evolved with team selection was signifi-

cantly lower than that of homogeneous teams (both P < 0.001). For boxplot

explanations refer to Figure 4.5.
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D.3 Task 3 - Altruistic Cooperative Foraging: Perfor-

mance without disparities in genome evaluation

Figure D.3: Task 3 - Altruistic Cooperative Foraging. (a) Homogeneous teams

with a single evaluation per team (instead of 10) and (b) heterogeneous teams

with 100 agents per population (instead of 1000). The performance of heteroge-

neous teams with individual fitness assignment does not reach that of homoge-

neous teams (both P < 0.001). Performance of heterogeneous teams evolved with

individual selection and heterogeneous teams evolved with team selection did

not differ significantly (P = 0.076). Performance of homogeneous teams evolved

with individual selection and homogeneous teams evolved with team selection

did not differ significantly (P = 0.756). Performance of heterogeneous teams

evolved with team selection was significantly lower than that of homogeneous

teams (both P < 0.001). For boxplot explanations refer to Figure 4.5.
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D.4 Task 3 - Altruistic Cooperative Foraging: Propor-

tion of tokens collected without disparities in genome

evaluation

Figure D.4: Task 3 - Altruistic Cooperative Foraging without disparities in

genome evaluation, i.e. homogeneous teams with a single evaluation per team

(instead of 10) and heterogeneous teams with 100 agents per population (instead

of 1000). Foraging strategies of all evolutionary conditions were not affected by

disparities in genome evaluation (compare Figure 8 in the paper). Homogeneous

teams evolved with individual selection, homogeneous teams evolved with team

selection and heterogeneous teams evolved with team selection collected a signif-

icantly larger proportion of large tokens than small tokens (all P < 0.01), whereas

heterogeneous teams evolved with individual selection collected a significantly

smaller proportion of large tokens than small tokens (P < 0.001).
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D.5 Task 3 - Altruistic Cooperative Foraging: Propor-

tion of tokens collected without disparities in genome

evaluation and without credit assignment prob-

lems
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Figure D.5: Task 3 - Altruistic Cooperative Foraging without disparities in

genome evaluation and without credit assignment problems, i.e. homogeneous

teams with a single evaluation per team (instead of 10) and heterogeneous teams

with 100 agents per population (instead of 1000). Foraging strategy in homoge-

neous teams evolved with individual selection, in homogeneous teams evolved

with team selection and heterogeneous teams evolved with team selection was

not affected by disparities in genome evaluation and credit assignment. Teams

in these three evolutionary conditions again collected a significantly larger pro-

portion of large tokens than small tokens (all P < 0.001). However, credit as-

signment affected heterogeneous teams evolved with individual selection, which

now collected a significantly larger proportion of large tokens than small tokens

(P < 0.001).



E Robot simulation

The evolutionary robotics experiments presented in this thesis used a custom-

built, discrete, 2D, physics-based simulation (Magnenat and Waibel [132]). Ex-

periments used a fixed step size of 125 ms corresponding to a maximum dis-

placement of 5 mm per time step for the maximum robot speed of 4 cm/s. On

collisions objects were sequentially de-interlaced to their geometric boundaries

according to conservation of energy, momentum and angular momentum and ac-

counting for friction. Typical speed-ups for the experiments presented here were

between 200 - 500 times real-time (depending on the neural network controller)

on an Intel Pentium 4 with 2.80 GHz. The simulation is freely available online

at http://lis.epfl.ch as part of an open evolutionary framework (Magnenat et al.

[133]).

The following sections give an overview of key aspects of the simulation.

Rather than providing a detailed account of the modeling process, it focusses on

the methodology used to adapt simulation parameters to the hardware platform.
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E.1 Sensors

The micro-robot has two types of infrared sensors differing in range and a linear

camera. Only five of the seven infrared sensors were modeled in our simulations.

Regarding the camera, out of a total of 102 pixels, only 6 pixels in the central

region of the linear camera were used (Figure E.1).

Figure E.1: Left: A schematic of the micro-robot in simulation (white octago-

nal polygon). The octagonal shape is a compromise between an exact geomet-

ric blueprint of the robot and minimal requirements for accurate token transport

modeling (Section E.3.2). Infrared sensors (black and grey rectangles) were mod-

eled using three rays per sensor. The schematic shows the ray bounding circles

(grey circles) used for rapid detection of intersections with detectable objects. The

grid-points (black and white crosses) mark 10 of the grid locations used for sen-

sor characterization for objects such as the small token (black circle) shown in the

figure. All grid locations intersecting the ray bounding circles were sampled (Sec-

tion E.1.1). The black square on top of the robot marks the location of the robot

camera. Right: The camera combined three rays to each side of the robot into two

camera input values for error-robust sensor readings (Section E.1.2).

E.1.1 Characterization

Sensor values for both types of infrared sensors were collected by displacing

small tokens, large tokens and micro-robots (for 4 micro-robot orientations) on
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a 2 dimensional grid 10 × 10 mm in front of the robot. For each position, sensor

values for both types of sensor were collected for all grid locations that led to

an intersection between the objects and the robot’s sensor bounding circles. In

addition, activation values for the black and white arena wall were measured at

5 mm intervals and for - 45, 0 and +45 degree angles for both types of infrared

sensor. Independent measurements of 6 robots were collected. This large number

of measurements was needed to characterize the influence of at least three differ-

ent factors associated with the measurements: First, individual infrared sensors

vary in sensitivity. Second, sensor response shows a large dependance on both

the horizontal and vertical inclination of the sensor, which can not be completely

eliminated in hardware. Third, manual positioning of the micro-robots on the

grid leads to statistic variation in the x/y position and angle.

Aperture and inclination angle of the linear camera were measured for 5 robots.

In addition, camera response to the black and white walls of the arena was tested

at different positions and orientations in the arena to determine the influence of

varying light intensity and of light reflections.

E.1.2 Modeling

Sensor simulation is one of the most computationally expensive operations re-

quired in our experiments. To minimize computational cost, we implemented a

linear ray model for each infrared sensor (Figure E.1). Note that while ray trac-

ing is more computationally expensive than the use of a lookup table, the former

eliminates problems linked to combining activation values of multiple tokens in

the vicinity of the sensor (“sensor occlusion”, Quinn et al. [184]). Sensor occlu-

sion becomes increasingly problematic as robot or token density increases. In

our case, alignment of multiple robots to collectively push a large token critically

depended on correct sensor values, which made a lookup table approach ineffec-

tive.

Each sensor was modeled using three rays. The response value R of each

sensor ray was computed using a linear ray model of the form

Ri = S + M · (γ · e−δ·di − η · e−θ·di + ζ) (E.1)

where di was the distance to the closest obstacle of ray i, the greek letters γ, δ,

η, θ and ζ were parameters of the model and M and S were a multiplicative and

an offset factor, respectively (Figure E.2).
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Figure E.2: The linear ray model for a single ray (full line) and its noise envelope

(dashed lines). The final sensor response function was calculated as the weighted

sum of the individual ray models for each of the three rays and subject to a run-

ning average (see text).

The weighted sum of the three ray values R1−3 was used to obtain the total

sensor response at time step t, At, which only depended on distance and was

independent of surface reflectiveness or incident angle.

At =
3

∑

i=1

wi · Ri (E.2)

To find an optimal set of the parameters M , S, γ, δ, η, θ, ζ , w1, w2 and w3 used

in Equations E.1 and E.2 as well as optimal opening angles for the three sensor

rays and the sensor orientations we computed the least-square fit between our

model and measured sensor data for all grid points and in all tested situations

(small and large food token, micro-robot, walls) using a standard evolutionary

algorithm available from our software framework. The resulting linear ray model

is shown in Figure E.2.

The resulting approximated sensor model did not account for sensor noise,

which was modeled separately. Three types of noise were used. First, a constant

white noise and, second, a proportional noise were added to the total sensor re-

sponse value at each time step. Third, a random offset noise was added to the

sensor at the beginning of each trial to account for systematic differences in sen-

sor readings.

In addition to these three types of noise, the total sensor response was sub-
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jected to a running average, with the sensor activation A at time step t + 1

At+1 = Ps · At + (1 − Ps) · At+1, (E.3)

where Ps was a parameter for this running average, which reduced effects of dis-

crete simulation time steps. The value of Ps was estimated by comparing sensor

readings during test cases (see Sections E.2 and E.3) in simulation and reality.

Similar to the infrared sensors, the linear camera used equally spaced rays

(see Figure E.1). However, each ray returned a 1 bit value depending on the color

of obstacle seen. Since the only purpose of the camera was determination of the

direction of the white target area, all tokens and walls except the target area were

painted black. The 6 camera ray values were mapped to 2 values by combining

the three ray values from each side using a logical OR function. In other words, if

any of the three left (three right) rays hit the target area, the corresponding sensor

value was set to 1. Since camera fidelity in hardware was high and the number of

errors small compared to the amount of noise introduced by robots blocking each

other’s view of the target area no noise model for the camera was introduced.

E.2 Actuators

The micro-robots have two rubber rimmed wheels driven by step motors at a

maximum speed of 4 cm/s. Motors do not have encoders and were driven in

open loop control.

E.2.1 Characterisation

Basic motor characteristics were determined by measuring robot movement in a

variety of simple movement tasks (linear displacement, circles with varying radii)

for different speeds during free movement as well as under load (while pushing

a small food token).

E.2.2 Modeling

Basic motion was modeled based on the robot geometry, i.e., on the size of the

wheel base and the wheel diameters. The motor transfer function, i.e. how motor
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commands translated into actual motor movement, on the one hand, and motor

response to different loads on the other hand were measured. Inversely propor-

tional motor noise was added in accordance with measured values (+/-5% for

4 cm/s to +/-15% for 2.5 cm/s). Reproducibility of speeds < 2.5 cm/s was very

low, so they were excluded by implementing a stepwise transfer function in sim-

ulation and on the robot PIC. This function set all speeds in the range of [-2.5;

2.5] cm/s to 0 and left all other speeds unaffected.

E.3 Interaction

For a number of reasons, adequate 2D collision modeling in evolutionary robotics

is very challenging and has not previously been tackled. One main difficulty is

the tendency of evolved controllers to exploit limit cases and boundary effects,

and to rely on small details specific to the model implementation. In many cases

during the development of our simulation we observed evolved controllers that

optimized performance by relying on, and fine tuning to simulation artifacts

caused by discrete time steps and other abstractions such as simplified robot

geometry. The simplest way of avoiding such problems is to penalize evolved

controllers by stopping the robot on collision, aborting simulation or eliminating

“offending” individuals from the gene-pool. However, while such simplifica-

tions help in obtaining viable results, simply excluding possibilities inevitably

limits the space of possible solutions and, thus, directly undermines one of the

key advantages of evolutionary robotics: Exploitation of physical invariants that

often results in surprisingly simple and robust behaviors.

Another challenge results from the generally low reproducibility of collision

results in reality. Everybody who has played a game of pool can readily appre-

ciate the rapid increase of complexity resulting from multiple collisions of even

simple objects like smooth spheres. Exact simulation of the dynamics of colli-

sions involving multiple robots with protruding connectors and infrared sensors

was not feasible within the time frame of this project and would not have met the

requirements for simulation speed.

A third difficulty specific to our setup was static friction in connection with to-

ken foraging in reality. In spite of a number of measures to enhance reproducibil-

ity, such as a glass arena surface, metal contact points and fine tuning using led

weights, the combined noise of variations in individual motor power, wheel fric-



E.4. VERIFICATION 119

tion, token orientation and small changes in robot-robot and robot-disk contact

points resulted in high variation of collision outcomes in reality. Individual colli-

sion outcomes in simulation were difficult to model and only statistically accurate

collision outcomes could be achieved.

E.3.1 Characterization

All basic parameters such as dimensions, mass of tokens and robots as well as

their geometries were quantified by measurement. Due to their high variability

physical properties including static and dynamic friction between objects and the

ground as well as between robots, tokens and walls were not measured directly

but rather observed for typical situations and adjusted to closely match those

cases.

E.3.2 Modeling

Early tests showed that accuracy of collision modeling using highly simplified

robot geometries was insufficient. In spite of numerous attempts, more faithful

geometric models (e.g., featuring protruding sensors) also failed to capture essen-

tial details of robot-token collisions. The final robot shape used in simulation was

obtained using a heuristic approach. The octagonal shape shown in Figure E.1 led

to good correspondence for most collisions and also proved stable in subsequent

evolutions. While single collision outcomes in the final simulation were fairly

different, the degree of error and stochastic variation as well as overall behavior

in simulation and reality were qualitatively similar.

E.4 Verification

The sensor and motor models were verified using two methods. First, differences

between sensor readings were assessed between simulation and the hardware

platform for a number of static positions. Second, a series of test cases were used

to study the infrared sensor and camera model, the motor model, the friction

model, and their interaction.
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E.4.1 Sensors and Motors

The motor model was verified by comparing performance in simple movement

tasks in simulation and reality. In addition, the interplay between sensor and

actuator modeling was verified using two dynamic test cases:

• Wall following: The robot used its infrared sensor to follow the wall at dif-

ferent distances. This test case verified proximity readings for the infrared

sensors. Varying motor speeds allowed us to simultaneously check the mo-

tor noise model.

• Camera hysteresis: The robot moved toward a corner between a white and

a black arena wall using a hand coded controller. This controller described

a pre-defined arc towards one side until it lost sight of the corner (i.e., until

one of its two camera inputs changed its value) and then executed a similar

arc towards the other side. The amplitude of the hysteresis was used to

verify the correspondence of camera update cycles.

Apart from discovering potential problems concerning the interplay of sen-

sors and actuators, these test cases also allowed us to study the effect of discrete

simulation time steps in more complex behaviors. This was especially important

with respect to the relatively slow camera refresh rate of only 4 Hz.

E.4.2 Collisions

To evaluate correspondence of typical situations in simulation and reality another

series of test cases was used:

• Robot pushing a small token: This is one of the basic behaviors required

for successful completion of the foraging task. Varying robot motor speeds

while pushing in a straight line allowed us to improve estimated static and

dynamic friction thresholds. Pushing in an arc allowed us to adapt the

shape of the simulated robot.

• Robot pushing a small token along a wall: This is a frequently evolved be-

havior and it was used in the same way as the previous point.

• Single robot pushing a large token: Token friction was tuned as to make

transport of a large food token by a single robot very difficult, resulting in a

large advantage for cooperation of two or more robots.
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• Two robots pushing a large token: The second basic situation required for

foraging.

• Robot pushing robot: Due to the robot’s high friction rubber wheels, a robot

could not be pushed by another robot, unless the robot was already moving

in the same direction. Due to the symmetry of interactions in the simula-

tion, this case was very difficult to model and presents a major difference

between simulation and reality.

E.4.3 Additional tests

In addition to these basic test cases, a number of recurrent situations were studied

in detail.

• Robot is stuck pushing a small token into a corner: In many cases, robots

push food tokens into a corner. Due to a combination of discrete time step

simulation and noise, simulated robots frequently freed the obstacle and

themselves.

• Multiple robot-robot collisions: A typical strategy found in evolved robot

controllers was to first collect tokens by pushing them towards the nearest

wall and then follow the wall, forming a chain (“traffic jam”). This allowed

robots to transport multiple small and large tokens towards the target area.

Due to the high amount of friction between a robot, other robots and walls

and the high number of collisions this scenario was a useful test bed for

simulation.

• Additional hand-coded strategies: In addition to the test cases described

above, we hand-coded controllers for a number of simple, Braitenberg [38]

behaviors such as obstacle avoidance, small and large disk pushing or target

area homing using the camera.

E.5 Conclusion

The simulation built as part of this project and subsequently tuned to the spe-

cific requirements for the robot foraging experiments used throughout this work

proved to be fast and sufficiently accurate to evolve robot behaviors qualitatively
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similar in software and hardware. However, as shown in Chapter 5, the transfer

of the robot controllers evolved in simulation to the physical micro-robots led to

large discrepancies in the number of tokens foraged.

As observed during parameter tuning using the test cases described in Sec-

tions E.2 and E.3, the main difficulties encountered were linked to collisions be-

tween robots and tokens, walls and other robots. In spite of numerous, iterative

efforts with various simulated friction models, different robot geometries and

simulation step sizes, no adequate solution could be found.

A reduction of the large variation in collision outcomes seems to be a key com-

ponent of successful modeling of this foraging task. Potentially large improve-

ments lie in simplified robot geometries and homogeneous surface materials to

reduce the amount and variability of surface friction.



Glossary

The research presented in this thesis addresses topics in biology, evolutionary

computation and robotics. Identical terms are used in these historically different

research fields, but in many cases their definitions differ between and even within

research fields (West et al. [232]). For example, the term “cooperation” has been

widely defined as a social behavior that is beneficial to the actor and the recipient

(Bourke and Franks [37], Lehmann and Keller [125]), but is also used more gener-

ally for behaviors that are beneficial to the recipient but can be either beneficial or

costly for the actor (Foster et al. [75], Maynard Smith and Szathmáry [146], Sachs

et al. [198]). In addition, the interdisciplinary nature of this thesis means that its

readers have different backgrounds, which further increases the potential for se-

mantic confusion. To avoid misunderstandings and conceptual difficulties I have

made an effort to define key terms when they are first introduced. This glossary

gives a summary to serve as a quick reference and lists good starting points for

further reading. It also provides a concise picture of the relationship between key

topics of this work.

Actor Focal individual which performs a social behavior.

Altruism, altruistic cooperation Social behavior that increases the fitness of other

individuals and decreases the actor’s fitness (West et al. [231]).

Artificial genome In the context of evolutionary computation, artificial genomes

are used as candidate solutions and encode the parameters that are opti-

mized by an evolutionary algorithm. All experiments in this thesis use a bi-

nary genome composed of bits which are interpreted as weights of an arti-

ficial neural network, however many other methods for mapping an artificial

123
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genome to a phenotype exist (Mattiussi et al. [140], Mattiussi and Floreano

[141]).

Artificial neural network A network of simple processing elements (neurons)

which can exhibit complex global behavior, determined by the connections

between the neurons and neuron parameters (sometimes called “weights”).

Artificial neural networks (sometimes called “neural networks”) are com-

monly used in artificial intelligence and evolutionary robotics. See, for exam-

ple, Figure 2.2 and Section 2.2.1.

Artificial social organism See organism.

Beneficiary An individual that benefits from a cooperative social behavior.

Benefit See Hamilton’s rule.

Competition In the context of this thesis, reproductive competition, i.e. equiva-

lent to Darwin’s struggle for existence. The contest for selection and repro-

duction.

Competitive neighborhood The scale at which intra-specific competition takes

place.

Conflict Competition between lower level units of selection, leading to a disrup-

tion of the functioning of the group. Also see level of selection.

Cooperation Social behavior that increases the fitness of other individuals. See social

behavior.

Cost See Hamilton’s rule.

Credit assignment, credit assignment problems In the context of evolutionary com-

putation, a single of usually many fitness rewards to one or more individu-

als. The distribution of fitness rewards leads to credit assignment problems

(Grefenstette [83], Minsky [155]) in many cooperative multi-agent tasks, be-

cause individual contributions to group performance are often difficult to

estimate or difficult to monitor.

Crossover See genetic operators.
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Direct fitness Fitness gained through the production of offspring. See inclusive

fitness.

Diversity In the context of evolutionary computation, variation in the genotypes or

phenotypes of a group of individuals or of a population. A variety of different

measures exist (Mattiussi et al. [143]).

Evaluation In the context of evolutionary computation, the testing of a candidate

solution to determine its fitness.

Evolution In the context of evolutionary biology, change in genetic traits between

generations. In the context of evolutionary computation, the automatic creation

of a system using an evolutionary algorithm. The term is used interchange-

ably in both contexts throughout this thesis.

Evolutionary algorithm Subset of evolutionary computation that uses genetic oper-

ators on a population of candidate solutions to solve optimization problems

or to study principles of biological evolution (Goldberg [80]). Evolutionary

algorithms were inspired by the evolution of biological organisms and rely

on similar mechanisms to find candidate solutions. Candidate solutions

play the role of individuals in a population and are represented by artificial

genomes. Individuals are evaluated on the task and are assigned a quality

(fitness) according to their performance. Some individuals of the population

are then selected for reproduction, which uses genetic operators to form new

individuals. Repeated evaluation, fitness assignment, selection and reproduction

results in the evolution of the population and leads to improved candidate

solutions to the optimization problems.

Evolutionary computation Evolutionary computation refers to meta-heuristic op-

timization algorithms, such as evolutionary algorithms, genetic programming

(Koza [123]), particle swarm optimization (Kennedy and Eberhart [121]) or

ant colony optimization (Dorigo and Stuetzle [61]), which use iterative pro-

cesses to solve optimization problems.

Evolutionary robotics The application of evolutionary computation to robotics (Nolfi

and Floreano [161]).

Fitness In the context of evolutionary computation, the performance of candidate

solutions in an evolutionary algorithm. It is important to note that evolution
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selects for fitness increase relative to the fitness of competitors, rather than

for an absolute increase in fitness. In the context of evolutionary biology, the

overall fitness of an organism is usually defined as a mathematical expecta-

tion p · e, where p is the probability that an organism at the egg stage will

reach adulthood, and e is the expected number of offspring that the adult

organism will have. However, other definitions are used when needed. For

a detailed discussion, see Sober [206].

Fitness landscape The fitness of genomes can be represented as a surface in an of-

ten high dimensional space known as the fitness landscape. Genomes are

coordinates in the landscape, and the fitness of these genetic strings repre-

sents the “height” of the surface at the corresponding coordinates. Geno-

types which are very similar are said to be “close” to each other, while those

that are very different are “far” from each other.

Gene In the context of evolutionary computation, a part of the genome that encodes

a parameter which is evolved.

Generation In the context of evolutionary computation, a single round of evalua-

tion, selection and reproduction.

Genetic architecture The genotype-phenotype mapping between individual’s genes

and their behavioral phenotype.

Genetic operators Genetic operators are processes used in evolutionary computa-

tion. They usually mimic the processes of biological evolution. The most

commonly used genetic operators include the selection operator, which se-

lects individuals for reproduction according to their fitness, the crossover op-

erator, which exchanges parts of the genomes of two individuals, and the

mutation operator, which introduces random variation in the individual’s

genome.

Genome See artificial genome.

Genotype The genotype contains the genetic material or “instructions” required

to build a biological organism or an artificial system. See phenotype.

Genotype-phenotype mapping Process by which the genotype is decoded into

the corresponding phenotype (e.g., a biological organism or an artificial sys-
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tem). In biological organisms the phenotype is usually created from the geno-

type via a complex developmental process. Evolutionary computation usually

uses a simple, direct (“one-to-one”) mapping to create the phenotype.

Group selection In the context of evolutionary biology, group selection refers to

the idea that genes can spread in a population because of the benefits they

bestow on groups, regardless of the fitness of individuals within that group.

Although selection at the group level is theoretically possible, it is usually

a weak force compared to selection between individuals. This is because

selection at the individual level proceeds much faster than selection at the

group level.

Hamilton’s rule Rule that governs the spread of a gene for a social action in a pop-

ulation, due to W. D. Hamilton (Hamilton [91]). It invokes three terms: the

actor’s reproductive cost c of the social action, the recipient’s reproductive

benefit b gained by the social action, and the genetic relatedness r between the

actor and the recipient. Hamilton’s rule states that a gene for a social action

can spread in a population if rb > c. This is because a gene will spread if it can

successfully create copies of itself, irrespective of the fact whether copies are

made by increasing the reproduction of the bearer (actor), or by increasing the

reproduction of other bearers of the same gene (related recipients).

Hamilton’s theory Theory dealing with aspects relating to Hamilton’s rule. It is

referred to in many ways. Hamilton called it “inclusive fitness theory”, but

it is more often referred to as “kin selection”.

Helping Social behavior that increases the recipient’s fitness (Lehmann and Keller

[125]). This includes cooperative behavior and altruistic behavior. See social

behavior.

Inclusive fitness In the context of evolutionary biology, fitness encompasses con-

ventional Darwinian fitness with the addition of the consequences of altruis-

tic or selfish behaviors. Inclusive fitness of an individual is divided into two

components: “direct fitness” and “indirect fitness”. Direct fitness is gained

through reproduction, i.e. the production of offspring, and indirect fitness

through aiding the reproduction of non-descendent relatives. By helping a

close relative reproduce, an individual still passes on its own genes to the next

generation, albeit indirectly. See Hamilton’s rule.
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Indirect fitness Fitness obtained by aiding the reproduction of relatives. See inclu-

sive fitness.

Individual In the context of evolutionary computation, a member of the population

of candidate solutions on which evolutionary algorithms operate.

Kin selection Another name for Hamilton’s theory.

Level of selection The unit containing genetic information that is visible to selec-

tion (sometimes termed “vehicle”; Dawkins [58]), which is usually different

from a gene (Keller [118]). Selection typically acts at the level of individuals

and possibly higher-level units, whereas only the genetic information con-

tained inside those units is replicated and endures over generations. This im-

portant distinction has spawned several decades of debate and still contin-

ues to cause misunderstandings and confusion (compare, e.g., Foster et al.

[75]).

Multi-level selection Rather than acting at a single level, selection usually oper-

ates at multiple levels. The theory concerned with the transition between

different levels of selection and their interaction is called multi-level selec-

tion theory. See also level of selection.

Mutation See genetic operators.

Natural selection Process of genetic change over time resulting from Darwin’s

three conditions for evolution: genetic variation, genetic heritability and

genetic selection for reproduction (“struggle for existence”). Also see selec-

tion.

Neural network See artificial neural network.

Organism In the context of this thesis we define an organism (in Greek “organon”

= instrument) broadly as a living complex adaptive system. The term arti-

ficial social organism used throughout this thesis to describe interacting soft-

ware and robotic agents describes agents that are arguably complex and

adaptive. However, both definitions of life and organisms differ widely

between sources and are topics of debate (Maynard Smith and Szathmáry

[146, chap. 2], Murphy and O’Neill [159], Schrödinger [200]).
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Phenotype The phenotype is the observable part of a biological organism or of

an artificial system that results from the decoding of the genotype.

Population In the context of evolutionary computation, the pool of individuals from

which individuals are selected for reproduction.

Recipient An individual that benefits from a cooperative social behavior.

Relatedness, Genetic relatedness A measure of genetic similarity. A definition

is complex and has been the topic of much debate. In kin selection theory it

is usually defined as a regression coefficient (see for example Queller and

Goodnight [181]). A more detailed definition can be found in Sections 2.2.3

and Appendix A.

Reproduction In the context of evolutionary computation, the replication of a se-

lected candidate solution.

Reproductive fitness See fitness.

Run In the context of this thesis, a single of usually many replicates of an evolu-

tionary experiment.

Selection In the context of evolution, individuals (or other units of selection) are

said to be selected if they contribute offspring to the succeeding generation.

In evolutionary computation, selection is performed based on fitness using a

genetic operator. See also level of selection.

Selfishness A social behavior which is beneficial to the actor and costly to the recipi-

ent.

Social action, social behavior In the context of this thesis, a social behavior is a

behavior directed towards, or taking place between, members of the same

population. Social actions or social behaviors can be categorized accord-

ing to their consequences for the actor. Additional categorizations that also

take into account consequences for the receiver are not discussed here (see

for instance West et al. [231]). Social actions can be beneficial, i.e. increase

direct fitness, or costly, i.e. decrease direct fitness. Social actions that increase

the actor’s direct fitness, i.e. when the cost for the social action c < 0 (see
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Hamilton’s rule), are called cooperative. Social actions that decrease the ac-

tor’s direct fitness, i.e. when the cost for the social action c > 0, are called

altruistic (Lehmann and Keller [125]).

Trial In the context of this thesis, an evaluation consists of several instances of

the same experiment called trials and conducted with different initial con-

ditions to reduce the effect of random events.

Unit of selection See level of selection.
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