
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

ingénieur en systèmes de communication diplômé EPF
de nationalité suisse et originaire de Langnau Im Emmental (BE)

acceptée sur proposition du jury:

Prof. M. Hasler, président du jury
Prof. P. Vandergheynst, directeur de thèse

Dr L. Daudet, rapporteur
Dr C. De Vleeschouwer, rapporteur

Prof. J.-Ph. Thiran, rapporteur

Algorithmic Aspects of spArse ApproximAtions

Philippe JOST

THÈSE NO 3936 (2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 19 OCTOBRE 2007

À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

LABORATOIRE DE TRAITEMENT DES SIGNAUX 2

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2007

Table of contents

Table of contents iii

Abstract vii

Version abrégée ix

List of figures xii

1 Introduction 3

1.1 Motivations . 3

1.2 Roadmap and Main Contributions . 4

2 Tree-Based Pursuit 7

2.1 Motivations . 7

2.2 Sparse Approximations . 8

2.2.1 Formal Problem . 9

2.2.2 Greedy algorithms . 9

2.2.3 Optimization methods . 11

2.2.4 Dictionary . 11

2.2.5 Recovery . 13

2.3 Structuring Redundant Dictionaries . 13

2.3.1 From atoms to molecules . 13

2.3.2 Dictionary characterization . 14

2.3.3 Tree-structured dictionaries . 16

2.4 Tree-Based Pursuit algorithm . 18

2.4.1 Tree-based search . 18

2.4.2 Complexity Analysis . 20

2.5 Consistency analysis . 21

iii

iv Table of contents

2.5.1 From redundant to block incoherent dictionaries 21

2.5.2 Covering conditions . 21

2.5.3 Recovery Condition . 23

2.6 Experimental Results . 25

2.6.1 1-D signals . 25

2.6.2 Extension to multi-dimensional signals 30

2.7 Application: Very low bit rate face coder 31

2.7.1 Motivations . 31

2.7.2 Coding scheme . 32

2.7.3 Results and discussion . 36

2.8 Discussion . 36

3 Dictionary Learning 39

3.1 Motivations . 39

3.2 Introduction . 40

3.3 Principle and algorithm . 43

3.4 Experiments . 48

3.4.1 Synthetic experiments . 48

3.4.2 Experiments with natural signals . 51

3.5 Extensions . 53

3.6 Discussion . 57

4 Finding Nearest Neighbors in a Set of Compressible Signals 59

4.1 Motivations . 59

4.2 Introduction . 60

4.3 A simple deterministic algorithm . 61

4.3.1 Notations and warm-up . 61

4.3.2 Iterative candidate rejection . 62

4.3.3 Improved bounds . 65

4.4 A probabilistic approach . 65

4.5 Experiments . 68

4.6 Discussion . 74

5 Conclusions 77

5.1 Achievements . 77

5.2 Future research directions . 78

Table of contents v

Bibliography 86

vi Table of contents

Abstract

Typical tasks in signal processing may be done in simpler ways or more efficiently if the

signals to analyze are represented in a proper way. This thesis deals with some algorith-

mic problems related to signal approximation, more precisely, in the novel field of sparse

approximation using redundant dictionaries of functions.

Orthogonal bases permit to approximate signals by just taking the N waveforms whose

associated projections have maximal amplitudes. This nice property is no longer valid if the

used base is redundant. In fact, finding the best decomposition becomes a NP Hard problem

in the general case. Thus, suboptimal heuristics have been developed; the best known ones

are Matching Pursuit and Basis Pursuit. Both remain highly complex which prevent them

from being used in practice in many situations. The first part of the thesis is concerned

with this computational bottleneck. We propose to create a tree structure endowing the

dictionary and grouping similar atoms in the same branches. An approximation algorithm,

called Tree-Based Pursuit, exploiting this structure is presented. It considerably lowers the

cost of finding good approximations with redundant dictionaries.

The quality of the representation does not only depend on the approximation algorithm

but also on the dictionary used. One of the main advantage of these techniques is that the

atoms can be tailored to match the features present in the signal. It might happen that

some knowledge about the class of signals to approximate directly leads to the dictionary.

For most natural signals, however, the underlying structures are not clearly known and may

be obfuscated. Learning dictionaries based on examples is an alternative to manual design

and is gaining in interest. Most natural signals exhibit behaviors invariant to translations

in space or in time. Thus, we propose an algorithm to learn redundant dictionaries under

the translation invariance constraint. In the case of images, the proposed solution is able

to recover atoms similar to Gabor functions, line edge detectors and curved edge detectors.

The two first categories were already observed and the third one completes the range of

natural features and is a major contribution of this algorithm.

Sparsity is used to define the efficiency of approximation algorithms as well as to char-

acterize good dictionaries. It directly comes from the fact that these techniques aim at

approximating signals with few significant terms. This property was successfully exploited

as a dimension reduction method for different signal processing tasks as analysis, de-noising

or compression. In the last chapter, we tackle the problem of finding the nearest neighbor

vii

viii Abstract

to a query signal in a set of signals that have a sparse representation. We take advantage

of sparsity to approximate quickly the distance between the query and all elements of the

database. In this way, we are able to prune recursively all elements that do not match

the query, while providing bounds on the true distance. Validation of this technique on

synthetic and real data sets confirms that it could be very well suited to process queries

over large databases of compressed signals, avoiding most of the burden of decoding.

Keywords

sparse approximation, redundant dictionaries

dictionary learning, data mining

fast algorithms, nearest neighbor

structured dictionaries, greedy algorithms

Version abrégée

Certaines opérations courantes dans le domaine du traitement de signal peuvent être ré-

alisées de manière plus simple ou plus précise si les signaux à traiter sont représentés de

manière adéquate. Cette thèse étudie quelques problèmes algorithmiques liés à l’appro-

ximation des signaux ; plus précisément nous nous sommes intéressés à la représentation

parcimonieuse de signaux en utilisant des dictionnaires redondants.

Une base orthogonale permet d’approximer simplement un signal en prenant les N

éléments dont les projections sur le signal ont la plus grande amplitude. Cette propriété

n’est pas valide dans le cas de bases redondantes, pour lesquelles, trouver la meilleure

approximation est un problème très complexe, NP-Complet dans le cas général. Des solu-

tions sous-optimales tentant de résoudre ce problème existent. Matching Pursuit et Basis

Pursuit en sont les plus fameux représentants. Malgré tout, ces algorithmes restent très

coûteux en puissance de calcul et, de ce fait, sont difficilement utilisables en pratique. La

première partie de cette thèse traite de ce coût prohibitif. Nous proposons de réorganiser le

dictionnaire redondant en groupant les fonctions de base (atomes) similaires. Cette manière

de faire aboutit à la création d’une structure en arbre. Un algorithme d’approximation,

que nous avons nommé Tree-Based Pursuit, utilise cet arbre pour décomposer des signaux.

Cela permet de diminuer considérablement la complexité de calcul nécessaire pour trouver

de bonnes approximations en utilisant des dictionnaires redondants.

La qualité d’une approximation ne dépend pas uniquement de l’algorithme utilisé pour

trouver la décomposition mais aussi du dictionnaire. Un des avantages majeurs de cette

famille de techniques est que les atomes composant le dictionnaire peuvent être taillés sur

mesure en fonction des signaux à traiter. Il peut arriver que, connaissant les phénomènes

physiques générant les signaux, il soit possible de trouver facilement un très bon dictio-

nnaire. Pour la majorité des signaux naturels, les structures sous-jacentes ne sont pas

connues ou sont cachées. Dans cette situation, l’apprentissage automatique de dictionnaire

à partir de données est une alternative viable au design manuel de dictionnaires. La ma-

jorité des signaux naturels ont un comportement invariant par translation dans le temps ou

dans l’espace. Nous proposons une solution qui intègre cela et apprend des dictionnaires

invariants par translation. Appliqué à des images naturelles, notre algorithme retrouve des

fonctions similaires à des atomes de Gabor, des détecteurs de lignes ainsi que des détecteurs

de contours. Si les deux premières catégories ont déjà été observées, la troisième s’ajoute

ix

x Version abrégée

à la collection des attributs des images naturelles et est une des contributions majeures de

cet algorithme.

La parcimonie permet de quantifier l’efficacité d’un algorithme d’approximation aussi

bien que de mesurer la qualité d’un dictionnaire redondant. En effet, le but ultime est

d’approximer un signal avec peu de termes très significatifs. Cette propriété a été utilisée

avec succès pour différentes opérations dans le domaine du traitement de signal comme

l’analyse, le dé-bruitage ou encore la compression de données. Dans le dernier chapitre,

nous nous attaquons au problème du plus proche voisin. Etant donné un signal requête,

nous recherchons celui qui en est le plus proche dans un grand ensemble. Les signaux

considérés ont une représentation parcimonieuse de qualité que nous allons utiliser pour

approximer de manière efficace et rapide la distance entre la requête et les signaux de la

base de données. Nous sommes capables d’éliminer rapidement ceux qui sont trop différents

de ce que nous cherchons. Cette manière de faire est validée expérimentalement avec des

données synthétiques ainsi que sur des données réelles. Cela confirme que cet algorithme

peut être utilisé pour traiter des requêtes sur des bases de données de signaux compressés,

évitant ainsi les coûts liés au décodage.

Mots Clés

représentations parcimonieuse, dictionnaires redondants

apprentissage de dictionnaires, data mining

algorithmes rapides, plus proche voisin

dictionnaires structurés, algorithmes gloutons

List of figures

2.1 Simple block incoherent dictionary made of two highly redundant parts. . . 16

2.2 Creation of a tree on top of a 2D dictionary. 18

2.3 Mean approximation error of random signals using a random dictionary. . . 26

2.4 Representing a group of atoms by a molecule. 27

2.5 Time-Frequency plane of a group of atoms and their molecule. 27

2.6 Tree structure on top of a multiscale Gabor dictionary. 28

2.7 Molecules associated to the nodes located at the first level of the tree. . . . 29

2.8 Time-frequency distributions corresponding to the molecules exhibited by

Figure 2.7. 29

2.9 Comparison between Matching Pursuit and Tree-Based Pursuit: error and

complexity. 30

2.10 Performance of Tree-Based Pursuit compared to Matching Pursuit for dif-

ferent trees. 32

2.11 Coding scheme of the proposed low bit rate face coder. 33

2.12 First Eigenfaces used to encode the low frequencies in the face images. . . . 33

2.13 Different Geometric transforms applied to a generating function. 35

2.14 Comparison between the proposed low bit rate coding scheme and JPEG 2000. 38

3.1 First generating function learnt by MoTIF 10 times. 47

3.2 Evolution of the value of the objective function. 48

3.3 Hundred generating functions learnt on natural images. 49

3.4 How good are the generating function of Figure 3.3 49

3.5 First iterations of some generating functions presented in Figure 3.3. 50

3.6 Recovered generating functions. 51

3.7 Approximation abilities of a learnt set of generating functions 52

3.8 Most used generating functions for approximation. 53

3.9 Schematic representation of the multi-modal version of MoTIF. 56

xi

xii List of figures

3.10 Audio-video generating functions of Dictionary 2. Twenty learned functions

are shown, each consisting on an audio and a video component. 58

4.1 Elimination of candidates. 64

4.2 Locally optimized {γi} compared to overall learnt γ. 69

4.3 Comparison of the different bounds. 70

4.4 Impact of the different bounds on the number of candidates. 71

4.5 Real probability of error v.s. probabilistic model parameter. 73

4.6 Number of candidates during the execution of the algorithm for images ap-

proximated with wavelets. 74

4.7 Last steps of the execution of the algorithm. 75

4.8 Last steps of the execution of the algorithm using wavelets approximation. . 76

4.9 Evolution of the cardinality of the set of potential candidates before reaching

the state shown in Figure 4.8. 76

Dissertation

1

Introduction 1
1.1 Motivations

An approximation is an inexact representation that is good enough to be useful. Working

with approximations instead of original signals may be of great interest in many situations.

Handling the original data may be computationally too complex or an approximation leads

to results that are sufficiently good given the target application e.g. using 3.14 instead of

the real value of π. These statements are also valid in the field of signal processing especially

when dealing with high dimensional signals.

Typical signals are images, video sequences, sounds, biomedical signals as ECG or EEG.

Signal Processing consists in manipulating and analyzing signals. Among the most famous

treatments, one can cite compression, source separation, denoising, feature extraction, and

many others. Some of these tasks may benefit from a clever representation of the infor-

mation at hand. Representing signals with basic building blocks that essentially synthesize

the information is one of the major theme in approximation theory. The quality of such

representations is generally measured by the number of basis elements needed to achieve a

good approximation: the less the better. This concept is referred to as sparsity.

It is known since the early successes of wavelet analysis that sparse expansions very

often result in efficient algorithms for typical tasks in signal processing. An interesting

and increasingly popular way of achieving sparsity is to turn to very redundant systems

i.e. approximate signals as weighted sums of functions, called atoms, from a collection of

unit energy functions spanning the signal space, called dictionary. Redundancy implies that

distinct atoms may be highly correlated. Approximation using redundant dictionaries often

allows for short-length representation of signals, since the probability of finding a sparse

approximation generally increases with the redundancy of the dictionary. A common way to

generate redundant dictionaries is to take a small set of basis functions that may be trans-

3

4 Chapter 1. Introduction

lated at any position in the signal. This family of redundant dictionaries generated from

a small set of waveforms that are submitted to different transforms are called structured

dictionaries.

Redundancy in the dictionary implies that a decomposition is not unique; additionally

finding the sparsest one is a NP Hard problem. Suboptimal algorithms that are sufficiently

good for most applications have been proposed. They get rid of some constraints of the

original problem. However, they still remain computationally expensive. Lowering the

complexity is a challenge that may lead these techniques from the academic world to real

applications.

Redundant dictionaries based techniques provide flexibility for representing data. This

statement holds only if the dictionary is adapted to the class of signals to treat. In numerous

cases, the physical processes generating the signals is known and represent an important

piece of information for designing efficient dictionaries. For most natural signals this is

not the case. Additionally, these possibly high dimensional signals often exhibit complex

behaviors and may contain noise. The field concerned with revealing hidden structures

from data is called data mining and is gaining in interest since mid nineties. However,

researchers concerned with redundant expansions did not get interested in these techniques

until very recently. Dictionary learning is a promising technique that permits to dream of

very sparse representations by identifying the fundamental structures from the data.

The aim of this thesis is to propose efficient algorithmic solutions for sparse repre-

sentation of signals using redundant dictionaries. We tackle the problem of finding good

representations at reasonable costs by structuring redundant dictionaries in a smart way

that can be exploited by an approximation algorithm. A second objective of this work is

to develop a dictionary learning algorithm. Again, we seek for a low complexity method.

This goal is achieved by proposing a solution that does not explicitly include a sparsity

constraint which is the costliest part of most learning algorithms. Finally, we propose to

exploit the sparsity to propose an efficient solution to the nearest neighbor problem in high

dimensional spaces.

1.2 Roadmap and Main Contributions

Sparsity as well as redundancy imply that most problems in the field of sparse approxima-

tion do not have a unique solution. In this thesis, we focus on three topics in this context

and for all the treated problems, we propose algorithms that are efficient from a computa-

tional point of view. Each chapter begins with an introductory part that guides the reader

trough the main results and methods proposed in the literature.

Chapter 2 deals with finding sparse representations. It begins with an introduction to

the sparse approximation problem and presents the classical algorithms, such as Matching

Pursuit and Basis Pursuit. They are representative of two families of algorithmic solu-

tions developed in order to find sub-optimal solutions to the original NP Hard problem.

Redundancy in the dictionary implicitly introduces redundant computations to be done

for the approximation algorithms. Starting from this observation, section 2.3 proposes to

1.2. Roadmap and Main Contributions 5

group similar atoms together and to represent the so created clusters by a centroid, called

molecule. This clustering inspired methodology eventually leads to a tree when applied

recursively. Atoms from the initial dictionary are leaves of the tree. Section 2.4 presents

an algorithm, called Tree-Based Pursuit, taking advantage of the previously defined struc-

ture. Finding the best atom in a signal corresponds to choosing the best path in the tree.

The two following sections validate the proposed method. First, in section 2.5 we prove

that under certain conditions, the algorithm systematically finds atoms belonging to the

good part of the tree. Second, section 2.6 presents experiments that validate the proposed

methodology. In addition to these experiments, section 2.7 presents an application using

Tree-Based Pursuit. The idea is to create a very low bit rate coder for human faces. This

application in the field of biometric data handling is becoming more and more popular.

Our coding scheme is compared JPEG 2000 and shows great improvements.

Chapter 3 deals with dictionary learning. The introduction, section 3.2, presents the

state of the art methods in this field. These methods generally involve a sparsity model that

is either stochastic or algorithmic dependant. Section 3.3 proposes a dictionary learning

algorithm called MoTIF, for Matching of Time Invariant Filters, that does not explicitly

use a sparsity model. MoTIF iteratively searches for waveforms that represent well features

present in the signals whilst being as decorrelated as possible from the previously found

ones. The underlying assumption is that dictionaries made of meaningful waveforms will

mandatorily lead to sparse representations of the data. Additionally, MoTIF aims to find

translation invariant waveforms i.e. it learns structured dictionaries. The behavior of the

algorithm is illustrated by learnt dictionaries for natural images. Two experiments present

the abilities of the proposed solution for dictionary learning. First, signals are generated

by randomly adding waveforms coming from a small set of functions. MoTIF is used to

recover the used waveforms. Second, a dictionary has been learnt from an audio signal.

This dictionary is compared to an allround dictionary made of Gabor atoms in terms of

approximation abilities. Different researchers used MoTIF or were inspired by it. Section

3.5 presents their main results. In particular, MoTIF has been used to learn audio-visual

features in the field of multi-modal signal processing.

Chapter 4 is application oriented. We propose a solution for finding those signals in a

database that are closest to a query. The signals of interest have a sparse approximation

over a basis or a redundant dictionary. They are referred to as compressible signals; images,

music and speech signals belong to this class. Section 4.3 presents how sparsity can be used

to approximate quickly the distances between the query and all elements of the database.

We present an algorithm that uses this principle to prune recursively all elements that

do not match the query while providing bounds on the true distance. Section 4.4 uses a

probabilistic approach to speed up the algorithm at the cost of introducing uncertainty on

the final results. The experimental part, section 4.5, validates this technique on synthetic

and real data sets and confirms that it could be very well suited to process queries over

large databases of transformed signals, avoiding most of the burden of decoding.

Chapter 5 is a discussion of the obtained results. It aims at drawing some conclusions

as well as present possible extensions and future research directions to this work.

6 Chapter 1. Introduction

Tree-Based Pursuit 2
2.1 Motivations

Finding the best linear expansion using a redundant dictionary of functions is a daunting

task and even a NP-Hard problem [19] in the general case. Despite the difficulty to find the

best, sparsest solution, it is possible to find sufficiently good representations that are nearly

optimal. Sub-optimal heuristics have been developed that recover the main components of

a function in a redundant dictionary. Among the most popular algorithms that find good

suboptimal solutions to the sparsest signal representation problem, we can cite Matching

Pursuit [51] and Basis Pursuit [11]: both find a solution by relaxing some constraints of the

original optimization problem. For most applications, these solutions are generally close

enough to the optimum. Even if specific optimizations are possible for particular classes of

dictionaries, the complexity of these algorithms however remains very high in general.

Several methods have been proposed in order to decrease the computational complexity

to find sparse signal expansions. They are generally modified versions of Matching Pur-

suit or Basis Pursuit and propose modifications of either the search algorithm itself, or

the dictionary. It is indeed possible to introduce small changes to obtain efficient search

algorithms. A two stage design is proposed in [12, 57, 66], where the original dictionary

functions are approximated by linear combinations of very simple, elementary vectors. The

search is then performed in the space of elementary vectors, hence a great reduction in

computational complexity. In [65] a greedy algorithm solving Basis Pursuit is presented. It

has the advantage to be much faster than the interior point method traditionally used for

Basis Pursuit.

Approximation of functions of the dictionary or special constructions can also lead to ef-

ficient search algorithms, without an important penalty on the approximation performance

7

8 Chapter 2. Tree-Based Pursuit

[57]. Multiscale [34] or subband dictionaries [20] can be used to decrease the search com-

plexity, where the linearity of the inner product can even be further exploited to speed-up

the computation, at the price of higher memory requirements. Similarly, [32] proposed to

use a dictionary that is based on damped sinusoids, which can be efficiently derived using

simple recursive filter banks. Since the size of the dictionary has obviously an important

impact on the search complexity, several studies have also been proposed to prune the

dictionary to its most meaningful elements, by vector quantization for example [13, 69].

In general, these methods however only apply to specific dictionaries. Few efforts were

invested in having an efficient implementation of Matching Pursuit until the release of the

Matching Pursuit Toolkit [35].

In this chapter, we study the reduction of the computational complexity of the search

for the sparsest signal expansion, for any highly redundant dictionary. It naturally leads to

the notion of data structuring, which becomes critical when the amount of data gets very

large. Dictionary functions with similar properties can be clustered together, in order to

facilitate the search for the sparsest representation. Clustering is a widely used technique

when the amount of data is huge and hides the underlying structures, see [39] for a survey.

Clustering algorithms depend on a measure to quantify the similarity between two objects.

Proper data arrangement then allows for the development of tree data structures, which can

be efficiently used for search when a huge amount of data is present [67]. Tree search has

been proposed in [16] in order to improve the performance of Matching Pursuit expansion.

We however propose to study tree-based pursuit from a complexity reduction perspective,

as an interesting trade-off between efficient implementation and sufficiently sparse signal

approximation.

Section 2.2 proposes an overview of linear expansions using redundant dictionaries of

functions. Section 2.3 presents a structuring method that allows to represent a subset of

highly correlated atoms by a single element, called molecule. Hierarchical clustering then

allows for building trees, where each node corresponds to a molecule that encompasses the

characteristics of all its relative children. A tree construction method is then proposed that

respects the necessary conditions for nodes at each level to be sufficiently incoherent. A

tree-based pursuit algorithm is then proposed in Section 2.4, and exploits the tree structure

to reduce the computational complexity of the pursuit. Performance and characteristics

of the algorithm are analyzed in Section 2.5. A bound is derived, which ensures that

molecules cover the same span as the initial dictionary. A minimal condition ensuring that

the algorithm chooses only good molecules under the root node is also presented. Section 2.6

illustrates the performance of Tree-Based Pursuit in terms of approximation and complexity,

compared to Matching Pursuit. A very low bit-rate face coder is presented in section 2.7.

It is a practical application that benefits from the gain provided by Tree-Based Pursuit.

2.2 Sparse Approximations

For the last few years, there has been a tremendous activity in the field of sparse approxi-

mations. This is partly motivated by the potential of the related techniques for typical tasks

2.2. Sparse Approximations 9

in signal processing such as analysis, dimensionality reduction, de-noising or compression.

This section provides an overview of the main recent results on sparse approximations, and

practical algorithms.

2.2.1 Formal Problem

Given a d dimensional signal f in a real vector space, the central problem faced is the

following: compute a good approximation f̃N as a linear superposition of N basic elements,

which are often called atoms, picked up in a huge collection of signals D, usually referred

to as a dictionary. The dictionary is said to be redundant when its cardinality |D| � d.

The approximant f̃N is sparse when N � d, where

f̃N =

N−1
∑

k=0

ckgγk
, gγk

∈ D. (2.1)

There is no particular requirement concerning the dictionary, except that it should span

the signal space H and that the atoms are unit-norm signals. A signal can thus be exactly

represented as a linear combination of atoms from the dictionary. In addition, there is no

prescription on how to compute the coefficients ck in eq. (2.1). The main advantage of this

class of techniques is the complete freedom in designing the dictionary, which can then be

efficiently tailored to closely match signal structures.

This problem is better studied under the form of the following constrained optimization :

P0 : minimize ‖c‖0 subject to ‖f −
N−1
∑

k=0

ckgγk
‖2 ≤ ε

where ‖c‖0 counts the number of nonzero entries in the sequence {ck} and ε is the maximal

acceptable error.

Usually, finding the solution of P0 would be a hopeless combinatorial problem. In

fact, without adding special constraints to the dictionary or to the signals, the sparse

approximation problem is NP -Hard (Corrolary 2.3 of [80]) and finding the best solution

is a combinatorial problem. However, for some applications, suboptimal solutions may be

sufficient. In order to find such a solution, some constraints of the original constraints have

to be relaxed. These algorithms can be classified in two categories:

Greedy algorithms The global solution is found iteratively.

Optimization methods The l0 norm is replaced by another sparsity measure for which

the problem is not NP -Hard.

2.2.2 Greedy algorithms

Greedy algorithms iteratively construct an approximant by selecting the element of the

dictionary that best matches the signal at each iteration. The pure greedy algorithm is

10 Chapter 2. Tree-Based Pursuit

known as Matching Pursuit [51]. Assuming that all atoms in D have norm one, we initialize

the algorithm by setting R0f = f and we first decompose the signal as

R0f = 〈gγ0 , R
0f〉gγ0 + R1f ,

where gγ0 is chosen so as to maximize the correlation with R0f :

gγ0 = argmax
D
|〈gγ0 , R

0f〉| .

We then iterate the procedure on the residual R1f and, after N steps, build the following

approximation :

f =
N−1
∑

n=0

〈gγn , Rnf〉gγn + RNf ,

where the norm of the residual (approximation error) satisfies

‖RNf‖2 = ‖f‖2 −
N−1
∑

n=0

|〈gγn , Rnf〉|2 .

The algorithm ends when some stopping criterion is met. For example, one may iterate

until the energy of the residual is lower than some threshold or the number of terms of the

approximation may be fixed a-priori.

The introduction of the Matching Pursuit algorithm in the signal processing community

has been inspiring for many researchers and different variations of this algorithm were

proposed. The most famous ones are Orthogonal Matching Pursuit [62] and Weak Matching

Pursuit [76].

Orthogonal Matching Pursuit uses the same atom selection method as Matching Pursuit.

Then, all coefficients of the expansion are recomputed such that the residual is orthogo-

nal to all previously found atoms. Matching Pursuit only guarantees that the residual is

orthogonal to the last found atom.

Weak Matching Pursuit uses a different criterion to select the atom. It allows to take

atoms whose correlation is not maximal with the residual. It was driven by the fact that the

dictionary may be very large and that computing only parts of the possible scalar product

lowers the complexity.

The greedy heuristic finds in general a good approximant to the problem in polynomial

time; its approximation abilities is deeply studied in [77]. There is however no guarantee

on the optimality of the solution, except in the case where sufficient conditions are set on

the dictionary [78]. However, polynomial time still does not mean fast! Typical implemen-

tations of Matching Pursuit suffer from high computational complexity when compared to

most orthogonal transforms. It was long believed that it could prevent these techniques

from being used in applications. Recent research shows that this bottleneck is not far from

being broken. The MPTK toolkit [35] provides a very fast implementation of Matching

Pursuit. The authors systematically analyzed the bottlenecks and surprisingly found out

that for highly dimensional signals, finding the atom whose projection is maximal is costly.

2.2. Sparse Approximations 11

They created a tree structure that keeps trace of the maximal values. The search for the

maximum is done by a traversal of the tree. When the residual is changed, the scalar

products are only computed in the places where changes happened and the tree structure is

updated. In addition, they make use of fast transforms to compute groups of inner products

at once. Their software is able to achieve 0.25× real time for a typical Matching Pursuit

analysis scenario applied to a one hour long audio track.

In the remainder of this chapter, we propose to reduce the complexity by an efficient

organization of the dictionary. We propose to group similar atoms together, and represent

them by a unique element called molecule. Applying clustering recursively on atoms and

molecules yields a hierarchical tree structure, that can be exploited to design a search

algorithm with greatly reduced complexity.

2.2.3 Optimization methods

The measure of sparsity used in P0 is the l0-norm which makes this problem highly non

convex. Efficient minimization algorithms can thus not be used to find a solution. The

class of algorithms presented in this section relax this constraint by replacing the l0-norm

by another measures for the sparseness.

Basis Pursuit [11] uses the l1-norm. The problem is rewritten as follows:

P1 : minimize ‖c‖1 subject to ‖f −
N−1
∑

k=0

ckgγk
‖2 < ε

It is straight forward to transform P1 into a Quadratic Programming problem. This

algorithm finds jointly a subset of the dictionary and the corresponding weights. The

complexity of this method is high which makes it not usable when dealing with high-

dimensional signals. Even what is thought to be a small image can be considered as high

dimensional in this case.

Like for the greedy algorithms, people have been inspired by the principle of convex

relaxation and different other methods have been tried to find good approximations. The

most famous ones are the Method of Frames [18] and FOCUSS [33].

As for the greedy algorithms, there is no guarantee that the found solution is also

the solution of P0. Generally, optimization methods offer better results than the greedy

approaches at the cost of more complex computations. Like for the greedy algorithms, there

is hope as efficient implementations of techniques for solving large scale linear or quadratic

programs have recently emerged [5].

2.2.4 Dictionary

There are no special conditions on the dictionary. Generally, it is supposed that it should

span the signal space. This condition guarantees that any signal could be represented as

a linear combination of atoms from the dictionary. It is very intuitive to see that the

approximation is tightly linked with the composition of the dictionary. This is true in two

12 Chapter 2. Tree-Based Pursuit

different ways. First, the quality of the approximation and second the performance of the

approximation algorithm.

In order to be able to characterize a dictionary, different measures have been suggested.

The most popular measure is the coherence µ defined as follows:

µ = sup
gi,gj∈D

i6=j

|〈gi, gj〉| . (2.2)

Despite its simplicity, this measure provides an important piece of information about the

dictionary. It tells us how two atoms from the dictionary are at least different. Additionally,

it has the nice property to be easily computable.

The so defined coherence has however an important drawback as it does absolutely not

take into account the local structures of the dictionary. The cumulative coherence µ1(m)

(or Babel function) appeared in [78] and in a slightly different form in [23] provides more

information about the dictionary. It is defined as follows :

µ1(m) = max
|Λ|=m

max
i/∈Λ

∑

j∈Λ

| 〈gi, gj〉 | . (2.3)

The cumulative coherence measures how a group of atoms is at least different from a

fixed atom. For an orthogonal base, µ1(m) = 0 for all possible values of m. The class

of redundant dictionaries for which the cumulative coherence grows slowly are said to be

quasi-incoherent [80]; they are not too far from being orthogonal bases (although they may

be highly overcomplete).

The performance of greedy algorithms like Matching Pursuit are tightly linked to the

structure of the dictionary. The coherence µ described above is often not sufficient to

represent the properties of a dictionary, since it represents a worst case bound, and does

not take into account the local structures of the dictionary. The structural redundancy

[31] of a dictionary provides important information about the structure of a redundant

dictionary. Matching Pursuit converges exponentially fast in finite dimension [19, 51].

There exist two constants α > 0, reflecting the optimality of the pursuit algorithm, and

β > 0, characterizing the redundancy of the dictionary, such that

||Rn+1f || ≤ (1− α2β2)1/2||Rnf ||, (2.4)

where β can be expressed as

β = inf
a,‖a‖=1

sup
gi∈D

| 〈a, gi〉 | . (2.5)

This equation confirms that the algorithm will behave well, provided there is always an

atom closely aligned with the residual. The structural redundancy β can be seen as a

measure of the size of the biggest hole in the dictionary. It is upperbounded, β ≤ 1, and

it is increasing with the cardinality of the dictionary. The structural redundancy can be

computed in simple cases [31]. This characteristic shows that the properties of the signal,

dictionary and algorithm, are tightly linked.

2.3. Structuring Redundant Dictionaries 13

2.2.5 Recovery

The algorithms presented previously provide suboptimal solutions regarding the original

problem P0. In some situations, it may be known in advance that a signal to represent

admits a sparse representation in a given dictionary. Naturally, a question emerge: under

which conditions is it possible to find the solution of P0 using the suboptimal algorithms?

Trivially, greedy strategies such as Matching Pursuit and Orthogonal Matching Pur-

suit are able to solve P0 if the dictionary is an orthogonal base. When using redundant

dictionaries, it is also trivial to find examples where Matching Pursuit fails to find a good

solution [11].

Simple greedy strategies such as Matching Pursuit and Orthogonal Matching Pursuit

are able to recover very good approximants [80]. On the downside, these results only hold

for a limited class of dictionaries : D has to be sufficiently incoherent. More properties of

such dictionaries can be found in [25, 36, 78]. These results tell us that, if a sufficiently

sparse solution exists in a sufficiently incoherent dictionary, it can be found by solving a

problem closely connected to P0. However, in practice, redundant dictionaries do most of

the time not satisfy the incoherence condition while still leading to good results.

2.3 Structuring Redundant Dictionaries

2.3.1 From atoms to molecules

This section discusses clustering of a generic, redundant dictionary, which eventually leads

to the creation of a tree structure. First, it describes the problem of representing a group

of highly correlated dictionary atoms by a unique element. We then discuss the character-

istics that are necessary for a dictionary to be efficiently clustered and organized in a tree

structure.

Let the elements of the dictionary D = {gi}i∈Γ be labelled by the index set Γ. A

sub-dictionary DΛ is such that DΛ = {gi}i∈Λ, where Λ ⊂ Γ and Λ 6= ∅. A collection of

sub-dictionaries {DΛi
} forms a partition of the dictionary D if

⋃

i Λi = Γ and Λi
⋂

Λj = ∅,
∀i 6= j. If the atoms in D are sufficiently uncorrelated, a simple greedy algorithm is able to

recover a sparse approximation of the signal (see for example [78]). This is not the case for

highly correlated redundant dictionaries. It can be explained intuitively by the fact that

high correlation in the dictionary can fool the pursuit and result in wrong choices. We are

thus going to try to represent a highly correlated sub-dictionary DΛi
by a single molecule,

while at the same time minimizing the correlation among molecules. This procedure should

result in a set of molecules that behaves like a (quasi) incoherent dictionary.

Let us first define the minimal coherence λΛ of a sub-dictionary by :

λΛ = min
i,j∈Λ

| 〈gi, gj〉 | . (2.6)

A sub-dictionary will be referred to as reducible when λΛ is positive and sufficiently big.

In order to quantify the adequation of the molecule in representing the atoms in the sub-

14 Chapter 2. Tree-Based Pursuit

dictionary {DΛi
}, a distance measure has to be defined. Let d(gi, gj) be a measure of the

distance between two unit energy atoms gi and gj . We chose to use the following distance

measure, derived from the simple cosine function :

d(gi, gj) = 1− | < gi, gj > |2. (2.7)

Note that an atom gi can be considered as equivalent to −gi, from an approximation

point of view, the sign of the weights ck in eq. (2.1) could be reversed. The distance measure

given in eq. (2.7) is independent of the direction of gi as d(gi,−gi) = 0.

Most clustering algorithms represent a cluster by a centroid whose mean distance to

all elements it represents is minimized. Let us define the optimal centroid or unit norm

molecule mopt
Λ , for a sub-dictionary DΛ, by :

mopt
Λ = arg min

m
‖m‖=1

∑

i∈Λ

d(m, gi). (2.8)

Using the distance measure defined in eq. (2.7), the optimal centroid becomes :

mopt
Λ = arg min

m
‖m‖=1

∑

i∈Λ

1− |〈m, gi〉|2, (2.9)

= arg max
m

‖m‖=1

∑

i∈Λ

|〈m, gi〉|2, (2.10)

= arg max
m

‖m‖=1

m∗AΛA∗
Λm , (2.11)

where the columns of the matrix AΛ are the atoms of the sub-dictionary DΛ. The molecule

mopt
Λ is the eigenvector associated to the biggest eigenvalue of the matrix AΛA∗

Λ. The

eigenvalues of AΛA∗
Λ are equal to the eigenvalues of A∗

ΛAΛ (see theorem 1.3.20 of [37]).

This last matrix is the Grammian of AΛ. Figure 2.4 illustrates the reduction capabilities

of a molecule regarding a group of similar atoms. As the matrix AΛA∗
Λ is symmetric, the

associated eigenvalues are real and the associated eigenvectors are orthogonal. The molecule

mopt
Λ is also equivalent to the dominant left singular vector of the matrix AΛ [37].

2.3.2 Dictionary characterization

In the previous section, we introduced the definition of molecule in order to structure the

information at hand in a highly redundant sub-dictionary. We will now see how a dictionary

can be partitioned into disjoint sub-dictionaries represented by molecules through a simple

clustering procedure. Further recursive application of clustering on the set of molecules

results in a hierarchical tree structure that will be used by the search algorithm.

We previously stated that representing a sub-dictionary by a molecule makes sense only

for reducible sub-dictionaries. By extension, a dictionary D is said to be reducible if it

contains a partition {DΛi
}, such that all its sub-dictionaries are reducible and |{DΛi

}| �
|D|, i.e., the number of sub-dictionaries is much smaller than the number of atoms in the

dictionary. A special case of reducible dictionaries is represented by the block incoherent

2.3. Structuring Redundant Dictionaries 15

dictionaries [64]. These dictionaries are such that it is possible to find a partition having a

small block coherence µB defined by :

µB = max
i6=j

max
k∈Λi
l∈Λj

| 〈gk, gl〉 | . (2.12)

If D is reducible, then the coherence µ of D is large; the reverse is however not necessarily

true. A dictionary D can have a large coherence µ without being reducible, due to the fact

that the coherence given in eq. (2.2) only reflects an extreme and local property of the

dictionary. Similarly, the quantity β defined in eq. (2.5), or the structural redundancy [31],

also reports an extreme property of the dictionary. For block incoherent dictionaries, the

structural redundancy is low and provides some inter sub-dictionaries redundancy measure.

It is however closely related to the block-coherence µB given in eq. (2.12).

The cumulative coherence is a refinement of the simple coherence measure and therefore

provides much more information about the dictionary. It is defined as follows :

µ1(m) = max
|Λ|=m

max
i/∈Λ

∑

j∈Λ

| 〈gi, gj〉 | . (2.13)

A dictionary whose cumulative coherence grows slowly (i.e. µ1(m) � µm) is said to be

quasi-incoherent [78]. If it grows fast, it is at least possible to have one highly correlated

sub-dictionary. The cumulative coherence can be bounded using the coherence, µ1(m) ≤
mµ. In the special case of block incoherent dictionaries, a better bound on the cumulative

coherence µ1(m) can even be proposed. Let k be the cardinality of the most populated

highly correlated sub-dictionary, we then have :

µ1(m) ≤
{

mµ if m < k.

(k − 1)µ + (m− k + 1)µB if m ≥ k.
(2.14)

The cumulative coherence provides more accurate local information than the coherence,

but is more complex to compute. Moreover, a fast growing cumulative coherence is not a

sufficient condition for a dictionary to be reducible: it reflects the behavior of the dictionary

in the region of the space of signals that is best covered by the dictionary [80]. For example,

in the case of block incoherent dictionaries, the cumulative coherence grows rapidly from

µ1(0) up to µ1(k − 1) and then grows slowly, with k being the cardinality of the most

populated sub-dictionary. Figure 2.1 presents the evolution of the cumulative coherence for

a dictionary having two highly redundant parts. For m = 5, there is a sharp inflection of

the curve as the cardinality of the most populated group of atoms is k = 6. To summarize,

a quasi-incoherent dictionary has both small coherence, and small structural redundancy,

and its cumulative coherence grows slowly. Block incoherent dictionaries rather have a

large coherence and a cumulative coherence that grows fast up to an inflexion point at

m = k − 1, and then grows slowly. Block incoherent dictionaries are good candidates for

one-step clustering of atoms into molecules.

16 Chapter 2. Tree-Based Pursuit

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Dictionary

0 2 4 6 8 10
0

1

2

3

4

5

6

7

Cumulative Coherence

m

µ
1
 (m)

bound

a. b.

Figure 2.1 – (a) Simple block incoherent dictionary made of two highly redundant parts. (b) Evolution

of its cumulative coherence and the upper bound provided by eq. (2.14).

2.3.3 Tree-structured dictionaries

The hypothesis that the dictionary is reducible ensures that it is possible to partition it

into reducible sub-dictionaries, and to recursively find molecules. However, we have not

yet provided a way to compute the partition of D in sub-dictionaries. Our ultimate goal

is to have as few sub-dictionaries as possible, with atoms within each sub-dictionary that

are as similar (correlated) as possible, and atoms from different sub-dictionaries as different

(uncorrelated) as possible. We propose a clustering approach that starts from an existing

dictionary and endows it with a tree structure T , with nodes ti ∈ T . The sub-dictionaries

are seen as clusters of atoms, and the associated molecules are the centroids of each cluster.

Each node ti = {ai,mi} of the tree is associated to a list ai containing the indices of its

children and to a molecule mi representing these children through eq. (2.8). A leaf node ti
is associated to an original atom from the dictionary D, and ai contains the index of that

atom in D. The root node of the tree is labeled t0 and has no associated molecule. See

Figure 2.6 for an illustration of these notations.

In general, two different clustering approaches can be chosen: (i) a top-down ap-

proach that tries to divide the reducible dictionary (or sub-dictionary) into sub-dictionaries,

that satisfy the similarity constraints, and (ii) a bottom-up approach that groups similar

atoms/molecules together as long as similarity constraints are satisfied. A top-down ap-

proach using constraints on similarity has been introduced in [21] and is called diametrical

clustering. This algorithm was developed for gene clustering to fit an observation stating

that genes with anti-correlated expression patterns can be functionally similar. The same

observation is true for a dictionary approach of signal decomposition : two anti-correlated

atoms have the same behavior as they capture the same structure.

In this thesis, we will follow a bottom-up approach, which consists in grouping nodes,

2.3. Structuring Redundant Dictionaries 17

starting from atoms, to create new nodes and molecules. The bottom-up approach is better

appropriate to the clustering of arbitrary dictionaries, since the number of clusters does not

need to be known in advance. The bottom-up approach presented here sets the cardinality

k of each cluster. Algorithm 2.3.3 presents the method. Initially, it creates nodes containing

the atoms from a dictionary D. The recursive part consists in finding groups {G} of nodes

that can be merged. A set ΩG of molecules is associated to G. We propose a weak and a

strong rule. The weak version defines ΩG = {mi}i∈G, while for the strong decision rule, ΩG

contains the molecules associated to the leaf nodes that are the descendants of the different

nodes of G (i.e., ΩG ⊂ D). The set of nodes G is merged if max
i,j∈G
i6=j

d(mi,mj) < δ, where δ is

an a priori fixed threshold.

Algorithm 1 Tree Creation by grouping.

INPUT: D = {gi}, the dictionary.

k, the cardinality of the clusters.

δ, the grouping threshold.

OUTPUT: T = {ti}, the tree.

ALGORITHM:

ai = ∅, ∀ 0 < i ≤ |D|+ 1, leaf nodes have no children.

mi = gi−1, ∀ 0 < i ≤ |D|+ 1, molecules at leaf nodes.

ti = {ai,mi}, leaf nodes of the tree.

T = {ti}, initial tree.

L = {i}|D|+1
i=1 , list of candidates for grouping.

G = arg maxG⊂L,|G|=k λΩG
, subset of nodes to group.

while 1− λ2
ΩG

< δ do

m|T |+1 = mopt
ΩG

, create the new molecule.

a|T |+1 = G, list of children.

L = L \G, remove grouped nodes from the list.

L = L ∪ {|T |+ 1}, add index of new node to the list.

t|T |+1 = {a|T |+1,m|T |+1}, create new node.

T = T ∪ t|T |+1, add the new node to the tree.

G = arg maxG⊂L,|G|=k λΩG
, subset of nodes to group.

end while

m0 = 0, no molecule at root node.

t0 = {L,m0}, list of nodes at first level.

T = T ∪ t0, add root node to the tree.

Finding the best group of k nodes is still a combinatorial problem, but it can be easily

solved for small values of k (our results are based on trees created with k = 2). The tree

can be constructed off-line, without penalizing the pursuit algorithm. Figure 2.2 illustrates

the construction of a binary tree, for a dictionary of 12 random vectors. The most similar

atoms are paired together, until the algorithm reaches level 1 with 3 molecules, which are

too incoherent to be further clustered.

18 Chapter 2. Tree-Based Pursuit

Dictionary

Molecules at level 4

m
1

m
4

m
10

m
11

Molecules at level 3

m
3

m
5

m
6

m
7

m
8

m
12

m
13

m
15

Molecules at level 2

m
2

m
9

m
14

m
16

m
17

m
18

Molecules at level 1

m
19

m
20

m
21

m 0

m 19 m 20 m 21

m 14 m 16m 2
m 18 m 9

m 17

m 6 m 8 m 5 m 7 m 3 m 15 m 12 m 13

m 1 m 4 m 10
m 11

m
1

m
4

m
10

m
11

m
3

m
5

m
6

m
7

m
8

m
12

m
2

m
9

Figure 2.2 – Creation of a tree on top of a 2D dictionary. The upper-left part shows all atoms in the

dictionary. The bottom-right part summarizes the structure of the tree. The other parts correspond to

the molecules or atoms present at the different levels of the tree.

2.4 Tree-Based Pursuit algorithm

2.4.1 Tree-based search

In a sense, a single iteration of Matching Pursuit can be seen as a classification problem

where each atom corresponds to a class of signals. Its aim becomes to successively map

the residual signal to a class according to a given distance measure. When considering

the greedy approximation problem as an iterative classification problem, the tree structure

can be used to divide the decision into smaller steps in a manner similar to a decision

tree. Matching Pursuit simply tries all possibilities to find the best class. The use of a

hierarchical structure allows to discard an important part of the dictionary at each node.

In the following, we describe a practical implementation of this technique, the Tree-Based

Pursuit algorithm. Like Matching Pursuit, the proposed algorithm iteratively searches for

a good atom to approximate a residual signal Rnf . Instead of testing all possible atoms

from D, Tree-Based Pursuit uses the tree structure T that groups similar atoms in the

same subtree. The search starts at the root node and goes down through the tree until a

leaf node is reached. At each node, the algorithm chooses the child whose molecule best

approximates the signal (i.e., the one that leads to the highest amplitude of the scalar

product with the residual).

In practice, a dictionary D is often built using several generating functions, which are

translated to different positions in the signal space, e.g., in time or space. Let Tp be the

2.4. Tree-Based Pursuit algorithm 19

operator that translates a generating function at position p on the support of the atom

and leaves the energy unchanged. Tree-Based Pursuit is described by Algorithm 2.4.1 for

dictionaries built using generating functions that can be translated at any place on the

support of the signal to approximate. However, it remains valid for any kind of dictionary.

For dictionaries that do not explicit the translation of atoms, the search of the optimal

position is simply discarded.

Algorithm 2 Tree-Based Pursuit algorithm

INPUT: T = {ai,mi}, the tree structured dictionary

σ, the size of the local search window

f , the signal to approximate.

OUTPUT: {gn}, the set of chosen atoms

{cn}, the set of corresponding projections.

INITIALIZATION: R0f = f , n = 0

repeat

[popt, aopt] = arg maxp,a∈a0
|〈Rnf, Tpma〉|

while |aopt| > 1 do

[popt, aopt] = arg maxp,a∈aopt
|〈Rnf, Tpma〉|, |p− popt| < σ

end while

gn+1 = Tpoptgaopt

cn+1 =< Rnf |gn+1 >

Rn+1 = Rnf − cn+1gn

n = n + 1

until Stop condition is met.

At the root node, the scalar products between the residual Rnf and the molecules of the

nodes at the first level of the tree are computed. This step is equivalent to Matching Pursuit

using the molecules of the first tree level as dictionary. When using dictionaries built using

generating functions, the initial step also gives the position of the best molecule. It can be

considered as an energy localization phase. Note that in our case, this localization method

is particularly efficient, since molecules really represent the kind of features the dictionary is

able to catch. The scalar products between the residual and the molecules of the candidate

nodes are computed locally, around the position of the molecule, in a search window of size

σ. The traversal is over when the algorithm reaches a leaf node. The information about the

position and the node of the tree uniquely identifies an atom from the dictionary D. The

algorithm goes on until a stopping criterion is met. It could be a predetermined number of

atoms, or a threshold on the residual energy.

The choice of the size of the search window σ should depend on the shape of the atoms.

As a molecule represents its associated subtree, it is reasonable to think that the best

position found for a molecule is near the best positions of its children. The search window

should reflect the decay of the correlation of the molecules and translated versions of their

children (i.e. the decreasing of the cross-correlation).

20 Chapter 2. Tree-Based Pursuit

2.4.2 Complexity Analysis

The complexity of the proposed algorithm highly depends on the structure of the tree. In

order to be able to evaluate the complexity of Tree-Based Pursuit, let us first make some

hypothesis about the tree. Assume that the number of children per node is a constant

k, except for the root node, which has |a0| children. A tree generated by the algorithm

proposed in Section 2.3.2 fulfills these constraints. Let us also suppose that the tree is

balanced, meaning that the length of the longest path differs at most by 1 from the length

of the shortest path. It ensures that the maximum length of the paths to the leaves is

minimized. Under these assumptions, the length of the longest path is d1+logk
|D|
|a0|
e, where

|a0| is the number of nodes under the root node and k is the size of the groups formed

during the creation of the tree.

Let us first look at the case where the dictionary is not built using translation of gen-

erating functions. At the nth iteration, Matching Pursuit would require to compute all

scalar products between the atoms of D and a residual Rnf . For a d dimensional signal,

the computation of the scalar product needs d multiplications and d − 1 additions. Thus,

the complexity to find one atom is O(|D|d). Tree-Based Pursuit reduces this complexity,

since the divide and conquer procedure eliminates many possibilities at each level. At the

root node, |a0| scalar products have to be computed. Each other node only requires the

computation of k scalar product to find the best child. Thus, the overall complexity is

reduced to O(|a0|d + d1 + logk
|D|
|a0|
ekd).

For dictionaries built using translation of generating functions, the algorithm has not

only to find the best node but also the corresponding position in the signal. At the root

node, a full search is done, which is equivalent to Matching Pursuit using the reduced

dictionary made of the molecules of the nodes that are located at the first level of the tree.

During the rest of the traversal of the tree, a local search in a window of size σ is performed.

Let σ̃ be the maximal amount of possible positions to test in a window of size σ.

A commonly used and smart implementation of Matching Pursuit consists in using

a Fast Fourier Transform to compute all scalar products with shifted atoms. Such an

implementation has a complexity of O(|D|d log d) to find the best atom. Each local search

has a complexity of O(σ̃d). Putting it all together, the complexity of the proposed algorithm

for finding the best atom is:

O(|a0|d log d + (dlogk

|D|
|a0|
e)σ̃d). (2.15)

For reasonable values of the search window σ, the descent trough the tree is negligible

regarding the complexity of the initial step. The complexity of Tree-based Pursuit is less

affected by the growth of the dictionary, while the complexity of Matching Pursuit increases

linearly. However, it has to be noticed that the approximation rate of the Tree-Based

Pursuit algorithm decreases when the number of children of the root becomes smaller

relatively to the size of the dictionary, as discussed in the next section.

2.5. Consistency analysis 21

2.5 Consistency analysis

2.5.1 From redundant to block incoherent dictionaries

Most theoretical results in the field of sparse approximations rely on (quasi) incoherent

dictionaries. Only little work has been done on highly redundant dictionaries despite their

interesting properties for approximation and compression. Interestingly, endowing the dic-

tionary D with a tree structure can also be thought of as a way to artificially lower the

coherence. During the creation of the tree, our clustering algorithm minimizes the coherence

among molecules. Thus, even for highly correlated dictionaries, the theoretical results rely-

ing on small coherence most probably remain valid at the granularity level of the molecules.

In this section, we build upon this idea and analyze the theoretical approximation perfor-

mance of the algorithm.

The creation of molecules relies on having sub-dictionaries containing highly correlated

atoms. The following definition summarizes the constraints ensuring the favorable cases.

Definition 1. A sub-dictionary DΛ is reducible to a molecule mΛ, which is called repre-

sentative if

� it’s minimal coherence λΛ is strictly positive.

� mink∈Λ | 〈gk,mΛ〉 |≥ λΛ.

� mΛ ∈ span {DΛ}.

In section 2.3, we have defined an optimality criterion for a molecule relying on the mea-

sure of a mean distance that defines a convex set. This implies that standard optimization

tools can be applied to find an optimal molecule. Let us now measure the adequation of a

molecule regarding the sub-dictionary it represents by :

σΛ = min
i∈Λ
| 〈mΛ, gi〉 | . (2.16)

The definition of a representative molecule therefore implies that the minimal coherence

of a molecule regarding its associated sub-dictionary is such that σΛ ≥ λΛ. In other words,

adding the molecule mΛ to its sub-dictionary DΛ does not change the minimal coherence.

This condition defines a subspace of span{D} where the molecule is allowed to exist.

2.5.2 Covering conditions

Since the search is organized along a tree structure, it has to be ensured that the re-

structured dictionary is still able to cover the full space of the input signal. Tropp has

defined a measure of the covering radius of a dictionary [79], as :

cover(D) = max
s 6=0

min
i∈Γ

√

1− (
| 〈gi, s〉 |
‖gi‖2‖s‖2

). (2.17)

22 Chapter 2. Tree-Based Pursuit

The relation between the covering radius and the structural redundancy β of a dictionary

given in Eq. (2.5) is straightforward. The covering is minimal when β is maximal :

cover(D) =
√

1− β2. (2.18)

We now set the conditions that are necessary for the clustered dictionary to fully cover

the signal space. In particular, it is necessary that the molecules at the first level under the

root node, cover the signal space. Note that such a requirement is naturally met at other

levels of the tree: by the bottom-up construction, each molecule is indeed representative

of the related sub-dictionary. The following lemma states a minimal condition on the

molecules to ensure that a signal f , which can be represented using atoms from D, can also

be represented using only molecules. More precisely it provides a minimal condition, given

the parameter β of D, to ensure that the molecules at the first level of the tree cover the

same span as the dictionary itself.

Lemma 1. If the collection of sub-dictionaries {DΛi
, i = 1, . . . , K} forms a partition of D

and the associated molecules are representative, then span{mΛi, i=1,..., K} = span D if

σΛi
> β + 2

√

1− β − 1,∀i. (2.19)

Proof. Since the molecules are by construction in the span of their associated sub-dictiona-

ries, the span of the molecules is within the span of the original dictionary D :

span {mΛi
, i = 1, . . . , K} ⊆ span D. (2.20)

In order to ensure that the span of the molecules covers the span of the dictionary, it

remains to show that the orthogonal complement of span {mΛi
, i = 1, . . . , K} in span D

is actually empty.

Let f 6= 0 be a signal lying in the span of the dictionary D. Without loss of generality,

let f be a unit norm signal. In addition, let the atom g0 ∈ D carry the best one-term

approximation of the signal, i.e., | 〈f, g0〉 |= max
i∈Γ
| 〈f, gi〉 |. Suppose the atom g0 belongs to

the sub-dictionary DΛ0 which is represented by the molecule mΛ0 . The distance between f

and mΛ0 can be bounded by :

‖f −mΛ0‖2 ≤ ‖g0 −mΛ0‖2 + ‖f − g0‖2. (2.21)

Without loss of generality, assume that 〈f, g0〉 > 0 and 〈mΛ0 , g0〉 > 0, by construction of

the clustered dictionary. Recall that the direction of an atom does not have any impact in

terms of approximation rate, so that we can assume positive correlation values. Since all

vectors have unit norm, it is possible to rewrite eq. (2.21) as :

√

1− 〈f,mΛ0〉 ≤
√

1− | 〈g0,mΛ0〉 |+
√

1− | 〈f, g0〉 |. (2.22)

We can also bound the last scalar product by :

| 〈f, g0〉 |≥ β. (2.23)

2.5. Consistency analysis 23

Using equations (2.16) and (2.23), we obtain :

√

1− 〈f,mΛ0〉 ≤
√

1− σΛ0 +
√

1− β. (2.24)

We would like to show that the projection of the signal f onto the molecule that is

representative of the sub-dictionary DΛ0 is never null. In other words, we would like to

ensure that, if the best one-term approximation of f lies within DΛ0 , then the signal f

is never orthogonal to the molecule mΛ0. Imposing that mΛ0 is not orthogonal to f is

equivalent to require that
√

1− 〈f,mΛ0〉 6= 1. Using eq. (2.24), this holds whenever

√

1− σΛ0 +
√

1− β < 1, (2.25)

which leads to :

σΛ0 > β + 2
√

1− β − 1. (2.26)

If this condition is verified, it ensures that 〈f,mΛ0〉 > 0 whenever the signal f ∈ D has a

component along g0 ∈ DΛ0.

If the condition given in eq. (2.26) is true for all sub-dictionaries of the first level of the

tree (that form a partition of D), then @f ∈ span D such that 〈f,mΛi
〉 = 0, ∀i. Hence

span D = span {mΛi
, i = 1, . . . , K}.

When the formula of Lemma 1 holds, we can treat the set of molecules as a genuine

dictionary. Let {DΛi
} form a partition of D and let DM = {mΛi

} be the dictionary made

of the molecules. This dictionary has an associated characteristic parameter βM . For any

signal f ∈ span D, we thus can lower bound the projection on the molecules :

max
mi∈DM

|〈f,mi〉| ≥ βM ||f ||. (2.27)

This also leads to :

max
mi∈DM

|〈f,mi〉| ≥ βM max
i∈Γ
|〈f, gi〉|. (2.28)

Obviously βM ≤ β. It would also be interesting to characterize the (cumulative) coherence

of the dictionary. In the next section we show that Tree Based Pursuit benefits from

representative molecules and is able to identify the signal at the granularity level of its

representative sub-dictionaries.

2.5.3 Recovery Condition

In the previous section, we have set the conditions for the tree structured dictionary to cover

the span of the original dictionary D. We now derive a condition for the search algorithm

to choose consistent molecules given a signal f , that is a linear combination of vectors in

D. Let the signal f have an exact representation using atoms from the dictionary D :

f =
∑

i∈Ω

cigi, (2.29)

where Ω is a subset of indices.

24 Chapter 2. Tree-Based Pursuit

Tropp [78] derived a minimal condition that guarantees that Orthogonal Matching Pur-

suit and Basis Pursuit recover Ω, where Ω is the smallest set such that eq. (2.29) holds.

We now show that this recovery condition holds true for TBP at the level of representative

molecules of a very redundant dictionary. Let Φ be a matrix whose columns contain the

atoms that are in Ω. The signal can be written as f = ΦA, where the vector A contains

the weights ci relative to atoms in Ω.

Let fk be the approximation of f after k iterations of Tree-Based Pursuit. We write

fk = ΨkAk, where Ψk contains the atoms found by Tree-Based Pursuit and Ak the cor-

responding weights. Since we do not impose any restriction on the cumulative coherence

of the dictionary, we cannot directly apply the results developed in [78], which typically

use the cumulative coherence for an estimation of the exact recovery condition. We do not

necessarily intend to recover exactly the atoms in Φ, but we rather want to ensure that the

atoms found by Tree-Based Pursuit are close to the optimal ones (and in particular, in the

same sub-dictionaries). We focus on the decision taken by Tree-Based Pursuit at the root

of the tree and want to guarantee that it never chooses a node that does not contain at

least one atom from Ω in its subtree.

If after k iterations of Tree-Based Pursuit, the decisions at the root node are always

correct, no atom from Ψk is located in a subtree that does not contain an atom from Ω.

Let Φk be a matrix containing the distinct atoms from Φ and Ψk. Similarly, the index

set Ωk is the set of atoms present in Φk. As it has been discussed, due to the bottom-up

construction of the tree, the critical step consists in choosing the correct molecules at the

first level of the tree. Assume once again that the sub-dictionaries {DΛi
} form a partition

of the dictionary, and that each sub-dictionary is reduced to a molecule mΛi
. We say that

mΛi
is a good molecule if it represents at least one atom participating in f . The matrix

MG contains all good molecules in its columns. Similarly, MB contains the bad molecules

of the first tree level in its columns. The following theorem states the necessary conditions

for the tree-based pursuit algorithm to choose the correct molecule at the first level of the

tree.

Theorem 1. If the hypothesis of Lemma 1 holds true, then Tree-Based Pursuit chooses a

good molecule at the first level of the tree, at iteration k, if

max
m∈MB

||Φ+
k m||1 < βM , (2.30)

where Φ+
k is the Moore-Penrose pseudo-inverse of Φk.

Proof. The proof of Theorem 1 is an extension of Tropp’s Recovery Condition [78] and we

provide here only the differences to the proof given in [78]. Assume that at each iteration

i < k, Tree-Based Pursuit has chosen a good molecule at the first level of the tree. It has to

be noted that the atoms in Ω all belong to subtrees of nodes associated to good molecules.

Under the assumption that we have chosen only good molecules, the atoms in Ωk also belong

to subtrees of nodes associated to good molecules. The residual signal rk = f − fk can be

exactly represented as rk = ΦkA
R
k , where AR

k contains appropriate weights. The vectors

M∗
Brk and M∗

Grk list all possible scalar products of the residual rk with, respectively, the bad

2.6. Experimental Results 25

and good molecules (M∗ stands for the adjoint of M). The aim is to find a condition that

ensures that the current step also recovers a good molecule. A good molecule is therefore

chosen by the search algorithm if :

||M∗
Brk||∞

||M∗
Grk||∞

< 1. (2.31)

If the hypothesis of Lemma 1 holds true, then the lower bound on the projection on

the molecules given in Eq. (2.28) can be used to further develop the left-hand side of the

previous equation. We can write :

||M∗
Brk||∞

||M∗
Grk||∞

≤ ||M∗
Brk||∞

βM ||Φ∗
krk||∞

. (2.32)

The last steps of the proof are analog to Tropp’s recovery condition [78] proof, which

finally leads to the conservative condition :

1

βM
max

m∈MB

||Φ+
k m||1 < 1. (2.33)

One could further apply Tropp’s estimate of eq. (2.33) in terms of the cumulative

coherence [78] of the set of molecules, in order to obtain a condition that would depend on

the set of molecules only (and not on the unknown optimal set MB). This estimate requires

the set of molecules to be quasi-incoherent. Note that this is very likely to be the case here,

but it would even be better to actually prove how µ1 behaves as we climb up the granularity

level of the tree. Finally, note that the recovery condition itself holds at a coarser level than

in previous works : Tree-Based Pursuit recovers only molecules that are involved and not

the individual atoms. On the other hand, this allows to shift the incoherence constraint to

the molecules and work with a possibly highly correlated dictionary.

2.6 Experimental Results

2.6.1 1-D signals

This section now illustrates the Tree-Based Pursuit algorithm, and compares its perfor-

mances to Matching Pursuit. We present results for both 1-D and bi-dimensional signals

(i.e., images). Often, in practice, the dictionaries are built using shift invariant generating

functions that can be translated at any place in the support of the signal. In order to

illustrate the generality of the method, let us first consider a dictionary D made of random

atoms. It represents the worst case for the construction of the tree. The size of the dic-

tionary is |D| = 4000. The atoms are real vectors of size d = 40. Thus, the dictionary is

100 times redundant. Each sample has uniform probability between 0 and 1 and the atoms

are normalized to have unit energy. The complexity of Tree-Based Pursuit mostly depends

26 Chapter 2. Tree-Based Pursuit

on the number of molecules under the root node. Thus, 20 trees have been generated for

different numbers of nodes at the first level of the tree, |a0| ranges from 200 up 4000 by

steps of 200. Two sets of trees have been generated depending on the decision rule to create

the molecules (weak or strong).

In order to evaluate the performances of Tree-Based Pursuit, 100 test signals have been

randomly generated using the same procedure as for the dictionary. Each individual signal

has been approximated using N = 30 atoms from the dictionary D. Figure 2.3 illustrates

the mean approximation error achieved. It has to be noticed that for |a0|
|D| = 1, Tree-Based

Pursuit is equivalent to Matching Pursuit. The ratio |a0|
|D| reflects roughly the complexity

of Tree-Based Pursuit regarding Matching Pursuit. The error decreases as the number of

nodes at the first level of the tree increases.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

−4
Dictionary: | |=4000, d=40, Approximation: N=30

m
e

a
n

 M
S

E
 (

1
0

0
 s

ig
n

a
ls

)

weak grouping
strong grouping

Figure 2.3 – Mean approximation error of random signals using a random dictionary.

Random dictionaries are seldom used to approximate signals. Consider now a dictionary

made of real Gabor functions, as in [51] :

gu,s,ξ,φ(t) = Cu,s,ξ,φg(
t− u

s
) cos(2πξ(t− u) + φ), (2.34)

with

g(t) =
1√
s
e−πt2 . (2.35)

The normalizing constant Cu,s,ξ,φ is such that the corresponding atom is of unit energy. The

parameter u is the position, s is the scale, ξ represents the frequency and φ is the phase.

Figure 2.4 presents 3 atoms of such a dictionary, and the representative molecule, which is

the eigenvector associated to the biggest eigenvalue of AΛA∗
Λ, as discussed in Section 2.3.

Figure 2.5 shows the time-frequency representations of the atoms and the molecule of

2.6. Experimental Results 27

Figure 2.4. We can observe that the molecule indeed provides global information about all

the atoms, and nicely summarizes the characteristics of the sub-dictionary.

0 100 200

−0.2

−0.1

0

0.1

0.2

0.3

s = 16, f = 0.0783, p = 128

Time

A
m

p
lit

u
d

e

0 100 200

−0.2

−0.1

0

0.1

0.2

0.3

s = 32, f = 0.0783, p = 128

Time

A
m

p
lit

u
d

e

0 100 200

−0.2

−0.1

0

0.1

0.2

0.3

s = 64, f = 0.0783, p = 128

Time

A
m

p
lit

u
d

e

0 100 200

−0.2

−0.1

0

0.1

0.2

0.3

Molecule

Time

A
m

p
lit

u
d

e

Figure 2.4 – Representing a group of atoms by a molecule. From top-left to bottom-left: Real Gabor

atoms with same frequency f and position p but with different scales s. Bottom-right: the molecule is

the eigenvector associated to the biggest eigenvalue of AΛA∗

Λ
.

s = 16, f = 0.0783, p = 128

Time

F
re

q
u

e
n

c
y

0 100 200
0

0.1

0.2

0.3

0.4

s = 32, f = 0.0783, p = 128

Time

F
re

q
u

e
n

c
y

0 100 200
0

0.1

0.2

0.3

0.4

s = 64, f = 0.0783, p = 128

Time

F
re

q
u

e
n

c
y

0 100 200
0

0.1

0.2

0.3

0.4

Molecule

Time

F
re

q
u

e
n

c
y

0 100 200
0

0.1

0.2

0.3

0.4

Figure 2.5 – Time-Frequency plane of the atoms and the molecule presented in Figure 2.4.

In our experiments, we used a dictionary built on real Gabor atoms with size 256, where

the phase φ is set to zero in eq. (2.34). We used 200 different frequencies uniformly spread

over the interval of normalized frequencies [0 0.5] and the scales are dyadic. The overall

28 Chapter 2. Tree-Based Pursuit

size of the dictionary is 1600 (i.e. 1600 times redundant) , without taking into account all

possible shifts, which are not considered during construction of the trees. The translation

parameters are however computed by the search algorithm. Figure 2.6 shows a part of an

example tree built on the multiscale Gabor dictionary, where we only use centered versions

of the atoms.

t0,0

t1,0 t1,1 t1,2 t1,3

t2,12 t2,13 t2,14 t2,15

m 1,3

m 2,12

t3,50

m 3,50

a3,50 = {14, 17, 18, 36}

g14 g17 g18 g36

Figure 2.6 – Tree structure on top of a multiscale Gabor dictionary.

We now compare the performance of the Tree-based Pursuit algorithm, for different

tree constructions, with Matching Pursuit. The reference Matching Pursuit computes all

possible convolutions in the frequency domain by using a Fast Fourier Transform. Tree-

Based Pursuit uses the same Matching Pursuit implementation at the initial step for the

first level of the tree. This technical choice makes it possible to compare the complexity of

both algorithms.

Numerous tree structured dictionaries have been generated for different values of the

distance threshold δ, using the grouping strategy given in Algorithm 2.3.3, with a weak

decision rule for clustering of the atoms. We selected three different trees, with δ values

2.6. Experimental Results 29

[0.36 0.75 0.99]. This corresponds respectively to minimal values of [0.8 0.5 0.1] of the

scalar product between two molecules to form a cluster. The value of δ determines |a0|, the

number of nodes at the first level of the tree. In these particular cases, the trees respectively

present 240, 51 and 11 nodes at the first level under the root node. Moreover, under the

assumption that the trees are balanced, their average depth would be 3, 5 and 8 in the

order of increasing values for δ. Figure 2.7 presents the molecules at the first level of the

tree created with δ = 0.99, while Figure 2.8 illustrates the corresponding time-frequency

diagrams.

Figure 2.7 – Molecules associated to the nodes located at the first level of the tree created with a

grouping threshold δ = 0.99.

Figure 2.8 – Time-frequency distributions corresponding to the molecules exhibited by Figure 2.7.

30 Chapter 2. Tree-Based Pursuit

We can now compare the approximation performance, and the computational complex-

ity of Tree-based Pursuit, as opposed to Matching Pursuit. The size of the search window

σ is 5. Part (a) of Figure 2.9 compares the mean square error obtained with Matching and

Tree-Based Pursuit using the different trees defined above. The results have been averaged

over 100 zero-mean random signals with Gaussian distribution of unit variance. When using

trees created with small values for δ, the results are very close to the reference Matching

Pursuit. Recall that small values of δ impose very strict constraints on the clustering of

atoms and molecules, which may result in a large number of molecules at the first level of

the tree. The computation time depends on δ, since it depends on the amount of nodes at

the first level of the tree |a0|, as discussed in Section 2.4. Experimental results confirm the

complexity analysis in part (b) of Figure 2.9. Indeed, if we compute a linear approximation

of the Tree-based Pursuit computation time as a function of |a0|, in a mean square sense,

it intersects the Matching Pursuit computation time around |a0| = 1618 (the dictionary

contains 1600 atoms). This shows that most of the complexity of Tree-based Pursuit lies

in the full search at the first level of the tree; after this initialization step, the cost of the

traversal of the tree can be considered as negligible regarding the initial search.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSE comparison

N

M
S

E

MP
TBP δ = 0.36
TBP δ = 0.75
TBP δ = 0.99

(a)

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

Time per Atom

|a0|

T
im

e
 [

s
]

TBP δ = 0.36
TBP δ = 0.75
TBP δ = 0.99
TBP
MP

(b)

Figure 2.9 – (a) Comparison of the error produced by the proposed algorithm when using different

bounds for the grouping. (b) Comparison of the complexity between Matching Pursuit and Tree-Based

Pursuit, when using different values for δ during the creation of the tree structure.

2.6.2 Extension to multi-dimensional signals

This section extends the analysis of the Tree-based Pursuit algorithm to images. Reduction

of the complexity in the case of multidimensional signal is even more crucial than for 1-D

signals. We use a dictionary that is built on gaussian generating functions that are scaled,

rotated and translated [30]. The first generating function is a Gaussian as given by eq.

(2.36), which suits well the task of capturing the low-frequency parts of natural images.

The second generating function, given in eq. (2.37) is made of a Gaussian in one direction

and its second derivative in the other direction. It has a good ability to capture edges in

2.7. Application: Very low bit rate face coder 31

images and is spatially and frequencially well located.

g1(x, y) =
1√
π

exp−(x2 + y2). (2.36)

g2(x, y) =
2√
3π

(4x2 − 2) exp−(x2 + y2). (2.37)

In our experiments, the atoms using g2 as generating function have translation param-

eters that take any positive integer value smaller than the size of the image. The rotation

parameter varies by increments of π
18 . The scaling parameters are uniformly distributed on

a logarithmic scale from one up to an eighth of the size of the image, with a resolution of

one third of octave. The scaling along the second derivative part is always smaller. For

the pure Gaussian atoms, the translation parameters can take the same values, the scaling

is isotropic and varies from 1
32 to 1

4 of the size of the image on a logarithmic scale with a

resolution of one third of octave. Due to isotropy, rotation is obviously useless for this kind

of atoms.

The dictionary is made of 514 generating functions that can be placed anywhere on the

support of the signal (i.e. the dictionary is 514 times redundant). Algorithm 2.3.3 was used

with a strong decision rule to create the molecules; 20 different trees have been created

with different values of δ, chosen to create trees having values for |a0| ranging from 0.05|D|
up to D by steps of 0.05|D|.

Figure 2.10 presents a comparison of the approximation error of Tree-based Pursuit and

Matching Pursuit averaged over 120 natural images of size 16× 16. The mean time to find

one atom has also been computed. As explained in section 2.4, the computational time

mostly depends on the number of nodes at the first level of the tree. Figure 2.10 shows

that for a computational time of about 20 percent of the reference Matching Pursuit, the

errors are comparable. When using only a few atoms, it also happens that Tree-Based

Pursuit performs better. The used dictionary represents a favorable case for the creation of

a tree structure as the atoms corresponding to edges in the same direction can be efficiently

represented by a unique element without loosing the edge detection ability. This dictionary

has a flavor of the ideal case represented by block incoherent dictionaries.

The lower parts of the results presented in Figure 2.10 present the value of δ used for the

creation of the corresponding trees. Tree-Based Pursuit is equivalent to Matching Pursuit

when using trees created with a value of δ = 0. However, due to a more complex data

structure to handle, the computational time is slightly higher.

2.7 Application: Very low bit rate face coder

2.7.1 Motivations

Tree-Based Pursuit provides good approximations at much lower costs than Matching Pur-

suit. In this section we tackle the problem of coding human faces at very low bit rate.

Coding schemes using redundant dictionaries are very efficient to achieve low bit rates

32 Chapter 2. Tree-Based Pursuit

0 0.2 0.4 0.6 0.8 1
0

0.5

Mean time / Mean time MP

δ

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

M
e

a
n

 P
S

N
R

Comparison MP − TBP (N = 25)

Matching Pursuit
Tree−Based Pursuit

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

Mean time / Mean time MP

δ

28

28.5

29

29.5

30

30.5

31

31.5

M
e

a
n

 P
S

N
R

Comparison MP − TBP (N = 150)

Matching Pursuit
Tree−Based Pursuit

(b)

Figure 2.10 – Performance of Tree-Based Pursuit compared to Matching Pursuit for different trees.

The x axis corresponds to the mean time per atom divided by the mean time per atom for Matching

Pursuit. The lower part of the figures presents the value of δ used during the creation of the tree. Part

(a), mean error achieved using 25 atoms. Part (a), mean error achieved using 150 atoms.

whilst having limited visual artifacts [29] at the cost of finding good approximations. In

addition, very low bit rate coding of human faces is an application that would normally

take place in a context where a huge number of faces has to be treated. Thus, the encoding

time has to be low. It represents a typical case where Tree-Based Pursuit enables to benefit

from sparse representations while keeping an acceptable computational complexity.

Compression matters for security applications as it may be of great interest to be able

to save the compressed images on cheap memory cards. It permits to integrate the digital

face into different supports as ID cards or passports. It could also be of great interest to

be able to store many faces on portable devices. Our coding scheme achieves the desired

compression ratio by mean of sparse approximation using an adapted redundant dictionary.

2.7.2 Coding scheme

In [63], the authors propose to use a Laplacian Pyramid to split the image into a coarse and

a detail version. The first part is just quantized and the detail version is approximated using

Matching Pursuit and an adapted dictionary. Most of the important visual information is

located in the detail version.

The proposed coding scheme has been inspired by [63]. Whilst their coding scheme

works for any kind of image, we wanted to take advantage of the knowledge that we have to

encode faces. Our assumptions are that the size of the images is fixed and that the position

and the orientation of the faces are always the same.

Figure 2.11 presents the coding scheme. First, the image I passes trough a filtering

stage. Let IL be the low pass version and IH the high pass one such that I = IL + IH .

The two different parts will be approximated and encoded independently. Given a target

2.7. Application: Very low bit rate face coder 33

bit rate, a Rate-Distortion optimization is used to compute the optimal number of bits to

allocate for the different versions. A Rate-Distortion based method is also applied to obtain

the optimal parameters for the quantization steps. Finally, the approximation is encoded

in a bitstream.

Face

Image

FACE MODEL

REPRESENTATION

High freq.

image

Low freq.

image
Model

Parameters

Sparse

Coefficients

QUANTIZATIONFILTERING
RATE DISTORTION

OPTIMIZATION

TREE BASED

PURSUIT

bitstream
BITSTREAM

GENERATOR

Figure 2.11 – Coding scheme of the proposed low bit rate face coder.

Low frequencies coding

All faces are located roughly in the same position inside the images. Thus, the versions

containing the low frequencies are looking very similar and are far from being random points

in the image space. We take advantage of this by learning an adapted orthogonal base. We

used the Principal Component Analysis to get the vectors that match the distribution of

the low frequency version. In the case of face images, the eigenvectors are called Eigenfaces

[81] and noted E = {ei}. This technique has been used to detect or classify faces. We

learned the Eigenfaces from a set of face images. The ones associated with the biggest

eigenvalues are presented in Figure 2.12.

Figure 2.12 – First Eigenfaces used to encode the low frequencies in the face images.

34 Chapter 2. Tree-Based Pursuit

The low pass version of the image is approximated as a weighted sum of Ne learnt

Eigenfaces. Given the total number of bits, a Rate Distortion optimization allocates a

certain bit budget bL for coding the low frequencies. The best approximation with Ne

terms is found by taking the Eigenfaces associated with the projections having the biggest

amplitude i.e.

IL ≈
Ne
∑

i=1

ciei, (2.38)

where the projections ai are sorted in decreasing order of magnitude.

In order to be able to encode the amplitudes, they have to be quantized. Let Q∆e() be

a uniform quantizer with quantization step ∆e. The approximated low frequency image ÎL

is :

ÎL ≈
Ne
∑

i=1

Q∆e(ci)ei, (2.39)

where ∆e and Ne are such that ‖IL − ÎL‖2 is minimum given the bit budget bL.

High frequencies coding

The approximation of the low frequencies is fast as it is done with an orthogonal base that is

learnt off-line. We want to achieve very low bit rates and the efforts have to be concentrated

on the most difficult information to code. Thus, the high frequencies are approximated with

a redundant dictionary of geometric meaningful functions.

The dictionary is constructed from generating functions g(x1, x2) that are submitted to

different geometric transforms. The basis function is made of a Gaussian in one direction

and its derivative in the other. The possible geometric transforms are precisely described

in [63] :

Translation Tp1,p2 Modify the position of the atom in the image.

Tp1,p2g(x1, x2) = g(x1 − p1, x2 − p2)). (2.40)

Rotation Rθ Changes the orientation of the atom.

Rθg(x1, x2) = g(cos θx1 − sin θx2, sin θx1 + cos θx2). (2.41)

Bending Br Permits to adapt the atom to the contours by bending the x2 axis with a

radius r.

Brg(x1, x2) =

{

g(r −
√

(x1 − r)2 + x2
2, r arctan(x2

r−x1
)) if x1 < r.

g(r − |x2|, x1 − r + rπ
2) if x1 ≥ r.

(2.42)

2.7. Application: Very low bit rate face coder 35

Scaling Ss1,s2 The scaling is anisotropic i.e. different parameters are used for both direc-

tions.

Ss1,s2g(x1, x2) = g(
x1

s1
,
x2

s2
). (2.43)

An atom is defined by the parameters of the previously described transforms; the atom

is normalized to have unit norm.

gp1,p2,θ,r,s1,s2(x1, x2) =
Tp1,p2RθBrSs1,s2g(x1, x2)

‖Tp1,p2RθBrSs1,s2g(x1, x2)‖2
. (2.44)

Figure 2.13 illustrates the different geometric transforms modifying the shape of the

atom. The dictionary is made of all atoms that can be created with these transforms. Even

when using small sets of possible values for each parameters, we generate highly populated

dictionaries.

s
c
a
le

 x
s
c
a
le

 y
ro

ta
ti
o
n

ra
d
iu

s

1 3 5 7 9 11 13 15

1 3 5 7 9 11 13 15

0 2 π/8 3 π/8 4 π/8 5 π/8 6 π/8 7 π/8

2 4 8 16 32 64 128 256

π/8

size x : 100

size y : 100

pos x : 50

pos y : 50

scale x : 1

scale y : 15

rotation : 0

radius : 1Original

Figure 2.13 – The atom on top of the figure is submitted to different changes of the parameters

of the transforms. The first and the second row present changes of parameters the scaling transform

(2.43). The third row presents different rotations (2.41). The last row presents changes of the radius

related to the bending transform (2.42).

The cardinality of the dictionary has an important incidence on the computational

complexity of algorithms like Matching Pursuit. This motivates the use of Tree-Based

Pursuit as algorithm to find a sparse approximation of the image containing the high

frequencies as it permits to represent similar atoms by a single one. The number of terms

36 Chapter 2. Tree-Based Pursuit

to use is given by a Rate-Distortion optimization and depends on the total number of bits

allocated. The found parameters of the atomic decomposition are encoded into the stream.

2.7.3 Results and discussion

Figure 2.14 compares the proposed scheme with a state of the art JPEG2000 coder [70].

The first lines only show results of our coder as the reference coder was not able to achieve

these compression ratios. Even with a very limited number of atoms to represent the high

pass version, a human user is able to recognize the person. Additionally, using geometric

functions as atoms do not introduce visually disturbing artefact.

Security is a major issue in our modern society. Specifically, identity authentication

is one of the most important aspect of security management. Biometric identification

technology represents an extraordinary automatic mean to positively identify a person. Due

to its absence of contact and non-invasiveness, face recognition is viewed as an excellent

solution for biometric authentication for widely spread applications such as authentication

for banking, security system access, advanced video surveillance, video annotation.

The size of biometric information databases imposes drastic compression requirements

on storage and transmission of identification data. Both the authentication and the com-

pression process have to reduce the dimensionality of the data to keep only the fundamental

information regarding their aim. The previous results showed the ability of sparse repre-

sentation to achieve high compression ratios. In [52], we proposed to use the parameters

of a sparse representation to perform face authentication using a Multi-Layer Perceptron.

The obtained results were compared with PCA and LDA systems on the multi-modal

benchmark database BANCA. LDA is performing slightly better but we have shown that

using the previously presented dictionary permits to obtain sparse representations whose

parameters may be used for face authentication whilst providing outstanding performance

in compression. Additionally, in [40], we explored the use of sparse representations for

different security applications and concluded that using simple geometric manipulations on

the atoms lead to interesting results.

2.8 Discussion

This chapter presented a generic algorithm to reduce the computational complexity of pur-

suit algorithms. Hierarchical clustering of dictionary atoms in molecules has been proposed,

as an efficient structuring of large set of functions. The molecules represent a sub-dictionary

of highly correlated atoms and are used to create a tree structure from an arbitrary highly

redundant dictionary. A tree-based pursuit algorithm is then proposed, which exploits the

tree structure, resulting in a computational complexity that is significantly lower than the

classic pure greedy algorithm. We experimentally showed that the reduction in complexity

does not imply a large penalty in approximation rate. It is shown also that Tree-Based Pur-

suit recovers coarse structures of the signal, even for highly redundant dictionaries, thanks

to the hierarchical clustering into sufficiently incoherent dictionaries of molecules. Finally,

2.8. Discussion 37

practical applications are often based on highly redundant dictionaries, whose properties

are however poorly studied. On the other hand, the class of incoherent dictionaries has

been widely studied, but is rarely used in practical applications. Our study tries to bridge

that gap, by demonstrating that, from a molecular point of view, it is possible to apply the

approximation results for incoherent dictionaries to highly redundant dictionaries.

38 Chapter 2. Tree-Based Pursuit

Header : 48 bits (0.0042 bpp)

Low : 200 bits (0.0174 bpp)

High : 2552 bits (0.2215 bpp)

Total : 2800 bits (0.2431 bpp)

51 Eingenfaces and 95 Atoms

Header : 48 bits (0.0042 bpp)

Low : 88 bits (0.0076 bpp)

High : 256 bits (0.0222 bpp)

Total : 392 bits (0.0340 bpp)

35 Eingenfaces and 8 Atoms

Header : 48 bits (0.0042 bpp)

Low : 128 bits (0.0111 bpp)

High : 616 bits (0.0535 bpp)

Total : 792 bits (0.0688 bpp)

40 Eingenfaces and 22 Atoms

Header : 48 bits (0.0042 bpp)

Low : 168 bits (0.0146 bpp)

High : 984 bits (0.0854 bpp)

Total : 1200 bits (0.1042 bpp)

45 Eingenfaces and 36 Atoms

Header : 48 bits (0.0042 bpp)

Low : 176 bits (0.0153 bpp)

High : 1392 bits (0.1208 bpp)

Total : 1616 bits (0.1403 bpp)

47 Eingenfaces and 51 Atoms

Header : 48 bits (0.0042 bpp)

Low : 176 bits (0.0153 bpp)

High : 1784 bits (0.1549 bpp)

Total : 2008 bits (0.1743 bpp)

47 Eingenfaces and 66 Atoms

Header : 48 bits (0.0042 bpp)

Low : 200 bits (0.0174 bpp)

High : 2160 bits (0.1875 bpp)

Total : 2408 bits (0.2090 bpp)

51 Eingenfaces and 80 Atoms

Low freq. High freq. Face

Proposed Face coder Bit rates JPEG 2000

Figure 2.14 – A face is encoded and decoded using the proposed scheme. The images containing the

lower and the higher frequencies are scaled for this presentation. A JPEG 2000 encoded image having

the same bit rate is presented whenever it was possible.

Dictionary Learning 3
3.1 Motivations

We previously stated that expansions using redundant dictionaries of functions is a powerful

tool for approximation; few terms capture most of the information of a signal. Typical tasks

in signal processing as analysis, dimensionality reduction, de-noising or compression may

take advantage of the resulting sparsity.

The properties of the signal, dictionary and algorithm, are tightly linked. Often, natu-

ral signals have highly complex underlying structures which makes it difficult to explicitly

define the link between a class of signals and a dictionary. This chapter presents a learning

algorithm that tries to capture the underlying structures. In our approach, instead of con-

sidering atoms having the same support as the signal, we propose to learn small generating

functions, each of them defining a set of atoms corresponding to all its translations. This is

notably motivated by the fact that natural signals often exhibit statistical properties invari-

ant to translation, and that using generating functions allows to generate huge dictionaries

while using only few parameters. In addition, fast convolution algorithms can be used to

compute the scalar products when using pursuit algorithms.

The ability of a dictionary to approximate signals is often measured using extreme

properties of the dictionary as the coherence µ which is used to provide different bounds

on the energy of the residual. The minimal condition needed for a dictionary to be able to

represent any signal is to span the entire signal space. Intuitively, the more a dictionary is

populated, the better it is for finding efficient short terms representations. The adequation

of a dictionary to a class of signals may also be measured by its ability to lead to sparse

representations. Sparsity is a very ambiguous concept and a lot spareness measures exist;

they may lead to very different results [41]. Thus, measuring the performance of a dictionary

39

40 Chapter 3. Dictionary Learning

may also be subject to ambiguities. In this chapter, the presented algorithm does not try

to maximize directly the adequation of the dictionary but seeks waveforms representing

features present in the learning signals.

In section 3.2, we review existing methods to learn overcomplete dictionaries. In sec-

tion 3.3, we formalize the problem of learning generating functions, and propose an iterative

algorithm to learn successively adapted atoms. The proposed algorithm is called MoTIF

which stands for Matching of Time-Invariant Filters. This work was done in collaboration

with Sylvain Lesage and Rémi Gribonval. In order to illustrate the algorithm, this sec-

tion provides a comprehensive example of learning an overcomplete dictionary for natural

images. In section 3.4.1, we present an experiment on the recovery of underlying atoms.

In section 3.4.2, we show with another experiment the ability of this learning method to

give an efficient dictionary for sparse approximations. Different researchers started from

this algorithm and proposed new solutions to increase its efficiency or to use it in different

situations. Section 3.5 presents these solutions as well as an application using MoTIF in

the field multi-modal signal processing. We conclude in section 3.6 on the benefits of this

new approach.

3.2 Introduction

In the previous chapter, we stated that finding a good approximation is a difficult task. In

this chapter, we now state that finding a good dictionary is also a difficult task. Generally,

to get around this problem, people often choose collections of allround atoms as Gabor

functions for example. Instead of taking a unique well known collection of functions, it is

also possible make combinations of N different dictionaries as follows :

D = D1 ∪ D2 ∪ · · · ∪ DN . (3.1)

For example, in [75], a natural image is considered as being the sum of a piecewise

smooth images and textures. The two different parts have their own specific dictionary for

which the corresponding classes of signals admit very sparse decompositions. A Curvelet

Transform [74] is used for the smooth part and the textures are represented using the

Discrete Cosine Transform. Additionally, a method, named Morphological Component

Analysis (MCA), has been designed to separate both parts knowing that they have a sparse

representation in their corresponding dictionaries.

Unlike the previous example, if often happens that comprehensive a priori information

about the class of signals to decompose is not at disposal. Taking an allround redundant

dictionary is still possible but it is not likely to be the best solution. Let D be a dictionary

and D a matrix whose columns contain the atoms.

Definition 2. A dictionary D is good for a class of signals C if

∀f ∈ C , ∃c s.t. Dc = f + ε, (3.2)

where c is sparse and ε is small.

3.2. Introduction 41

The concept of sparsity as well as the notion of acceptable error are very subjective and

context-dependant. There is not a unique definition of a good dictionary. This simple fact

would already lead to a huge variety of solutions for finding good dictionaries. Additionally,

when using learning algorithms, there are practical constraints intrinsically linked to the

problem itself :

� Limited computational abilities. In particular it is not possible to solve P0 in

polynomial time.

� Limited memory. Practical solutions do not exist to manage too voluminous

amounts of data, which is a limiting factor for learning algorithms.

� The class of signals C is not fully accessible. In this chapter, we suppose to

have access to a set F = {fn}Nn=1 of N training signals of size Sf .

Generally, overcomplete dictionary learning algorithms consider that each training signal

fi admits a approximation as follow :

fi = Dci + ε, (3.3)

where the vector ci is sparse and ε is additive Gaussian white noise with variance σ.

The different definitions of sparsity leaded to diverse dictionary learning algorithms. They

can roughly be divided into two different classes.

� Probabilistic sparsity model. The coefficients ci are supposed to be generated by

a Random Variable that has a sparse Probability Density Function. [46, 48, 49, 59–61]

� Algorithmic dependant sparsity models. The changes in the dictionary made by

the algorithm are function of coefficients ci that are the outcomes of an approximation

algorithm. [1–4, 26, 27, 43]

Surprisingly, researcher working on sparse approximation in the signal processing com-

munity seemed not really interested in the overcomplete dictionary learning problem. How-

ever, they often stated that one of the main advantage of this technique is the total freedom

in designing the dictionary, which could be efficiently tailored to closely match signal struc-

tures. The first approach came from the neuroscience community. Olshausen and Field

[59–61] started from the hypothesis that the response of the mammalian visual system to

stimuli coming from natural images should be sparse. Sparsity is the criterion they used

to model the efficiency of this mammalian low bit rate image coder. Their algorithm is

representative of the probabilistic approach as they suppose that the coefficients ci have

a parameterized distribution with a peak at zero. All the algorithms of this class try to

maximize a likelyhood function :

P (fi | D) =

∫

P (c)P (fi | c,D)dc. (3.4)

42 Chapter 3. Dictionary Learning

The learning algorithms of the first class use different models for the distribution of

the coefficients ci. For example, [48, 49] use a Laplacian distribution for the coefficients.

These algorithms generally start with a random dictionary which is optimized using an

Expectation Maximization like procedure :

1. Sparse Approximation. For each training signal fi find the coefficients ci using

the model dependant assumptions and the current dictionary.

2. Dictionary Update. Update the dictionary such that the mean approximation error

of the training signals using the found coefficients ci is minimized.

This procedure ends when the dictionary converged. This alternating optimization was first

suggested as solving (3.4) is not feasible analytically in most cases.

The second class of dictionary learning algorithms uses generally another prior which is

the similarity between the dictionary learning problem and clustering. Tropp [80] suggested

that clusters can be considered as being atoms that provide a 1-term approximation of

the data vectors. Whilst the sparse approximation problem uses a fixed dictionary, the

clustering problem consists in finding the best dictionary to do 1-term approximation.

Vector Quantization has also a dictionary learning taste and this fact was pointed out

many times [1–4, 27, 28, 43]. The close relationship that exists between dictionary learning

and the famous k-means algorithm was more specifically exploited by Aharon et al. [1–

4]. Their dictionary learning algorithm, named K-SVD, is a generalization of the k-means

clustering algorithm.

The K-SVD algorithm aims to find the best possible dictionary regarding following

minimization problem :

min
D,C
{‖S −DC‖2F} subject to ∀i, ‖ci‖0 < T0, (3.5)

where S are the training signals, C the sparse approximation coefficients and ‖.‖F
denotes the Frobenius norm.

The minimization is done iteratively by first fixing the dictionary and finding the spars-

est coefficients matrix C. The choice of the approximation algorithm to use was left to the

reader. The only constraint is to have an approximation with less than T0 non zero terms.

The second step consists in updating both the dictionary D and the non-zero entries of C.

This is done very smartly by using the Singular Value Decomposition in such a way that

sparsity is promoted.

The algorithm that we propose in this chapter is different from the ones presented

above. It learns structured dictionaries i.e. the dictionary is computed from a smaller

set of functions, called generating functions, that are subject to different transformations.

More precisely, the considered transform is the translation and the dictionary is defined as :

D = {{Tpgk}, k = 1 . . . K} (3.6)

3.3. Principle and algorithm 43

where the dictionary is generated by applying all possible translations Tp to a set G of

generating functions.

The use of this kind of dictionary is mainly motivated by two reasons. First, approxima-

tion algorithms may benefit from fast transforms that compute many projections at once

for different translations. Using a Fast Fourier Transform permits to compute many corre-

lations by a single multiplication in the transform domain. Second, a generating function

may have a semantical meaning e.g. correspond to an object in an image or to a specific

pattern in an audio track. In this case, it is of great interest to have access to the gener-

ating function and the undergone transformation separately. For example, the algorithm

proposed by Olshausen and Field [61] learns many times the same pattern but at different

positions on the support.

Different learning algorithms have been proposed to deal with shift invariant structures.

In [71–73], Smith and Lewicki propose to represent a signal f by a sum of kernel functions

that can be arbitrarily positioned in time. Blumensath and Davis also proposed a shift-

invariant learning algorithm [8]. Both solutions differ in their underlying model from our

solution; they use a convolutional model to generate the signals:

f =
K
∑

k=1

ek ? gk + ε. (3.7)

where G = {gk}Kk=1 is the set of generating functions, the vectors of position ek are

sparse and ? denotes the convolution.

3.3 Principle and algorithm

Formally, the aim is to learn a collection G = {gk}Kk=1 of real-valued generating functions gk

such that a highly redundant dictionary D adapted to a class of signals can be created by

applying all possible translations to the generating functions of G. The algorithm we propose

differs from the previously presented methods as it does not try to minimize an objective

function made of the approximation error and a sparsity measure of the coefficients. We

look for generating functions that are able to represent well the features present in the

signal. Sparsity is not directly introduced during the learning. Our hypothesis is that an

overcomplete dictionary made of atoms that are able to well represent the features present

in the signals mandatorily leads to sparse approximations.

Let Tp be the operator that translates an infinite signal by p ∈ Z samples. Let the

set {Tpgk} contain all possible atoms generated by applying the translation operator to gk.

The dictionary generated by G is D = {{Tpgk}, k = 1 . . . K}. The learning is done using

a training set {fn}Nn=1 of N training signals of infinite size and but non-zero only on their

support of size Sf . Similarly, the size of the support of the generating functions to learn is

Sg such that Sg ≤ Sf .

Let define gk ∈ RSg the restriction of the infinite size signal gk to its support. In an

analog way, let define f
n,p

(i)
n

, the restriction of T
p
(i)
n

fn to the support of gk, of size Sg.

44 Chapter 3. Dictionary Learning

The proposed algorithm learns translation invariant generating functions iteratively.

For the first one, the aim is to find g1 such that the dictionary {Tpg1} is the most corre-

lated in mean with the signals in the training set. Hence, it is equivalent to the following

optimization problem:

UP : g1 = arg max
‖g‖2=1

N
∑

n=1

max
pn

apn,n | 〈fn, Tpng〉 |2, (3.8)

where the normalization value apn,n is such that the learning signals restricted to the

support of the generating function are of unit energy i.e.

apn,n =
1

‖f
n,−p

(i)
n
‖2

. (3.9)

Different learning signals may have very different amplitudes. Normalization avoids

giving more importance to one signal (or part of it) than to another.

For learning the next generating functions, some modifications have to be included to

avoid learning functions that have already been learnt. Two options are feasible; modify

the learning signals according to the previously learnt generating functions or modify the

optimization problem. Choosing the first option is subject to a lot of uncertainty. Should

the found generating functions be subtracted from the learning patches? If yes, where

and at which position? In all signals? The second option is more elegant. The original

optimization problem is modified to include a constraint penalizing a generating function if

a similar one has already been found. Assuming that k− 1 generating functions have been

learnt, the optimization problem to find gk can be written as:

CP : gk = arg max
‖g‖2=1

∑N
n=1 maxpn apn,n | 〈fn, Tpng〉 |2
∑k−1

l=0

∑

p | 〈gl, Tpg〉 |2
. (3.10)

Finding the best solution to the unconstrained problem (UP) or the constrained problem

(CP) is hard, and we propose to decompose it into two simpler steps that are alternately

solved :

1. Localize. For a given generating function g
(i)
k , find the best translations p

(i)
n ,

p(i)
n = arg max

pn

apn,n | 〈fn, Tpng
(i)
k 〉 |2 (3.11)

2. Learn. Update g
(i+1)
k by solving UP or CP, where the optimal translations pn are

fixed to the previously found values p
(i)
n .

The first step only consists in finding the location of the maximum correlation between

each learning signal fn and the generating function g
(i)
k . Let us now consider the second

step. As the translation operator admits a well defined adjoint operator, 〈fn, Tpngk〉 can

be replaced by 〈T−pnfn, gk〉. Let F(i) be the Sf × N matrix, whose columns are made of

3.3. Principle and algorithm 45

the signals fn shifted by −p
(i)
n . More precisely, the jth column of F(i) is apn,nfn,−p

(i)
n

. We

denote A(i) = F(i)F(i)T

.

With these notations, the second step, for the unconstrained problem (UP), can be

written :

g
(i+1)
k = arg max

||g||2=1
gT A(i)g (3.12)

where (.)T denotes transposition. The best generating function g
(i+1)
k is the unit eigenvector

associated with the largest eigenvalue of A(i).

For the constrained problem, we want to force g
(i+1)
k to be as decorrelated as possible

from all the atoms in Dk−1. This corresponds to minimizing

k−1
∑

l=1

∑

p

|〈T−pgl, g〉|2 (3.13)

or, denoting

Bk =

k−1
∑

l=1

∑

p

gl,−pgl,−p
T , (3.14)

to minimizing gT Bkg. With these notations, the constrained problem can be written :

g
(i+1)
k = arg max

||g||2=1

gT A(i)g

gT Bkg
(3.15)

The best generating function g
(i+1)
k is the eigenvector associated to the biggest eigenvalue

of the generalized eigenvalue problem defined in Eq. (3.15). Note that defining B1 = Id,

we can use CP for learning the first generating function g1.

The algorithm, which we call MoTIF, for Matching of Time Invariant Filters, is sum-

marized in Algorithm 3.3.

Algorithm 3 Principle of the learning algorithm (MoTIF)

1: k = 0, training signals set {fn}
2: while not enough generating functions do

3: k ← k + 1, i← 0

4: Bk ←
∑k−1

l=1

∑

p gl,−pgl,−p
T

5: while no convergence reached do

6: i← i + 1

7: for each fn, find p
(i)
n = arg maxp apn,n | 〈fn, Tpg

(i)〉 |, by locating the maximum

correlation between fn and g(i),

8: A(i) ←∑N
n=1 a2

pn,nfn,−p
(i)
n

f
n,−p

(i)
n

T

9: find g
(i+1)
k = arg max||g||2=1

gT A(i)g

gT Bkg
, that is the eigenvector associated to the

biggest eigenvalue of the generalized eigenvalue problem A(i)g = λBkg.

10: end while

11: end while

46 Chapter 3. Dictionary Learning

For the first generating function, the MoTIF algorithm converges in a finite number of

iterations to a function locally maximizing the unconstrained problem (3.8). Proving that

the algorithm converges in this case is trivial. Let assume that if there are different possible

positions for the maxima and that one of these corresponds to the maxima of the previous

step then this one is chosen i.e. if

a
p
(i−1)
n ,n

| 〈fn, T
p
(i−1)
n

g(i)〉 |= max
p

ap,n | 〈fn, Tpg
(i)〉 | (3.16)

then p
(i)
n = p

(i−1)
n . Ensuring that this requirement is met is trivial when implementing

the algorithm. Finding the best positions as well as updating the atom are operations that

tend to maximize the objective function
∑N

n=1 apn,n | 〈fn, Tpng〉 |2. The hypothesis that we

made ensures that if no better positions are found at step i then the same ones as before are

chosen which implies that g
(i+1)
k = g

(i)
k . Additionally, the number of possible combinations

of positions is huge but finite, implying that the algorithm converges in a finite number of

iterations. This convergence property does not depend on the initialization.

We do not claim that the algorithm converges to the global minimum but we claim

that it converges to a local one. Figure 3.1 presents 10 runs of MoTIF for finding the first

generating function using the learning set made of the images used by Olshausen [61]. The

last column contains the final results. They have the same appearance but are all different.

The other columns contain the generating functions during the 11 first iterations of MoTIF.

It starts from random initializations. The convergence to a waveform near the final result is

fast and confirms the validity of the proposed method. Next to the finial result, we present

the number of iterations MoTIF needed to converge as well as the value of the objective

function.

Our implementation of the algorithm includes an additional constraint; we want to

center the energy on the support. To do so, at each iteration, we compute the center

of mass of the previously found generating function and subtract it from the geometric

center of the support. This shifting vector is added to all positions found at the current

step. The positions are rounded to the nearest possible value. These values corresponds

to pixels of images or to samples of music for example. Obviously, in this setting, the nice

property of convergence is no longer guaranteed to hold true. However, experimental results

show that it does. Shifting adds innovation that has not been taken into account by the

search phase and thus, changes the value of the objective function in an unexpected way.

Figure 3.2 shows the evolution of the value of the objective function for three experiments

presented by figure 3.1. The value of the objective function corresponding to Experiment 6

is decreasing at iteration 7. The lower part of the figure confirms that at this point the new

generating function is very different from the previous one. By attentively looking at the

generating function in figure 3.1, it is clear that a shift to the left happened. A shift also

happened to the 7th generating function at iteration 4; however, in this case, the objective

function did not decrease.

Figure 3.1 also makes clear that all the solutions found by MoTIF to the unconstrained

problem are very close each other. The constraint avoids finding only one kind of generating

3.3. Principle and algorithm 47

...

...

...

...

...

...

...

...

...

...

1 2 3 4 5 6 7 8 9 10

Iter : 34

Obj : 336.45

Iter : 29

Obj : 333.89

Iter : 48

Obj : 338.91

Iter : 51

Obj : 333.55

Iter : 58

Obj : 335.01

Iter : 46

Obj : 339.79

Iter : 31

Obj : 336.65

Iter : 66

Obj : 333.86

Iter : 51

Obj : 335.59

Iter : 46

Obj : 335.88

11

1

2

4

3

5

6

7

8

9

10

Figure 3.1 – First generating function learnt by MoTIF 10 times.

function by forcing the new ones to be different from the previous ones. Using constraints

avoids altering the training signals. On the other hand, some generating functions satisfy

better the decorrelation condition than the adequation to the training signals.

Figure 3.3 presents 100 generating functions of size 15 × 15 that have been learnt by

MoTIF using the same dataset as for the previous examples. They are spatially localized

and oriented. They are oscillating in directions different from the orientations, at different

frequencies. We recognize some familiar shapes that may make us think of Gabor atoms, line

edge detectors and curved edge detectors. The two first categories were already observed

in [7] and the third ones complete the range of natural features. Learning curved edge

detector is a major contribution of this algorithm in the field of learning visual shapes.

The first generating function is very similar to the multiple runs presented in Figure

3.1. The others are learnt by adding the decorrelation constraint to the original problem.

The generating functions learnt just after the first one are mainly high frequency due to

the added constraint ensuring that they are different from the first one.

The objective function linked to the unconstrained problem measuring the adequation

may be expressed as :
N
∑

n=1

max
pn

apn,n | 〈fn, Tpng〉 |2 . (3.17)

It gives an indication of how well g fits the learning signals.

48 Chapter 3. Dictionary Learning

2 3 4 5 6 7 8 9 10 11
200

250

300

350

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

Iterations

Experiment 6

Experiment 7

Experiment 10

Experiment 6

Experiment 7

Experiment 10

||
g
(i)

-g
(i-
1)

|| 2

Figure 3.2 – Evolution of the value of the objective function for experiment 6, 7 and 10 of the

generating functions presented in figure 3.1 (top). The l2-norm of the difference to the generating

function from the last iteration is also presented (bottom).

Figure 3.4 presents the values of the objective function (3.17) for all learnt generating

functions of Figure 3.3. The ones satisfying too much the constraint are clearly identified

as they exhibit smaller values. This is roughly the case for the second up to the tenth

generating function.

The evolution of the waveforms also depends on the decorrelation constraint. For ex-

ample, in Figure 3.5, the second generating function is mostly determined at the second

step. It is an additional indication that it is more satisfying the decorrelation constraint

than fitting the learning data.

3.4 Experiments

3.4.1 Synthetic experiments

The first experiment consists in exploring the ability of the algorithm to recover correctly a

set GO = {gO
k }Kk=1 of known generating functions referred to as the original set of functions.

Starting from this set, a sparse coefficient vector c is randomly created. It defines a signal :

s =
N−1
∑

k=0

ckφk, φk ∈ D = {{Tpg
O
k }, k = 1..K}.

The training set {fn} is obtained by taking the maximal number of non overlapping parts

of the signal s. The size of the patches fn is such that supp(fn) = 2 ∗ supp(gO
k)− 1, where

3.4. Experiments 49

Figure 3.3 – Hundred generating functions learnt on natural images.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

Generating function

O
bj

ec
tiv

e
fu

nc
tio

n
(U

P
)

Figure 3.4 – Values of the unconstrained objective function (3.17) for the generating function pre-

sented in Figure 3.3.

supp denotes the size of the support. These patches are used by the MoTIF algorithm to

learn a set G of translation invariant generating functions. A function gO
i from the original

set GO is said to be recovered if maxg∈G |〈gi, g〉| > δ.

We created 3000 original sets of generating functions made of 3 Gabor atoms with

random normalized frequency between 0 and 0.5. The size of their spatial support is 16.

50 Chapter 3. Dictionary Learning

1 2 3 4 5 6 7 8 9 10 11

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Iter : 32

Obj : 333.54

Iter : 37

Obj : 18.89

Iter : 32

Obj : 114.88

Iter : 36

Obj : 146.73

Iter : 48

Obj : 226.98

Iter : 38

Obj : 91.54

Iter : 88

Obj : 192.61

Iter : 52

Obj : 231.85

Iter : 39

Obj : 189.74

Iter : 36

Obj : 157.45

Iter : 47

Obj : 197.40

Iter : 70

Obj : 218.58

Iter : 85

Obj : 214.09

Iter : 35

Obj : 215.69

Iter : 41

Obj : 206.47

Iter : 101

Obj : 255.77

Iter : 101

Obj : 251.09

Iter : 78

Obj : 247.39

Iter : 59

Obj : 259.61

1

2

4

3

5

6

7

8

9

10

11

21

41

31

51

61

71

81

91

Figure 3.5 – First iterations of some generating functions presented in Figure 3.3.

Each of these generating functions was present 10 times in a signal of size 1600 with a

random amplitude between 0 and 1. The number of patches fn used was 298. For each set

3.4. Experiments 51

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

minimal correlation in the original set of generating functions

m
e

a
n

 n
b

 o
f

g
e

n
e

ra
ti
n

g
 f

u
n

c
ti
o

n
s
 r

e
c
o

v
e

re
d

Figure 3.6 – Mean number of recovered generating functions as a function of the minimal coherence

of the reference dictionary.

of generating function, we run the algorithm 10 times on 10 different signals.

Figure 3.6 illustrates the recovery ability of the MoTIF algorithm. It presents the mean

number of generating functions recovered as a function of the minimal correlation of the

original set GO computed as mini,j maxp |〈Tpg
O
i , gO

j 〉|, which means that the correlation be-

tween other atoms can only be higher. The equivalence limit δ for two generating functions

was fixed to 0.8.

For the same settings, in more than 2 cases out of 3, the first generating function

found by MoTIF is one from the original set. To recover the next atoms, the constrained

optimization problem (CP) has to be solved. Thus, the next functions are constrained to be

as uncorrelated as possible with the past found functions, which is clearly not the case when

the original set of functions is highly coherent. This leads to a poor rate of recovery when

the minimal coherence is higher than 0.6. Recovering is easier when dealing with rather

uncorrelated set of functions. Indeed, for very small values of the minimal correlation, in

mean, nearly two functions out of three are recovered. In between these two extreme cases

(minimal coherence between 0.2 and 0.6), the algorithm’s behavior is rather constant and

recovers more than half of the functions.

3.4.2 Experiments with natural signals

The second experiment studies the ability of a dictionary learnt on real data to sparsely

approximate signal of the class of the learning data, compared to a classical dictionary

made of Gabor multi-scale generating functions. The class of signals we consider is music.

More precisely, one song; ninety percent of the signal has been used for learning whilst the

second part is kept to test the approximation ability.

The reference dictionary that we are using is made of 150 Gabor functions. A simple

52 Chapter 3. Dictionary Learning

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N

M
S

E
Gabor multi-scale

Learnt multi-scale

Figure 3.7 – Approximation abilities of a learnt set of generating functions regarding a dictionary

multi-scale Gabor atoms.

optimization was applied to this dictionary; the frequencies were chosen to be in the fre-

quency range of the song i.e. we used 50 different normalized frequencies spread between

0 and 0.25. Three different scales where used for the generating functions. The size of the

support of these generating functions is 1024. The gabor dictionary DG is generated by

applying all possible transaction to the set of generating functions GG.

We decided to use MoTIF to obtain a dictionary that has the same flavor as the reference

one. We learnt three dictionaries of 50 generating functions each with different supports:

256, 512 and 1024. For each run of MoTIF, we used the maximal information from the

signal i.e the learning signals was divided into respectively 4086, 2042 and 1020 training

patches. The three sets of generating functions are concatenated to form GL which defines

the learnt dictionary DL that has multi-scale abilities.

To compare the approximation performances of both dictionaries, we used Matching

Pursuit [51] to approximate a test signal of 45000 samples from the same song. The test

signal has been approximated with 3000 terms. We reconstructed the approximations of the

signals using N terms and computed the mean square error. The results are presented by

Figure 3.7. At the beginning, the mean square error of the signal approximated using the

learnt dictionary decreases much faster than with the Gabor atoms. The learnt dictionary

is adapted to the considered signal and contains meaningful features present in the test

signal.

Figure 3.8 presents the generating functions that have most been used in both decom-

positions. The right column contains Gabor generating functions that have rather a small

scale. This may be an indication that this dictionary did not best suit the signal. The

learnt generating functions are less precisely located in frequency. However, their scale is

bigger than for the Gabor dictionary; we may deduce that this dictionary better suits the

testing data.

3.5. Extensions 53

Used : 66

ID : 29

Used : 65

ID : 30

Used : 65

ID : 43

Used : 60

ID : 40

Used : 52

ID : 70

Used : 50

ID : 49

Used : 47

ID : 106

Used : 67

ID : 48

Used : 69

ID : 42

Used : 94

ID : 41

Used : 104

ID : 33

Used : 45

ID : 111

Used : 129

ID : 57

Used : 80

ID : 104

Used : 76

ID : 2

Used : 69

ID : 64

Used : 64

ID : 59

Used : 64

ID : 65

Used : 61

ID : 103

Used : 147

ID : 58

Used : 165

ID : 56

Used : 190

ID : 55

Used : 245

ID : 54

Used : 57

ID : 53

Learnt dictionary (MoTIF) Gabor multi-scale dictionary

Waveform Time / Frequency Waveform Time / Frequency

Figure 3.8 – Comparison of the most used generating functions for approximation.

3.5 Extensions

The simplicity of this algorithm is an advantage in many situations as it allows to identify

meaningful structures at reasonable computational costs.

One of our hypothesis is that creating such a dictionary intrinsically holds the ability

to sparsely approximate signals from the same class. Lesage and Grivonval advocate that

not including explicitly a sparsity constraint implies that there is no guarantee that the

dictionaries learnt by MoTIF lead to sparse approximations. Starting from this point,

they propose to adapt the K-SVD algorithm to match the invariance constraints [47] in

an analog manner as MoTIF does. They also present a structure where dictionaries are

created by applying linear transforms to generating functions; translation is a particular

case. Remember that K-SVD is an iterative algorithm made of a sparse approximation

phase and a dictionary update phase. It has the particularity that the second phase goes

along with a refinement of the approximation coefficients. Lesage showed that using his

model of dictionary, the second step may be reduced to a problem that is very similar to

54 Chapter 3. Dictionary Learning

what we presented :

gopt
k = arg max

g
‖g‖2

2==1

gT A(g)g. (3.18)

where the matrix A(g) is symmetric, square and is of same length than the generating

functions. If the matrix A(g) is not depending on the generating function g then the

solution of this problem is the eigenvector of A associated to the eigenvalue having the

biggest amplitude.

In the same context, Mailhé and Gribonval propose to update the generating functions

whilst the parameters of the linear transform function are found at the sparse approximation

step. Additionally, they suppose that the linear transformation preserve the norm and

that two atoms created from the same generating function are orthogonal to each other if

the parameters of the transformation are different. Their final result is that the optimal

generating function is as follows :

gopt
k =

∑

ik = 1IkF ∗
αik

(s)

‖∑ ik = 1IkF ∗
αik

(s)‖2
(3.19)

where F ∗
α denotes the adjoint of the linear transformation Fα.

These examples tried to improve the results of MoTIF by generalizing the possible trans-

forms under which to seek for invariant generating functions. They also added explicitly a

constraint of sparsity by using the learning paradigm proposed by Aharon and Elad, the

K-SVD algorithm.

Let us now look at a further example extending MoFIF. Monaci proposed to use it for

multichannel data and in particular for multi-modal data [54–56]. For this kind of data,

synchrony is a major issue and is generally tightly linked to the underlying physic. For ex-

ample, a video sequence of a speaking person contains sound that is generally synchronized

with the motion of the lips. The sampling of different modalities may be very different;

typical values of the sampling rates are 8 kHz for audio signals and 29.97 frames per second

for the video.

A multi-modal generating function gk consist of an arbitrary number M of modalities.

For simplicity and clarity reasons, Monaci considered the bimodal case M = 2. A bimodal

generating function is expressed as gk = (g
(a)
k , g

(v)
k) where one can think of g

(a)
k as an

audio modality and g
(v)
k as a video modality of audiovisual data. These components are

not homogeneous in dimensionality; however, they share a common temporal dimension.

Monaci defined a translation operator Tp = (T (a)
p ,T (v)

p) that acts on the different modalities

taking into account the different sampling rates. This temporal translation is homogeneous

across channels and thus preserves synchrony which is very important when dealing with

multi-modal signals.

Using the same formalism as before, it is possible to redefine the unconstrained problem

for the multi-modal case as follows :

UPmm : g1 = arg max
‖g(a)‖2=‖g(v)‖2=1

N
∑

n=1

max
pn

∑

m

| 〈f (m)
n ,T (m)

pn
g(m)〉 |2 , (3.20)

3.5. Extensions 55

which has to be solved simultaneously for all modalities. The constrained problem for the

multi-modal case is change in an analog way. Solving UPmm or CPmm is generally more

complex than the corresponding problems in the standard setting. A MoTIF like approach

is a good solution for finding solutions to these problems. Instead of a recursive two steps

approach, an iterative four steps one has been proposed :

1. Localize : for a given audio generating function g
(a),(j−1)
k found at iteration j − 1,

find the best translations p
(a)(j)
n on the audio modality.

2. Learn : update g
(v),(j)
k by solving UPmm or CPmm only for the video modality, with

the translations fixed to the values pn = p
(a),(j)
n found at step 1. These values have to

be transformed into the modality according to the different sampling rates.

3. Localize : find the best translations p
(v),(j)
n using the function g

(v),(j)
k .

4. Learn : update g
(a),(j)
k by solving UPmm or CPmm only for the audio modality,

with the translations fixed to the values p
(v),(j)
n found at step 3.

The temporal synchrony between generating functions on the two modalities is enforced at

the learning steps (2 and 4), where the optimal translations found for one modality are also

kept for the other one. This procedure is illustrated by Figure 3.9 (Figure 6.1 of [54]).

Monaci demonstrated the ability of the proposed algorithm in this case the two modal-

ities (audio and video), sharing a common temporal axis. This experiment has been pre-

sented in his thesis [54] and we show the results here to show a practical application of

MoTIF.

The joined audiovisual dictionary is learned on a training set of four clips representing

the mouth of four different persons pronouncing the digits from zero to nine in English.

The audio was recorded at 44 kHz and sub-sampled to 8 kHz, while the gray-scale video was

recorded at 29.97 fps and at a resolution of 70×110 pixels. The total length of the training

sequences is 1140 video frames, i.e. approximately 38 seconds. The video sequences are

“whitened” using a filter that equalizes the variance of the input sequences in all directions

as suggested in [61]. The whitened sequences are then low-pass filtered to remove the

high-frequency artifacts typical of digital video signals.

The learning is performed on audio-video patches (f
(a)
n , f

(v)
n) extracted from the original

signals. The size of the audio patches f
(a)
n is 6407 audio samples, while the size of the video

patches f
(v)
n is 31 × 31 pixels in space and 23 frames in time. We learn 20 generating

functions gk consisting of an audio component g
(a)
k of 3204 samples and a video component

g
(v)
k of size 16 × 16 pixels in space and 12 frames in time.

Figure 3.10 presents the 20 learnt multi-modal generating functions. For the video

part, the frames are shown separately. The shape that appear are very similar to the

results presented in section 3.3. One may recognize spatially localized and oriented edge

detector functions. Looking globally at the video sequences, we remark that the edges are

moving. These movements represent the movements of different parts of the mouth.

56 Chapter 3. Dictionary Learning

1. Localize (a)

(a)

(a)

(a)

(a)

(v)

(v)

(v)

(v)

2. Learn (v)

3. Localize (v)

4. Learn (a)

time

Figure 3.9 – Schematic representation of the multi-modal version of MoTIF. Step 1 : using the

available generating function for modality (a), find the best translations in (a). Step 2 : using the found

translations on (a), update the generating function in (v). Step 3 : using this generating function, find

the best translations for modality (v). Step 4 : using the translations found in modality (v), update the

generating function in (a).

The audio parts of the generating functions contain almost all the numbers present in the

training sequences. Thus, the learning algorithm captures well high-level signal structures

representing the synchronous presence of meaningful acoustic and visual patterns. The

simplicity of the MoTIF algorithm permitted to rapidly adapt the algorithm to the highly

complex multi-modal case. On the other hand, its efficiency allowed for finding meaningful

results out of a huge amount of data.

3.6. Discussion 57

3.6 Discussion

We have presented a new method for learning a set of translation invariant functions adapt-

ed to a class of signals. At every iteration, the algorithm produces the waveform that is the

most present in the signals and adds all its shifted versions to the dictionary. A constraint

in the objective function forces the learnt waveforms to have low correlation, such that no

atom is picked several times. The main drawback of this method is the fact that the few

generating functions following the first one are mainly due to the decorrelation constraint,

more than the attachment to the signal. Despite this, the constrained algorithm seems

to capture the underlying processes quite well, notably when they are really decorrelated.

The learnt dictionaries show ability to sparse decompose the corresponding signals. On

real data like images, the learnt generating functions are edge detectors (spatially local and

oriented) as previously found by Bell and Sejnowski. Some extensions of this algorithm

are presented, as learning multi-modal atoms on multi-modal signals. Using this type of

learning, some applications in multichannel source separation can be expected. Another

extension, based on the properties of the inner product, is to replace the translation invari-

ance by the invariance to a whole set of transformations that admit a well defined adjoint

(e.g. translations + rotations for images).

58 Chapter 3. Dictionary Learning

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Video Audio

Figure 3.10 – Audio-video generating functions of Dictionary 2. Twenty learned functions are

shown, each consisting on an audio and a video component. Video components are on the left, with

time proceeding left to right. Audio components are on the right, with time on the horizontal axis.

Finding Nearest Neighbors

in a Set of Compressible

Signals 4
4.1 Motivations

Numerous applications demand that we manipulate large sets of very high-dimensional

signals. A simple yet common example is the problem of finding those signals in a database

that are closest to a query. In this chapter, we tackle this problem by restricting our

attention to a special class of signals that have a sparse approximation over a basis or a

redundant dictionary. We take advantage of sparsity to approximate quickly the distance

between the query and all elements of the database. In this way, we are able to prune

recursively all elements that do not match the query, while providing bounds on the true

distance. Validation of this technique on synthetic and real data sets confirms that it could

be very well suited to process queries over large databases of compressed signals, avoiding

most of the burden of decoding.

Chapter 2 dealt with the problem of computing sparse approximation and chapter 3

dealt with problem of having efficient dictionaries to represent a given class of signals. In

this chapter, we assume that we are given sparse approximations of signals and we will

ignore how they have been computed. We will however require that our approximants

possess a particular structure. Suppose first that the terms of the approximation

f̃N =

N−1
∑

k=0

ckgk, gk ∈ D , ‖f − f̃N‖2 ≤ ε . (4.1)

are re-ordered in decreasing order of magnitude, i.e such that | c0 |≥| c1 |≥ · · · ≥| cN−1 |.
Strict sparsity requires that the number of non-zero coefficients N be small. However we can

slightly relax this definition by asking that the magnitude of the coefficients drops quickly

to very small values such that there are only few big coefficients. A signal that is well

59

60 Chapter 4. Finding Nearest Neighbors in a Set of Compressible Signals

approximated by such an expansion over a dictionary is termed compressible, highlighting

the idea that most of the information is contained in few coefficients [24]. Usually, and that

is the case in this chapter, the sorted coefficients are assumed to follow a power-law decay;

the ith largest is such that:

| ci |≤ C i−γ . (4.2)

for γ ≥ 1 and some positive constant C. The decay parameter γ may depend on both the

signal and dictionary.

Dictionaries used to define the class of compressible signals need not be redundant.

Piece-wise smooth signals for example are compressible on wavelet bases and that character-

istic is at the heart of the good performances of wavelets for compression or denoising [50].

In many cases however, a simple basis cannot efficiently capture signal characteristics within

a compressible representation. Dictionaries offer more flexibility and dramatically enlarge

the class of compressible signals.

In this chapter, we explore how sparsity can be used to handle huge amount of data at

a lower cost. More precisely, we tackle the problem of computing in an efficient manner the

correlation of a single query signal with a huge set of compressible signals. Our algorithm

uses only the components ck, gk of the signal model (4.1), hence can be seen as working

in the transform domain. Since compression is key in storing large collections of signals,

we thus potentially avoid the extra burden of having to decode large amounts of data for

searching or browsing through the database.

In section 4.3.1 we derive the scalar product of two signals according to the parameters of

their respective sparse representation. It allows to bound parts of the scalar product when

dealing with compressible signals. In section 4.3.2 we present an algorithm to compute

efficiently the projection of a signal on a set of signals. The algorithm uses the bound

previously introduced. Section 4.3.3 and 4.4 present improved versions of the simplest

bound. Section 4.5 presents different experiments to illustrate the different bounds as well

as the algorithm itself. We conclude in section 4.6 on the benefits of this new approach and

list the perspectives we will consider.

4.2 Introduction

With the advent of digital cameras and portable music players, modern digital signal pro-

cessing has also to face the challenge of voluminous databases of signals. Clearly, signal

processing algorithms must be adapted to problems where each user manipulates large col-

lections of signals. Finding the nearest neighbor in a database is fundamental for many

applications; [44] presents a good overview of this field. Generally, when the data is lying in

a high dimensional space, a dimensionality reduction step is used to lower the complexity

of the query. In the field of signal processing, the dimensionality reduction resulting from

the sparsity of an approximation has been exploited for different tasks such as analysis,

de-noising or compression. Roughly speaking, the sparser the representation, the better it

4.3. A simple deterministic algorithm 61

is for applications.

Before moving on to the core of this chapter, let us briefly describe how our contributions

can be compared with existing techniques. The field of nearest-neighbor algorithms is very

wide and still extremely active, we thus certainly couldn’t hope to provide here a fair survey.

However, we would like to highlight some key results and orientations and this will also

allow us to specify constraints used in our framework.

Finding the nearest neighbor of a query in a set F of I d-dimensional vectors can be

solved by brute force with O(dI) operations. Clearly, when I is big (and that is the case

in most applications), this could be prohibitive. A lot of work has been devoted to trying

to reduce the amount of computations needed to deal with large data sets. Most of the

recent approaches have a cost scaling like O(exp d log I) provided the data base is first pre-

processed to create an efficient data structure [6, 14, 15, 22]. It has to be noted that a

computational cost exponential in d does not improve on the brute force technique when

d is large enough, i.e d > log I, highlighting the so called curse of dimensionality. Various

algorithms have been proposed to solve this problem, with complexity that roughly scales

in O(dβpolylog(dI)), for some β > 1 and an appropriate data structure [38, 42, 44].

This short survey brings us to our main constraint. In this chapter, we target appli-

cations in user centric multimedia databases, i.e images, audio that reside on the user’s

computer, and in this setting we cannot afford large preprocessing time. More particularly

we must be able to add and remove entries in the database at no cost. We don’t extract

low dimensional feature vectors from our signals. Instead we use sparse representations

both for compression and description of the data. Our data structure is thus simple and

forced upon us: the description of each item in terms of the coefficients and atoms’ indexes

in (4.1). As for how sparsity N depends on the dimension d, it is hard to give a precise

rule. Though N is much smaller than d, we will assume that it scales linearly with d. We

thus have high-dimensional vectors in our database.

4.3 A simple deterministic algorithm

4.3.1 Notations and warm-up

For the sake of generality, we will work from now on with a dictionary, i.e a collection of unit

L2 norm atoms gi ∈ Rd, i = 1, ..., L, with L possibly much larger than d. The dictionary

is often represented as a matrix D whose columns are the atoms gi. Using this formalism,

G = D∗D is the Gram matrix of the dictionary and contains all possible scalar products

between atoms, i.e. Gij = 〈gi | gj〉.
Let us consider a set of compressible signals F = {f i}Ii=i:

f i =

N
∑

j=1

ci
jgki

j
. (4.3)

where gki
∈ D. The vector ki contains the indices of the atoms in the dictionary and is such

that the projections ci
j are in decreasing order of magnitude. Note that we have voluntarily

62 Chapter 4. Finding Nearest Neighbors in a Set of Compressible Signals

discarded the N -term approximation error in (4.3), and we will keep on doing so from now

on. We will discuss later the influence of this term.

The aim of this chapter is to provide an efficient method to find, in the set of signals F ,

the one that is closest to a query signal q =
∑Nq

l=1 blgkl
that is also compressible with Nq

terms. The magnitudes of the projections are also decreasing with l. The scalar product

〈f i | q〉 between a signal from the set and the new one can be written as follows:

〈f i | q〉 = 〈
N
∑

j=1

ci
jgki

j
|

Nq
∑

l=1

blgkl
〉,

=
N
∑

j=1

Nq
∑

l=1

ci
jblGki

j ,kl
. (4.4)

where Gki
j ,kl

= 〈gki
j
| gkl
〉 is an entry of the Gram matrix of the dictionary D.

The aim of the algorithm is to exploit sparsity, i.e Nq, N � d, in order to find the best

matching signal. It is done by eliminating rapidly the signals whose scalar products with

the query is too small. To do so, we rewrite the scalar product presented in eq. (4.4) as

follows:

〈f i | q〉 =

N+Nq
∑

k=2

si
k, (4.5)

where si
k represents the part of the scalar product coming from atoms participating in both

decompositions such that the sum of j and l is equal to k. For the ith signal of the set F ,

it corresponds to:

si
k =

∑

j,l
j+l=k

j≤N,l≤Nq

cki
j
bkl

Gki
j ,kl

. (4.6)

The signals of the set F and the query q are compressible. According to eq. (4.2), there

exists γ and a constant C such that | ci
j |≤ Cj−γ and | bl |≤ Cl−γ . Since the entries of the

Gram matrix are between −1 and 1, it is possible to bound the magnitude of si
k as follows:

| si
k |≤

∑

j,l
j+l=k

j≤N,l≤Nq

C2j−γ l−γ (4.7)

4.3.2 Iterative candidate rejection

Computing the scalar product of two discrete d-dimensional signals requires d multiplica-

tions and d − 1 additions. Let us now suppose that these signals have an exact-sparse

representation using respectively N and Nq terms and that the entries of the Gram matrix

G have been pre-computed. Computing the scalar product using eq. (4.4) needs 3N ∗Nq

4.3. A simple deterministic algorithm 63

multiplications and N ∗Nq − 1 additions. If N = Nq, there is a computational gain only if

N <
√

d
2 , so for very sparse signals. However, using the formalism described in the previous

section, it is possible to compute iteratively the scalar product of two signals that have a

sparse and compressible representation. When searching for the best matching signal in a

huge set F , it is of great interest to be able to eliminate in an early stage the signals that

have no chance to match. If the scalar product is computed in an iterative way, our aim

is to eliminate signals by estimating at each step an upper and a lower bound on the final

scalar product, which is possible by using the bound presented by eq. (4.7). To do so, let

us first define:

Si
K =

K
∑

k=2

si
k, (4.8)

which represents the part of the scalar product 〈fi | q〉 found by taking into account the

atoms whose sum of indices is smaller or equal to K. Using the same formalism, it is

possible to express the missing part of the scalar product:

Ri
K =

N+Nq
∑

k=K+1

si
k. (4.9)

If we had kept track of the approximation error in our initial model (4.3), we would

have to add it to this residual. We simply assume that this error is sufficiently smaller than

the typical values of Ri
K we will be working with. If the signals are well-compressible, this

will be the case and this is indeed what our simulations suggest. Using the two preceding

equations, let us express the scalar product as 〈f i | q〉 = Si
K + Ri

K , ∀K, 2 ≤ K ≤ N + Nq.

The value of Si
K can be computed iteratively as Si

K = Si
K−1 + si

K .

When looking for the signal that is most correlated with the query, one computes

the absolute value of the scalar product, disregarding the sign of the projection. Thus,

∀K, 2 ≤ K ≤ N + Nq the following relation holds:

| Si
K | − | Ri

K |≤| 〈fi | q〉 |≤| Si
K | + | Ri

K | . (4.10)

Using eq. (4.7), it is possible to upper bound the residual part of the correlation | Ri
K |.

| Ri
K |≤

N+Nq
∑

k=K+1

| si
k |≤ C2

N+Nq
∑

k=K+1

ck,N,Nq
(
k2

4
)−γ = R̃i

K , (4.11)

where ck,N,Nq
is the number of possible products between atoms such that the sum of their

indices is equal to k and knowing that we have N terms for fi and Nq terms for the query:

ck,N,Nq
=

k − 1 if 2 ≤ k ≤ Nq + 1;

Nq if Nq + 1 < k ≤ N ;

N + Nq − k + 1 if N < k ≤ N + Nq;

0 otherwise.

(4.12)

64 Chapter 4. Finding Nearest Neighbors in a Set of Compressible Signals

Using the bound R̃i
K defined in eq. (4.11) it is possible to upper and lower bound the

correlation at any iteration K as follows :

mi
K ≤| 〈fi | q〉 |≤M i

K , (4.13)

where mi
K =| Si

K | −R̃i
K and M i

K =| Si
K | +R̃i

K are respectively the lower and the upper

bound. It is obvious that if ∃K s.t. M j
K < mi

K then | 〈fi | q〉 |>| 〈fj | q〉 |. This principle is

illustrated by Figure 4.1 where the maximal value some candidates could eventually reach

is lower than the worst case of the best matching candidate. The pseudo-code illustrating

the proposed algorithm is presented by table 4.3.2.

Algorithm 4 Find best matching signal in a database of exact-sparse N -terms signals

INPUTS: A signal q =
∑Nq

i=1 aigi, gi ∈ D.

A set of signals F having a exact-sparse representation using N terms.

The Gram matrix G of the dictionary used to represent the signals.

OUTPUT: mini | 〈fi | q〉 |, the index of the signal that best matches q.

INITIALIZATION: P = {i}‖F‖
i=1 the indices of the signals in the set F .

K = 2.

Si
1 = 0, ∀i.

while card(P) > 1 do

Compute all Si
K = Si

K−1 + si
K .

Compute all mi
K and M i

K .

S = {fi}M i
K

<maxi mi
K

P = P \ S.

K = K + 1.

end while

1 2 3 4 5 6 7 8
Candidates

S
K

i
±
R

K

i
~

Figure 4.1 – Elimination of candidates 2,6 and 7.

4.4. A probabilistic approach 65

4.3.3 Improved bounds

The absolute value of the projection is not decreasing at uniform rate. The slope is much

steeper at the beginning than at the end. This behavior is closely related to the redundancy

of the dictionary. Suppose now that the slope is bounded as | ai |≤ Ci−γi i.e. for each

projection ai, we learn a local parameter instead of using a global constant value for γ. It

is now possible to bound | si
k | as follows:

| si
k |≤

∑

i,j
i+j=k

i≤N,j≤Nq

C2i−γij−γj . (4.14)

One reason for locally adjusting the decay parameter γ is that greedy algorithms for example

tend to produce compressible approximants that have a non-monotonic decay : usually γ

is much bigger for the first few coefficients and then tends to decrease slowly.

Let {fn} be a huge collection of signals having an exact-sparse representation using N

terms. The projection of the ith atom of the decomposition of fj is denoted by aj
i . Let

also have the maximal ith projection Ai = maxj | aj
i |. The best parameters C and γ used

previously can be found by solving:

{C, γ} = arg min
C,γ

N
∑

i=1

(Ai − Ci−γ)2, Ci−γ ≥ Ai,∀i. (4.15)

Using the C we have learnt, we define the values γi for the improved bound as follows :

γi = − logi
Ai

C
. (4.16)

Using the locally optimized values better matches the behavior of the absolute values

of the projections. The bound is used in the algorithm to eliminate the worst matching

candidates. Thus, improving the quality of this bound directly acts on the quality of the

results of the proposed algorithm. It has to be noticed that the values of the bound do not

depend on which signal the algorithm is working with and it can thus be computed offline.

4.4 A probabilistic approach

The worst case bounds presented in the previous sections are based on the hypothesis that

the signs of the scalar products between atoms conspire against us and the entries of the

Gram matrix of the dictionary are always equal to 1. These worst case hypotheses are far

from typical cases. It is straightforward to see that if the signs are positive or negative

with equal probability, then the sequences si
k (for sufficiently big values of k) would be zero

mean. Results in the field of concentration of measure show that functions defined on a

large probability space most of the time take values that do not fall too far away from the

average case. We will now use these techniques to obtain much sharper bounds for Ri
K .

66 Chapter 4. Finding Nearest Neighbors in a Set of Compressible Signals

We will have to accept that these bounds hold with high probability and not with absolute

certainty.

Without loss of generality, we assume that the coefficients are always positive. The dic-

tionary could simply be augmented to contain also all opposite atoms so that this property

holds. At each step of the algorithm, we estimate the following amplitude:

| Ri
K | = |

2N
∑

k=K+1

si
k | (4.17)

= |
∑

j,l
j+l≥K+1
j≤N,l≤N

ci
jblGki

j ,kl
| . (4.18)

First, let suppose that the worst case is met for the values of the Gram matrix but that

the corresponding signs are random, +1 or −1 with probability 1
2 . From these considera-

tions, we rewrite the previous equation as follows:

| Ri
K | = |

2N
∑

k=K+1

si
k | (4.19)

= |
∑

j,l
j+l≥K+1
j≤N,l≤N

εj,lc
i
jbl | (4.20)

= |
∑

n

εnan | . (4.21)

where
∑

n εn is a Rademacher sequence i.e. εi is +1 or −1 with equal probability.

Theorem 2. Let a be a real vector and ε a Rademacher sequence. Then ∀t > 0

P (|
∑

n

εnan |> t) ≤ 2e−
1
2
t2/‖a‖2

2 . (4.22)

The proof of Theorem 2 can be found in chapter 4 of [45]. Using this theorem, it is

straightforward to see that

P (|
∑

n

εnan |≤ t) ≥ 1− 2e−
1
2
t2/‖a‖2

2 . (4.23)

Since the magnitude of the coefficients are bounded, the entries of a are also bounded and

this gives us a simple upper bound of its l2-norm. It is then easy to find an upper bound R̃i
K

for a given probability p by solving 1 − 2e−
1
2
(R̃i

K
)2/‖a‖2

2 = p. This bound will be discussed

in our experiments (Section 4.5) for different values of p. Note that R̃i
K is influenced in a

unfavorable way by the l2-norm of a. On the other hand, this reasoning remains general

enough to be valid for any dictionary D; in particular for orthogonal bases.

The hypothesis that the vector containing the coefficients signs is a Rademacher se-

quence is certainly more reasonable than the worst case. However, we still have a levee

4.4. A probabilistic approach 67

to pull. So far indeed, we supposed that the entries of the Gram matrix are always 1 and

that is very far from reality. We will now investigate how much we can squeeze from a

probabilistic model, assuming that the entries of the Gram matrix are drawn at random

and that the projections are always positive as before. The residual Ri
K can be rewritten

as follows:

| Ri
K | = |

2N
∑

k=K+1

si
k | (4.24)

= |
∑

n

Gnan | . (4.25)

where Gn are chosen as independent random variables modelling the entries of the Gram

matrix of the dictionary. Let us now turn to the choice of these variables. By definition, all

values of the Gram matrix are in the interval [−1, 1]. It is hard to deduce any general rule.

For redundant dictionaries used in practice an histogram of the entries of the Gram matrix

has a peak around zero signaling weakly correlated atoms, and a dirac at one representing

the values on the diagonal. Without more exploitable structure, we choose the simplest

random variables, i.e uniform random variables. This choice will lead to pessimistic bounds,

but note that since (4.25) models Ri
K as a large sum of these variables we will be able to

easily evaluate and control the resulting distribution.

Let U(n) be a symmetric uniform random variable. Its associated probability density

function is:

fU(n)(x) =

1
2n if −n ≤ x ≤ n;

0 otherwise.
(4.26)

Eq. (4.25) can be rewritten as a sum of not identically distributed independent uniform

random variables:

| Ri
K | = |

∑

n

anUn(1) | (4.27)

= |
∑

n

Un(an) | (4.28)

The probability distribution of uniformly distributed random variables with different sym-

metrical ranges is presented in [53]. For a more general approach and a survey of different

results, please refer to [9]. The probability density function of a sum of uniform random

variables
∑m

n=1 Un(an) is given by Theorem 1 of [9] and in [53], the cumulative density

function is given as follows:

68 Chapter 4. Finding Nearest Neighbors in a Set of Compressible Signals

Fm(x) =
∑

−→ε ∈{0,1}m

(−1)
∑m

i=1 εi(
1

2
(x +

m
∑

i=1

ai −
m
∏

i=1

εiai))
m

/ m!
m
∏

i=1

ai. (4.29)

Fm(x) is combinatorial and becomes difficult to evaluate in presence of a large number

m of random variables. An asymptotic density distribution f̂m(x) exists and is presented

in [53]. For small values of K, the number m of uniform random variables in the sum is

large and represents a typical case for using this approximation :

f̂m(x) ≈

[

3

2π
∑m

i=1 a2
i

]
1
2

exp

[

−3

2

x2

∑m
i=1 a2

i

]

. (4.30)

Since this asymptotic probability density function is gaussian, the associated asymptotic

cumulative density function is a simple error function :

F̂m(x) ≈
1

2

(

1 + Erf
(

√

3

2

x

‖a‖2
)

)

. (4.31)

Given a probability parameter p, we simply have to find the bound R̃i
K such that Fm(R̃i

K)−
Fm(−R̃i

K) = p.

4.5 Experiments

In this section, we evaluate our rejection techniques on simulated and real data. First, we

consider the aspects related to the estimation of the different bounds. Second, we show

their influence on the behavior of the algorithm. Finally, we present two experiments of

finding the closest image in a set of compressible images.

In order to illustrate the different properties and behaviors of the algorithm, we con-

structed a simple synthetic dataset as follows. A set of 7200 images from the COIL-100

database [58] normalized to have the same energy have been approximated using matching

pursuit with a dictionary made of anisotropic atoms [30]. This yields compressible ap-

proximants, with nicely decaying projection coefficients. We then synthesized signals by

multiplying these coefficients with atoms randomly selected in a dictionary made of the

union of the Haar and DCT bases. The choice to take projections values coming from

real approximations is motivated by the fact that the bounds mostly rely on them. Our

experiments will thus be representative of the behavior of the algorithm in real cases.

The non probabilistic upper bounds do not depend on the dictionary that is chosen but

only on the projections, on the number of terms N and Nq of the sparse representations and

on the amount of atoms that have already been taken into account by the algorithm. Figure

4.2 presents the values γi bounding the amplitudes of the projections. These values have

been learnt from the projections and this figure illustrates well the fact that the amplitude

4.5. Experiments 69

0 10 20 30 40 50
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

i

γ
i

N = 50, C = 0.8784

γ = 0.94974 learnt

{ γ
i
 } learnt

Figure 4.2 – Locally optimized {γi} compared to overall learnt γ.

of the projections is not decreasing at uniform rate. The slope is steeper at the beginning

than at the end.

Figure 4.3 exhibits the values of the different bounds presented in this chapter. The

simple bound is far from reality especially for small values of K whilst the bound using

the learnt values γi (shown in Figure 4.2) is almost half. This fact is illustrated by the

upper plot. The two other plots present probabilistic approaches. In the middle, the signs

come from a Rademacher sequence whilst on the lower part, the entries of the Gram matrix

are modelled as uniform random variables. Varying the value of the parameter p leads to

different bounds. For both probabilistic models, when p = 1 the obtained curve would

be the bound obtained using the learnt values γi on the upper part of the figure. Using

small values for p leads to sharper bounds at the cost of increasing the probability that the

algorithm commits errors whilst still guaranteeing that P (error) ≤ 1− p. Notice that, even

when p is large (i.e p = 0.9), the associated bound is an order of magnitude smaller than

in the deterministic case.

The computational gain of the algorithm greatly depends on its ability to eliminate

at early stages non suitable candidates. Figure 4.4 illustrates the relation between the

number of potential candidates and the different bounds. Most of the energy of the signals

is caught by the first terms of the decompositions. Signals whose first atoms have low

correlation with the first atoms of the query signal are not likely to be the best ones and

should rapidly be eliminated by the algorithm. This favorable case happens if the bound is

tight enough. The upper part of Figure 4.4 presents the evolution of the cardinality of the

set of potential candidates during the execution of the algorithm for the simple bound and

the one based on the learnt values γi. For these bounds, the elimination of non suitable

candidates happens late during the execution of the algorithm. Clearly, the probabilistic

bounds are much tighter and this has a direct influence on the behavior of the algorithm.

Indeed, one can observe on the other plots of Figure 4.4 that the cardinality of the set of

70 Chapter 4. Finding Nearest Neighbors in a Set of Compressible Signals

0

5

10

15

20

N=50,Nq =50, C=0.8784

{ γ
i
 } learnt

0

0.5

1

1.5 Rademacher p = 0.3

Rademacher p = 0.6

Rademacher p = 0.9

0 20 40 60 80 100
0

0.5

1

1.5

K

Uniform p = 0.3

Uniform p = 0.6

Uniform p = 0.9

γ = 0.94974 learnt

R
K

i
~

R
K

i
~

R
K

i
~

Figure 4.3 – Comparison of the different bounds. The simplest bound is greatly improved by using

a better upper bound for the energy (up). The signs modeled as a Rademacher sequence (middle). The

entries of the Gram matrix modeled by a uniform random variable (down).

potential candidates is decreasing very quickly in earlier stages. The choice of the value of

p has a major influence on the behavior of the algorithm and on its ability to eliminate non

suitable candidates given a query signal.

At step K of the algorithm, the computational complexity depends on the number

signals in the set of potential candidates. The evolution of the cardinality of this set is

closely linked to the chosen bound. By extension, the overall complexity of the algorithm

also depends on the chosen bound. When using a probabilistic approach, it is possible that

the algorithm commits mistakes and eliminates the best matching signal. Note though that

our models are pessimistic and the true probability of error is smaller than the corresponding

1 − p. Figure 4.5 (middle-top) shows the relationship between the probability parameter

p of the used probability model and the computed probability of error. The computations

were done for p going from 0.01 to 0.99 by steps of 0.01. According to the model, the

probability of error should be lower than 1− p which is the case for all experiments. It has

to be noticed that the real probability of error is much lower than the theoretic bound of

the model. For example, the algorithm committed no error for values of p bigger than 0.43.

However, we can not derive any general rule as these results depends on the characteristics

of the dictionary.

During its execution, the algorithm considers successively pairs of atoms. For each of

them, it has to multiply the corresponding entry of the gram matrix by both projection

4.5. Experiments 71

0

2000

4000

6000

8000

10000

c
a
rd

(P
)

N = 50, Ng = 5 0

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

K

{ γ
i
 } learnt

Rademacher p = 0.3

Rademacher p = 0.6

Rademacher p = 0.9

Uniform p = 0.3

Uniform p = 0.6

Uniform p = 0.9

γ = 0.94974 learnt

c
a
rd

(P
)

c
a
rd

(P
)

Figure 4.4 – Impact of the different bounds on the number of candidates. A database of 3000 signals

of 2000 samples is used. The three parts of the figure present the cardinality card(P) of the set of

potential candidates for the different bounds defined in the chapter averaged over 20000 queries.

parameters and add it to the current estimation of the scalar product. We considered that

each of these individual operation has unit weight. Thus, for each pair, the algorithm makes

3 operations. We did not take into account the computations needed to find the candidates

to eliminate. Figure 4.5 (top) presents the number of operations needed for different values

of p. The direct computation of the scalar product would require 2000 multiplications and

1999 addition for each signal in the database. Thus, the overall number of operations is

roughly 40× 106.

When computing nearest neighbors in high dimensional spaces, one often seeks for

a (1 + ε)-approximate nearest neighbor fi ∈ F of q such that ∀fk ∈ F , dist(fi, q) ≤
(1 + ε)dist(fk, q). Where dist() is some distance function or some norm. Our algorithm

computes scalar products between signals, we have thus used the simplest distance:

dist(fi, q) =

(

1−
(| 〈fi, q〉 |
‖fi‖2‖q‖2

)2
)1/2

. (4.32)

Since all signals have roughly unit norm, dist(fi, q) ≈
√

1− | 〈fi, q〉 |2. Note that one could

use more complicated distances, for example kernel distances, provided they are still based

on evaluating scalar products. The traditional kernels used in classification are based on

scalar products between vectors. Some of them are listed below, but the interested reader

72 Chapter 4. Finding Nearest Neighbors in a Set of Compressible Signals

can get more insight in any textbook, for example [17] :

Polynomial kernel: k(fi, q) = 〈fi, q〉α

Radial basis function: k(fi, q) = exp−‖fi − q‖2
2σ2

Sigmoid: k(fi, q) = tanh (κ〈fi, q〉+ c)

Choosing the best distance, though, is application dependent and out of the scope of the

present chapter. We will thus perform all our experiments using the simple euclidean

distance. Note as well that some classification schemes, most notably support vector ma-

chines [17], rely heavily on selecting particular data points based on their scalar products

with reference vectors. These techniques could potentially benefit from fast rejection algo-

rithms.

For each experiment, we computed the value ε, called slackness. The two lower parts of

Figure 4.5 presents the mean and the maximal values of the slackness. The mean slackness

is very near 0; this is due to the fact that when the algorithm correctly identifies the best

signal, the corresponding ε is 0. Generally, one is more interested in the maximal possible

value for ε as it bounds the worst case. For small values of p, the maximal value of the

slackness is quiet high whilst it decreases rapidly when p increases.

Since no conditions were imposed on the dictionary apart from the fact that the signals

should be compressible, it is straightforward to see that the bound using the Rademacher

sum is valid whatever dictionary is used. In the present experiment, a set of 7200 images

from the COIL-100 database [58] where approximated with 200 terms of a wavelet decom-

position (i.e the dictionary is an orthogonal basis). The images are of size 128×128 and the

filter used for the wavelet transform is a Daubechies of length 20. The database of signals is

made of 2500 randomly chosen images and the other ones where used to test the algorithm.

Figure 4.6 shows that the cardinality of the set of potential signals decays quickly with the

number of iterations. Different parameters p have been used to obtain the bound, but this

didn’t change significantly the behaviour of the algorithm. Moreover, it has to be noticed

that the algorithm always found the best signal in the database.

For our next set of experiments, we turn to a redundant dictionary. Let the set F be a

collection of images having a sparse decomposition using a dictionary D. We used images

from the ORL face database [68].The dictionary is built using generating functions that are

scaled, rotated and translated [30]. The generating function is made of a Gaussian in one

direction and its second derivative in the other direction. It has a good ability to capture

edges and is well located in space and frequency.

In our experiments, the atoms have translation parameters that take any positive integer

value smaller than the size of the image. The rotation parameter varies by increments of
π
18 . The scaling parameters are uniformly distributed on a logarithmic scale from one up

to an eighth of the size of the image, with a resolution of one third of octave. The scaling

along the second derivative part is always smaller. The dictionary also contains Gaussian

atoms. Their translation parameters can take the same values as for the anisotropic atoms,

their scaling is isotropic and varies from 1
32 to 1

4 of the size of the image on a logarithmic

4.5. Experiments 73

0

1

2

3

4

5
x 10

6

c
o
m

p
le

x
it
y

N = 50, Ng = 50

0

0.05

0.1

0.15

0.2

p
ro

b
a
b
ili

ty
 o

f
e
rr

o
r

0

0.05

0.1

0.15

m
a
x
 s

la
c
k
n
e
s
s

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−3

p

m
e
a
n
 s

la
c
k
n
e
s
s

Figure 4.5 – Real probability of error v.s. probabilistic model parameter. Comparing the value of the

parameter p with the real probability error (middle up) and its influence on the complexity (up). The

maximal slackness (middle down) and the mean slackness (down) are also presented. The algorithm uses

a global probabilistic bound; the signals have 2000 samples, the database contains 10000 signals. The

results are the mean of 20000 experiments.

scale with a resolution of one third of octave. Due to isotropy, rotation is obviously useless

for this kind of atoms.

An atom is uniquely defined by the set of parameters defining the generating function,

the translation, the scaling and the rotation. Using images of size 128× 128, the dictionary

is made of 40271872 atoms, which makes it difficult to store the Gram matrix. However,

due to their particular analytical form, it is possible to compute at low cost any entry of

the gram matrix knowing the parameters of the atoms without having to create them.

Figure 4.7 presents the last steps of the execution of the algorithm when one or more

candidates are eliminated. The candidates are shown using the number of atoms at disposal

at the current step. The cardinality of the set of face images is 300; at step K = 17,

corresponding to the second row of the figure, 9 candidates are remaining. The images

74 Chapter 4. Finding Nearest Neighbors in a Set of Compressible Signals

0 50 100 150 200 250 300 350 400 450
0

500

1000

1500

2000

2500

K

c
a
rd

(P
)

N = 200,Ng = 200

Rademacher p = 0.2

Rademacher p = 0.4

Rademacher p = 0.6

Figure 4.6 – Number of candidates during the execution of the algorithm for images approximated

with wavelets.

representing the same person are likely to have a strong correlation with the reference

image and are massively present in the remaining candidates.

The same experiment has been done with wavelet representations of images from the

COIL-100 database [58]. A simple pretreatment consisting in normalizing the energy of

the images has been done. The database contained 1500 images chosen randomly and all

the images of size 128x128 were approximated using 1000 terms. Figure 4.9 presents the

evolution of the cardinality of the set of potential candidates during the first 85 steps. The

following steps are presented by Figure 4.8. The first row presents the query image and the

images present in P after 85 steps reconstructed using 1000 wavelets. In the next rows, the

images are reconstructed using only the wavelets that have been taken into account by the

algorithm at this step. The algorithm is efficient in eliminating signals that are not from

the good class. The four last rows contain the same object and as they are very similar,

the algorithm need many steps to identify the best one. However, as the cardinality of the

set of potential candidates is very low, the complexity is low too.

4.6 Discussion

The sparse structure of compressible signals offers a rather straightforward way to reduce the

dimensionality of complex signals. We have exploited this structure to recursively localize

those elements of a large set of signals that are closest to a fixed query. Our technique

requires fundamental inputs. First, the coefficients of the expansion of each signal in the

database must be stored and easily accessible. Note this is not a particularly stringent

requirement since it is very likely that one would store compressed signals, using precisely

the sparsity of their representation over a given basis or dictionary. Our technique is then

4.6. Discussion 75

Ref image
3

0
0

 a
to

m
s

119 170 176 199 235 236 238 239 284
k

 =
1

7
k

 =
1

8
k

 =
1

9
k

 =
2

1
k

 =
5

0
k

 =
6

7
k

 =
2

5
8

Figure 4.7 – Last steps of the execution of the algorithm. The column most left presents the reference

images whilst the other contain the candidates. The first row contains all fully recreated images whilst

in the other rows, the images are reconstructed according to the number of atoms the algorithm takes

into account.

able to work on the compressed signals, in the sense that one doesn’t have to reconstruct

them for processing. Second, the gram matrix of the dictionary used to express signals must

be stored or computed, too. If this not a problem when the dictionary is an orthogonal

basis, it could be a severe limitation in the case of a general redundant dictionary since the

gram matrix is a priori large and without particular structure. However, the gram matrix

entries of many dictionaries used in practice can be computed in a fast way.

We showed that it is possible to maintain deterministic or probabilistic bounds on the

true distance between the query and the tested signals. Clearly though, probabilistic bounds

are much more favorable than our worst case deterministic bounds. Indeed, we presented

clear experimental evidence showing the ability of the algorithm to eliminate non suitable

candidates at early stages.

76 Chapter 4. Finding Nearest Neighbors in a Set of Compressible Signals

Ref image

1
0

0
0

 c
o

e
fs

604 880 1099 1100 1198 1202 1206 1207 1374

k
 =

8
5

k
 =

8
9

k
 =

1
0

0
k
 =

1
1

0
k
 =

1
1

4
k
 =

1
8

9
k
 =

3
4

5

Figure 4.8 – Last steps of the execution of the algorithm using wavelets approximation. The column

most left presents the reference images whilst the other contain the candidates. The first row contains all

fully recreated images (1000 wavelets) whilst in the other rows, the images are reconstructed according

to the number of wavelets the algorithm takes into account.

0 10 20 30 40 50 60 70 80
0

300

600

900

1200

1500

c
a

rd
(P

)

K

Figure 4.9 – Evolution of the cardinality of the set of potential candidates before reaching the state

shown in Figure 4.8.

Conclusions 5
5.1 Achievements

Redundant expansions permit to express the information contained in signals in a meaning-

ful way. However, almost all algorithms in this field are prohibitive in terms of computations

or memory requirements. On the other hand, sparse approximations provide flexible rep-

resentations that can lead to efficient treatments of the information and smart solutions

to solve typical signal processing problems. Our main objective is to provide algorithmic

solutions that could help propagating the sparse approximations techniques to real world

applications.

Chapter 2 presented an algorithm, called Tree-Based Pursuit, which reduces the com-

plexity of finding sparse representations with limited impact on the approximation rate.

Additionally, thanks to the clustering technique used to create the dictionary data struc-

ture, this algorithm is able to recover coarse structures of the signals. This chapter studied

highly redundant dictionaries which are often used but were rarely studied; different re-

searchers obtained interesting results for incoherent dictionaries. We demonstrated that

from a molecular point of view, their results also apply to highly redundant dictionaries.

The dictionary learning algorithm presented in Chapter 3 is less complex than other

state of the art methods. This difference makes it possible to create bigger atoms and more

populated dictionaries at a lower cost. Additionally, the shift invariance property allowed

for finding waveforms that were not learnt with other techniques e.g. curved edge detectors.

We believe that creation of dictionary using data mining techniques will eventually lead to

efficient applications. In some situations, we may even expect to learn more about the

underlying physic by finding good families of generating functions.

The last topic, treated in Chapter 4, illustrates that sparse approximations may be ex-

77

78 Chapter 5. Conclusions

ploited to provide efficient signal processing tasks. The sparse structure of the coefficients

was used to reduce the dimensionality of complex signals. The proposed solution has only

few requirements. The most problematic one is to have a fast method to get entries of the

Gram matrix. Accessing the sparse coefficients is generally not a problem as huge databas-

es generally store compressed versions of the data. The proposed solution demonstrates

that sparsity may be exploited in an intuitive way to solve complex tasks. Additionally,

compressible signals are very common signals as this class contains natural images, sounds

and music for example.

5.2 Future research directions

Combine Tree-Based Pursuit and MPTK. Recently, an efficient implementation of

Matching Pursuit, called the Matching Pursuit Toolkit (MPTK) has been released.

The authors worked on the practical bottlenecks of Matching Pursuit. They showed

that they were not always where most researchers thought they would be. Finding

the best node at the first level of the tree is equivalent to Matching Pursuit. Thus, the

improvement MPTK brings to Matching Pursuit are directly applicable to Tree-Based

Pursuit.

Further exploit the tree structure. Each atom in the dictionary correspond to a path

in the tree. This equivalence permits to think about different possible applications.

Sparse approximations allows for design efficient and low bit rate coder. Generally,

these algorithms sort the selected atoms in decreasing order of magnitude of the

associated projections. Adapted quantization schemes are used for the projections.

In this case, the index of the atoms have to be encoded at a cost roughly equal to

dlog2 |D|e. In some cases, the projections of the molecules on the path to the atom

have comparable magnitude. Thus, from a coding point of view, they carry enough

information to be used instead of the true atoms. It would be possible to make a

coder that also uses molecules. When coding an atom by its path in the tree, we

could hope to have a gain in compression.

MoTIF with other invariant transforms. Our learning algorithm finds translation in-

variant features. Obviously, MoTIF could be adapted to work under other invariant

transforms at the condition that they admit a well defined adjoint. In a sense, this

topic was already treated by Lesage in his thesis. He used this principle and the

K-SVD structure from Aharon to define a new learning algorithm.

Multichannel MoTIF. Monaci used MoTIF to find multi-modal generating functions

whilst keeping the important features present in the signals synchronized. We pre-

sented his alternate learning procedure that corresponds to localize in one modality

and to learn a new generating function in the other one. This solution works remark-

ably well for two channels. Can it be generalized for more channels? How should the

localize/learn paradigm be adapted in this situation? These questions remain open

5.2. Future research directions 79

and are in our opinion of great interest. Data mining on complex synchronized data

represents a big challenge and should gain in interest in the future.

Nearest Neighbor with random dictionaries. In view of the recent results in com-

pressed sensing, one may wonder wether it would be possible to avoid computing

sparse approximations over a fixed dictionary since most of the information of com-

pressible signals can be captured by random projections [10]. Exploring the possibility

of working solely with random projections may be interesting future research direc-

tion.

Nearest Neighbor and kernel distances. The proposed algorithm computes distances

between signals in function of the scalar products of their constituting atoms. Differ-

ent applications use more complicated distances than the simple euclidian distance.

Some of these distances are solely function of the scalar products between the signal.

Thus, our solution may be adapted to iteratively compute these distances based on

the inter-atoms scalar products. Finding the appropriate bounds may be more com-

plicated. Some classification algorithm as Support Vector Machines rely heavily on

selecting particular data points based on their scalar products with reference vectors.

These techniques could potentially benefit from the fast rejection provided by the

proposed Nearest Neighbor algorithm.

80 Chapter 5. Conclusions

Bibliography

[1] M. Aharon, M. Elad, and A. M. Bruckstein. K-SVD and its non-negative variant for

dictionary design. In Proceedings of the SPIE conference wavelets, volume 5914, July

2005.

[2] M. Aharon, M. Elad, and A. M. Bruckstein. K-SVD: Design of dictionaries for sparse

representations. In Proceedings of SPARS’05, 2005.

[3] M. Aharon, M. Elad, and A. M. Bruckstein. K-SVD: An algorithm for designing

overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Pro-

cessing, 54(11):4311–4322, November 2006.

[4] M. Aharon, M. Elad, and A. M. Bruckstein. On the uniqueness of overcomplete

dictionaries, and a practical way to retrieve them. Linear Algebra and its Applications,

416:4867, 2006.

[5] Applied and Computational Mathematics - California Institute of Technology (Cal-

tech). `− 1 magic. http://www.acm.caltech.edu/l1magic/.

[6] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optitmal algorithm

for approximate nearest neighbor searching in fixed dimensions. In Proceedings of 5th

ACM-SIAM SODA, 1994.

[7] A. J. Bell and T. J. Sejnowski. The ’independent components’ of natural scenes are

edge filters. Vision Research, 37(23):3327–3338, 1997.

[8] T. Blumensath and M. Davies. Sparse and shift-invariant representations of music.

IEEE Transactions on Audio, Speech and Language Processing, 14(1):50– 57, January

2006.

[9] D. M. Bradley and R. C. C. Gupta. On the distribution of the sum of n non-identically

distributed uniform random variables. Annals of the Institute of Statistical Mathemat-

ics, 54(3):689–700, 2002.

[10] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and in-

accurate measurements. Communications on Pure and Applied Mathematics, 59:1207–

1223, 2005.

81

82 Bibliography

[11] S. S. Chen, D. L. Donoho, and M. A Saunders. Atomic decomposition by Basis Pursuit.

SIAM Journal on Scientific Computing, 20(1):33–61, 1999.

[12] K.-P. Cheung and Y.-H. Chan. A fast two-stage algorithm for realizing Matching Mur-

suit. In Proceedings of IEEE International Conference on Image Processing (ICIP’01),

volume 2, pages 431–434, October 2001.

[13] Y. T. Chou, W. L. Hwang, and C. L. Huang. Gain-shape optimized dictionary for

Matching Pursuit video coding. Signal Processing, 83:1937–1943, September 2003.

[14] K. Clarkson. A randomized algorithm for closest-point queries. SIAM Journal on

Computing, 17:830–847, 1988.

[15] K. Clarkson. An algorithm for approximate closest-point queries. In Proceedings of

10th ACM Symposium on Computational Geometry, 1994.

[16] S. F. Cotter and B. D. Rao. Application of tree-based searches to Matching Pursuit.

In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP’01), volume 6, pages 3933–3936, May 2001.

[17] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and

Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[18] I. Daubechies. Time-frequency localization operators: a geometric phase space ap-

proach. IEEE Transactions on Information Theory, 34:605–612, 1988.

[19] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. Journal of

Constructive Approximation, 13:57–98, 1997.

[20] C. De Vleeschouwer and B. Macq. Subband dictionaries for low-cost matching pursuits

of video residues. IEEE Transactions on Circuits and Systems for Video Technology,

9(7):984–993, October 1999.

[21] I. S. Dhillon, E. M. Marcotte, and U. Roshan. Diametrical clustering for identifying

anti-correlated gene clusters. Bioinformatics, 19(13):1612–1619, 2003.

[22] D. Dobkin and R. Lipton. Multidimensional search problems. SIAM Jouranl of Com-

puting, 5:181–186, 1976.

[23] D. L. Donoho and M. Elad. Optimally sparse representation in general (nonorthogonal)

dictionaries via l1 minimization. Proceedings of the National Academy of Sciences,

100:2197–2202, March 2003.

[24] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies. Data compression and

harmonic analysis. IEEE Transactions on Information Theory, 44:391–432, August

1998.

[25] M. Elad and A. M. Bruckstein. A generalized uncertainty principle and sparse represen-

tations in pairs of bases. IEEE Transactions on Information Theory, 48(9):2558–2567,

September 2002.

Bibliography 83

[26] K. Engan, S. O. Aase, and J. Hakon Husoy. Method of optimal directions for frame

design. In Proceedings of IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP’99), volume 5, pages 2443–2446, 1999.

[27] K. Engan, S. O. Aase, and J.H. Husoy. Multi-frame compression: theory and design.

Signal Processing, 80(10):2121–2140, October 2000.

[28] K. Engan, K. Skretting, and Husoy J. H. Family of iterative LS-based dictionary learn-

ing algorithms, ILS-DLA, for sparse signal representation. Digital Signal Processing,

17(1):32–49, January 2007.

[29] R. M. Figueras i Ventura and P. Vandergheynst. Sparse image approximation with

application to flexible image coding. PhD thesis, EPFL, Lausanne, 2005.

[30] R. M. Figueras i Ventura, P. Vandergheynst, and P. Frossard. Low rate and flexible

image coding with redundant representations. IEEE Transactions on Image Processing,

15(3):726–739, March 2006.

[31] P. Frossard and P. Vandergheynst. Redundancy in non-orthogonal transforms. In

IEEE International Symposium on Information Theory, page 196, June 2001.

[32] M. Goodwin and M. Vetterli. Matching Pursuit and atomic signal models based on

recursive filter banks. IEEE Transactions on Signal Processing, 47(7):1890–1902, July

1999.

[33] I. F Gorodnitsky and B. D. Rao. Sparse signal reconstruction from limited data us-

ing FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal

Processing, 45(3):600–616, March 1997.

[34] R. Gribonval. Fast matching pursuit with a multiscale dictionary of gaussian chirps.

IEEE Transactions on Signal Processing, 49(5):994–1001, May 2001.

[35] R. Gribonval and S. Krstulovic. MPTK: Matching Pursuit made tractable. In Proceed-

ings of International Conference on Acoustics, Speech, and Signal Processing (ICAS-

SP’06), May 2006.

[36] R. Gribonval and M. Nielsen. Sparse representations in unions of bases. IEEE Trans-

actions on Information Theory, 49(12):3320–3325, December 2003.

[37] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[38] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse

of dimensionality. In Prodeedings of the 29th Symposium on Theory of Computing

(STOC), pages 604–613, 1998.

[39] D. Jiang, C. Tang, and A Zhang. Cluster analysis for gene expression data: a survey.

IEEE Transactions on Knowledge and Data Engineering, 16(11):1370–1386, November

2004.

84 Bibliography

[40] P. Jost, P. Frossard, and P. Vandergheynst. Redundant image representations in securi-

ty applications. In Proceedings of IEEE International Conference on Image Processing

(ICIP’04), volume 4, pages 2151–2154, October 2004.

[41] J. Karvanen and A. Cichocki. Measuring sparseness of noisy signals. In Proceedings

of 4th International Symposium on Independent Component Analysis and Blind Signal

Separation (ICA2003), pages 125–130, April 2003.

[42] J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In

Prodeedings of the 28th Symposium on Theory of Computing (STOC), pages 599–608,

1997.

[43] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T. W. Lee, and T.J. Sejnowski.

Dictionary learning algorithms for sparse representation. Neural Computation, 15:349–

396, 2003.

[44] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest

neighbor in high dimensional spaces. SIAM Journal of Computing, 30:457–474, 2000.

[45] M. Ledoux and M. Talagrand. Probability in Banach spaces : isoperimetry and pro-

cesses. Springer-Verlag, 1991.

[46] T. W. Lee, M. S. Lewicki, M. Girolami, and T. J. Sejnowski. Blind source separa-

tion of more sources than mixtures using overcomplete representations. IEEE Signal

Processing Letters, 6(4):87–90, April 1999.

[47] S. Lesage. Apprentissage de dictionnaires structurés pour la modélisation parci-

monieuse des signaux multicanaux. PhD thesis, Université de Rennes 1, 2007.

[48] M.S. Lewicki and B. A. Olshausen. A probabilistic framework for the adaptation and

comparison of image codes. Journal of the Optical Society of America, 16(7):1587–1601,

1999.

[49] M.S. Lewicki and T.J. Sejnowski. Learning overcomplete representations. Neural

computation, 12(2):337–365, 2000.

[50] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.

[51] S. Mallat and Z. Zhang. Matching Pursuit with time-frequency dictionaries. IEEE

Transactions on Signal Processing, 41(12):3397–3415, December 1993.

[52] S. Marcel, P. Jost, P. Vandergheynst, and J. Thiran. Face authentication using client-

specific Matching Pursuit. Technical report, EPFL, 2004.

[53] S. K. Mitra. On the probability distribution of the sum of uniformly distributed random

variables. SIAM Journal on Applied Mathematics, 20(2):195, 1971.

[54] G. Monaci. On the modelling of Multi-modal data using redundant dictionaries. PhD

thesis, EPFL, 2007.

Bibliography 85

[55] G. Monaci, P. Jost, P. Vandergheynst, B. Mailhe, S. Lesage, and R. Gribonval. Learn-

ing multi-modal dictionaries: Application to audiovisual data. In Proceedings of Inter-

national Workshop on Multimedia Content Representation, Classification and Security,

pages 538–545, 2006.

[56] G. Monaci, P. Jost, P. Vandergheynst, B. Mailhe, S. Lesage, and R. Gribonval. Learn-

ing multi-modal dictionaries. IEEE Transactions on Image Processing, 2007.

[57] R. Neff and A. Zakhor. Matching Pursuit video coding .i. dictionary approximation.

IEEE Transactions on Circuits and Systems for Video Technology, 12(1):13–26, Jan-

uary 2002.

[58] S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library (COIL-100).

Technical report, CUCS-006-96, February 1996.

[59] B. A. Olshausen and D.J. Field. Emergence of simple-cell receptive field properties by

learning a sparse code for natural images. Nature, 381:607–609, 1996.

[60] B. A. Olshausen and D.J. Field. Natural image statistics and efficient coding. Network:

Computation in Neural Systems, 7:333–339, 1996.

[61] B. A. Olshausen and D.J. Field. Sparse coding with an overcomplete basis set: A

strategy employed by V1? Vision Research, 37:3311–3325, 1997.

[62] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal Matching Pursuit:

Recursive function approximations to wavelet decomposition. In Proceeding of the

27th Annual Asilomar Conference on Signals Systems and Computers, 1993.

[63] L. Peotta, L. Granai, and P. Vandergheynst. Very low bit rate image coding using

redundant dictionaries. In Proceedings of the SPIE, Wavelets: Applications in Signal

and Image Processing, volume 5207 of Lecture Notes in Computer Science, pages 228–

239. SPIE, 2003.

[64] L. Peotta, P. Jost, P. Vandergheynst, and P. Frossard. Sparse approximation with

block incoherent dictionaries. TR - ITS 2003.007, EPFL, 1015 Ecublens, December

2003.

[65] M. D. Plumbley. Recovery of sparse representations by Polytope Faces Pursuit. In

Proceedings of the 6th International Conference on Independent Component Analysis

and Blind Source Separation (ICA 2006), LNCS 3889, pages 206–213, Charleston, SC,

USA, March 2006. Springer Verlag, Berlin.

[66] D.W. Redmill, D. R. Bull, and P. Czerepinki. Video coding using a fast non-separable

Matching Pursuits algorithm. In Proceedings of IEEE International Conference on

Image Processing (ICIP’98), volume 1, pages 769–773, October 1998.

[67] S. R. Safavian and D. Landgrebe. A survey of decision tree classifier methodology.

IEEE Transactions on Systems, Man and Cybernetics, 21(3):660–674, May/June 1991.

86 Bibliography

[68] F. Samaria and A. Harter. Parameterisation of a stochastic model for human face iden-

tification. In IEEE Workshop on Applications of Computer Vision, Sarasota (Florida),

December 1994.

[69] P. Schmid-Saugeon and A. Zakhor. Dictionary design for Matching Pursuit and ap-

plication to motion-compensated video coding. IEEE Transactions on Circuits and

Systems for Video Technology, 14(6):880 – 886, June 2004.

[70] Signal Processing Institute - Swiss Federal Institute of Technology (EPFL). JJ2000.

http://jj2000.epfl.ch/.

[71] E. C. Smith and M. S. Lewicki. Efficient coding of time-relative structure using spikes.

Neural Computation, 17(1):19–45, 2005.

[72] E. C. Smith and M. S. Lewicki. Learning efficient auditory codes using spikes predicts

cochlear filters. In Advances in Neural Information Processing Systems, volume 17,

pages 1289–1296, 2005.

[73] E. C. Smith and M. S. Lewicki. Efficient auditory coding. Nature, 439:978–982, Febru-

ary 2006.

[74] J.-L. Starck, E. Candès, and D. L. Donoho. The curvelet transform for image denoising.

IEEE Transactions on Image Processing, 11(6):131141, 2002.

[75] J.-L. Starck, M. Elad, and D. L. Donoho. Redundant multiscale transforms and their

application for morphological component analysis. Advances in Imaging and Electron

Physics, 132:287348, 2004.

[76] V. N. Temlyakov. Weak greedy algorithms. Advances in Computational Mathematics,

12(2-3):213–227, February 2000.

[77] V. N. Temlyakov. Nonlinear methods of approximation. Foundations of Computational

Mathematics, 3(1):33–107, January 2003.

[78] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE

Transactions on Information Theory, 50(10):2231–2242, October 2004.

[79] J. A. Tropp. Just relax: Convex programming methods for subset selection and sparse

approximation. ICES Report 04-04, The University of Texas at Austin, February 2004.

[80] J. A. Tropp. Topics in Sparse Approximation. Computational and applied mathemat-

ics, UT-Austin, August 2004.

[81] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, pages 586–591, June

1991.

Curriculum vitæ

Name: Philippe Jost

Citizenship: Swiss

Birthdate: December 2, 1978

Birthplace: Vevey, Switzerland

Marital status: Single

Contact information

Address: Quai Perdonnet 14

1800 Vevey, Switzerland

Phone: +41 21 693 26 57

Fax: +41 21 693 76 00

Email: philippe.jost@epfl.ch

Web page: http://lts2www.epfl.ch/∼jost

Work experience

� April 2003 – present : Research assistant at the Signal Processing Institute, Swiss

Federal Institute of Technology (EPFL), Lausanne, Switzerland

– PhD Thesis research in the field of sparse approximation using redundant dic-

tionaries.

– Supervision of master thesis.

– Responsible of exercises and laboratory activities for the Digital Signal Pro-

cessing and for postgraduate course: Advanced Digital Image Processing and

Analysis.

– Webmaster (http://lts2www.epfl.ch and http://itswww.epfl.ch).

� Summer 2003 : Master Thesis at Visiowave’s Research department

– Dynamic Region and Block-Based Motion Estimation for Video Compression.

87

88 Curriculum vitæ

� Summer 2001 : Intership at Visiowave’s Research department

– Motion-Based Frame Interpolation.

– Multi-scale Block-Based Motion Estimation.

� 1999 – present : Screenager.net

– Webhosting.

– Development of dynamic websites.

� Summer 1999 : Internship at IBM - Geneva - Switzerland

– Internal customer support.

– In charge of backup servers.

– Software Installation.

� Summer 1997 : Internship at Nestlé - Vevey - Switzerland

� Summer 1996 : Working for the Youth Hostel of Montreux - Switzerland

Education

� October 2003 – present : Ph. D. student in sparse approximation. Swiss Federal

Institute of Technology (EPFL), Lausanne, Switzerland.

� October 2003 – present : Doctoral School in Computer, Communication and Infor-

mation Science. Swiss Federal Institute of Technology (EPFL), Lausanne, Switzer-

land.

� 1997 – 2002 : M.s. in Communication Systems, Swiss Federal Institute of Technol-

ogy (EPFL), Lausanne, Switzerland.

Scientific Activities and Seminars

� Reviewer for IEEE Transactions on Signal Processing.

� July 2005 : Visiting Scientist Institut de Recherche en Informatique et Systèmes

aléatoires (IRISA) , Rennes, France.

� June 2005 : Visiting Scientist Numerical Harmonic Analysis Group (NuHAG), Uni-

versity of Vienna, Austria.

� June 2005 : Special semester on Modern Methods in Time-Frequency Analysis, Uni-

versity of Vienna, Austria.

Curriculum vitæ 89

Skills

Languages

French: mother tongue.

Swiss German: mother tongue.

English: fluent oral and written.

German: fluent oral and written.

Computer literacy

Operating systems: UNIX, Linux, Windows

Programming Languages: JAVA, C, C++, SQL, PHP, XML, UM

Other: Matlab, Mathematica, Maple, Office, HTML, LaTeX, Apache

Extra-curricular activities

� Sports : Golf (HCP 7), Snowboard, Tennis

� Associative : Zofingue: President winter semester 2001/02 and winter semester 2005/06

� Reading, Music, Arts

90 Curriculum vitæ

Personal publications

Journal papers

� P. Jost, P. Vandergheynst, On finding nearest neighbors in a set of compressible sig-

nals, submitted to IEEE Transactions on Signal Processing, 2007.

� G. Monaci, P. Jost, P. Vandergheynst, B. Mailhe, S. Lesage and R. Gribonval, Learn-

ing Multi-Modal Dictionaries, submitted to IEEE Transactions on Image Processing,

2007.

� P. Jost, P. Vandergheynst, P. Frossard, Tree-Based Pursuit: Algorithm and Properties,

IEEE Transactions on Signal Processing, Vol. 54, Nr. 12, pp. 4685-4697, 2006.

Conference papers

� G. Monaci, P. Jost, P. Vandergheynst, B. Mailhe, S. Lesage, R. Gribonval, Learning

Multi-Modal Dictionaries: Application to Audiovisual Data, Workshop on Multimedia

Content Representation, Classification and Security, in Springer-Verlag LNCS series,

Vol. 4105, pp. 538-545, 2006.

� P. Jost, S. Lesage, P. Vandergheynst, R. Gribonval, MoTIF: An Efficient Algorithm

for Learning Translation Invariant Dictionaries, International Conference on Acous-

tics, Speech, and Signal Processing (IEEE ICASSP’06), 2006.

� P. Jost, S. Lesage, P. Vandergheynst, R. Gribonval, Learning Redundant Dictionaries

with Translation Invariance Property: the MoTIF Algorithm, Structure et Parcimonie

pour la Représentation Adaptative de Signaux (SPARS’05), 2005.

� G. Monaci, P. Jost, P. Vandergheynst, Image compression with learnt tree-structured

dictionaries, International Workshop on Multimedia Signal Processing (IEEE MM-

SP’04), 2004.

� P. Jost, P. Frossard, P. Vandergheynst, Redundant Image Representations in Security

Applications, International Conference on Image Processing (IEEE ICIP’04), 2004.

91

92 Personal publications

Technical reports

� P. Jost, P. Vandergheynst, P. Frossard, Tree-Based Pursuit: Algorithm and Properties,

Technical Report, 2005.

� S. Marcel, P. Jost, P. Vandergheynst, J. Thiran, Face Authentication using Client-

specific Matching Pursuit, Technical Report, 2004.

� P. Jost, P. Vandergheynst, P. Frossard, Tree-Based Pursuit, Technical Report, 2004.

� L. Peotta, P. Jost, P. Vandergheynst, P. Frossard, Sparse Approximation with Block

Incoherent Dictionaries, Technical Report, 2003.

Master Thesis

� P. Jost, J. Reichel, F. Ziliani, P. Vandergheynst, Dynamic Region and Block-Based

Motion Estimation for Video Compression, Ecole Polytechnique Fédérale de Lausanne

(EPFL), 2002.

Patents

� P. Jost, P. Vandergheynst, P. Frossard, A system for very low rate face image com-

pression and authentication.

	Title
	Table of contents
	Abstract
	Version abrégée
	List of figures
	Introduction
	Motivations
	Roadmap and Main Contributions

	Tree-Based Pursuit
	Motivations
	Sparse Approximations
	Formal Problem
	Greedy algorithms
	Optimization methods
	Dictionary
	Recovery

	Structuring Redundant Dictionaries
	From atoms to molecules
	Dictionary characterization
	Tree-structured dictionaries

	Tree-Based Pursuit algorithm
	Tree-based search
	Complexity Analysis

	Consistency analysis
	From redundant to block incoherent dictionaries
	Covering conditions
	Recovery Condition

	Experimental Results
	1-D signals
	Extension to multi-dimensional signals

	Application: Very low bit rate face coder
	Motivations
	Coding scheme
	Results and discussion

	Discussion

	Dictionary Learning
	Motivations
	Introduction
	Principle and algorithm
	Experiments
	Synthetic experiments
	Experiments with natural signals

	Extensions
	Discussion

	Finding Nearest Neighbors in a Set of Compressible Signals
	Motivations
	Introduction
	A simple deterministic algorithm
	Notations and warm-up
	Iterative candidate rejection
	Improved bounds

	A probabilistic approach
	Experiments
	Discussion

	Conclusions
	Achievements
	Future research directions

	Bibliography

