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Abstract

With the ever growing importance of internet, people are becoming overwhelmed by in-
formation. More concretely, consider a situation where you find yourself with an evening
alone and would like to rent a DVD to watch. For several reasons, this is a difficult problem.
First, most people have limited knowledge about the alternatives. Second, the set of alter-
natives changes frequently. In our example, there could be thousands of movies to choose
from, and new movies are released on a daily basis. Third, this is an example of a low user
involvement decision process, where the user is not prepared to spend hours expressing her
preferences. Recommender systems have been designed to help people in this situation by
finding the most relevant items based on the person’s preferences. Two kinds of techniques
are used in eCommerce sites today.

The most widely used technique is collaborative filtering, (CF), which recommends
products to users based on the experience of others. Amazon.com, with its 29 million
customers and several million catalog items, uses item-based collaborative filtering to rec-
ommend items to the user. Item-based collaborative filtering works by finding similar items
to the ones rated by the user, and then combines those similar items into a recommendation
list. Thus, the ability of CF to recommend items depends on the capability of identify-
ing a set of similar users. Furthermore, it does not build an explicit model of the user’s
preferences. Instead, preferences remain implicit in the ratings that the user gives to some
subset of products, either explicitly or by buying them. Despite its popularity, CF suffers
from profound problems such as the cold-start problem, and scalability issues. The former
problem is due to the fact that a user must rate (too) many items before getting a recom-
mendation, while the latter is correlated to the complexity of finding and working with the
list of similar users.

The other technique is the preference-based approach, (PBA). Here, a user is asked
to express explicit preferences for certain attributes of the product. If preferences are ac-
curately stated, then multi-attribute utility theory provides methods for finding the most
preferred product, even when the set of alternatives is extremely large and/or volatile. Pref-
erence based approaches do not suffer from the same problem as collaborative filtering.
However, the user needs to express a potentially quite complex preference model. This
may require a large number of interactions, and places a higher cognitive load on the user
since he has to reason about the attributes that model the product. To be able to reason over
the items, multi-attribute utility theory also requires that products are modeled by a set of
well defined attributes, which is sometime impossible to obtain in real life situation.
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Despite being very popular, these recommender systems sometimes fail to achieve high
recommendation accuracy in eCommerce environments; especially when users’ prefer-
ences are rare. Our analysis shows that these problems are due to two fundamental issues.
First, current recommender systems use inappropriate models of the items and of the users’
preferences. Second, recommender systems must elicit too many preferences from the user
in order to build the user’s preference profile.

This dissertation proposes the ontology filtering approach that can overcome most of
the problems faced by previous approaches, while achieving a better prediction accuracy
than item-based collaborative filtering. The intuition behind ontology filtering is that the
information captured by the topology of an ontology can be used to estimate missing pref-
erences. The main novelties of this technique are to model the content of the eCatalog
and infer missing preferences using the ontology, and then use the inferred information for
directly recommending items to the user.

Keywords: Recommender Systems, Ontology, Preferences, Ontology Filtering.



Résumeé

Avec I’essor constant d’Internet, les gens deviennent littéralement submergés par I’informa-
tion. Pour illustrer ce probleme plus concreétement, imaginez une situation ou vous vous
trouvez seul pour la soirée, et que vous voudriez louer un DVD pour tuer le temps. Ce
probléme est difficile a résoudre, et il y a plusieurs raisons pour cela. Tout d’abord, les gens
n’ont que des connaissances tres limitées sur les alternatives possibles. Deuxiemement,
les alternatives changent fréquemment. Troisiemement, cet exemple est un probleme de
décision a faible risque ou I’utilisateur n’est pas pres a passer plusieurs heures pour ex-
primer ses préférences. Pour aider les gens dans cette situation, les systémes de recomman-
dations ont été crées afin de trouver les objets les plus pertinents d’apres les préférences
d’une personne. A ce jour, deux techniques sont couramment utilisées par les sites d’eCom-
merce.

La technique la plus utilisée est collaborative filtering, (CF), qui recommande des objets
a un utilisateur d’apres I’expérience d’autres utilisateurs. Avec ses 29 millions de clients et
plusieurs millions de produits dans son catalogue, Amazon.com utilise item-based collab-
orative filtering pour recommander des objets a ses utilisateurs. Item-based collaborative
filtering fonctionne de la maniere suivante. Tout d’abord, une liste d’objets similaires a
ceux achetés auparavant par I’utilisateur est créée. Ces objets sont ensuite combinés dans
une liste de recommandations. Par conséquence, les recommandations proposées par CF
dépendent de sa capacitée a identifier I’ensemble des objets similaires. De plus, CF ne
construit pas explicitement un modele des préférences de ces utilisateurs. En réalité, les
préférences restent implicitement cachées dans les votes que les utilistaeurs ont exprimés
sur un sous-ensemble des produits; soit explicitement ou en les achetant. Malgré sa popu-
larité, CF souffre de plusieurs gros problemes comme le démarrage a froid et I’extensibilité
du systeme. Le premier probleme est dii au fait qu’un utilisateur doit voter sur beau-
coup (trop) d’objets avant d’obtenir des recommandations, tandis que le deuxieme est la
conséquence de I’utilisation des proches voisins.

Lautre technique s’appelle preference based approach (PBA). Dans ce cas, le systeme
demande explicitement a un utilisateur de donner ses préférences sur certains attributs
modélisant un objet. Si ces préférences sont correctement données, alors la théorie sur
I’utilité des attributs multiples donne des outils permettant de trouver facilement les meilleurs
objets, méme quand le nombre d’alternatives est extremement large et/ou volatile. PBA ne
souffre pas des mémes problemes que colaborative filtering. Par contre, un utilisateur doit
fournir un modele de préférence souvent complexe. Ceci peut conduire a de multiples inter-
actions entre le systeme et I’utilisateur, et un accroissement significatif du poids cognitif vu
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qu’un utilisateur doit raisonner sur les attributs modélisant les objets. De plus, la théorie sur
’utilité des attributs multiples stipule que chaque objet doit étre modélisé par un ensemble
bien défini d’attributs, ce qui n’est bien sur pas toujours possible en pratique.

Malgré leurs popularités, les systemes de recommandations actuels n’arrivent pas tou-
jours a recommander des produits avec précision dans le contexte de I’eCommerce; tout
spécialement quand peu de préférences sont disponibles. Notre analyse montre que ces dif-
ficultés sont dues principalement a deux problemes. Premierement, les techniques actuelles
utilisent un modele des objets ainsi que des préférences inappropriés. Deuxiemement, les
systemes de recommandations doivent obtenir trop de préférences des utilisateurs afin de
construire leurs modeles.

Cette dissertation propose ontology filtering; une nouvelle technique de recommenda-
tion qui permet de résoudre la plus part des problemes auxquels font face les solutions
actuelles, tout en augmentant la précision des recommandations. L’ intuition derriere ontol-
ogy filtering est d’extraire I’information contenue dans une ontologie afin de 1’utiliser pour
estimer les préférences inconnues des utilisateurs. Les nouveautés de cette technique ne
résident pas seulement dans le fait d’utiliser une ontologie pour modéliser les objets d’un
eCatalog, deviner les préférences manquantes, et pour recommander directement les objets
aux utilisateurs.

Mots-clefs: Systeme de recommendations, Ontologie, Préférences, Ontology Filtering,
Le filtrage par ontologie.
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Chapter 1

Introduction

Users have two fundamental activities online: search and browse. When someone
knows exactly what she is looking for, she searches for it. But when she is not look-
ing for anything specific, she browses. The problem of searching an object on the
web has been heavily studied in the past 15 years, and there is a 150 billion dollars
winner - Google. However, good solutions for solving the browsing problem are
yet to be found, but recommender systems are attracting a lot of attention from the
research community.

Recommender systems have been designed to help people browse through a
collection of item based on the preferences of the person and/or others. For several
reasons, this is a difficult problem. For example, users usually have only limited
knowledge of the content and structure of the items available, which limits what a
recommender system can ask the user. Moreover, recommender systems are usually
used in low user involvement decision process, where the user is not prepared to
spend hours expressing her preferences. Beyond the words, the best example that
shows the complexity of the problem is the I million dollar prize that the company
Netflix' offers to anyone who can beat their recommendation system.

This dissertation believes that current recommender systems fail to meet users’
expectations because of two fundamental problems: inadequate model of eCata-
logs and elicitation overload. The former problem focuses on how a recommen-
dation system models and reasons with the items it has to recommend; while the
latter is the process of asking (too many) questions to the user in order to under-
stand her preferences. This thesis introduces a new recommender system called
ontology filtering that improves the recommendation accuracy by solving the two
previously stated problems.

1.1 Motivation

We live in a world surrounded by information, far too much for a normal human being to
process, even in a lifetime. In 1989, Richard Saul Wurman estimated that an average week-

lwww.netflix.com
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day edition of The New York Times contained more information than the average person in
seventeenth century England was likely to come across in a lifetime.

The Library of Congress in Washington is the world’s largest library, and used to be
the biggest source of information in the world. It was established on April 24, 1800, when
President John Adams signed the bill establishing the federal government in Washington. It
was initially funded with $5000 that allowed the congress to acquire less than 1000 books.
Today, the library contains over 134 million items, which require more than 500 miles of
shelving. Among this massive collection, over 79 millions are books but only 20 millions
are in fact catalogued in the Library of Congress classification system. Theoretically, it
would take more than 216 thousands years for a person to read all the knowledge that has
been acquired over the past 200 years.

However, in 1989, a revolution took place in Switzerland that changed the way we see
information. Tim Berners Lee, a physicist at CERN, submitted a proposal® for sharing and
editing information over the internet using hypertext. The World Wide Web was born. By
November 1992, there were only 26 servers around the world, but the figure had increased
to over 200 by October 1993. Until that day, the World Wide Web was primarily used by
scientists, and was unknown to the general public. In 1993, it all changed when CERN
announced that the World Wide Web would be free to anyone, and when NCSA released
the first version of the web browser Mosaic. These two major events unlocked the web and
made it available to anyone using PCs or Apple Macintoshes. Ten years later, the size of the
World Wide Web was estimated? to over 92 thousand terabytes, which roughly corresponds
to over 230 times the amount of books in the Library of Congress.

From the beginning of the 60’s until the web era, the challenge in computer science was
how to store and efficiently access information. A lot of research and money has been in-
vested into that domain, and led to what is commonly called today as information systems.
The most common example of such systems are databases. A database is a collection of
information organized in such a way that a computer program can quickly and efficiently
access any piece of data. Databases allow users to store incredibly huge amounts of infor-
mation very efficiently, which is then accessed using a Structured Query Language, (SQL).
SQL is a computer language used to efficiently create, retrieve, update and delete data from
a database system. Despite being very efficient and robust, SQL has the major inconvenient
of being very rigid, and requires the user to have a complete knowledge of the underlying
model in the database, along with advanced knowledge in the SQL.

With the rise of the World Wide Web, challenges in computer science have shifted
from storing to finding the information. The web has also attracted users from all around
the world, each having very different background, and a great majority of them had little
knowledge about computers. Therefore, it was unfeasible to ask a user to query a database
using a programming language such as SQL. This created the need for new tools. This is
where search engines came to the rescue.

Search engines are web applications that take some keywords as input and return the
documents that match these keywords. The main idea is to use the keywords contained in
the documents as indexes. These indexes are then stored in databases, and allows docu-

Zhttp://info.cern.ch/Proposal.html
3http://www2.sims.berkeley.edu/research/projects/how-much-info-2003
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ments to be efficiently retrieved. Moreover, as the input are simple keywords rather than
SQL query, this made search engines very easy to use by all user. As a consequence, search
engines soon became very popular and many appeared on the web. Such examples are Al-
tavista, Excite, Voila, Lycos and so forth.... but they soon became living - dead. The main
reason lies in the quality of the returned documents. Due to the size of the web, most
queries sent to search engines would return thousands, and even millions of results. Larry
Page and Sergey Brin found a $150 billion dollars solution - Google. As with other search
engines, Google retrieves a set of document based on some keywords. The fundamental
difference lies in the way the results are returned. Before returning some documents to the
user, Google sorts the results based on a measure called page rank. For a given document d,
page rank simply counts how many other documents reference d, and sorts the documents
based on these relevance values. Thus, the first document shown to the user is the one that
has the highest page rank value.

Despite Google’s popularity and financial market strength, it is not the universal solu-
tion for helping users find information on the web. There are are three reasons why google
is not the ultimate solution:

1. Google only searches a small fraction of the web. The World Wide Web is actually
composed of two parts: the surface web and the deep web. The surface web, also
known as the indexable web, is the proportion of the World Wide Web that is in-
dexed by search engines. Before a search engine can answer a query, it must copy
the content of the web in its databases using web crawlers. Web crawlers are com-
puter programs that for each web page it reads on the web, retrieves it, indexes it,
and stores it in its database. To go to a next page, the web crawler simply follows
hyperlinks found in documents. For various reasons such as password protection or
dynamic hyperlinks, some documents cannot be reached by web crawlers. All these
invisible documents are referred to as the deep web. Table 1 gives an estimation of
the size of the web for in 2000 [Bergman, |, 2003 [Lyman et al., 2003], and 2006
[Hawking, 2006]. Due to its invisibility, it is becoming increasingly hard to estimate
the size of the deep web, which explains why no values are found for the year 2006.
However, experts estimate the deep web to be over 500 times bigger than the surface
web.

‘Web Year 2000 | Year 2003 | Year 2006
Surface Web 19 167 400
Deep Web 7500 91850 -

Table 1.1: Size of the World Wide Web in terabytes for the years 2000, 2003, and 2006.

2. A user must know the exact keywords contained in a document if she wants to have
a chance to find it. As documents get indexed by keywords found inside them, this
implies that a document can only be retrieved according to those keywords. Imagine
for example that you are searching for holidays in Switzerland. A simple query in
a search engine would be: “holidays Switzerland”. Such a query will usually return
thousands of results. On the other hand, all the documents that only contained the
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terms vacation will not be retrieved as a traditional search engines ignores the fact
that the words holidays and vacation are synonyms.

3. A user not only searches the web but they also browse it [Olston and Chi, 2003].
Take for example our "holidays Switzerland” query, this is a typical query made by
a user who is browsing the web. As the user isn’t looking for anything specific, she
enters vague keywords, and then browses through the returned documents. Search-
ing and browsing are two fundamental user behaviors on the web, but they are also
fundamentally different. Search engines focus on the former behavior, but users ac-
tually spend more time browsing. Figure 1.1 shows the results of a 1995 survey* that
revealed that people spend more time browsing than searching. This fact is still true
today. ”A huge amount of time online is now spent doing the equivalent of TV chan-
nel hopping, where the consumer is surfing with an open mind actively looking for
new experiences and stimulation...this is completely different to the task-orientated
behaviour that search marketing closely targets.” said Utarget chief executive Phil
Cooper - May 2007.
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Figure 1.1: The three primary usage of a World Wide Web browser in 1995

In the middle of the 90’s, many researchers saw the limitation of traditional search
engines, and focused their work on helping the user on her browsing experience. Rec-
ommender systems were born. Recommender systems have been designed to help people
browse through a collection of items based on the preferences of the user and/or others.
Without no doubt, the most popular recommendation technique is collaborative filtering,
which uses the experience of other users to recommend items. Amazon.com’, with its 29
million customers and several million catalog items, uses item-based collaborative filtering
to recommend items to the user [Linden et al., 2003]. This technique is commonly known
to end-users as “Customers who bought this item also bought these items”. In practice,
collaborative filtering is the most popular recommendation technique, and this is due to
three main reasons. First, when sufficient preferences from the user are available, studies
have shown it to have reasonably good prediction accuracy. Second, the cognitive require-
ment on the user is very low. Finally, it can recommend items without modeling them, as
long as they have been previously rated. However, it has been argued by many authors

“http://www.gvu.gatech.edu/user_surveys/
Swww.amazon.com
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[Li et al., 2005, Mobasher et al., 2004, O’Sullivan et al., 2004] that collaborative filtering
suffers from profound problems that will be discussed in more details in the next chapter.

Current recommendation techniques suffer from many profound problems that I believe
are due to two main reasons: inadequate model of the items in the databases and incomplete
user’ preferences. This dissertation presents a new recommender system called ontology
filtering that focuses on these two problems.

1.2 Foundations in recommender systems

Before defining the problem, background knowledge about recommender systems must be
set and common terms clarified.

Recommender systems are information systems that are built using a 3-tier architecture.
The 3-tier paradigm is the most commonly used architecture when computer applications
require a client-server model. The fundamental idea behind this model is to separate the
presentation, the logic and the data storage so that they can be implemented and maintained
separately. As shown in Figure 1.2, there are three layers that compose such an architecture,
which are as follows:

e The Presentation Layer: contains the graphical user interface, GUI, that allows a
person and system to interact with each other. A GUI is any computer program that
allows the user to enter a query and displays information from the application layer.
A typical example of a GUI is a web browser such as Internet Explorer or FireFox.

e The Application Layer: is in charge of all the logic and computation. Given a user
query from the GUI, the application layer processes it by using any available data
from the data layer, and then sends the results back to the GUI.

e The Data Layer: is responsible for storing and accessing the data required by the
application layer.

Presentation Layer Application Layer Data Layer
ji\ 0 - * y | he— [ |
<;: . € - 3 A
(sor GUI .‘"(:;1:‘ @Data @
w;‘o)‘:

Figure 1.2: The three tier architecture

Note that a presentation layer is attached to a given user. This implies that there will be
as many presentation layers as there are of users. In figure 1.2, this fact is modeled by the
notation 0..*, where * means any finite number. Moreover, the layers are usually distributed
such that the presentation layer is found on the user’s computer, while the application and
data layers are hosted on a server somewhere in the world.

Figure 1.3 illustrates the architecture of a recommender system using the 3-tier appli-
cation architecture. A recommender system should contain the following elements:
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e The Users that are connected to the systems. Note that the terms user and person are
commonly used in computer sciences, but they represent two different perspectives.
Once a person is connected to the presentation layer, the system sees her as a user,
which will be identified by a unique number called an identifier. Another fundamen-
tal difference is that a person is a human being like the author of this thesis, while a
user is a computer representation of a person that can be deleted when not needed.
This thesis focuses on the algorithms used in the application layer, which means that
it has a system point of view. As a consequence, this dissertation uses the term user
rather than person.
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Figure 1.3: Basic component of a recommender system following the 3-tier paradigm

e The Device’s Web Browser allows the user to interact with the application layer.
The device does not necessarily need to be a computer, but it can be anything that
has a web browser running on it. Mobile phones, PDAs, and nootbooks are examples
of such devices.
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e The Recommendation Engine contains all the logic of the recommender system. It
is this element that computes the recommendations made to users.

e The Preference Manager handles the preferences of a user. A preference models
what a user likes and dislikes, while the whole set of preferences represents the user’s
preference profile. There are two ways for finding out the users’ preferences: explic-
itly or implictly. Explicit preferences are obtained by asking direct question to the
user. For example, an explicit preference of a user could be: I love movie Apollo
13 or I hate Mary Popins. On the other hand, implicit preferences are collected au-
tomatically by a computer program, without the intervention of a user. Typically,
a system assumes that you liked a video if you saw its entire content. However, in
practice, most recommender systems and ontology filtering use explicit preferences.
As a consequence, this dissertation focuses on recommender systems that use this
kind of preferences. When explicit preferences are involved, the preference manager
is responsible for three fundamental tasks:

— Preference Elicitation which creates the user’s preference profile by asking a
set of questions to the user about what she likes or dislikes.

— Preference Feedback which asks the user whether or not she likes the recom-
mendations that were proposed to her.

— Preference Maintenance which allows the user to update her preferences, but
also delete old preferences profiles assigned to users who do not exist anymore.

e The Database system is responsible for the managing the universe of discourse of
the recommender system. Concretely, there are two kind of information that are
handled by this element:

— The preference profiles of all the users that are accessed by the preference man-
ager.

— eCatalog that represents all the catalog items a recommendation engine can
recommend to users.

As shown in Figure 1.3 the database system usually stores the eCatalog and prefer-
ence profiles in separate databases. To efficiently manage all this information, the
database system must obey the famous ACID properties:

— Atomicity - is the ability for the database system to ensure that either all the
tasks given to the database system have been performed, or none of them. A
typical example is the bank transfer, where the atomicity property guarantees
that an account will not be debited if the other account is not credited.

— Consistency - ensures that the database always remains in a stable state, before
and after a query is executed. This property is very convenient when rules,
known as consistency constraints, need to be implemented. Such a rule could be
that no money can be debited from an account if the balance after the transaction
1S negative.
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— Isolation - allows to isolate the execution of a query from an other program
so that intermediate state of a query cannot been seen. In our bank transfer
example, that means that a banker cannot see the money gradually move from
one account to another; it is either on one account, or on the other one.

— Durablity - is probably the most famous property, that states that once some
data has been stored in the database, it cannot be undone. To finish our bank
example, this property assures that once a customer has put some money on the
account, it cannot be removed unless she performs a transaction.

User |dentification

» STOP
Failed
OK
Preference Check
» Preference Elicitation
Not enough preferences
OK » STOP

Failed

successful

Recommendation .
l

Preference Feedback

More recommendations

Finish

Figure 1.4: The recommendation process of a recommender system

Finally, Figure 1.4 shows the 5 common steps involved during the recommendation
process of a recommender system:

1. The user starts by identifying herself to the recommender system through her device’s
web server. If the user cannot be identified, then the process stops. In eCommerce
environment, a web page will usually follow and ask the user if she wants to register
to the system.
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2. The preference manager asks the database system to retrieve the user’s preference
profile. If the user’s preference profile is valid, then the recommendation process
goes directly to step 4 otherwise it goes to step 3.

3. If for some reasons the user’s preference profile is invalid for making recommenda-
tions, then the preference manager needs to elicit more preferences from the user.
There are mainly two reasons when this situation occurs. Either it is a new user,
which means that the system cannot have any preferences; or the user has deleted too
many preferences from her profile.

4. Based on the user’s preference profile, the recommendation engines will generate a
set of recommendations. Once the recommendations are generated, they get sent to
the presentation layer for display.

5. After processing the recommendations, the user has the possibility to give some feed-
backs. A possible feedback could be: I really liked that movie. These feedbacks are
used by the preference manager to update the user’s preference profile. Finally, the
user has the option to stop the process or ask for some more recommendations. In
the latter situation, the process return to step 4.

1.3 Problem definition and the proposed solution

This dissertation focuses on the recommendation problem, which is formally defined as
follows.

Given a low risk context and a collection of items I, recommend N items to a
user based on her preferences, where N C 1.

For several reasons, this is a difficult problem. First, users usually have only limited
knowledge of the content and structure of the items available in /. This seriously limits
what a recommender system can elicit from the user. Second, the collection of items I can
contains millions of items, but users expect answers in less than a second. Finally, this
work considers low risk contexts, where users are not prepared to spend time expressing
their preferences, as the risk of failure is low. Example of low risk context are renting
a DVD, buying a book, listening to CD, reading jokes, going to a restaurant, buying a
computer and so forth. However, bank loans, retirement plans and real estate are typical
high risk context, where the approach proposed in this dissertation may not be as suitable.

To illustrate the kind of recommendation problem this dissertation tries to solve, imag-
ine a person who wants to rent a DVD for the evening. Most people want to see a movie
that they have not previously seen, which means that the recommender system needs to
be able to recommend DVDs about authors they might never have heard of. DVD stores
contain thousands of DVDs (my little DVD store down the road has 2°700), and online
stores like Netflix have over 80’000 titles. Thus, it is unfeasible to show a list of all the
available movies, and the recommendations must be produced quickly and usually within
hundreds of milliseconds. Finally, as the user’s life does not depend on the outcome of a
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movie, she will usually not accept to rate more than 5 movies before getting the first set of
recommendations.
Moreover, a good recommender system should satisfy the following properties.

e Accurate - the recommendations should follow the user’s preferences, and only
items that will be liked should be recommended to the user.

e Scalable- the recommender system must be able to handle millions of items, and
produce recommendations within less than a second.

e Elicitation - the recommender system cannot ask too many questions from the user.

e Privacy- User’s preferences are vital and owned by the user. These preferences
should not be distributed, and no other user should be able to access someone else
preferences.

To solve this problem, the recommendation engine and preference manager of Figure
1.3 needs to be designed and implemented. Current recommender techniques exist, but they
suffer from many profound problems that I believe are due to two main reasons: incom-
plete users’ preference profiles, and inadequate model of the eCatalog. This dissertation
proposes a novel recommender system called ontology filtering that overcomes both prob-
lems. The fundamental idea is to use the characteristics and information of a data structure
called an ontology in order to add a structure to the items we want to recommend. This
structure allows to restrict the search space, and infer missing user’s preferences in order to
reduce the elicitation overload.

1.3.1 Potential applications for ontology filtering

There are many domains that could benefit from ontology filtering. The following examples
illustrate the possible, but not exclusive, applications where ontology filtering could have a
potential benefice.

Online retailer is the equivalent of downtown retailer store, but on the World Wide Web.
Popular examples of online retailers are Amazon.com®, Wal-Mart’, Ebay 8 CVS
pharmacy®, and so forth. In the US only, this sector grew by 25% to $220 billion
last year, which is significantly higher than the 20% prediction made in 2006!°. To
illustrate these numbers, Figure 1.5 shows the revenues generated by online retailers
over the past five years in the US.

Forrester Research, the author of theses surveys, explained the huge levels of growth
by user-friendly web sites, and the widespread broadband internet. As recommender
systems help the user’s browsing experience, they have the potential to further in-
crease the revenues of online retailers by converting browsers into buyers, and in-
crease loyalty through a customized browsing experience. Currently, only major

Swww.amazon.com
www.walmart.com
$www.eBay.com
www.cvs.com

102006 Annual Survey by Forrester Research for Shop.org
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Figure 1.5: US business-to-consumer revenues in US$ billions over the past five years.
Data was obtained from the annual surveys by Forrester Research for Shop.org

online retailers such as Amazon.com, Wal-Mart, Yahoo!Music host recommender
systems. These recommender systems use various versions of collaborative filtering,
which have known limitations. These limitations, such as the scalability problem,
limit the use of these techniques to major online retailers. Ontology filtering does
not suffer from these limitations, and thus could potentially help small and medium
retailers compete with the big ones.

Entertainment related activities represent the second primary usage of the web. Further-
more, pop star singers like Britney Spears and movies are always among the 10 most
popular searches on the internet. MyStrands'' and Pandora'? offer tools that help
the users find which song to listen to. Netflix'? hosts a recommendation engine that
helps users living in the US to rent DVDs online. Netflix has been made famous in
the recommender systems community by creating a $1 Million dollars competition.
The rule of the competition is very simple: anyone who can improve the accuracy of
their recommender system by at least 10% gets the million. Beyond the fun of this
competition, it reveals the need for new recommender systems.

Advertising is probably one on the biggest source of revenue of the web, and many com-
panies’ revenues deeply rely on it. For example, in 2004, Google made 96% of its
revenue through online advertising. Currently, there are two methods for displaying
online ads:

e The static method is the most popular approach, and consists of displaying a
set of predefined ads somewhere on the page.

11
12
13

www.mystrands.com
www.pandora.com
www.netflix.com
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e The keyword method is becoming increasingly popular thanks to the success of
Google. Contrary to the static method where ads are predefined, the keyword
approach chooses which ad to display based on the keywords it has been labeled
with.

The keyword approach allows the advertisers to personalize the ads based on the
user’s search criteria. This is very useful as users are more likely to buy something
if it is relevant for them. Take for example a user who types the following keywords
in a search engine: ”+computer +buy”. This query tends to indicate that the user is
looking to buy a computer, which means that showing ads about vacation in Switzer-
land will not be as useful as showing her an ad for Dell'* computers. Unfortunately,
the keyword approach can only recommend ads based on a set of keywords. To make
things worse, the set of keywords is usually small as the cost of an ad is correlated to
the number of keywords it contains. As ontology filtering uses an ontology in its rec-
ommendation engine, it can recommend ads that have similar words like synonyms.
Thus, ontology filtering has the potential to recommend more personalized ads to the
user, and increase revenues for the advertisers.

1.3.2 Applications not suitable for ontology filtering

This dissertation does not claim to be able to solve all recommendation problems. The
main reasons lies in the assumptions made in our model. Ontology filtering makes the as-
sumption that users have pessimistic behaviors, and that the domain of the recommendation
has a low risk factor. There are many situations where these hypotheses do not hold. The
following domain are example of this situation.

Financial Industry needs to be personalize investments in order to attract customers and
minimize the investment risk. However, the financial industry is a very high risk
sector, where users are prepared to spend over an hour learning about the various
options. In this situation, classical preference based approaches are more suitable, as
they can theoretically find the optimal solution.

Medical domains are also using computer tools to diagnose the illness a patient is suffer-
ing. This is a life critical domain, where any mistake could seriously put the patient
life at risk. The inference mechanism of ontology filtering uses common knowledge
of an ontology to infer missing values, but illnesses are usually patient specific. For
such domain, rule based systems are usually more appropriate.

Gambling is becoming increasingly popular on the web, and the anonymity of the internet
allows people to easily bet on almost anything, while maintaining their privacy (to
a certain extend!). By definition, gamblers like to take risks, which violates the risk
pessimistic behavior of the ontology filtering domain.

4www.dell.com
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1.4 Contributions

The main contributions of this thesis can be briefly summarized as follows:

1.

An ontological model to represent and reason over the items of an eCatalog using
an ontology. This ontology allows to reason over heterogenous items, and is the key
element of ontology filtering’s inference mechanism.

An inference mechanism that can infer missing user’s preferences based on known
preferences and information contained in the ontology. This algorithm allows to
reduce the elicitation process, while preserving the recommendation accuracy.

. A similarity metric for computing the similarity between pairs of concepts in an

ontology. The inference mechanism starts the transfer of preference from the closest
concept in the ontology on which the user has set some preferences. Unfortunately,
current similarity metrics do not achieve high correlation with users’ judgements. By
modeling the pessimistic behavior of a user, the inference mechanism of ontology
filtering is extended to build a more robust similar function called OSS.

An ontology learning algorithm that can automatically construct a set of ontologies
if none are available. This algorithm uses existing preference profiles and unsuper-
vised learning algorithms to generate a set of 15 different ontologies. An algorithm
for selecting which ontology to use based on the user’s preferences is also presented.
Experiments show that use of personalized ontology performs better than using the
same ontology for every user.

. Ontology Filtering proposes a new recommender technique that satisfies the 4 main

properties of a recommender system defined in Section 1.3. Furthermore, experi-
ments on real data sets have shown significant improvement of the recommendation
accuracy.

Validation of the main contributions are provided on real data sets. Formally, the
recommendation engine is validated on the Jester and MovieLens data set, while the
similarity metric is tested on WordNet and the GeneOntology.

1.5 Opverview of the dissertation

As shown in Figure 1.6, this dissertation is composed of nine chapters that can be summa-
rized as follows:

Chapter 1: Introduction starts by giving the motivation of this work, and emphasizes the

need for new recommendation systems. Before defining the problem, background
knowledge about recommender systems is set, and common terms are clarified. The
problem that this dissertation is trying to solve is clearly defined, along with some
example applications that could benefit from of ontology filtering.
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Chapter 2: Background looks at the state of the art in recommender systems. Collabora-
tive filtering and the preference based approach are used as comparison as there are
the most popular techniques used by online retails store. Finally, this chapter high-
lights the differences of ontology filtering with existing techniques. This analysis
allows to position ontology filtering as a knowledge based recommender systems.

Chapter 3: Modeling eCatalogs with Ontologies shows how to use an ontology to model
the eCatalog. This chapter also shows that it is possible to extract the information
contained in an ontology by considering the number of descendants of a concept.

Chapter 4: The User’s Preference Profile defines the user’s preference profile and ex-
plains why an ontology is not used for such model.

Chapter 5: Inferring Missing User Preferences defines the inference mechanism that is
used to predict the unknown preferences of a user. Following these mechanism, this
chapter proposes to extend the inference idea to build a similarity function that can
compute the similarity between pairs of concepts.

Chapter 6: Learning the ontologies acknowledges the fact that assuming the existence
of ontology is not realistic in real life. To overcome this limitation, three algorithms
are introduced. The first one shows that it is possible to learn these ontologies by
using unsupervised clustering algorithm, while the second proposes to select an on-
tology based on the user’s preferences rather than using the same ontology for all the
users. Finally, a third algorithm is introduced that can further increase the prediction
accuracy by building more complex structures that allow concept to have more than
one parent.

Chapter 7: Ontology Filtering describes the architecture of the proposed recommender
system. Each component is the defined in details in chapter 4,5 and 6, but this chapter
allows the reader to better understand how they interact with each others.

Chapter 8: Experimental Results is in fact divided in three main section. The first sec-
tion validates the inference model on the WordNet and GeneOntology, while the
other two validates the ontology filtering recommender system on the MovieLens
and Jester data sets. It is important to point out that all these experiments uses real
user data, not simulated one.

Chapter 9: Conclusions provides a brief summary of these dissertation and its contribu-
tions. Limitations and future research direction are also discussed.

Bibliography contains all the references used in this dissertation.
Appendix A gives a classification of the different recommendation techniques.

Appendix B contains the proof that the similarity function derived from the inference
mechanism is transitive.

Appendix C illustrates the ontology filtering approach on a joke example.
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Appendix D explains in details how the WordNet and the GeneOntolohy are structured.

Appendix E contains extended experimental results for Experiments I, I1I, and VIII.

To allow ontology filtering to reason over incomplete preference profiles, this disserta-
tion defines nine fundamental algorithms. A brief description of these algorithms can be
found in the List of Algorithms section, which is located at the beginning of this document.
Figure 7.2 at page 111 shows how each algorithm interacts, and in which order that are
executed.

Following EPFL’s regulations, this thesis begins with an abstract in both English and
in one of the three official languages (i.e. French). Similarly, the thesis ends with the
curriculum vitae of the author, along with its publications written during his PdD.

1.6 Intellectual property protection

Some of the ideas and algorithms presented in this dissertation are under the protection of a
provisional patent (number 60/819,20), while the US patent number 11/775,106 is pending.
As a consequence, the content of this dissertation can only be used for educational or
research purposes. Any other usage could violate intellectual property law, and the authors
may be prosecuted.
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Figure 1.6: Layout and dependencies between each chapters in this dissertation



Chapter 2

Background

Since the rise of the web, recommender systems have become extremely popular
among the research community and online retailers. This chapter explains the
main techniques used to build recommender systems, and illustrates their appli-
cations with concrete examples. Among these techniques, collaborative filtering
and the preference based approach will be looked at in more details, as they are
widespread among the big online retailers. This state of the art summary allows to
position ontology filtering among existing techniques.

2.1 Evaluating recommender systems

Before introducing in detail the various recommender techniques, it is important to clarify
what a recommender system should do, and how to evaluate it.

A typical recommender system makes recommendations by returning a set of /V items
that it thinks the user will like best. This is typically called the top-N recommendation
strategy. The first question that arises is how to evaluate these recommendations?

There are two important aspects to consider when evaluating the recommendations
made by a recommender system:

e Accuracy measures how much a user likes the recommendations that are made to her.
Ideally, a good recommender system should have all of its recommendation liked by
the user (i.e 100% accuracy).

e Novelty looks at how non-obvious the recommendations are. To understand this as-
pect, consider a recommender system that recommends movies to users. Further
imagine a user Alex that said that he liked the last Harry Potter movie - The Or-
der of the Phoenix. An obvious recommendation would be to recommend the last
four Harry Potter movies. Even if these recommendations have a high chance of
being accurate, there are potentially useless as Alex has probably seen these movies
before.
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2.1.1 Measuring the accuracy

Many metrics have been proposed for evaluating the accuracy of the recommendations
made by recommender systems. The most famous metric is the Mean Absolute Error ,
(MAE, [Sarwar et al., 2001]), which evaluates the accuracy by measuring the mean average
deviation between the expected ratings and the true ratings. Formally, the MAE of a set
composed of N recommendations is computed as follows:

i (i =)
MAE = ~ :

2.1

where r; is the real rating assigned by the user, and 7; is the rating estimated by the
recommender system. Later on, [Herlocker et al., 2004] argued that this metric was not the
most appropriate when considering rated items for users, as a user is usually interested to
know if she is going to like the items or not. In our movie example, imagine the situation
where the recommender system recommends the The Lion King movie to Alex. Alex does
not care if the estimated rating is 4.5 or even 5.5, but just wants the recommendation to be
pertinent.

As a consequence, [Herlocker et al., 2004] proposed to use the classical information
retrieval metrics: precision and recall. Precision measures the proportion of relevant items
in the set of recommendations returned by the recommender system, while recall is defined
as the number of relevant items retrieved over all relevant items in the database. Figure 2.1
illustrates this two metrics, where the top-N ellipse is the top-N recommendation set, and
the liked items ellipse represents all the items in the database that are liked by the user. Note
that both precision and recall metrics focus at the intersection of these two sets. However,
precision divides the number of items in the intersection over the number of items in the
top-N recommendations, while recall divides it over all the possible items in the database
that are liked by the user.

. topN*
icinn = _topN Recallz= ———
Precision topN | |Liked_ltems|

Figure 2.1: Illustration of the precision and recall metrics

Formally, given a recommendation set top/N, precision is defined as the ratio of rele-
vant items topN " to the total number of items shown in topN, while recall is defined as

the ratio of relevant items to the total number of relevant items available in the database,

Liked_Items. o N
Precision = tOL' Recall = top

_— 2.2
[topN|’ |Liked_Items| 22)
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There are two challenges when using precision and recall for evaluating the accuracy
of recommender systems. First, precision and recall need to be considered as a whole to
fully evaluate the accuracy of a recommendation. Second, it has been observed in many
applications that precision and recall are in fact inversely related. Thus, it is necessary to
use a metric that can combine both precision and recall. As a consequence, and following
the results in [Herlocker et al., 2004], the F'I metric evaluates the accuracy of a recommen-
dater system by combining precision and recall into a harmonic mean. Formally, the F1
metric is defined as follows:

- 2 x Precision * Recall

2.3
Precision + Recall (2:3)

2.1.2 Measuring non-obvious recommendations

Novelty and serendipity are two metrics that measure non-obvious recommendations, where
the former concentrates on new items with known features, while the latter measures sur-
prisingly new items, even in their features. By definition, serendipity implies novelty, but
unfortunately, serendipity is impossible to compute without knowing exactly the user’s
preferences - which are unknown. Measuring the novelty of the recommendations remains
a hard problem, and usually requires asking the user specific questions about the features
liked by the users.

In this dissertation, an algorithm is proposed that learn a set of taxonomies based on the
experience of previous users. One property of these learnt taxonomies is that the features
making an item are implicitly hidden in the edges. Thus, this makes it extremely hard to
evaluate the novelty without asking the user. As a consequence, this thesis will not focus
on this aspect.

In the early stage of this work, ontologies were manually created with edges represent-
ing explicit features. In this case, novelty is slightly easier to model. Thus, this dissertation
proposed to use the novelty metric defined by Equation 2.4, which measures the number of
correct recommendations made by algorithm a that are not present in the recommendations
made by the popularity strategy. The popularity strategy simply returns the /V items that
are the most popular among the users in the database.

([topN, | — [topNg" N topNpoputarity|)
N

where topN, are the top-N recommendations made by the algorithm a, top N, are the cor-

rect recommendations contained in topN, (i.e. the items liked by the user), and |top N, N
topropulamy] is the correct recommendations made by algorithm a that are are also present
in the recommendation set of the popularity approach.

Nowelty(topN,) =

2.4)

2.2 Overview of recommender systems techniques

Recommender Systems can be categorized in various ways that depend on a number of
criteria such as the input data, the algorithms used, the feedbacks, and so forth. Over the
years, researchers have come with different ways to categorize recommender systems that
reflect the issues of the time.
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[Resnick and Varian, 1997] categorized recommender systems from both a technical
design space and from a domain space. The technical design space is made of the five di-
mensions: the contents of the preferences, explicit vs implicit preferences, whether or not
the preferences are anonymous, the algorithm used to aggregate theses preferences, and the
way the aggregated preferences are used. Note that the authors used the term recommen-
dation to denote the preference of a user. The domain space analysis is subdivided in two
parts. First, various characteristics of the recommended items such as the type and lifetime
of the items are evaluated. Then, it is the characteristics of the users that are evaluated
based on whether they participate in the recommendation process, or if they are simple
consumers of the system.

[Schaffer et al., 1999] focused the classification of recommender systems on three tech-
nical design aspects. The first aspect that was studied was the recommendation interface
used for displaying the results, while the second looked at which recommendation algo-
rithm was used. These two issues were also studied by [Resnick and Varian, 1997] and
correspond respectively to their 4th and 5th technical design aspects. The third aspect
looks at the actions that a user must perform in order to get some recommendations.

[Terveen and Hill, 2001] identified four main issues in recommender systems, which
were then used to categorize the various recommender techniques. These issues can be
briefly summarized as follows:

Preferences are key elements, as recommendations are based upon them. As a recom-
mender system must obtain preferences, this raises some questions such as: Whose
preferences are used? How are preferences obtained? What incentives are there for
people to offer preferences? How are preferences represented?

Roles & Communication of the users and recommender systems in order to obtain some
recommendations. Do all people play the same role? Are role fixed or do they
evolve over time? Is the recommender role filled by a computational system or by
person? If information about preference providers is revealed, are any measures
taken to safeguard privacy?

Algorithms for computing the recommendations. How are recommendations computed?
Do you combine the preferences of the neighbors, or use a weighted average?

Human-Computer Interaction focuses on how to present the results to the user. Do we
use ordered lists, or more complicated visual annotations?

[Burke, 2002] did not focus on the recommendation interface, nor the issues associated
to recommender systems. Instead, the author studied the available data that the system has
before the recommendation process begins, the information that a user must communicate
to the system in order to generate a recommendation, and the algorithms that combines
the background and input data to arrive to a recommendation. Given these criteria and
assumptions, Burke distinguished the following 5 recommendation techniques:

Collaborative Filtering uses previous ratings of a given community of users, and extrap-
olates these ratings based on the ratings provided by the user.
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Demographic is very similar to Collaborative techniques. Demographic techniques cate-
gorize users based on their personal attributes and make recommendations based on
demographic classes. Thus, it identifies users that are demographically similar to the
user to whom we want to do the recommendation, and extrapolates from their ratings
to get the recommendations.

Content-based uses the items’ features as background data. Given some user’s ratings on
a set of items, the system builds a classifier for that user, and then uses it to recom-
mend items. This is very different from demographic and collaborative techniques
that use the ratings of a community of users.

Utility-based also uses the items’ feature as background data. Contrary to the content
based approach that uses ratings as preferences, the utility model requires the user to
state utility functions over the attributes (features) of the items. These utility func-
tions are then applied on all the items to be recommended, and the items with the
highest valuation are selected for the recommendation.

Knowledge-based is a technique that recommends items based on the user’s need. In
this model, the features of the items and knowledge of how these items meet a
user’s needs are used as background data. Given a description of the user’s needs
and interests, the system infers a match between the items and the user’s needs.
Note that [Schaffer et al., 1999] call knowledge-based recommendation the Editor’s
choice method.

Burke also looked at various hybrid recommender systems. Hybrid systems combine
two or more recommendation techniques to gain better performance with fewer drawbacks
of any individual one. Most commonly, collaborative filtering is combined with some
content based technique in an attempt to avoid collaborative filtering’s problems.

[Adomavicius and Tuzhilin, 2005] simplified previous classifications, and classified rec-
ommender systems into three main categories: collaborative, content based, and hybrid
recommendations. The authors briefly mentioned knowledge-based technique as a way to
improve hybrid recommendation systems, but argued that there are used in very limited
domain, as the approach requires some form of knowledge acquisition.

Unfortunately, this brief survey shows that authors use different terms to denote the
same technology, while others use the same terms to denote different technologies. Take for
example the recommender technique that works on the item’s content, [Schaffer et al., 1999]
call this technology item-to-item correlation, while [Burke, 2002] uses the term content-
based recommendation. Moreover, [Schaffer et al., 1999] also use the term item-to-item
correlation to denote the item-based collaborative filtering used by Amazon.com, which
does not use the description of an item. The explanations for this mismatch lies in the def-
inition given by Schafer et al. at the item-to-item correlation - ” Item-to-item correlation
recommender systems recommend products to customers based on a small set of products
the customers have expressed interest in”. As user’s preferences are expressed over items
on both item-based collaborative filtering and content based, [Schaffer et al., 1999] used
the same terminology to define them.
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Figure 2.2: Main techniques used in recommender systems
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These ambiguities in the classification terms are a barrier in understanding prior arts,
and makes it difficult to position the ontology filtering approach. Note that most rec-
ommender systems use the user’s preferences to make a personalized recommendation.
This allows them to personalize each recommendation made to users. However, non-
personalized recommender systems are independent from the user’s preferences, which
means that all the users get the same recommendations.Figure 2.2 clarifies the major rec-
ommendation techniques used today and their different relations. The reader can find a
summary of the classification terms of the cited authors and their correspondence with this
dissertation in Table A.2.

2.2.1 Non-personalized recommender systems

Non-Personalized recommender systems are very basic recommender systems that do not
use the user’s preferences to make a recommendation. Instead, an item is recommended
based on the experience of previous users, which means that it is independent of the user
(i.e. all the users get the same recommendations). The main drawback of non-personalized
techniques is obvious - it is not personalized. On the other hand, it has many advantages.
First, it is extremely fast as the recommendations can be made off-line. Second, it is easy
to implement and does not require too much computational resources. Finally, users feel
more confident about the recommendations, as they are very easy to understand.

Jun: 10, 2007 11:54 p.m. PT

Top Stories @ Most Popular News

Paris Won't Appeal Jail
Sentence
By: Sarah Hall

Jun. 10, 2007 &:00 p.m. PT

Read | Emailed | Most Comments | Top Rated

Paris Won't Appeal Jail Sentence

Paula's Tale of the Tape

(73) Comments

Jail may not be Paris Hilton's idea
of a good time, but she's...
RECOMMENDED

wRwRE

MTV Keeps Hills Alive
Paris Goes Directly Back to Jail

Experts: Paris May Set Legal Precedent

Angelina Dives into Think Tank

Nut Job Saves Joricho

lzaiah Washington Fails Anatomy, "Mad as Hell"
Grey'’s Locks Up the Knight Shift

Figure 2.3: This snapshot illustrates the non-personalized recommender system of
Moviefinder.com, where a news item is recommended by average ratings of previous read-
ers.

Today, the most popular technique on the web is the aggregated ratings technique .
This technique recommends an item based on the aggregation of previous users’ ratings. It
works in two basic steps. First, users’ ratings for given items are collected, and aggregated
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using a mathematical function (such as the minimum, average, sum, and so forth). Then,
items are sorted based on the aggregated ratings, and the recommended items are the ones
optimizing the mathematical function.

In practice, the average function is currently the most popular on the web. For instance,
Moviefinder.com' recommends news items by averaging ratings assigned by previous read-
ers. Any item can be given a 5 star rating by a user, where the number of stars is propor-
tional to the reader liking the item. Figure 2.3 illustrates this recommendation technique
on the Top Stories section. The top story on June 10th, 2007 was: Paris Won’t Appeal Jail
Sentence, and was recommended as all the users gave this story the maximum rating of 5
stars. Notice that the Most Popular News section can also be sorted based on the number
of comments, the amount of times it was emailed, the number of times it was read, or by
the number of comments people have left.

The Web 2.0 is also starting to use the non-personalized recommender technique to
recommend items to a community of user. Take for example Digg.com?, it recommends
news items based on the maximum number of diggs a news article gets. When a user likes
an item, she digs it by pressing a button. It is this simple counter which is called digg.
Figure 2.4 shows Digg.com’s top news on June 10,2007; where the top news has a digg
value of 4987.

All News Popular Stories Upcoming Stories (5,177)

Newly Fopular | Top in 24 Hours | 7Da

4987 Poor Pluto [picture :
dlags Qe fr 20 aure AT sl a, Digg is all about user powered content

Uh-oh! More Everything is submitted and voted on by the
tigg it 229 comments | Blog ff | Emaillt | Topic: Desion | Bury | & Digg community. Share, discover, bookmark

and promote stuff that's important to you!

. . ” ) §
3034 Mn:E)anaId s Wants To Manipulate The English Language = o R b
diggs 18] troorcans = e 15 hours 47 min ago -
Lobbyists for the popular fast food chain want to redefine a word in the dictionary. They want to change the definition of McJob from "a
diggit  |ow-paying job that requires little skill and provides little opportunity for advancement,” to "a job that is stimulating, rewarding, and offers
skills that last a lifetime.” More SEe
o7 Blog tt | Emailk | Topic: Offseat News  Bun 2232 How the Apple community first

responded to the iPod
2769 Average White Kid Gets Owned by his Parents over World of Warcraft ! Pentagon Confirms It Sought To Build
2

L] ade 13 hours 47 min ago (karacry vt " Gay Bomb
This is completely hilarious_ | have never listened to something =o satisfying. Listen to this kid cry over World of Warcraft because his
diggit parents are telling him to get off but he doesn’t want to. He CRIES and yells back at them yet his parents are still speaking so softly and
kindly with him_ | would never get away with this sort of backtalk. Maore

qass Man who plays "Adam” at Creationist
1945 <
Museum is a Pomn Star

~ LSS layouts “for those who want to
479 comments | Blog# | Emailll | Topic: Gaming Industry Hews: | Bury (&3 start a css-driven website quick

Figure 2.4: This snapshot illustrates the non-personalized recommender system of
Digg.com, where a news item is recommended by the maximum number of diggs assigned
by previous readers.

2.2.2 Personalized recommender systems

A personalized recommender system recommends items to a user based on her preference
profile. The user’s preference profile can be built from either implicit or explicit prefer-
ences, or a combination of both. Once the profile has been built, the recommender system
applies one or more recommendation techniques to generate recommendations to the user.
Figure 2.2 identifies three different personalized recommendation techniques:

Thttp://www.moviefinder.com/news/index.jsp
http://www.digg.com/news/popular/24hours
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1. Content-based approaches make recommendations based on items similar to the
ones a user has liked in the past. Two items are similar if some of their content
or attributes overlap.

2. Collaborative filtering does not focus on the item itself, but recommend items that
people with similar tastes and preferences liked in the past;

3. Knowledge-based approaches use both knowledge about the users’ preferences and
the items.

Note that these techniques can then be combined to create hybrid recommender tech-
niques. This dissertation do not focus on this aspect, but a good survey can be found in
[Burke, 2002].

Explicit preferences

Explicit preferences are the most common form of preferences in recommender systems.
These preferences are collected by explicitly asking questions to the user. This is sometimes
called explicit profiling[O’Sullivan et al., 2003]. There are currently four approaches to
elicit explicit preferences[Smyth and McGinty, 2003]:

1. Value elicitation was the most common elicitation approach in the 1990’s. Typically,
a user is asked to give values to specific features modeling the items to be recom-
mended. Figure 2.5 illustrates the value elicitation approach used by NotebookRe-
view.com?®, which recommends notebooks to end-users. The notebooks are described
by the features manufacturer, model series, processor type, screen size and its price.
Note that in this example, the user can state discrete values (Processor Type=Intel
Core Duo), and a limited range of continuous possibilities (minimum price = $0 and
maximum price = $999).

Laptop Search

Manufacturer:

[Any] -
Model Series:
-
Processor Type
[Amy] x|
HE WA 1
Intel Pentium M

Inte! Core Duo

Screen Size
[Amy] -
Price

Min 5 0 Mao: 5| 5353

| SEARCH LAPTOPS |

Figure 2.5: A snapshot of value elicitation from Notebookreview.com
3http://www.notebookreview.com/
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Value elicitation allows the system to precisely model the user’s preferences, and
thus increase the quality of the recommendations. However, it has two major draw-
backs that have seriously limited its use in today’s recommender systems. First, the
user must have a good level of expertise and understand the item’s features. Unfortu-
nately, this assumption rarely holds in eCommerce systems. Consider our notebook
example, most people do not know the difference between an Intel Pentium M or an
AMD Turion 64, or any other computer specific features as a matter of fact. As a
consequence, most people will usually select only the price criteria, which greatly
limits what a recommendation system can offer. Second, the cost of thinking, also
known as the cognitive cost, is very high as the user must carefully think about the
attributes modeling the alternatives.

Rating based is becoming the most popular way of asking the user to give explicit
preferences. Here, a user simply needs to rate a given set of items on a predefined
rating scale. In most cases, the rating scale ranges from 1 to 5, where 1 means really
disliking the item and 5 is loving it. For example, Figure 2.6 shows how a user on
Amazon.com rates 4 out of 5 a book he owns.

The Rating based elicitation approach does not suffer from the same drawbacks as
value elicitation. Moreover, the cognitive load on the user is very low. This explains
why so many web sites such as YouTube*, eBay®, Amzaon.com are using this tech-
nique. However, one preference obtained by the rating based technique is usually not
as precise as one obtained by value elicitation. This is because the systems does not
know exactly why a user liked the item. For example, when a reader rates a book 4
out of 5 as shown in Figure 2.6, Amazon.com does not know if the reader liked the
book because of the story plot, the author, or any other features. As a consequence,
rating based approach usually requires the user to rate a lot of items in order for the
recommender system to build accurate preference profiles. In collaborative filtering,
this is known as the cold start or ramp-up problem.

Rate this item to improve your recommendations

Your Rating
Yoioiny (W] 1 Own It

Figure 2.6: A snapshot of rating based preference elicitation from Amazon.com.

3. Critiquing was introduced by [Burke et al., 1997] to tackle the problems faced by

the value elicitation approach. Instead of asking the user specific questions about
features, the user is shown a suggestion and asked to critique some of its features.

Unlike value elicitation, critiquing requires less expertise and less cognitive reason-
ing from the user. Figure 2.7 shows the critiquing process on the restaurant recom-
mender system Entree. The user is presented a restaurant, Yashi’s Cafe, and she has
the possibility to critique it by looking for a cheaper meal (button less $$) or a nicer

“http://www.youtube.com/

5

www.ebay.com
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restaurant (button nicer). Unfortunately, this approach has two drawbacks. First, a
knowledge based system must be created for assigning features to critique actions.
For example, a rule must be created for assigning the feature price to the critique
less$$. Second, the selection of which suggestions to show to the user is fundamen-
tal in order to motivate them to critique it. [Viappiani et al., 2006] focused on this
problem by generating suggestions that will be optimal when one or more additional
preferences are stated.

We recommend:
Yoshi's Cafe
2257 I Halsted 5t. (Belmont Awve ), Chicago, 212-248-6160
i Asian, Japanese, French (New) | £30-§50

Extraordinary Decor, Extraordinary Service, Wear-perfect Food, INeed To Dress, Proc Fie Menus, Quiet
for Conversation, Very Busy - Beservations a Must, Romantic, Good Out of Town Busmess, Fabulous Wine
Lists, Game, Parking/Valet

Aozs 55 _nieer e ERE

Figure 2.7: An example of the critiquing approach from the recommender system Entree.

4. Preference-Based is the simplest form of preference elicitation from the user cogni-
tive aspect [McGinty and Smyth, 2002]. The system presents a set of items, and the
user states her preferences by simply selecting one of them (I prefer Golden Eye).
Then, the system extracts the features of interest associated to the selected item and
attempt to learn detailed feature preferences. The extracted features are used to re-
fine the search query, and the process reiterates until the user finds a solution. Initial
experiments show significant reduction in preference elicitation, and the number of
items seen by the user compared to showing similar items. It is also very easy to
implement and can be run with a very limited user interface. Thus, it makes this ap-
proach very suitable in mobile environment, where the graphical interface is limited.

As argued by [Smyth and McGinty, 2003], it is very hard to define strict rules to govern
the choice of the elicitation technique. In low risk domains, eliciting preferences is expen-
sive as a user is usually not willing to spend much effort expressing her preferences. Thus,
value elicitation and critiquing based approaches are unlikely to be useful, and should be
avoided in favor of rating based or preference based approaches. Value critiquing should
only be considered in medium to high risk domains as the user must have a good knowl-
edge about the domain, and the elicitation will require a high cognitive load. As critiquing
requires only little domain knowledge and cognitive loads, it can be used when the other
three are not appropriate.

Implicit preferences

Contrary to explicit profiling that asks direct question to the user, implicit profiling observes
the user’s behaviors known as implicit interest indicators [Claypool et al., 2001]. These
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interest indicators are then used to infer the user’s ratings that become implicit preferences
for recommender systems.

Implicit preferences have attracted less attention from the research community, but ini-
tial studies showed that some user behaviors can successfully reflect the users’ intentions
and interests [Hill and Terveen, 1996, Konstan et al., 1997]. [Claypool et al., 2001] stud-
ied four implicit interest indicators, and found that the time spent reading a web page and
scrolling it are good indicators of interest. Moreover, their study showed that these two
indicators are linearly proportional to explicit ratings. However, mouse clicks and mouse
movements were not a good sign of interest, even though they showed some sign of corre-
lation.

Today, implicit preferences are becoming increasingly popular, and five implicit profil-
ing techniques seem to dominate.

Viewing time technique measures the amount of time a user spends interacting with an
item [Konstan et al., 1997, Claypool et al., 2001, Parsons et al., 2004].

Record, playback and browsing in the digital TV domain showed to be a good alterna-
tive to explicit ratings [O’Sullivan et al., 2003].

Web usage mining is becoming increasingly popular by online retailers. This technique
measures three distinct shopping behaviors [Cho et al., 2005]:

o Click-Through: measures the click on and the view of the web page associated
to a product.

e Basket placement: count the number of placement of products in the user’s
shopping basket.

e Purchase: is the most reliable information and looks at the purchased products.

Word-of-mouth or user’s social networking analyzes the group of friends of a user to
discover her interests[Liu and Maes, 2005].

Implicit profiling has the main advantage of building the preference profile without dis-
turbing the user’s browsing experience. Although an implicit rating is likely to be less
accurate than an explicit one [Claypool et al., 2001], implicit profiles are usually as accu-
rate as explicit ones, as many more preferences are gathered. However, implicit profiling
has three major drawbacks. First, it usually requires the user to install a third party soft-
ware to measure the user’s behavior. For example, [Claypool et al., 2001] used a specially
designed web browser that captures the user’s action while browsing. Scalability is also a
problem as a lot of interaction has to be monitored, processed and stored. Finally, but not
the least, the privacy violation is becoming an increasing concern. Furthermore, users are
getting more and more concerned about having their preferences collected without their
approval. To make things worse, companies who collect these preferences tend to sell them
to third parties in order to increase their revenues. Note that explicit preferences can also
be sold to third paries. For the user, this usually means an increase of unwanted emails.
Unfortunately, the consequences for the user can be much more severe.



2.3. CONTENT-BASED APPROACHES 29

In 2002, Wang Xiaoning was arrested® after he used Yahoo sites to distribute articles
calling for democratic reform in China, and is now serving a 10 year sentence in Chinese
jail. Yahoo has admitted giving the search queries that lead to this arrest, but claimed
that “companies doing business in China must comply with Chinese law.” Yahoo reiterated
this preference give away policy to the Chinese government, which lead to the arrest and
imprisonment of journalist Shi Tao’. As a response, the World Organization for Human
Rights USAS3 has filed a law suit against Yahoo for complicity in acts of torture and human
rights abuses in China. Google is also facing legal issues’ with the European Union over
the use of private data in Google’s mail application Gmail. In May 2007, the European
Union has announced that it is probing Google on privacy grounds. The outcomes of these
lawsuits will most probably limit the use of implicit preferences in the future.

2.3 Content-based approaches

The content-based approach is a personalized recommender system that makes recommen-
dations based on items similar to the one a user has liked in the past. The main difficulty
in this approach is to find similar items to the ones the user has liked. The technique used
to find these similar items depends on the structure of the items themselves, which can be
categorized as follows:

e Structured items are described by some data that follows a well defined model. This
type of data is usually stored in a database, where the data follows some kind of
entity-relationship'? model. Formally, items are described by a set of attributes such
as the creation date, name, creator, price and so forth. These attributes restrict the
possible range of values an item can have, which create the item’s model.

e To the opposite, Unstructured items are any items that are described by plain textual
information.

e Semi-structured items are in between structured and unstructured data. An email
message is a perfect example of semistructured item in that it has well defined header
fields such as the sender, and an unstructured text body.

Figure 2.8 illustrates these different structures on the Apollo 13 movie. The structured
model represents the movie by a set of attributes-value pairs such as title=Appolo 13, du-
ration=140mins, and so forth. The semi-structured model uses the web page!! describing
the movie. The web page is composed of well defined fields such as the title, but the plot
summary is unstructured. Finally, Apollo 13 can be described only by its plot summary,
which is totally unstructured.

Shttp://www.technewsworld.com/story/57011.html
Thttp://www.cnn.com/2007/TECH/internet/06/11/yahoo.china.ap/index.html
8http://www.humanrightsusa.org/
“http://searchengineland.com/070612-041042.php
1%http://en.wikipedia.org/wiki/Entity-relationship_model
http://www.imdb.com/title/tt0112384/
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Apotia 13 e Plot summary for

g o = L B
Attribute Domain Value S ” APOHO 13 (1995)
[itle Apollo 13 [
Dhrector Ron Howard

Based on the true story of the il-fated 13th Apalle missaon
funar landing goal, so thesa'a littla interast i this “ioutes™

MPPA PG-13 = =ETH A menie based on what wos to be the third lunar-landing m
r i 140 i coubdnt get TV aitime bocause spac o

Ouration datimins ; —_— - wha ran the aarly space misssons. W )

Genre Adverture / Drarna / History .
- e v + e e e e e s e It had been less than a year sine rst walked on the
Actor Tam Hanks Sy St 1 “Houston, wa have @ peoblem ~ Stranded 205,000 miles fro
B, s Mattingty. fight director Gene Kranz and a heroic ground ¢
AN Jo\ AN J
Y 3 Y Y
Structured data Semi-structured data Unstructured data

Figure 2.8: Three different views of the Apollo 13 movie: structured, semi-structured, and
unstructured model.

When items can be described by attributes, then a preference based approach can be
used (see Section 2.3.3). However, when dealing with unstructured or semi-structured data,
the preference based becomes unsuitable and more general approaches are required. Two
approaches are very popular in this situation: the information retrieval and the machine
learning.

2.3.1 Information retrieval approach

Information retrieval techniques, IR, are at the root of the content-based approach, espe-
cially as they share similar objectives [Belkin and Croft, 1992].

Web Browser Preference Manager L=< 1, Wy g We >
i=3
iz=5
i=3 N
is=4 .Q}?h
SO < > N
i10=5 Q@
i41=3 .
A im=<W1m,..Wam,...Wom>
E é*
58 Device
o =2
w
3 o
S =2
_g'g Jcl
C Recommendation Engine
N Top-N items i
Select N best one rep———— Predict

cos(Profile(u,), j), je J

Us Information Retrieval Approach

Figure 2.9: The information retrieval process.
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Usually, an IR system is considered to have the function of leading the user to those
documents that will best satisfy her needs for information; while a recommender system
filters out items that do not meet the user’s preference profile. As the content of items are
usually unstructured or semi-structured, they can be seen as documents.

Figure 2.9 illustrates the information retrieval approach, which is composed of three
phases.

1. Item representation is required to convert the unstructured data of the item into some-
thing a computer can work with. Traditionally, IR systems model documents using a
vector of keywords which is known as the document vector model. In recommender
systems, the set of keywords are predefined beforehand, or are learnt on a training
set. For example, the Fab system [Balabanovic and Shoham, 1997] that recommends
web pages to the user, represents web page content with a set composed of the 100
most popular words. Similarly, [Pazzani and Billsus, 1997] web site recommender
system models web documents using the 128 most informative words. Formally, an

. . . —)
item 7 from a collection [ is modeled by the vector C'ontent(i) defined as follows:

Content(i) = (w1,i...Wni), (2.5)

where wy, ; is the k" weight of item i, and indice n is the number of keywords al-
lowed.

One of the best measures to compute the weights of keywords is the term frequency-
inverse document frequency measure, known as T'F' — I DF'. Note that alternative
machine learning techniques such as the Minimum Description Length has proven
very effective in the past [Lang, 1995], but TD-IDF remains the most popular mea-
sure. TF-IDF evaluates how important a keyword is to an item, but also takes into
account that frequent keywords that appear in many items are not very relevant. Con-
cretely, TF-IDF works as follows. First, the frequency f;; of each keyword occurring
in item ¢ is counted. Then, the term frequency of each keyword k of item 7, T'Fy, ;, is
computed as such:

TF,,; = LY (2.6)

max f;’

where max f; is the maximum frequency of all the keywords that appear in item ¢.

The inverse document frequency of the keyword k, I DF (k) is computed in order
to see how often k appears in the collection of items i. Assume that the size of
collection [ is IV and that there are n;, items containing keyword k, then / D F'(k) can
be defined as follows:

N
IDF;, = log —. 2.7)
ng,

Finally, the TF-IDF weight of each keyword is computed by offsetting the term fre-
quency by the inverse document frequency, which is formally calculated as follows:

wi; = TF; « IDF},. (2.8)
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2.

For each user u, a user profile is learnt, Profile(u), based on the items u has pre-
viously liked. Typically, Profile(u) is computed as an average vector of all the
individual content vectors of the items liked by u [Balabanovic and Shoham, 1997].
Formally, the user profile of a user u is computed as follows:

|Liked)| .
=7 S ' Content(Likedy,)
Profile(u) = =£=1 2.
rofile(u) Liked| ) (2.9)
where Liked is the set of items that the user previously liked, Y is defined as the
sum of two vectors. Note that statistical methods such as Bayesian classifier'? can

also be used [Pazzani and Billsus, 1997].

. Finally, item recommendation is performed by first computing the similarity between

all the items not seen by the user and its user’s profile. Thus, the recommendation
list is composed of the most similar items to the user’s preference profile. Formally,
given the vector representation of the items and profiles, the most common tech-
nique to compute pairwise similarity is by measuring the cosine angle between them
[Balabanovic and Shoham, 1997]. If two vectors are very similar, then the angle
between them will be small, which gives a cosine value close to 1 (Figure 2.10).
Inversely, the cosine angle of dissimilar vectors is close to 0. Thus, the similarity
between an item ¢ and the profile of a user u is defined as:

similarity(i,u) = cos(Content(i), Profile(u)) = Content(i)-Profile(u) :
|Content(i)||.||Profile(u)]|
(2.

Note that the recommender system NewsWeeder uses the standard least-squares re-
gression [Lang, 1995].

_—
Content(i) <

/ -~ - Profile (u)

»

Figure 2.10: Illustration of the cosine angle between an item 7 and user u in a 2 dimensional

space.

12Ba

yesian classifier are explained in details in section 2.3.2
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To illustrate this approach, imagine a simple example where a user Vincent has liked an
article x that can be represented by the keywords: (car, buy, US A). Furthermore, suppose
that the database contains three items, which are represented by the following keywords:

1. a=(BMW, car,buy, USA)
2. b=(van, truck, Boston,USA)
3. c=(buy, truck,USA)

In order for the system to compare the items, these must be defined by a vector of equal size
made of the same keywords. A possible vector could be v = (BMW, car,van, truck, buy,
Boston, US A). Using vector v, and under the simplifying assumption that all the weights
computed using Equation 2.8 are equal to 1, then the user profile and the items can be
represented as follows:

—_—

e Profile(Vincent) = (0,1,0,0,1,0,1),
_—

e Content(a) = (1,1,0,0,1,0,1),
—

e Content(b) = (0,0,1,1,0,1,1),
—

e Content(c) = (0,0,0,1,1,0,1).

Finally, step 3 computes the similarity between the user profile and all the items to
be recommended, and recommend the item with the highest similarity value. Formally,
using Equation 2.10, the similarity values between the user profile and items a, b, c, are
respectively equal to:

(1,1,0,0,1,0,1).0,1,0,0,1,0,1)

. . . . . . 3

o similarity(a, Vincent) = 50151 0.100.10.01 = vivs = 0867,
.. . . _ {0,01,1,0,1,1).(0,1,0,0,1,0,1) 3

o similarity(b, Vincent) = mg o1 iior00.00.01 — vivs = 0-28%
ilari : _ (0001100010010 _ 3

o similarity(c, Vincent) = a5 0001001001 — vavs ~ 0067

Thus, the information retrieval approach will recommend item a to Vincent.

2.3.2 Machine learning approach

Machine learning techniques can also be used to build content-based recommender system.
The most common technique is the naive Bayesian classifier [Pazzani and Billsus, 1997,
Mooney et al., 1998, Mooney and Roy, 2000], but other more complex techniques such as
the basic nearest neighbors algorithm [Duda and Hart, 1973], the nearest neighbor algo-
rithm PEBLS [Cost and Salzberg, 1993], decision tree learners such as ID3 [Quinlan, 1990],
the Rocchio algorithm [Ittner et al., 1995], and neural nets [Widrow and Hoff, 1988]. How-
ever, [Pazzani and Billsus, 1997] have found that naive bayesian classifiers performed at
least as well as the more complex techniques just cited.
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As with the information retrieval approach, the naive Bayesian classifier approach is
also a three phases process. The first phase is very similar to the information retrieval
approach, but the other two are very different. It is the way the user’s profile is built that
differs. Rather than using a vector of weights, the users’ profiles are constructed using the
bag-of-words naive Bayesian classifier [Mitchell, 1997].

Note that the Bayesian classifier differs from the information retrieval in two funda-
mental ways. First, the information retrieval approach sees the recommender problem as
retrieving a set of relevant items based on the user’s preferences, while the Bayesian ap-
proach sees it as a classification problem. Second, the IR approach computes the similarity
between an item and the user’s profile using the cosine angle, while the bayesian approach
makes a prediction on a model learnt on what a user has seen.

The Bayesian classifier sees the recommendation problem as classifying a set of items /
into a certain class ¢ € (', where C'is set of all possible classes. For example, C' can be a set
composed of two classes such as {relevant, irrelevant}, or five classes like {1,2,3,4, 5},
if the traditional 5 star ratings scale is used. Formally, the naive Bayesian classifier is used
to compute the probability that an item 7 belongs to a certain class ¢, P(c|i) .

Preference Manager
Web Browser .
P (k;[c=5) i1=<Ky1,..Kq 1,..Kg 1>
ic=
i=3 P (ks|c=5)
i=5 P(kg|C=5)
!4:2 EEE1IC=2§ Items |
Ig= 4C=
=5 P> Pklc=4)
=3 P (ki|c=3) ,
Egﬂgfgg = <K -Ke e Ko m>
olc=
P (c=5)
P(c=4)
x & P(C=3)
o
= % A A Device
O =
;j =] Jcl
L
o 2 () Recommendation Engine
23T .
=7 Top:N items Select N best one | ———— Predict
P(clj),jed
Us Naive Bayesian Classifier

Figure 2.11: The naive Bayesian classifier process.

Figure 2.11 illustrates the Bayesian approach that is composed of the following three
phases:

1. The item representation is simpler than the one used by the information retrieval
technique. Instead of using a vector of the keywords weights, the bayesian approach
simply uses the keywords themselves. Thus, an item ¢ is represented as follows:

T
Content(i) = (k1,i..-kn,), (2.11)

where ky; is the k™" keyword of item i. A major difference with the information
retrieval is that the number of keywords is not restrained. In practice however,
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systems tends to limit the number of keywords in order to reduce the dimensions
[Pazzani and Billsus, 1997], but not always [Mooney and Roy, 2000].

2. In the learning user profile phase, the system needs to learn some probabilities based
on what the user has previously seen. Formally, using the Bayes Rule, the probability
P(c|7) can be computed as follows:

x P(ilc), 2.12)

where P(c) is the probability of a given class, P(i) is the probability of that item
i occurring, and P(i|c) is the probability that item i appears given a class c¢. To
recommend an item ¢, the system needs to calculate P(c|i) for each of the class in C,
and find the largest probability. As each of these calculations involves the unknown
but fixed probability P(i), it can be ignored, which simplifies the model to:

P(c|i) = P(c) * P(i|c). (2.13)

Under the assumption that each keyword appears independently from each others
(which is clearly not true in most situations), the probability P(i|c) can be decom-
posed as follows:

|Content(i)|
P(ile)= [ = Plkisle) = P(kiile) « P(kaglc) # ... ¥ P(kn.ilc), (2.14)
=1

where P(k;;|c) is the probability of having the [ keyword when we have the class
c. Given the user preference profile, P(k; ;|c) is calculated as the number of times the
I'" keyword appears in class ¢ divided by the total number of keywords in c. P(c) is
computed as the total number of keywords in class ¢ divided by the total number of
keywords in set of classes C'.

3. Finally, the item recommendation is made by computing all the conditional probabil-
ities P(c|i) for each class ¢, and item ¢ in /. Note that the largest P(c|i) determines
the class of item 7. Using the user’s probabilistic model computed in phase 2, P(c|i)
is computed as follows:

|Content ()]
P(cliy=P(c)x [[ P(hiile) = P(c) * (P(kvile) % ... ¥ P(knslc)).  (2.15)
=1

There are two common criticisms concerning the naive Bayesian classifiers. First, it
makes the naive assumption that keywords are independent of each other. Second, it re-
quires a lot of training data to estimate the various probabilities. Despite these limitations,
and when sufficient training data is available, Bayesian approach has performed reasonably
well [Melville et al., 2001].
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2.3.3 Preference-based approach

Contrary to machine learning and information retrieval approaches that consider the tex-
tual content of an item, a preference-based approach, PBA, uses the attributes of an item
as its content. Moreover, the preference based approach sees the recommender problem
as a multi attribute decision problem, where the system helps the decision maker to deter-
mine the optimal solution from a large set of available outcomes, according to the decision
maker’s preferences. In the recommender context, the decision maker is the user to whom
we want to recommend items, while the outcomes are the set of available items.

Formally, the multi-attribute decision problem in the recommender context is defined
by the following tuple (X', D,C,Z), where

e X is the set of attributes {xy, , z,} describing all the items;

e Dis the set of allowed domain values { Dy, , D, }, where each D; is the set of possible
values for attribute x;. Note that the set of possible values for an attribute can be
continuous or discrete;

e ( is the set of constraints {cy, , ¢, }, where each ¢; is a constraint function that restrict
the values that a subset of X’ can take;

e 7 isthe set of items that we want to recommend to the user, and is within the cartesian
product D = D; x Dy x x D,. Note that the set 7 is commonly called the available
outcomes.

To illustrate this model, imagine that we want to model items for the real-estate domain.
Apartments can be modeled using five distinct attributes: X = T'ype, Nbrooms, Kitchen,
Bathroom, Size, and Price. The domain value for each attribute may be defined by the
following sets:

e D7,y = {house, apartment};

L4 DNbrooms - [17 20]’

Dryitchen = {private, share, none};

D Bathroom = {private, share, none};
o Dgi.e = [10,1000] m?;
o Dprie = [0,10000] CHF;

The domain Dy, is discrete and made of two domain values: house and apartment;
while it is continuous for the price attribute, which can take any value in the interval O to
10000 CHF. The nature of the real estate domain also implies a set of constraints such as:

o Crype Kitchen,Bathroom 1f Type = house then Kitchen = private A bathroom =
private;

o Crype size If Type = house then size > 70m?;



2.3. CONTENT-BASED APPROACHES 37

The preference based approach must carefully elicits the user’s preferences, and then
uses a variant of the multi-attribute utility theory to compare the items and find the best
ones [Winterfeld and Edwards, 1986]. The root of the utility theory dates from the early
40s when Von Neumann and Morgenstern [Neumann and Morgenstern, 1944] have laid
the foundations and proved, under condition of four axioms, that preferences and attitudes
towards risk can be adequately modeled by a utility function, u. Formally, let £ be the set
of all risky prospects on the set Z, where > pyir, € £ and > p, = 1. Informally, a risky
prospect is an uncertain outcome, which means it has a probability p; of occurring. Let
also >~ be a binary relation on £ that follows four axioms:

1. > is complete,i.e.: Vr,y € £: X = yory = Xx;
2. »istransitive,i.e.: Vo,y,z € £ x> yandy = z= X > z;

3. Continuity Axiom, if x,y, z € £ such that x > y > z, then Jo, 5 € (0, 1) such that
ar+ (1 —a)z =y > pr+ (1 -P)z

4. Independence Axiom, Vz,y,z € £and Ja € [0,1], x my < azx + (1 — o)z =
ay + (1 —a)z;

If these 4 axioms hold, then the simplified form of the Von Neumann and Morgenstern
theorem states that: if prospect ¢ is considered better or equivalent to propect 7, then there
exists a utility function u that must satisfy the Equation 2.16.

Ve,y € £, =y < u(z) > u(y). (2.16)

In practice however, the risk associated to an outcome is usually ignored, which sim-
plifies Equation 2.16 as follows.

Ve,y €L,z =y < v(x) > v(y). 2.17)

where v(x) is the value function associated to outcome x. Note that only when no
uncertainty is involved, then the utility function and value function are interchangeable.
Moreover, this dissertation does not consider uncertainty, as most recommender systems
don’t. Thus, from this point onwards and unless stated otherwise, this dissertation will use
the term wutility function to denote a value function.

Furthermore, if we assume that the Mutual Preferential Independence assumptions
holds [Keeney and Raiffa, 1993], then the theorem of Additive Value Function can be used,
and the utility V' of an item ¢ can be defined as the sum of the sub-utility functions v of item
¢ on each attribute multiplied by its weight w;, (Equation 2.18). This is commonly called
the Weighted Additive Strategy (WADD, [Keeney and Raiffa, 1993, Payne et al., 1988]).

p
V(i) =) wy(i) (2.18)
k=1

Most preference-based recommender systems use the WADD strategy to recommend
items to the user. In the recommender context, the sub-utility function vy, reflects how much
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a user likes the attribute k&, while its weight w, reflects its importance to the user. It is the
set of all sub-utility functions and weights that makes the user’s preference profile.
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Figure 2.12: The preference-based approach process.

Concretely, Figure 2.12 illustrates the WADD strategy for a recommender system,
which can be described as follows:

1. The preference elicitation process asks value elicitation questions to the user in order
for her to specify some preferred values and the weight associated to each attribute.
Imagine an example where a user wants to buy a computer. Figure 2.13 shows a frac-
tion of the web interface that is displayed on the client’s web browser. Note how the

user expresses her preferences by selecting the T'oshiba brand for the manufacturer
attribute, and a maximum price of $1500.

Please enter your preferences

Toshiba v

<=§ 1500 + Importance leastO @ © @ O most
Figure 2.13: Illustration of the value elicitation process for the preference-based approach

2. The utility functions are then constructed based on the preferences of the user. Con-
structing these functions is actually a hard problem from an elicitation point of view.
The Midvalue algorithm which is designed to build such functions requires asking the
user a set of mid-value points [Zhang and Pu, 2004]. Unfortunately, this algorithm
requires to elicit at least 3 utility values per attribute, which is obviously not feasible
in real problems. To overcome this problem, practical applications use a simple two
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steps heuristic. First, the system asks for the preferred value for all the attributes
(step 1). Then, the system uses predefined basic utility functions and fine-tunes them
based on the preferred value given by the user.

Further consider the example where the user set the maximum price of the notebook
to $1500, and set the weight of this attribute to 4 out of a maximum of 5. The system
will then choose a predefined function like in Figure 2.14(a), and adapt it to fit the
<= $1500 preferred value. Note that in Figure 2.14(a), the distance between points
x and y is usually inversely proportional to the weight of the attribute.

(N

= Dyl & Price
x ¥ e 1500 1550

{a) (b)
Figure 2.14: Two utility functions associated to the price attribute of Figure 2.13; (a) shows
the predefined utility function, and (b) shows the utility function after that a user said that
she wants a computer less or equal than 1500$.

~ Utility
= Utility

3. The recommender system evaluates the utility of all the items in Z using Equation
2.18, where the sub-utility values and weights are taken from the user profile. Finally,
the items are sorted by decreasing order of their utility value, and the first N items
are displayed to the user.

Theoretically, when the mutual preferential independence assumption holds, and if all
the parameters can be precisely elicited, then this strategy can achieve 100% prediction ac-
curacy. This explains why this approach is widely used on the internet; such examples are
notebookreview.com, FlatFinder[Viappiani et al., 2006], ActiveDecision (which has been
acquired by Knova'?), and so forth. Unfortunately, the elicitation of the parameters is
expensive, and various authors have tried to simplify this elicitation process in order to
make it usable in real systems. For example, [Stolze, 2000] exploits the idea of a scoring
tree, where a user expresses her preferences by modifying an existing tree via the use of
rules. Once the preferences have been elicited, the system translates the scoring tree into
a MAUT additive value function, and then searches in the catalog for the most suitable
products. Incremental utility elicitation is another approach that eases the elicitation by an
incremental process that interleaves utility elicitation and filtering of the items based on the
elicited information [Ha and Haddawy, 1997]. A major contribution in that domain is the
work done by Ha and Haddawy [Ha and Haddawy, 1997, Ha and Haddawy, 1999], where
polyhedral cones and pairwise comparison are used to estimate the user’s true weights.
Note that, [Ha and Haddawy, 1999] make the assumption that the utility function has a

Bwww.knova.com
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multi-linear form, and that all the sub-utility functions are known. Regrettably, computing
the cone is a hard problem that makes it unsuitable for real life scenarios. More recently,
Blythe [Blythe, 2002] has simplified the process by assuming MAUT additive value func-
tions, and used a linear programming formulation and pairwise comparison of alternatives
to estimate the user’s true utility. Another approach proposed by [Reilly et al., 2004] is dy-
namic critiquing to stimulate the user to express more preferences by showing her critique
patterns between two examples. Later, [Viappiani et al., 2006] proposed another method
for stimulating the user to express more preferences by showing her suggestions that could
become optimal under certain circumstances.

Despite its advantages, the preference based approach has three major problems. First,
the elicitation process is time consuming and cognitively very complex for the user. More-
over, as argued in section 2.2.2, the value elicitation process used to elicit the user’s pref-
erences 1s not adapted to low-risk domains as found in many eCommerce applications.
Second, the recommender system tends to recommend very similar items to the one pre-
viously liked by the user. This can be a problem as it reduces the diversity and increases
the risk of redundant predications. Take for example a user who said that she liked the 37
Harry Potter movie. If the recommender system has other Harry Potter movies in its col-
lection, it will see them as very similar to the user’s preferences and will recommend them.
Unfortunately, if the user has seen the 3"¢ one, she has probably seen the first two. Third,
the rigidity of the model is another serious limitation in real eCommerce applications. By
definition, the multi-attribute utility theory requires that all the items are defined by the
same set of homogenous attributes X. However, eCatalogs continuously change, as new
items with new attributes will frequently appear. However, MAUT is unable to compare
heterogenous items with different attributes. For example, imagine an eCommerce shop
that sells digital cameras to end-users. Such cameras could be modeled by the attributes
Xresotution = {3M Pix,4AM Pix,5M Pix,> 5M Piz}, X,oom = {> 3%x,>5x,> 10x},
and Xiagecapacity = {< 50,50 — 200, > 200}. Further suppose that this shop would now
like to sell camera phones as both devices capture images. However, the early camera
phone uses Integrated CIF Technology, which is not compatible with previous attributes.
As a consequence, the shop will have to change its attribute model to be able to sell both
devices. This is both time consuming and expensive.

2.4 Collaborative filtering

Collaborative filtering , (CF, [Goldberg et al., 1992]), is very different from previous ap-
proaches. Unlike content-based recommendation methods that recommend items similar
to the one previously bought by the user, collaborative filtering recommend items that other
similar users liked. Collaborative filtering is based on the subjective evaluations of other
users. Furthermore, CF makes the assumption that similar users like similar items. The
main motivation behind this approach is that humans do not share computer difficulties in
evaluating objects in various fuzzy dimensions such as quality, respectfulness, and so forth.
Moreover, human can judge novel objects, even when they are very different from what
they have encountered before. Unfortunately, in 1992, computer models underlying rec-
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ommender systems could not do this as they relied on the content of an item (see section
2.3 for more details).

In collaborative filtering, users state their preferences by rating a set of items, which are
then stored in a user-item matrix R. The entire set of ratings is sometimes called collabora-
tive data. Formally, this matrix contains all the users’ profiles, where the rows represent the
users U = {uy,, uy,}, the columns correspond to the set of items [ = {4y, ,%,}, and R,
is the rating assigned to item ¢ by the user w. It is common practice to denote the average
rating of user u by R, and the average rating of the i'" item by R;.

Given the matrix R, two families of collaborative algorithms have been developed
[Breese et al., 1998]:

e Memory-based CF: uses the entire matrix R to generate a prediction. For example,
user-based CF predicts the rating of an item by looking at the rated items of the
nearest users to the target user.

e Model-based CF: does not work directly on the entire matrix R, but starts by de-
veloping a model of the user’s ratings using various techniques such as Bayesian
networks, clustering, or rule-based approach.

2.4.1 Memory-based collaborative filtering

In 1992, the first collaborative filtering technique was introduced in the Tapestry informa-
tion system [Goldberg et al., 1992]. The idea was to allow humans, known as moderators,
to annotate documents, and then use these annotations to retrieve relevant documents. Un-
fortunately, Tapestry did not allow to aggregate annotations, which meant that a user had
to manually choose a specific moderator for selecting the relevant annotations.

Grouplens is the first collaborative filtering system that recommends items by aggregat-
ing the ratings of users who share similar interest [Resnick et al., 1994]. This recommender
technique is now commonly called the user-based collaborative filtering, and is composed
of three main parts:

1. The preference elicitation process asks the user to state her preferences by rating a
set of items. These ratings are then stored in the user-item matrix R.

2. The next critical task is to actually form the neighborhood of similar users, known
as the user’s neighborhood. For each user u, the main goal of the neighborhood
formation is to find an ordered list of the £ closest users to u. The neighborhood task
1s in fact divided into two subtasks, which are as follows:

(a) The system needs to compute the pairwise similarities between each pair of
users, sim(u,v), where u,v € U. Two similarity measures have proven very
effective in the past:

1. The famous Pearson correlation that measures the correlation between the
ratings of users v and v :

sim(u, v) Lie 1Fui = Fi) (Ruj — By) (2.19)

\/Zze 1 Ry — R; 2\/Zz'e J(Ru,j - Rj)z
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ii. The cosine function that computes the cosine value between the ratings of
users u and v
u.v

' == 2.20
) = o

where . is the dot product of vectors defined in cartesian space, * is the dot
product between real numbers, and « is a vector containing all the ratings
of user u. Note that @ is in fact the row in R that corresponds to user .

(b) After computing all the pairwise similarities, the neighborhood of a user u
is formed by simply selecting the £ users that have the highest similarities
with uw. This technique is commonly called the k-nearest neighbors. Other
techniques such as the aggregate neighborhood formation can also be used
[Sarwar et al., 2000a]. This technique is very beneficial for very sparse data
sets, but does not scale well as it requires the re-computation of a centroid and
list of close neighbors at each iteration of the algorithm.

3. The recommendation of an item is made by first predicting the rating of each item
using the user’s previous ratings and u’s neighborhood. Then, the items are sorted by
decreasing order of the predicted ratings, and the first NV items are shown to the user.

Formally, the predicted rating of an item ¢ for user u, }f%:i, is computed as follows:

— Y ven Sim(u,v) * (Ry; — Ry)

Ryi= R, + : (2.21)
| 2 ven sim(u, v)]
where K is the neighborhood of user u, and R, is user u’s average rating.
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Figure 2.15: The user-based collaborative filtering process.



2.4. COLLABORATIVE FILTERING 43

Experiments on the cinema and newspaper domains showed that the user-based col-
laborative filtering produces recommendations that are more accurate than content-based
approaches that user either traditional information retrieval approach or naive Bayesian
classifiers [Melville et al., 2001, Claypool et al., 2001]. Collaborative filtering also allows
to recommend novel items to the user, as the recommendation is not made on the item’s
content, but on whether a similar user as liked the item or not. However, the widespread
use of user-based collaborative filtering has been limited due to two major problems:

e Sparsity: In practice, users only rate a very small fraction of all available items,
maybe 1 to 2%. Thus, the user-item matrix R tends to be very sparse, which limits
the neighborhood formation. One approach suggested by [Sarwar et al., 1998] is to
use an automated agent, the filterbot, that the collaborative filtering system sees as
a normal user. Using information retrieval techniques on the item’s content, the
filterbot evaluates new items as soon as they are published, and stores the results
in the user-item matrix R. Other dimensional reduction techniques have also been
proposed to reduce the number of entry in the user-item matrix. The most commonly
used technique is the Singular Value Decomposition that produce a low dimensional
representation of Z[Sarwar et al., 2000b]. These techniques have showed significant
improvement in the prediction accuracy, but it requires training for selecting the size
of the new dimension.

e Scalability: The nearest neighbor calculation grows with both the number of users
and the number of items. In eCommerce environment where systems have millions
of users, the nearest neighbor calculation does not scale well. [Sarwar et al., 2002]
proposed to reduce the dimension of search by first clustering the data contained
in the user-item matrix, and then forming the neighborhoods from the partitions.
Experimental results showed reduction in the complexity, but at a cost in degradation
in the recommendation accuracy.

2.4.2 Model-based collaborative filtering
Probabilistic approach

From a probabilistic perspective, the collaborative filtering task can be viewed as calcu-
lating the expected rating of an item, given the user’s preferences. Formally, the expected
rating of item i for user u, E(R,,;), is defined as follows:

m

E(Ry;) =Y Pr(Ru; = k|Ry,1l € LS)k, (2.22)
k=1

where LS is the set of items that the user u has previously rated, k is the value of a
vote, and the rating scale is defined on the interval [0, m]. [Breese et al., 1998] proposed
two distinct approaches to compute these joint probabilities:

e The cluster model exploits the idea that there are certain groups of users that capture a
common set of tastes. These groups of users will form the various clusters. The clus-
ter model then partitions each user into a set of clusters. Under the assumption that
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the preferences are independent in a given class, [Breese et al., 1998] proposed to
use the famous Expectation Maximization algorithm, (EM, [Dempster et al., 1977]),
to learn the various clusters using the data found in the user-item matrix 2. How-
ever, [Ungar and Foster, 1998] argued that the EM algorithm was not suitable for the
movie domain, as it didn’t recognize the constraints that a movie liked by two differ-
ent persons must be in the same movie class each time. Thus, the authors proposed
to use classical clustering algorithms like K-means and Gibbs instead of EM. Other
clustering approaches consist in clustering the users into cliques by recursively call-
ing the K-Means [Castagnos and Boyer, 2006], or on both the users and the items
[Kohrs and Merialdo, ].

e The Bayesian network models each item of the domain as a node in a graph, where
the state of each node corresponds to the possible value for each item. Then, a
learning algorithm is used to build the Bayesian network. This algorithm searches
over various model structures in term of dependencies between each item. In the
resulting network, each item has a set of parent items that represent the best predictors
for the expected rating.

Figure 2.16: Graphical aspect model of the movie domain, where P, Z, and M are random
variables that respectively model the objects p, z, and m.

Another probabilistic approach is the Aspect model [Hofmann, 1999], which consists
in finding a hidden variable between pairs of observations. Take for example the movie
domain, where a person p watches a movie m. The observation can be modeled by the
tuple (p, m). The aspect model supposes the existence of a hidden cause z that motivates
p to watch m (Figure 2.16). In our movie domain example, a hidden cause z could be the
genre of the movie. According to the semantic of the aspect model, a person p chooses the
variable z, which in turn determines the movie m to watch. Furthermore, the choice of the
movie m is assumed independent of p given the knowledge of z. Thus, a joint probability
model of the user and movie can be parameterized by:

P(p,m) =>_ P(p)P(z[p)P(ml32), (2.23)

where parameters P(z|p) and P(m|z) correspond to the processes of p stochastically
choosing the latent variable z, and z stochastically choosing m. As for the cluster models,
these parameters can be estimated using the EM algorithm. [Schein et al., 2002] also pro-
posed to use the aspect model on the content of the item (the actors) rather than the item
itself. Thus, the observations are changed from tuple (p, m) to (p, a), where a represents an
actor. Note that these newly formed observations are no longer independent, which breaks
an assumption of the aspect model. However, experiments have shown it to perform well,
and even overcoming traditional naive Bayesian classifiers.
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Neural networks have also been applied with success [Billsus and Pazzani, 1998], and
showed significant improvement over traditional user-based recommender algorithms. Un-
fortunately, it requires building and maintaining a neural network for each user, which
do not scaled when considering real recommender systems. Other statistical techniques
include the probabilistic relational model [Getoor and Sahami, ], the maximum entropy
model [Pavlov and Pennock, 2002], and two-layer undirected graphical models such as re-
stricted Boltzmann machines [Salakhutdinov et al., 2007].

It is often argued that the statistical models are inappropriate for recommender systems,
as their independence hypothesis rarely holds, and they usually require a lot of training
data in order to estimates the various probabilities. For example, [Breese et al., 1998] has
shown that simple correlation based techniques performed better when only limited data
was available. Moreover, both [Melville et al., 2001] and [Schein et al., 2002] used over
40 ratings per user to train the system. In practice however, it is unfeasible to assume that
a new user is willing or capable to state that many ratings. This is commonly known as the
cold-start problem.

Machine learning

Machine learning techniques try to find low rank approximation of the user-item matrix 2
in order to reduce the noise induced by the high sparsity of the data. The most common
approach to find such approximation is by using a matrix factorization approach.

Matrix factorization, MF, is a very simple techniques that decomposes the big matrix R
into two smaller matrices. Formally, given the user item matrix R of size U x I, MF tries
to find two matrices S and 7" such that R ~ ST?, where U and I respectively represent
the users and the items, S € RV*!, T' € R™! and [ < U, I. The matrices S and T can be
seen as compact representation of the users and the movies, while ST7 contains the ratings
assigned be the users in S on items in 7.

Singular value decomposition, SVD, is the most popular matrix decomposition tech-
nique. SVD states that there exists a factorization of the matrix R such that R = ST,
where § € RUxmn(U.D) T ¢ RIxmin(U]) gre orthogonal matrices, and ¥ € R7#(U:1)xmin(U,1)
contains the singular values on the diagonal. By only keeping the largest & singular values
and setting the others to 0, a rank-k approximation of R can be obtained. Note that more
advanced matrix factorization techniques such as Bayesian approach [Lim and Teh, 2007]
and simple gradient descent [Takacs et al., 2007] also exist.

Unfortunately, two problems arises with the SVD technique. First, standard algorithm
for computing the SVD decomposition have a time complexity equals to O(max (U3, I?)).
Second, it assumes a fully observed matrix K. These two problems make this technique
inappropriate in the recommender systems context, where R contains millions of entries
and where missing values cannot be estimated by 0 values. To overcome the complexity
problem, [Brand, 2003] proposed an O(U x I x n) algorithm that can approximate the
rank-n SVD through rank-1 update. For the second problem, researchers have proposed
many solutions ranging from greedy residual fitting [Lim and Teh, 2007] to the classical
expectation maximization optimization [Srebro and Jaakkola, 2003].
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Item-to-item correlation

Due to the amount of data required to train the statistical models and the strong hypothesis
of the underlying data structure, the statistical approaches introduced in Section 2.4.2 have
rarely been used in practice. Machine learning techniques also requires a lot of training data
in order to estimate the various parameters and can easily suffer from overfilling. However,
there is one model based approach that has become very popular, and is widely used on
the web - the item-based collaborative filtering. For example, Amazon.com'#, with its 29
million customers and several million catalog items, uses item-based collaborative filtering
to recommend items to the user [Linden et al., 2003]. Figure 2.17 shows the recommenda-
tions made by Amazon.com, which is commonly known to end-users as ”Customers who
bought this item also bought these items:”, which is illustrated by

Customers who bought this item also bought

From the Earth to the Moon - The October Sky (Special Edition) DVD ~ Forrest Gump (Two-Disc Special
Signature Edition DVD ~ Mason Jake Gyllenhaal Collector's Edition) DVD ~ Joe
Adams il (258) $9.99 Alaskey

iy (224) $59.98 vrindnidr (526) £7.99

Figure 2.17: Example of the item-based collaborative filtering for a user who is looking for
the movie Apollo 13

The fundamental difference between the user-based collaborative filtering and the item-
based one lies in the objects considered. The former approach works on groups of similar
users, while that latter considers groups of similar items. Concretely, the first step of item-
based collaborative filtering is the construction of the item-to-item similarity matrix .S. This
is achieved by computing the pairwise similarity between each pair of items ¢ and j in the
matrix R, sim(i,j), using the adjusted cosine metric. The adjusted cosine metric is an
improved version of the cosine based approach, which takes into account the difference in
rating of each user’s profile. Formally, the adjusted cosine metric is defined as follows:

sim(i,j) = Zue U(Ru,i - Ru)(RuJ‘ — Ry) _

— — . (2.24)
Ve v(Rui = Ru) /e 0 (Ruy — Ru)?

The Pearson correlation and cosine metric defined in section 2.4.1 can also be used to
compute these pairwise similarities. However, it is necessary to consider the columns of
matrix [? as rating vectors rather than the rows.

Once S has been constructed, the predicted rating of an item ¢ is computed by selecting
the k& most similar items in .S, and then using a weighted average based on the similarity
between the selected items and <. Formally, the prediction of an item is computed as follows
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[McLaughlin and Herlocker, 2004, Park et al., 2006]:

S e k(Sigx (Ruy — Ry))

=R, + 5 15,] )
je K 1%%)

where K is the set of the k closest items to item ¢, and \5; ; is the similarity between items

7 and j. Note that the item prediction was initially computed using a simpler weighted aver-

age combination that did not take into account the item’s average rating [Sarwar et al., 2001].

Unfortunately, this simple combination is not very robust to the size of the item’s neigh-

borhood, which explains why Equation 2.25 is now used.

Once all the possible items to be recommended have been rated, item-based CF simply
selects the IV items with the best predicted rating.s This selection strategy is commonly
known as the top-N recommendation strategy. The item-based collaborative filtering is
illustrated in Figure 2.18.
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Figure 2.18: The item-based collaborative filtering process.

By working on groups of items rather than groups of users, the item-based collaborative
filtering has two main advantages over classical user-based approaches. First, as the number
of items is usually much smaller than the number of users in real applications, it makes this
approach more scalable. Note also that the items changes less frequently than the users’
preference profiles. Second, experimental results have shown it to be more accurate than
traditional user-based approaches [Sarwar et al., 2001].

In practice, CF is the most popular recommendation technique and this is due to three
main reasons. First, when sufficient preferences from the user are available, studies have
shown it to have reasonably good prediction accuracy. Second, the cognitive require-
ment on the user is very low. Finally, it can recommend items without modeling them,
as long as they have been previously rated. However, it has been argued by many authors
[Li et al., 2005, Mobasher et al., 2004, O’Sullivan et al., 2004] that Collaborative filtering
suffers from the following profound problems:

Sparsity - This problem occurs when the number of items far exceeds what an individual
can rate. Thus, the user-matrix R tends to be very empty, which limits the neighbor-
hood formation. Take for example Amazon.com, it has several millions of customers
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and users, which gives a database of approximately 10'? entries. However, a typ-
ical customer only rates about a dozen of recommendations, which gives a density
smaller than 0.001%. This is one of collaborative filtering’s fundamental problem
and explains why numerous authors [Melville et al., 2001] [Mobasher et al., 2004]
[O’Sullivan et al., 2004] have focused their work to try to overcome it using hybrid
recommender systems. Data-mining [O’Sullivan et al., 2004] or the Two-way As-
pect Model [Schein et al., 2002] are now used to extract the item similarity knowl-
edge by using association between the user’s profile [O’Sullivan et al., 2004] and the
object’s content [Schein et al., 2002] in order to augment a standard similarity ma-
trix. Singular value decomposition can also be used to reduce the dimension of the
user-item matrix R [Sarwar et al., 2000b]. More recently, [Middleton et al., 2004]
and [Ziegler et al., 2004] proposed to use a taxonomy for propagating known user’s
preferences in order to fill in some empty values.

Scalability - The computation of the neighborhood requires looking at all the items and

users in the systems. Consequently, as the number of users grows, so does the com-
plexity. By splitting the user-item matrix R, clustering algorithms have proven very
effective for reducing the scalability, but can lead to a decrease in decision accuracy
[Connor and Herlocker, 2001, Castagnos and Boyer, 2006, Kohrs and Merialdo, ].

Cold start - To build a model, the system must known enough preferences about the user.

However, a new user is usually not willing to make the effort of rating a sufficient
number of items.

Latency or the new item problem - Product catalogs evolve over time; however, the col-

laborative approach cannot deal with new products that have not been previously
rated. To overcome the latency problem, the content of the object has also been
used to try to predict its rating. This is achieved by filling up the similarity matrix
S with estimated rating based on the content of the item [Claypool et al., 1999], or
simply by using a weighted combination of the content and collaborative prediction
[Melville et al., 2001] .

Privacy - In most systems, all the users’ ratings are located on a server and are accessi-

ble to third parties, thus raising serious privacy concerns. To reduce this problem,
[Polat and Du, 2003] propose to add random noise to the user’s preference ratings,
while [Canny, 2002] distributes the collaborative filtering process over the users.

Shilling attacks or profile injection attacks - Malicious users can influence the recommen-

dations by inserting untruthful ratings. Two techniques for corrupting the user-item
matrix R have been identified: push-attack and nuke-attack [O’Mahony et al., 2004].
The first technique consists in inserting profiles in R in order to favor a given item,
while inversely, the second is designed to make an item less recommendable. These
two techniques rely on the random attack and on the average attack. The ran-
dom attack uses the overall distribution of ratings in 12, while the average attack
uses the average for all the users. To identify these attacks, [Burke et al., 2006]
introduced a model-based approach for identifying suspicious user profiles, while
[Bhaumik et al., 2006] focused on identifying items that are under attack.
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Note that the first two problems also occurs in the traditional user-based collaborative
filtering. In practice however, item-based collaborative is usually more scalable than the
user-based approach as most recommender systems have less items than users. Moreover,
items tend to change less frequently than user’s preferences, which reduces the number of
time the neighborhood as to be regenerated.

2.5 Knowledge-based recommender systems

Knowledge-based recommender systems use the knowledge about both the users and the
items. Surprisingly, this approach has been hardly looked at, and has been overshadowed
by the (relative) success collaborative filtering.

Moreover, one of the only knowledge-based recommender system ever developed is
the conversational recommender system FindMe. Following this, most researchers con-
sider that knowledge-based recommender systems are in fact conversational recommender
systems. However, this dissertation does not make this simplification as we show that on-
tology filtering is a knowledge-based recommender system that does share the properties
of the conversational approach.

2.5.1 Conversational recommender systems

One of the first knowledge-based recommender systems is the FindMe system, which has
been made famous in the Entree restaurant recommender [Burke et al., 1997, Burke, 2000].

The main idea is to use a form of feedback, known as critique, in order to stimulate
the user to state more preferences. Instead of asking the user specific values, the system
presents a set of critiques that are associated with the recommended items, which the user
can select in order to refine her serach. A typical recommendation cycle in the Entree
system is as follows. First, the user either selects a known restaurant from a list, or states
some basic preferences such as the type of cuisine she wants, the price, the atmosphere and
so forth. If preferences were entered, then the system recommends a restaurant that is the
most similar to the user’s preferences. Instead, imagine the situation where a user chooses
the restaurant “Chinois on Main” in Los Angels. As shown in Figure 2.19, the system finds
the user’s restaurant, but also shows a similar one to stimulate her to state more preferences.
At the bottom of the page, the user has the option to state more preferences by critiquing
the recommendation via the use of one of the seven buttons. Each button corresponds to
a critique, where less $$ allows the user to look for a cheaper restaurant. This process
iterates until the user finds an appropriate restaurant.

The critiques help the user navigate through complex collections of items, without hav-
ing to know the underlying features making them. This family of systems is also commonly
called conversational recommender systems, as it duplicates the conversation a user may
have with a seller. Conversional recommender systems make use of two strategies for elic-
iting the user’s preferences [Simazu et al., 2001]:

e navigation by asking - the user is asked to give explicit preferences through value
elicitation questions (see Section 2.2.2). In the Entree system, this corresponds to the
first step, where a user is asked what kind of food or the price range of her budget.
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The Los Angeles restaurant you chose is:

Chinois On Main
270% Mam St (bet Rose Awe & Ocean Park Blvd ), Santa Momea, 310-3%2-9025
Pacific New Wave | $30-$50

Extraordinary Decor, Extracrdinary Service, Near-perfect Food, Hip Place To Be, On the Beach, Great for
People Watching, Parties and Cecasions, Weelkend Brunch, Weekend Tunch, Fabulous Wine Lists

We recommend:
Yoshi's Cafe
3257 N Halsted St. (Belmont Ave ), Chicago, 312-248-6160
Asian, Japanese, French (Mew) | £20-F50

Extracrdinary Decor, Extraordmary Service, Near-perfect Food, Need To Dress, Prix Fore Menus, Quiet
for Conwersation, Very Busy - Reservations a Must, Romantic, Good Out of Town Busingss, Fabulous Wine
Lists, Game, ParkingfValet

toss 55 sreeed ereene

Fradetiaral ereatene Leneleer .yxf}z{‘&-?

Figure 2.19: Illustration of the Entree recommender system.

e navigation by proposing - the user is asked to give preferences implicitly via the use
of predefined options. Critiques used in Entree is a typical example of a predefined
option that allows the user to state preferences implicitly. In Figure 2.19, the recom-
mended restaurant has a price range of 30 to 50 dollars. By using the less $$ critique,
the system will translate this implicit price preference into < 50% explicit preference.

In the first version of the FindMe system, the critiques were designed over a single
feature of the items. In [Burke, 2000], compound critiques were introduced that allow the
user to critique an item over multiple features. These critiques allow users with limited
knowledge of the product domain to easily find the right item that matches their needs.
However, the fact that all the critiques must be predefined by hand is a serious limitation to
the FindMe system. Moreover, the critiques that are presented are always the same, and are
independent of both the user and of the state of the recommendation cycle. To overcome
these two problems, [Reilly et al., 2004] introduced dynamic critiquing, which allows the
compound critiques to be generated and selected during each recommendation cycle. Fur-
thermore, experimental results showed significant reduction of the recommendation cycle.
The idea is to use the famous Apriori algorithm to generate the compound critiques from
simple unique critique. In short, the Apriori measures the importance of a rule (i.e: cri-
tique) in terms of its support and confidence. Suppose the rule A — B, which means that
from the presence of a certain set of critiques A, one can infer the presence of another set
of critiques B. Given this rule, rule support is defined as the number of items that contain
both A and B divided by the total number of items, while confidence is the percentage of
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items containing B given that A occurs. More details about the Apriori algorithms can be
found in [Agrawal et al., 1996].

Knowledge based recommenders usually rely on case-based reasoning systems, CBR,
to find similar items to the user’s preferences. In traditional CBR, the system solves a
problem by reusing the solution of previously solved problem it has in its database. Thus,
the success of the CBR technique relies on the identification of the right case for a given
problem using a similarity metric. For example, the Entree recommender employs such
technique to find the best restaurant that is the most similar to the user’s preference by
using feature to feature matching. More complex similarity metrics have been proposed
such as the the Apriori algorithm [O’Sullivan et al., 2004], or a combination of feature by
feature matching and concept proximity in an ontology [Bradley et al., 2000], or even by
adding diversity to the retrieved cases [Smyth and McClave, 2001].

2.6 Usage of taxonomies in recommender systems

This dissertation proposes a new recommender system that uses an ontology in order to
structure the collection of items in the catalog, and to infer missing preferences of a user.
The use of taxonomies in recommender system is not novel as such, but it has never been
used as a recommender technique by itself.

The idea of using taxonomies for retrieving information is not new either. Traditional
information retrieval systems rely on a vector of keywords to identify and retrieve doc-
uments (see Section 2.3.1). As a user states her preferences by giving a (small) set of
keywords, it usually happens that these keywords are not present in any of the documents.
Thus, no document can be retrieved. Inversely, if the system does find some documents,
the keywords approach makes it hard for the user to refine her search query if she is not
satisfied with the returned documents.
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Figure 2.20: Fragment from the Amazon.com taxonomy.
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Many authors have realized that the simple keyword approach was not sufficient, and
some proposed the use of a taxonomy to improve it. A taxonomy is the simplest form of
ontology, where a node models a concept and an edge models an inheritance relationship
between two concepts. Figure 2.20 illustrates a fraction of the Amazon.com taxonomy,
where a rectangular box models a concepts, and an arrow represents an inheritance edge
between two concepts. Take for example the Books concept, this concept is known as the
root of the taxonomy has it has no parent concept. On the other hand, the concept Discrete
is known as a leaf as it has no child. The concept Pure is the parent of the Discrete concept.

Given this kind of taxonomy, authors have proposed to enrich the classical information
retrieval methods. For example, [Zhuang, 2001] helps the user retrieve picture by using the
taxonomy to compute the similarity between keywords that represent the user’s query and
the pictures. This allows to find pictures that are closely related to the user’s query, even
if they do not share any keywords. Imagine the case where a picture is annotated with the
keyword discrete. Further imagine that the user is looking for a picture modeling algebra,
which is represented by the query algebra. If traditional keyword methods such as TF-IDF
was used, this would not return any picture as the keywords do not overlap. However,
these two keywords are very similar (given the taxonomy in Figure 2.20), which allows
the system to retrieve some pictures. [Liu and Lieberman, 2002] use the concept expansion
approach to expand a photo’s annotations in order to augment the number of keywords
made available to the information retrieval systems. Given a starting concept, a spreading
activation algorithm is applied that activates some of the neighborhood concepts, and then
reiterates until no more concept is activated [Anderson, 1983]. These activated concepts
are then used to annotate the photo. Taxonomies are fundamental elements of the seman-
tic fisheye view technique[Janecek et al., 2005], which help a user perform opportunistic
search in an annotated image collection. In traditional case-based reasoning, taxonomies
have also been used to help compute the similarity between cases [Bradley et al., 2000].
Taxonomies with more complex relations are also at the root of the Semantic Web!3, which
allows the user to use the semantic contained in the ontology to perform smarter searches
[Guha et al., 2003, Davies and Weeks, 2004, Sieg et al., 2005].

The novelty of this dissertation is to directly use the ontology not only to build a com-
plete user’s preferences profile, but also to make the recommendations. Note that previous
authors simply used the taxonomy to fill in some missing values in the user’s preference
profile, and then used traditional collaborative filtering to make the recommendations. For
example, [Middleton et al., 2004] introduced the idea of representing user’s preference pro-
files in ontological terms for recommending research papers. As with the Information Re-
trieval approach, the research papers are represented by a vector of terms. These terms
represent the research topic that index the documents, and simple term frequency is then
used to calculate the terms weights. In parallel, they use a taxonomy of research topics to
classify each document in a given concept. The user interest profiles are generated based
on the research paper a user has browsed. From each browsed paper, the research topics
are extracted and used to build a vector of research topics. Their novel idea was then to
use the ontology to propagate 50% of the value of a topic of interest to its super-concept in
order to fill up the user interest profile vector. The recommendations are then made using

Bhttp://www.w3.0rg/2001/sw/
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a collaborative filtering approach, where the recommendations are formulated between the
users’ current topics of interest and the papers classified in these various topics.

Figure 2.21 illustrates the approach used by Middleton et al. to overcome the sparsity.
As one can see, the value 6 assigned to a concept is propagated to its parent as it does
not contain any value. This mechanism allows to reduce sparsity in the user’s profile,
which increases the accuracy of collaborative filtering. However, the propagation is always
50% of the initial value, which assumes that each concept is uniformly distributed in the
ontology. Obviously, this hypothesis does not hold in real life.
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Figure 2.21: Approach used by Middleton et al. for reducing sparsity in collaborative
filtering.
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[Ziegler et al., 2004] extended the work of Middleton et al. by increasing the range
of the propagation. Instead of only propagating the interest value from a concept c to its
parent, Ziegler et al. proposed to propagate it among all the concepts found on the path
between the concept ¢ and the root of the taxonomy. Obviously, this mechanism allows
to further reduce the sparsity of the term vector but at a cost in scalability. Note that this
idea is very similar to the spreading activation algorithm, with two exceptions. First, the
propagation is only done upwards. Second, the propagation is not stopped by an activation
threshold, but instead finishes when it reaches the root of the tree. Unfortunately, Ziegler
et al. make the assumptions that sub-concepts have equal shares in their super-concept,
and that there exists a propagation factor k that guides the amount of propagation from a
concept to its parent. Even if the first hypothesis does not have a big impact in practice, the
second clearly limits the usage of their approach in real life as this coefficient £ needs to be
learnt. As with Middleton et al. approach, collaborative filtering is then used to generate
the recommendations. Finally note that both of these approaches rely on the fact that the
topology of the taxonomy is a tree, and that it already exists. This work does not make such
assumptions, and proposes algorithms that can automatically learn these taxonomies from
past uses’ experience. Moreover, the next chapter shows that it is possible to extract useful
information from these taxonomies in order to transform them into meaningful ontologies.

2.7 Collaborative filtering vs. Preference-based approach

Today, collaborative filtering and the preference-based approaches are the most widely used
techniques by eCommerce vendors. For example, collaborative filtering is being success-
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fully used by Amazon.com and WalMart.com, while notebookreview.com and ActiveDeci-
sion use the preference-based approach. This chapter has introduced these two techniques
in details, and this section will now summarize their advantages and drawbacks in order
to motivate the need of a new one. Table 2.1 summarizes the tradeoffs between these two
recommendation techniques.

Input Data Advantages Disadvantages
CF | Ratings on some items No domain knowledge needed | Big training data
Low cognitive requirement Cold-start problem
Accuracy improves over time | Sparsity problem
Implicit feedbacks sufficient Latency problem
Good domain discovery Scalability problem
Shilling attacks
Privacy concerns
PBA | Utility functions and weights | Good Accuracy Preference elicitation
on well defined attributes No training data Static model
Domain knowledge
Highly cognitive

Table 2.1: Brief tradeoffs analysis between collaborative filtering and the preference based
approach.

Two major differences appear between these two approaches. First, collaborative fil-
tering needs a significant amount of training data to build a model of the users (i.e.: the
item-to-item similarity matrix and the items’ neighborhoods). As the preference based
approach works only with the user’s own preferences, no such training data is required.
Second, the preference based approach requires a user to express preferences directly on
the attributes of the items. Thus, this requires good domain knowledge from the user and
high cognitive reasoning. As collaborative filtering reasons over ratings, this problem is
avoided.

If the user’s preferences can be fully elicited, then preference based approach can theo-
retically reach 100% prediction accuracy. However, eliciting utility functions and weights
is a very tedious process. This explains why the preference based approach is only used in
medium to high user involvement decision processes, where the risk of failure is high. For
example, when someone wants to buy a house, this person is usually ready to spend time
expressing her preferences, as the cost of failure is much higher than buying a $10 CD.
On the other hand, the risk in choosing a movie is much lower and does not justify a large
effort. Moreover, these preferences must be defined over a set of well defined attributes. In
many eCommerce environments, eCatalogs are heterogenous and attributes are usually not
well defined, which limits the use of the preference based approach. Collaborative filter-
ing does not use the items’ attributes, instead it ranks items based on the ratings assigned
by other users. This flexibility allows CF to be used in heterogenous environments, while
requiring only low cognitive reasoning from the user. This advantage has made collab-
orative filtering very popular on the web. For example, Amazon.com and YouTube use
collaborative filtering to respectively recommend books and videos to their users.

Unfortunately, collaborative filtering needs to elicit many ratings from the user in order
to achieve reasonable prediction accuracy. We believe that this cold start problem is due
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to the unstructured item space, as items are seen as flat objects. To illustrate this problem,
reconsider the little DVD renting problem introduced in the introduction section. Figure
2.22(a) shows the user-item matrix R that contains the preferences of three users: David,
Paolo, and Alex. The ratings range from 1 to 5, where 1 means that the user strongly
disliked the item, and inversely 5 means that she loved id. The symbol = denotes that no
preferences were stated by the user. Let’s now imagine that Alex is planning to rent a DVD
tonight.

DVD, | DVD, | DVD; | DVD4 DVD, | DVD; | DVD; | DVD4
David | 4 5 X X DVD, | 1 -1 X 0
Paolo | x X 5 4 DVD, | -1 1 X X
Alex |4 X X 4 DVDs; | x X 1 -1
DVD, | 0 X -1 1
(a) user-item matrix R (b) item-item matrix S

Figure 2.22: (a) matrix R, while (b) is matrix S computed from (a).

To use the item-based collaborative filtering, the system starts by constructing the
item-item similarity matrix S, where S is constructed from R using Equation 2.24(Figure
2.22(b)). Given Alex’s preferences, the predicted rating of an item ¢ is computed using
a weighted average of Alex’s previous ratings by the similarity of closest neighbors to <.
Formally, the predicted rating of item 4, R Alex,i» 18 computed as follows:

Yic (i * (Ratexj — Rj))

RAl = R; +
ot ' > je i 19

: (2.26)

where K is the set of the k-closest neighbors to item 4. If we set | K| to 2, the predicted
ratings of items DV Dy and DV D3 become 4 (i.e.: RAjeq,pvD, = Ralex,pvDs = Rpvp, +

(SpvDs,pvDs (Ratex,pv D, —RpvD,)+SDV Dy DV D, (Ratex,pv D, —RpV D, )/ (SDV D3, DV D, +
Spvps.pvp,) = 5+ 0 =5). As both items have identical predicted ratings, CF would rec-
ommend both to Alex. To discriminate these two DVDs, CF would have to elicit more
ratings from Alex, which Alex might not be willing or able to give.

Moreover, the k-nearest neighbors algorithm used by most collaborative filtering tech-
niques have three major drawbacks. First, the parameter % that determines the size of
the neighborhood has to be learnt, and the optimal value constantly varies depending on
the user’s preferences and others. Moreover, [Herlocker et al., 1999] and experiments in
Section 8.3.5 have shown that if too many low correlated neighbors are picked, then the
prediction accuracy actually decreases. Last but not the least, this algorithm is not very
scalable as the complexity increases with the number of neighbors k.

2.8 Ontology filtering

To summarize, the lack of appropriate model for representing the eCatalog, and the pref-
erence elicitation overload are identified as the two main reasons why traditional recom-
mender systems failed to meet users’ expectations. This dissertation proposes to use an
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ontology to add a structure to the collection of items, and to use this ontology to infer miss-
ing user’s preferences. The ontology allows to reduce the search space, and also ease the
preference elicitation process, as missing information will be inferred.

This dissertation presents a novel knowledge based recommender system called ontol-
ogy filtering that can overcome the mentioned problems. Ontology filtering differs from
existing techniques for the following reasons:

e Ontology filtering does not use collaborative filtering nor a content based approach
to make the recommendations, but uses the knowledge of the items contained in an
ontology and the user’s preferences. Thus, ontology filtering is in fact a knowledge
based recommender system.

e Ontology filtering proposes an algorithm that is capable of learning a set of ontolo-
gies if none are available. Furthermore, another algorithm is proposed that is capable
of personalizing the ontology based on the user’s preferences.

e Given the value of a single concept ¢, ontology filtering is capable of inferring the
value of any other concepts in the ontology. Note that the approach proposed by
[Ziegler et al., 2004] can only infer the value of concepts that are parent of c.

e The inference mechanism proposed by ontology filtering does not require any pa-
rameter tuning, but only uses the user’s preferences and the topology of the ontol-
ogy. [Ziegler et al., 2004] requires a propagation factor £ in its inference process that
needs to be learnt.

The components making ontology filtering are introduced as follows. First, chapter 3
defines the ontological model that models the items contained in an eCatalog, and shows
that useful information can be extracted from this structure. Then, chapter 4 explains why
the ontology is not suitable for modeling the user’s preference profiles, and instead, pro-
poses to model preference profiles by a set of rated items. Third, chapter 5 defines in details
the inference mechanism used by ontology filtering for inferring missing preferences. To
overcome the problem of the ontology construction, chapter 6 proposes the idea of learning
a set of taxonomies from past users’ experience using distance based clustering algorithms,
which are then transformed into ontologies. Based on the user’s preferences, another al-
gorithm is introduced that can select the best ontology from the set of learnt ones. Finally,
chapter 8 contains experimental results that validate all of the introduced material.



Chapter 3

Modeling eCatalogs with ontologies

Despite the significant progress of recommender systems over the years, some pro-
found problems remain. Chapter 2 highlighted the two main reasons for these
problems: incomplete user profile and inadequate model of the items in the eCata-
logs.

In this work, it is believed that the user’s preferences follow some explicit or
implicit ontology. Such ontology adds a structure to the items, which can be used
to constrain the space of items a user will like. In this chapter, the idea of adding
a hierarchical structure to eCatalogs is proposed in order to better extract the
relationships between items. Furthermore, the attributes making an item can be
implicitly hidden in the structure, which reduces the cognitive load on the user.
Finally, given this structure, Chapter 5 shows that it is possible to infer missing
information by transferring the information from one concept to another one. This
novel inference process allows the system to estimate the missing user’s prefer-
ences, which leads to a simpler and lighter elicitation process.

3.1 Introduction

The underlying model used to represent the items in the eCatalog is fundamental, and will
influence not only the accuracy of the recommendations, but also the preference elicita-
tion process. However, as shown in Figure 3.1, this model varies from one recommender

technique to another.
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ftem: 1
Name Apollo 13
MPPA: PG13

Figure 3.1: The models used to represent the items of an eCatalog by collaborative filtering
and the preference based approach.

PBA Item 1 ={Name= Apollo 13, MPPA=PG13, Genre=Action}



58 CHAPTER 3. MODELING ECATALOGS WITH ONTOLOGIES

In collaborative filtering, items are modeled by a vector of users’ ratings with an iden-
tifier, and the reasoning is done over basic pairwise similarities between pairs of these
vectors. On the other hand, the preference based approach uses the attribute model, where
each item is defined by a set of well defined attribute-value pairs.

Collaborative filtering’s simple representation allows a user to simply state her prefer-
ences by rating a set of items. As explained in Section 2.2.2, the rating based approach is
one of the simplest forms of preference elicitation that requires low cognitive effort from
the user. Thus, it makes the recommender system very easy to use for novice users, and
requires very little knowledge. Unfortunately, the lack of proper model leads to an uncon-
strained search space. As a consequence, collaborative filtering needs to elicit many ratings
in order to locate the like-minded group of users.

Conversely, when the preferences are correctly elicited, the attribute model of the pref-
erence based approach guarantees to find the optimal solution. However, eliciting the user’s
preferences is a tedious process, which requires asking many value elicitation questions in
order to build the appropriate utility function and weight of each attribute. Thus, this model
requires the user to have a good domain knowledge, which limits this model to medium to
high risk domain application. Another drawback of this approach is the rigidity of the at-
tributes. This limits the evolution of the eCatalogs and makes it impossible to compare
heterogenous items.
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Figure 3.2: Graph that looks at two dimensions in a model: the ease of use for the user and
the structure used for representing the items.

Current models fail to correctly model the contents of eCatalogs. To briefly summarize,
collaborative filtering does not have a proper model for representing the items, while the
preference based approach is too constraining for user in an eCommerce environment. This
chapter proposes to model the items of an eCatalog by an ontology. The ontology is a
hierarchical structure where a node represents a set of items, and an edge between two
nodes models the inheritance relationship. The use of an ontology as a model has the
following advantages:

1. Ease of use for the user - As for collaborative filtering, the recommender system uses
rating based questions to elicit the user’s preferences. However, instead of repeatedly
asking questions to a user as CF does, the ontology model has the ability to infer
missing preferences.
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2. Better structure for representing the items - The ontology can also represent items by
a set of attribute-value pairs, where each pair is modeled by an edge in the ontology.
Informally, this can be seen as a decision tree, where the decision is replaced by the
possible attribute-value pair. But the ontology can also model complex relationships
between pairs of items. Another advantage of an ontology is the fact that features
can be kept implicit in the model, which reduces its complexity. This dissertation ac-
knowledges the fact that ontologies are very hard to construct and costly to maintain.
To make the ontological model usable in eCommerce environment, algorithms are
defined that generate the model automatically from raw data, and without any human
interventions.

3.1.1 Ontology vs taxonomy

In this dissertation, the ontology structure is fundamental for representing the item, and
for inferring missing user’s preferences. One question that arises is, whether the reasoning
structure is an ontology or rather a simple taxonomy?

Traditionally, a taxonomy is defined as a collection of entities that are organized into
a hierarchical structure. With the rise of the semantic web, there are growing discussions
about what is an ontology, and its differences from a taxonomy are often blurred. In its
abstract philosophical notion, the online dictionary Merriam-Webster defines' an ontology
as a branch of metaphysics concerned with the nature and relations of being or a particular
theory about the nature of being or the kinds of things that have existence. In computer
science, a commonly agreed definition is the one proposed by [Gruber, 1993] that states that
an ontology is an explicit specification of a conceptualization of the real world. However,
this definition remains very abstract and can lead to many interpretations. For example,
[McGuinness, 2002] uses taxonomy interchangeably with simple ontology.

Often, an ontology will contain a subclass-based taxonomic hierarchy. But what dif-
ferentiates an ontology from a taxonomy is the extra properties and tools that are added
to the taxonomy in order to interpret the information that it contains. For example, value
restriction property is a common property used in ontology. Reasoning languages like
DAML-OIL? are also widely used in the semantic web to reason over the content of the
ontology.

In this work, unsupervised learning algorithms are used to learn the hierarchical struc-
tures of the ontology. Two additional properties are added to each concept: the score and
the a-priori score. The former property represents how much a specific user likes a given
concept, while the latter is the probability of that concept being liked based on its loca-
tion in the ontology. These two properties allow the recommender system to construct a
full preference profile from an incomplete one. As a consequence, the learnt hierarchical
structure altogether with the two properties form an ontology with a hierarchical structure.
Notice that unless stated otherwise, and to simplify the writing of this chapter, this thesis
uses the term ontology to denote an ontology with an inheritance hierarchical structure.

Thttp://www.m-w.com/dictionary/ontology
2www.daml.org
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3.2 Usage of ontologies in the Web

With the emergence of the semantic web and the growing number of heterogenous data
sources, the benefits of ontologies are becoming widely accepted. Moreover, its domain of
application is widening every day, ranging from traditional word sense disambiguation to
search of biological macromolecules such as DNA and proteins.

Initially, ontologies were used in an attempt to define all the concepts within a specific
domain and their relationships. An example of a popular ontology is the WordNet ontol-
ogy [Miller et al., 1993], which models the lexical knowledge of a native English speaker.
Information in WordNet is organized around lexical groupings called synsets and seman-
tic pointers. Informally, a synset represents a set of synonym words, while a semantic
pointer models the semantic relationships between two synsets. E-commerce sites such
as Amazon.com or Yahoo also use simple taxonomies to classify their products. More
recently, biologists and computer scientists have developed an ontology named GeneOn-
tology [GO, 2000], which models biological processes, molecular functions and cellular
components of genes.

Nowadays, the usage of ontologies goes far beyond domain specification. A very
promising direction for ontologies is the Semantic Web, and more specially semantic search
[Guha et al., 2003], where the structure of the ontology has been successfully be used to
find documents [Davies and Weeks, 2004], pictures [Janecek et al., 2005], and even jobs
[Bradley et al., 2000]. Semantic search is in fact an information retrieval application, where
semantic knowledge captured by an ontology is used to enrich the available vocabulary.
In comparison, traditional information retrieval applications use the Vector Space Model
(VSM, [Frakes and Baeza-Yates, 1992]) to represent the set of possible items, and input
query into a common vector space in order to compute the similarity between them. Un-
fortunately, if no document contains any of the input keywords, the VSM approach fails to
find any relevant documents. To overcome this problem, semantic search uses domain on-
tologies to explore concepts similar to the stated keywords in order to build smarter search
engines.

[Middleton et al., 2004] introduced the idea of representing user’s preference profiles
in ontological terms for recommending research papers. This idea was then extended by
[Ziegler et al., 2004] for recommending items. Unfortunately, all these authors assume the
existence of a predefined ontology that models the entire eCatalog. For example, Middleton
et al. use the dmoz open directory project classification tree, while Ziegler et al. borrowed
the Amazon.com taxonomy. However, there are two reasons why it is unrealistic to assume
the existence of such ontology in an eCommerce environment. First, the items in eCatalogs
are very volatile and constantly change. For example, new items with new features are
added daily, while old items are removed as they become redundant. Second, it is very
expensive and time consuming to build and maintain an ontology. This explains why only
major online retailers such as Amazon.com or Yahoo can afford such ontology.

As for [Middleton et al., 2004], this dissertation uses an ontology to model the con-
tent of the eCatalog. However, there are four major differences that differentiate it from
previous work. First, the existence of an ontology is not assumed. If none exists, then
unsupervised learning algorithms are used to learn a set of ontologies. Two additional
properties are added to each concept: the score and the a-priori score. Moreover, we show
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in Section 5.3 that these two properties, along with the user’s preferences, can be used to
successfully infer new information. Third, ontology filtering do not restrict the structure
of the ontology to tree, but takes advantage of more complex one such as directed acyclic
graph. Finally, the user’s preference profile is represented by a compact set of concepts,
where each concept models an item a user has rated. Note that [Middleton et al., 2004]
and [Ziegler et al., 2004] model the user’s preference profile by a vector of concepts of size
equal to the number of concepts in the ontology. As a typical ontology contains over 10’000
concepts (WordNet 2.0 has over 117/000 concepts), the vector of concepts approach will
obviously not scale well in an eCommerce environment.

3.3 The multi-hierarchical structure of an ontology

Ontology filtering adds an ontology to eCatalogs in order to express the relationships be-
tween the items. This dissertation sees an ontology as a semi-balanced multi-hierarchical
structure, where a node represents a primitive concept, and an edge models the binary spe-
cialization relation (isa) between two concepts.

The multi-hierarchical structure implies that a concept can have more than one parent.
When all the concepts have at most one parent, then the structure can be considered as
a tree as this dissertation only considers inheritance relations. However, the inheritance
multi-hierarchical structure is a directed acyclic graph, DAG, if at least one concept has
more than one parent. A directed acyclic graph is a directed graph with no directed cycles;
that is, for any vertex v, there is no nonempty directed path that starts and ends on v.
Moreover, DAGs can be considered to be a generalization of trees in which certain subtrees
can be shared by different parts of the tree. Figure 3.3 illustrates two possible structures for
a transport ontology, where 3.3(a) contains a simple tree structure and 3.3(b) has a DAG
structure. In Figure 3.3(b), the Amphibious concept represents amphibious vehicles that
have the capability of traveling on both land and sea. These types of vehicles are becoming
increasingly popular tourist attractions in town that have rivers such as London and Boston.

Sailing

Figure 3.3: Two ontologies with a tree (a) and DAG (b) structure.

With this kind of ontology, an item will be instance of one or more concepts, and the
edges will represent implicit or explicit features. Each concept can have a set of sub-
concepts known as the descendants, but not all instances of a concept must belong to a
sub-concept. Consequently, items in the different sub-concepts are distinguished by dif-
ferences in certain features. However, these are usually not made explicit in the ontology.
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Concretely, we see a feature as a restriction on a property or a combination of properties
that differentiates a concept from its parent.

@)
Figure 3.4: Two ontologies with implicit (a) and explicit (b) features.

For example, Figure 3.4(a) shows a possible ontology for drinks. The concepts red
and white respectively represent the instance of red and white wines. In this situation, the
features are implicit, as the concepts red and white are distinguished by a combination of
features which include color and also certain aspects of taste. Notice that in Figure 3.4(b),
the concepts car and bike are distinguished by the explicit feature #wheels.

When experts construct ontologies, they usually ensure that ontologies are more or less
balanced. In an eCommerce environment, ontologies continuously evolve, which makes
it difficult for experts to maintain them balanced. In this work, we use the topology of
the ontology to infer missing knowledge. As a consequence, it is important to maintain
a nearly-balanced structure in order to correctly estimate the preference of a concept. To
achieve this objective, this dissertation proposes to learn the ontologies automatically from
hierarchical clustering algorithms instead of using predefined ones. Clustering algorithms
allow the ontology to be recomputed dynamically, while maintaining (to a certain extend)
the same number of instances in each leaf cluster.

3.3.1 Properties of the score of a concept

The main objective of a recommender system is to help a user find the items that meet her
preferences. As a consequence, the user’s behavior, along with her preferences, have to
be integrated in the core of the recommender system. When a user said that she liked an
item, this usually means that she liked some, or all of the features making that item. For
example, a user could like the James Bond movie “Tomorrow never dies” because it is an
action movie that contains the actor ”Pierce Brosnan”. In this case, both the genre and the
actor are the features the user is interested in. In some situations, these features are not
always as explicit, and sometimes users are not even aware of them. Take for example a
bottle of wine. Most people will usually have a preference, either red or white wine; but
only few people will be able to clearly say why. This is because the features (like taste) are
usually more implicit than simple red or white color.

One of the most crucial behaviors a user has (and which has been ignored by nearly
all recommender systems) is the risk-aversion. Moreover, it is commonly agreed that most
people tend to act in a risk averse manner in their daily life. This means that, under uncer-
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tainty, people do not maximize the expected profit but prefer sure rewards. Consider for
example the (real) situation of driving behaviors on Swiss highways. In Switzerland, the
speed limit on highways is 120km/h, which corresponds to the average most Swiss persons
do. Last year, the canton de Vaud installed brand new speed camera every five kilometers
on the highway linking Lausanne to Geneva. As a result, and even if the threshold for these
speed camera is set to 128km/h, most people pass them at no more than 115km/h. More-
over, people significantly reduces their speed on the approach of these cameras by fear of
being caught, even when driving well under the speed limit.

Following these two fundamental observations, the score of a concept is defined as
follows.

Definition 3.1 The score of a concept ¢, S(c), is a real value function defined in the interval
[0..1], which satisfies the following properties:

e Al: the score depends on the features of a concept.
e A2: each feature contributes independently to the score.

e A3: features that are unknown make no contribution to the score.

Assumption Al is very intuitive and reflects the fact that a concept is modeled by a set
of features. Thus, the score will only be influenced by the features making up the concept.
It is also the basis of multi-attribute decision theory [Keeney and Raiffa, 1993], where the
utility of an item depends on the preference value of the attributes making that item. Thus,
all instances of the same concept will have the same score, as they share the same features.

The second assumption eliminates the inter-dependence between the features, and al-
lows the score to be modeled as the sum of the scores assigned to each feature. In the
multi-attribute utility theory, an even stronger assumption (the mutual preferential inde-
pendence) is used to build an additive value function for an item [Keeney and Raiffa, 1993]
[Payne et al., 1988]. Independence is a strong assumption, but it is still more accurate than
the assumption that all the features correlate positively to the score.

The third assumption is crucial and reflects the observation that users are risk averse.
For example, if the score models the price that a user is willing to pay for an item, it is
rational for users to adopt this pessimistic view, since one would not normally be willing
to pay for features that have not been explicitly provided or which are disliked. Thus, the
score attached to a concept can be seen as a lower bound on the score that items belonging
to that concept might have.

More generally, some analogy can be made between the score function and the lower
prevision [Walley, 1996]. The lower prevision of a gamble X is a real number, which
is interpreted as the highest price a user is willing to pay for X. In fact, the score of a
concept ¢ corresponds to a strict lower bound of the prevision for selecting any instance
of c. Preferences can be reasonably modeled as scores, but scores could also model other
properties.

In the literature [Rissland, 2006], real life concepts are usually referred to as messy
concepts, which posses the following characteristics:
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Nonstationary concepts change over time. These changes can be sudden in the case
of shift in technology, or more gradual. Real-world concepts exhibit tremendous
changes, as the world we live in constantly evolves. Even mathematical concepts
change when counterexamples are found.

Open-textured concepts do not have hard boundaries offering black-and-white distinc-
tions between positive and negative instances. The world is full of such concepts.
Take for example the law that states that vehicles are not allowed to travel on pave-
ments. But what counts as a vehicle? Most people would agree that a car is such a
vehicle. But what about a Segway?? Current Swiss legislation forbids the usage of
such vehicles on the roads as they are not big enough, and on pavements as they are
motorized.

Nonconvex concepts have exceptions or holes. These are negative examples that reside in
the concept interior, where only positive one ought to be. Formally, exceptions in
concepts can occur if a negative example resides in the concept’s interior.

Ontology filtering uses ontologies to model eCatalogs, where a concept represents a
set of items, each having a possible rating assigned by the user. To allow the ontology
to evolve and deal with nonstationary and open-textured concepts, ontology filtering uses
clustering algorithms that can (re)generate the ontologies in a regular time interval. To
consider nonconvex concepts, this dissertation proposes to compute the score of a concept
c for a user u as follows.

S(c) = ZEIZI (3.1)

where L is the set items that have been rated by the user u that are instanced of concept
¢, and IR, ; is the normalized rating of item i assigned by user u. The average computation
allows to compensate the fact that some items (exceptions) have been incorrectly classified.

3.3.2 The a-priori score of a concept

An ontology is usually designed in such a way that its topology and structure reflects the
information contained within and between the concepts. A major ingredient of ontology
filtering is the computation of the a-priori score of a concept ¢, APS(c), which captures
this information. The APS models the expected score of each concept for an average user,
but without using any user information. It is not used as a prediction of actual scores,
but only to estimate constants (« and [3) that determine how actual users scores propagate
through the ontology.

As no information about a specific user is available, ontology filtering assumes that all
concepts have a score that is uniformly distributed between 0 and 1. This is often a reason-
able assumption as each concept exists to satisfy the desire of some group of people. Thus,
the probability that the score of a concept c is superior to the threshold z, P(S(c) > z), is

3http://www.segway.com/
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equal to 1 — x. However, this probability ignores the fact that concepts can have descen-
dants. Furthermore, the score function is by definition pessimistic (A3), which implies that
the score should be a lower bound of the score of its instances and the score of its descen-
dants. Therefore, the probability that the score of any concept c is superior to a threshold z
is equal to (1 — z)™™!, where n is the number of descendants of c¢. Note that we count all
descendants of ¢ and c itself, to account for the fact that each concept may have instances
that do not belong to any sub-concept. Thus, to like a concept ¢, a user must like all of in-
stances of its descendants, as well as all the instances of c. Take for example the ontology
contained in Figure 3.5, where concept c has four descendants. For a user to like concept
¢, she must like all the instances found in concepts d, e, f, g, and all the instances in c.

Figure 3.5: A simple ontology to illustrate the a-priori score of the concept c.

Thus, the probability distribution of the score for a concept ¢ is P(S(c) < z) = 1 —
(1 — x)™*1, with the following density function:

L= = 1) (- )" 62)

fe(z) = d

As a consequence, the expected lowest bound of the score of a concept ¢, E(S(c)), can
be obtained by integration of the density function as follows.

1
E(S(c)) =(n+ 1)/0 (1 —x)"dx

1— n+1 |1 1 1— n+1
o Lﬁ<x> = (33)
n + 1 0 0 n + 1
0 1/((n+5(n+2))
1
n-+ 2

Equation 3.3 shows that the expected score of a concept ¢ will be inversely proportional
to the number of its descendants + 2. Following this, we define the a-priori score of a
concept ¢ with n descendants as:

1

APS(c) = D)

(3.4)
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Figure 3.6: The behavior of the a-priori score of a concept ¢ when the number of descen-
dants varies from O to 50. The x-axis is the number of descendants of the concept ¢, while
the y-axis measures the APS.

The a-priori score defined in Equation 3.4 implies that the leaves of the ontology will
have an APS equal to 15, which is equal to the mean of a uniform distribution between 0 and
1. Conversely, the lowest values will be found at the root. This means that when we travel
up the ontology, concepts become more generalized, and therefore the APS of concept
decreases. As shown in Figure 3.6, the difference in APS between two concepts is much
smaller when we travel up the ontology. This is a desired property that reflects the fact that
concepts become more generalized due to the increasing number of descendants, and that
features of specific concepts are more important to the user than features of generalized
concepts.

To better understand these properties, consider the snapshot of the WordNet ontology
contained in Figure 3.7. The red wine concept is a leaf concept, which implies that its APS
is equal to /5. The concept wine has two descendants: red wine and white wine. Thus,
these two descendants force the APS of concept wine to /4. Under the assumption that
the ontology is balanced, the APS of the alcohol concept is equal to 1/5s. Note how the
difference in APS decreases when going up the ontology. For example, the difference is /4
between concepts red wine and wine, while only /3 between concepts wine and alcohol.
This models the fact that features of specific concepts are more important to the user than
features of generalized concepts. Take for example a user who states as a preference that
she likes red wines. This usually implies that the edge between concepts Red Wine and
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Wine is the most important to the user, as it is the one that distinguishes red wines from
white wines. Inversely, the edge between concepts Substance and Entity has the lowest
importance to the user as it is too abstract. Most users who express preferences on a bottle
of red wine will not even be aware that the Red Wine concept is a descendant of the Entity
concept.

Entity

Substance

Beverage

Alcohol

W hite Wine

Figure 3.7: A snapshot of the WordNet Ontology for red wine.

To illustrate the computation of the a-priori score on an entire ontology, consider the
simple ontology A shown in Figure 3.8(a). First, the number of descendants of each concept
n. is computed. Then, Equation (3.4) is applied to compute the APS of each concept in .

2 root
: Concepts ne APS
d edges l X 0 1/2
L y u 0 1/2
z 0 172
S 1 1/3
S t
t 2 1/4
/ X} y 5 1/7
x 0 uO z root s+d | 1/(7+d)
(@)

(b)
Figure 3.8: (a) a simple ontology A and its APSs computed using Equation (3.4)(b).

3.3.3 Analogy with existing work

Resnik also uses the topology of an ontology to compute the information content of a con-
cept, (IC, [Resnik, 1995]). Following the information theory, Resnik defines the informa-
tion content of a concept c as the negative log likelihood of ¢ occurring, —logP(c), where
P(c) is the probability of encountering an instance of concept c. The information content
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of a concept is then used to compute the similarities between pairs of concept. Note that
similarity metrics are defined later in Chapter 5.4.1.

The a-priori score shares some similarities with the information content. For example,
the difference in both APS and IC decreases between two concepts, when we travel up the
ontology. However, some profound differences exist that are consequences of the way the
APS and IC are computed.

First, Figure 3.9 clearly shows that both functions do not have the same range of values.
The information content varies from 0 to 1 when normalized, while the a-priori score is
always included in the open interval (0,0.5]. The information content measure is clearly
not applicable in a recommendation context as the probability of liking all leaf concepts is
very unlikely be one. Similarly, the probability of a user liking the root concept cannot be
0 either, as it would mean that no user could like all the concepts of the ontology. Some
analogy can be made with throwing a dice. The probability of throwing a dice once and
getting a value superior to three is 1/5. However, the probability of throwing a dice 50 times
and still getting a value superior to three each time is (1/2)*’, but not 0.

— — — APS(c)=1/(x+2)
IC(c)=log((x+1)/51)/-log(1/51)

0.9

0.8 b

Number of descendants

Figure 3.9: Comparison of the APS and IC for concepts that have between 0 and 50 de-
scendants. The concepts with 50 descendants is considered as the root of the ontology.

Second, as the information content is computed using the probability of encountering
a concept ¢, this implies that whenever a new concept is added to the ontology, or when
existing concepts are merged/split, the probability of all the concepts need to be recom-
puted. Obviously, this seriously limits the evolution of the ontology and its integration
with others. The a-priori score is more robust to this problem as the APS of a concept c is
computed using only the number of descendants of c. For example, imagine the situation
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where a new concept d is added to an existing ontology. Now, take any concept ¢ from
the ontology. If d is not a descendant of concept ¢, then APS(c) will remain unchanged;
even if d is a parent of c. However, when d is a descendant of ¢, then the APS(c) will
decrease. As a consequence, the APS will be more sensitive to the number of descendants,
which could potentially lead to problems if the ontology is not balanced. If the ontology
is not semi-balanced, then concepts at the same height may have very different APS. As
the inference process of ontology filtering uses the APS of a concept, this phenomenon in-
troduces a bias towards some concepts. This work acknowledges this problem, and this is
another reason why this dissertation proposes to learn the ontologies using hierarchial clus-
tering algorithms (which try to have a balanced structure, while having the same number
of instances in each leaf concept). Finally, experimental results in Section 8.1 tend to show
that the APS along with the ontology filtering’s inference mechanism is better than IC for
simulating the way a user perceives distances between pairs of concepts in an ontology.

3.3.4 The ontology

Following the definitions of the score and a-priori score of a concept, an ontology in ontol-
ogy filtering is formally defined as follows.

Definition 3.2 An ontology )\ is a semi-balanced multi-hierarchical structure, where a
node represents a primitive concept ¢, and an edge models the binary specialization re-
lation (isa) between two concepts. Furthermore, each concept c contains the following
properties:

1. S(c) is the score of the concept c,

2. APS(c) is the a-priori score of the concept c.

Cn e card‘ "; Collection Restriction onProper DataTypePropery
minCardinalty
score

®/ onProperty subClassOf ‘

‘ subClassof maxCardinality ~ minCardinality ran‘ge
ObjectProperty -

Class Xsd: NormalizedDouble
hasParent d
omel Concept

cardinality ran‘ge

DataTypePropery
a-priori
score

subClassOf

Restriction Property

Figure 3.10: The ontology A in DAML-OIL language.

Notice that unless stated otherwise, and to simplify the writing, we use the term on-
tology to denote an ontology with an inheritance semi-balanced hierarchical structure. To
illustrate the definition of our ontology A, Figure 3.10 shows a graphical representation in
the DAML-OIL language. Given the definition of ), the class C'oncept is made of three
properties: hasParent, score, and a-priori score. The hasParent property models the fact
that a concept can have a parent, while the daml:collection parse type with the maximum
cardinality set to n limits the number of parents to a finite number. This property allows
to model our inheritance hierarchical structure, where the features remain implicit in the
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hierarchical model. Note that in practice, the number of parents n tends to be small, and
is on average less than two. For example, concept in the WordNet ontology have on aver-
age 1.03 parents. Obviously, the score and a-priori score properties respectively model the
score and a-priori score of the concept. Notice that the property score has respectively a
minimum and maximum cardinality of 0 and 1. When the cardinality is set to 0, then this
means that no preferences were stated by the user. Inversely, a cardinality of 1 means that
the user has expressed preferences on the concept.

Given the ontology defined in Definition 3.2, the items of an eCatalog can be modeled
by associating them to some concepts of the ontology. As a consequence, an item will be
instance of one or more concepts, and the edges will represent implicit or explicit features

3.4 The eCatalog ontological model

To conclude this chapter, the model used to represent the items of an eCatalog is illustrated
in Figure 3.11, and formally defined as follows.

Definition 3.3 The eCatalog ontological model, eCOM, is an ontology \ as defined in
definition 3.2, where each item of the eCatalog is an instance of a primitive concept in \.

To construct this ontological model, this dissertation proposes Algorithm 1 that makes
use of a predefined structure modeling the eCatalog. For now, it is assumed that such struc-
ture is made available to the system, but Chapter 6 will focus on the problem of creating
it. Formally, the algorithm is as follows. First, the eCatalog ontological model, eCOM, is
initialized with the semi-balances multi-hierarchical structure eD AG. For each concept in
eCOM, step 3 computes its a-priori score using Equation 3.4, while step 4 sets its score to
0. Recall that the a-priori score of a concept is independent of a user, and only considers the
information contained in the concept as a function of its number of descendants. However,
the score property is user specific and its value cannot be known without any preferences
from the user. Once all the APSs and scores have been computed, the algorithm terminates
by returning the eCatalog ontological model.

Algorithm 1: Generating the eCatalog ontological model.
Inputs: an inheritance semi-balances multi-hierarchical structure e D AG modeling
the eCatalog
Outputs: An eCatlog ontological model eCOM.
Functions: aprioriscore(c) computes the a-priori score of a concept ¢ using
Equation 3.4.

1 eCOM «— eDAG
2 forall c € eCOM do
3 APS(c) « aprioriscore(c)
4 S(c) <0
end
5 return eCOM
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Figure 3.11: Illustration of the eCatalog ontological model generated with Algorithm 1.
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Chapter 4

Modeling the users’ preference profiles

This chapter presents the model used to represent the user’s preference profile.
Contrary to the previous chapter, the user’s preference profile will not be modeled
by an ontology, but by a set composed of the items a user has previously rated.

Things should be made as simple as possible, but not any simpler.
Albert Einstein 1879-1955

4.1 Introduction

In the previous chapter, the idea of modeling eCatalogs with an ontology was proposed.
Along this ontology, two properties were defined with each concept that differentiate this
structure model from a simple taxonomy: the a-priori score and the score. While the a-
priori score characterizes how much an average user likes a given concept, the score how-
ever measures how much a specific user likes it.

A naive user model would consist at modeling the user’s preferences by some concepts
extracted from the ontology, where the user will set her preferences by setting the score
of some concepts. For example, a system could elicit the user’s preferences by asking her,
through rating based question, the score of a predefined set of concepts.

Nevertheless, this chapter does not propose to use the ontology to directly model the
users’ preference profiles. Instead, this dissertation models a user preference profile by a
set composed of the items a user has previously rated. There are two reasons for not using
an ontology:

1. Ontology lifetime - As previously argued, the content of eCatalogs continuously
changes as novel items are added daily, while redundant ones are removed. Thus,
the ontology modeling such domain will become outdated very soon, and will need
to be recreated. Moreover, Chapter 6 proposes an algorithm that learns a set of on-
tologies automatically, so that ontologies can generated daily. Thus, the preference
assigned to a concept will also be outdates, as the rated instances may not belong to
the same concept. To fully understand the consequence of the problem, imagine a
recommender system running on an eCommerce retailer with millions of users (such



74 CHAPTER 4. MODELING THE USERS’ PREFERENCE PROFILES

as Amazon.com). If concepts were used as modeling objects, then this implies that
each time the ontology changes, all the preferences of each concept of each user
would have to be updated. Obviously, this becomes unfeasible with millions of user
and items.

2. Cognitive overload will be the direct consequence if the recommender system di-
rectly asks the user to rate concepts. As concepts can represent more than one item,
this could lead to ambiguity when edges model implicit features. Furthermore, the
user will need to have constant knowledge of the meaning of each concept. This
assumption clearly does not hold in the eCommerce environment, where anyone can
come and query the system.

As a consequence, this chapter proposes to model the user’s preference profile by a set
of ratings that the user has assigned to items she has previously experienced.

4.2 Eliciting the user’s preferences

Before modeling the user’s preferences, the system needs to elicit them from the user. In
low user involvement decision processes, this is expensive as a user is usually not will-
ing to spend much effort expressing her preferences. As introduced in Chapter 2.2.2,
[Smyth and McGinty, 2003] have identified four strategies for eliciting preferences from
a user: value elicitation, rating based, critiquing, and preference based. To illustrate these
strategies, imagine a recommender system who wants to recommend movie to users. Given
an elicitation strategy, the recommender system elicits the user’s preferences by asking the
following questions:

o Value elicitation - Who is your favorite actor? Do you like drama movies?
e Rating based- How much do you like the Apollo 13 movies? (from 1 to 5).
e Critiquing - Given a 1 hour movie, do you want to see a longer one?

e Preference-Based - Which movie do you prefer: The Lion King or Apollo 13?

It is very difficult to decide which approach to use, as each one has its advantages
and problems. In low user involvement decision processes, [Smyth and McGinty, 2003]
suggested that the rating-based approach is one of the easiest ways of getting the user’s
preferences. Furthermore, ratings on items are becoming widely available as users are
continuously asked to rate items they have either seen or bought. For example, when a user
has bought an item on ebay.com', ebay will ask the user to evaluate the seller through a
rating and additional comments. Similarly on YouTube?, users can also rate videos they
have seen. However, asking users to rate items they have experienced is not unique to web
applications. For example, Microsoft Office asks a user to rate the help tips she received
after facing a problem. In marketing, satisfaction forms also use ratings to evaluate the
customer satisfaction about a product or services she received.

'www.ebay.com
Zwww.youtube.com
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Figure 4.1: Distribution of the ratings on Amazon.com for the randomly picked CD “Mr
A-Z”. This figure has been extracted from [Hu et al., 2006].

Following this, this dissertation uses a variant of the rating based strategy to elicit the
user’s preferences. Instead of asking the user to rate a given number of items, we will
ask the user to provide us with the ratings of at least 5 items of her choice. As we are
interested in finding items the user will like, we ask the user to provide us with at least
70% of items he really liked, and at least 20% of items he strongly disliked. There are two
main reasons why ratings are elicited this way. First, as shown later in this dissertation,
missing scores are inferred from the closest concepts which have known user’s scores. As
information gets lost during the inference, it is very important to start from a concept that
is very meaningful to the user. Another important aspect is that users tend to remember
better items that they have really liked, or the one that they hated. As shown in Figure
4.1, [Hu et al., 2006] found similar polarization of rating behavior on extreme ratings for
Amazon.com. As a consequence, it is easier for them to express preferences on these items
rather than on items the system may have selected. Obviously, users will not always be
able to say which items she really liked or strongly disliked. That is why a user can rate
randomly selected items which are shown to her.

As with traditional recommender systems, this thesis uses a 5 stars rating scale to rate
items. The value 1 means that the user strongly dislikes the item, while 5 means she loves
it. The threshold of liking an item is set to 4, which means that any item with a rating less
than four is considered as being disliked by the user.

4.3 The user’s preference profile

In ontology filtering, the user’s preference profile is defined as follows.

Definition 4.1 The user’s preference profile is a set of items that the user has previously
rated. These ratings are defined on the interval [1, 5], where the value 1 means that the user
strongly disliked the item, while 5 means she loved it .

Formally, the preference profile defined in Definition 4.1 is constructed using Algorithm
2. First, step 1 verifies if a user w has already a valid profile. If it has, then the two
conditions in step 4 will return False, and the algorithm will simply return the user’s
preference profile stored in the database. Note that this step is essential as a user can
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modify her preference profile at anytime, and thus theoretically, delete all of them. On
the other hand, when the preference profile is incomplete, steps 4 to 11 elicit the missing
information from u. As explained in the previous section, the elicitation algorithm asks
for at least 5 ratings from the user, while assuring that at least 70% of the elicited items
are really liked by the user, and at least 20% are really disliked. Thus, step 5 elicits the
rating from the user, while step 4 assures that resulting preferences meet the above criteria.
As the user is free to give a rating on any item of her choice, step 6 makes sure that the
rated item belongs to the eCatalog ontological model. If the user’s preference profile has
changed (i.e.: the flag is T'rue), then step 13 updates the version found in the database in
order to maintain coherence and durability of the preference profile.

Algorithm 2: Building and retrieving a user’s preference profile for a user u.
Inputs: A user u, and the eCatalog ontological model eCOM.
Outputs: A user’s preference profile U PP.
Functions:getU PP FromD B(u) retrieves the preference profile of user u if it
exists, otherwise returns {¢}; elicit(u) asks the user to give one item with a rating
and returns a tuple (item, rating); ratiol sOk(U PP, 0.7,0.2) checks whether the
user’s preference profile contains at least 70% of items u really liked, and at least
20% of items u really disliked; updateU P PinD B(u, U P P) updates or copy the
user’s preference profile in the preference profiles database.

UPP — getUPPFromDDB(u)
counter <« 5 — |UPP)|
flag — False
while counter > 0 or !ratiol sOk(UPP,0.7,0.2) do
(item, rating) «— elicit(u)
if item & eCOM then
‘ Go back to step 4
end
else
9 UPP «— UPP U (item, rating)
10 counter- -
end
1 flag < True
end
12 if flag then
13 | updateUPPinDB(u,UPP)
end
14 return UPP

N N AW N -

=)

Table 4.1 shows an example of user’s preference profile that was obtained using Algo-
rithm 2. As one can see, it contains exactly 80% of items that the user loved, and 20% that
he hated. Note that among this set of preferences, the user loves all the movie except Marry
Poppins, which is strongly disliked.
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Item rating
Lord of The Rings - Two Towers 5
Star Wars Episode II - Attack of the Clones 5
The Matrix Reloaded 5
The Lion King 5
Mary Poppins 1

Table 4.1: Example of the user preference profile for user w.

To maintain the durability of the users’ preference profiles, they are stored in a database
system located in the data layer. As shown in Figure 4.2, once stored, a user preference
profile can be updated by the following two processes:

1. The recommendation process contains two sub-processes that modify the user’s pro-
file: the preference elicitation and the preference feedback. When a new user con-
nects to the system, the former builds the user’s profile using the elicitation approach
defined in the previous paragraph. On the other hand, the latter subprocess adds new
preferences if the user decides to rate the recommended items.

2. The manual preference update process allows the user to update her preference pro-
file at any time by adding, updating or deleting any rating she may have.
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Figure 4.2: The two processes that can modify the user’s preference profile.
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Note that in practice, it is useful to remove outdated preferences as people’s tastes tend
to change over time. However, this dissertation does not consider this problem, but more
information about this issue can be found in [Viappiani et al., 2002].



Chapter 5

Inferring missing user’s preferences

The elicitation problem has been identified as one of the problems faced by rec-
ommender systems. One of the major contributions of this thesis is to propose the
idea of inferring missing user’s preferences instead of asking questions to the user.
This chapter defines in detail the inference mechanism that is used to infer
missing preferences. As shown later in this chapter, the inference is done by trans-
ferring the score from the closest concept that contains some preference. Thus, this
chapter starts by showing that the score of a concept can be transferred from one
concept to another. It continues by defining a new similarity metric, which allows
the system to compute the distance between any pair of concepts in the ontology.
Then, an inference mechanism is defined that combines the transfer of scores and
the similarity metric, along with an example. Finally, this chapter is concluded
with the algorithm that selects the top-N items to be recommended to the user.

5.1 Introduction

Personalized recommender systems recommend items to a user based on her preferences.
Moreover, it is commonly agreed that the more preferences the system has about a user, the
more accurate the predictions will be. In an ideal world, users would answer any elicitation
question asked to them, which would allow the system to build complete and accurate
preference profiles.

Unfortunately, recommender systems are not deployed in an ideal world, where users’
preferences are abundant and missing preferences can simply be elicited. Furthermore, this
thesis focuses in low risk domains, where user’s preferences are very hard to obtain. Two
main reasons explain why preferences are not abundant. First, users have little knowledge
about the domain, which makes it very hard to express preferences. Second, as the cost of
failure is very low, users are not ready to spend hours expressing their preferences.

As explained in Chapter 2.5.1, many authors have come with solutions to overcome the
first problem. For example, [Burke et al., 1997] proposed the idea of critiquing the current
proposed recommendations through predefined critiques. These critiques are very easy to
understand from the user point of view, and makes it easy for the user to express more
preferences with little domain knowledge. As mentioned previously, the two limitations
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of this work were the fact that the critiques needed to be predefined by hand, and were
constant through out all the recommendation cycles. To overcome these two problems,
[Reilly et al., 2004] proposed dynamic critiquing, which allows the compound critiques to
be generated and selected during each recommendation cycle. Later, [Viappiani et al., 2006]
proposed another method for stimulating the user to express more preferences by showing
her suggestions that could become optimal if the user states extra preferences. All these ap-
proaches allow users to gain more knowledge about the domain, which stimulates the user
to express more preferences but also increases the confidence in the recommendations.
However, they remain limited when users are unwilling to give more preferences.

This thesis proposes a totally different approach. Instead of asking the user for more
preferences, the recommender system tries to estimate them by using known user’s pref-
erences. The fundamental idea is to transfer existing preferences, captured as concept’s
scores, from one concept to another. The proposed inference mechanism is a two steps
process. First, the closest concept with preferences to a given concept is identified using a
novel similarity function called OSS. Then, the preference of this concept is propagated to
the other concept through the lowest common ancestor between both concepts.

This chapter starts by merging previous chapters, and shows how the user’s preference
profile can be translated into an ontological profile, which is made of concepts and score
values. Then, the inference mechanism that allows the transfer of scores between any pairs
of concepts in an ontology is defined. Given this mechanism, it is showed that a similarity
function can be derived from it. Moreover, experimental results in Chapter 8 show that this
new similarity function outperformed current similarity metrics on the WordNet and Ge-
neOntology. These two techniques are then combined together to allow ontology filtering
to transfer the score of the closest concepts with preferences. Finally, this chapter finishes
by giving the algorithm that selects the items to be recommended to the user.

5.2 From user’s profile to user’s ontological profile

Chapter 3 uses the eCatalog ontological model to model the items of an eCatalog, and
also introduced the score and a-priori score associated to each concept of the ontology.
However, in Chapter 4, it was argued against the use of an ontology to model the users’
preference profiles, but in favor of a simpler model composed of rated items. Recall that
the two main reasons for not using the ontology was its lifetime and the cognitive overload
when reasoning over concepts.

Ontology Filtering uses an ontology to infer missing preferences. As a consequence,
the user’s preference profile needs to be integrated to the ontology. This integration can be
performed using Algorithm 3, where R, ;i 1s the rating assigned by user u on item item,
c.ratings is a set attached to concept c that contains all u’s ratings assigned to instances of
¢, and rating is a normalized rating in the interval [0, 1].

In words, Algorithm 3 works in the following three steps:

1. Initialization - In step 1, the algorithm starts by creating an empty set UO P that will
represent the user’s ontological preference profile. This set will contain some con-
cepts from the ontology of the eCOM, where the instances of the selected concepts
correspond to the previously rated items.
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Algorithm 3: Building the user’s ontological profile for a user u.
Inputs: The user’s u preference profile ,U P P, composed of rated items; and the
eCatalog ontological model eCOM;
Outputs: The user’s u ontological profile UO P, which is a set of concepts from
eC'OM with an associated score

1 UOP — {¢}
2 forall item € UPP do
3 ¢ < concept|concept € eCOM A item € concept
4 if c € UOP then
6 ‘ c.ratings < c.ratings U Ry jtem
end
7 else
8 cratings «— { Ry item }
10 UOP — UOPUc
end
end
u forall c € UOP do
n | Sl)= Z’“““”ff;;;’j;ggf " (Bquation 3.1)

end
14 return UOP

2. Concept Extraction - For each rated item ¢tem in the user preference profile, step 3
extracts the concept ¢ that has an instance modeling ¢tem. If the concept is already
present in the user’s ontological profile, then the rating assigned to the item is simply
added to the set of ratings of that concept. Otherwise, the set of ratings of that concept
is initialized to the item’s ratings, and the concept is added to the user’s ontological
profile.

3. Score Computation - Using Equation 3.1 defined in Section 3.3.1, the score of each
concept in the user’s ontological profile is computed by averaging the normalized
user’s ratings associated to that concept.

Given Algorithm 3, the user’s ontological profile is defined as follows.

Definition 5.1 The user’s ontological profile, UOP, is defined as a set of concepts with
their associated scores. The UOP is constructed from the user’s preference profile using
the eCatalog ontological model and Algorithm 3.

Figure 5.1 illustrates definition 5.1 on a user toto, who has the same preference profile
as the one shown in Table 4.1. Using the ontology of the eCatalog ontological model,
the concepts associated to toto’s rated items are extracted and inserted in the ontological
profile. For example, item 2 (Star War Episode II) is instance of concept 4; which implies
that concept 4 gets added to the ontological profile. As the preferences in ontology filtering
are elicited using a 5 stars rating (Section 2.5.1), the maximum possible rating is 5. Thus,
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the ratings become normalized by dividing all of the user’s ratings by 5. Following this,
and because item 8 (Marry Poppins) is also instanced this concept, the score of concept 4
becomes as ((5/5)+(1/5))/2= 0.6 (Equation 3.1).

Item: 1
Name Apollo 13
MPPA: PG13

UserName: toto
Item 1: rating 5
Item 8: rating 1

User Preferences

User toto
eCatalog

Y
roperE Property Preference Profile of user Toto
APS onProperty—{ Concept [—onPropertym( score Concept-ltems Rating
N 1-Lord Ofthe Rings Il 5
subClassOf ‘ 2-Star War Eposide I 5\
6-The Matrix Reoladed 5 N
7-The Lion King 5 A
8-Mary Poppins 1.7

eCatalog Ontological Model

ue g/G ale sbunes pazijewioN
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|
|
|
|
| Algorithm 3
|
|
|
|
|
|
|
|
|
|
|
|
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]
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Ontological Profile of user Toto :

]

Concepts Score |

]

-------- ———%>4 (ltems 2 and 8) 06 =(1+0.2)/(2) <—==F———————~
5 (Items 1 and 7) 1=(1+1)/(2)
9 (ltems 1 and 6) 1=(1+1)/(2)

Figure 5.1: Example of a user ontological profile for user toto.
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5.3 Inference from one concept to another

In an eCommerce environment, it is very unlikely that a user is able (or willing) to express
her preferences on enough items in order for the user’s ontological profile to contain all the
concepts of the ontology. As a consequence, this leads to an incomplete preference model
that seriously limits the predictions made by the recommender system. Given an ontology,
this section shows that it is possible to infer missing preferences by transferring the score
from one concept to another, as long as a chain connecting both concepts exists. Thus,
when a user’s scores for certain concepts are known more precisely, ontology filtering can
derive a personalized score for the other concepts by propagation. In this dissertation, the
notation S(y|x) is used to denote the inferred score of concept y knowing only the score of
x.

For example, imagine a situation with two concepts = and y, but where only S(z) is
known. To propagate the score from concept = to y, a link between these two concepts
must be found. In a tree structure, there are three cases to consider: when y is a parent of x
(r C y, Fig. 5.2a), when x 1s a parent of y (y C x, Fig. 5.2b), or when z is neither a parent
nor achildofy (x Z y ANy ¢ z, Fig. 5.2¢).

: .

d features | d features | d features |
—~ S(x)
1 N\
k features /S(x) | features\ ) k features »~ — | features
/ [s(x)
-

(a) (b) (c)

Figure 5.2: Possible chains in a tree structure between the concepts x and y: (a) x is a child
of y, (b) x is a parent of y, and x is neither a parent nor a child of y (c).

Thus, the first task in the propagation is to identify the chain C(x,y) that contains
both concepts. To minimize the amount of propagation, we construct the chain through
the lowest common ancestor. Informally, in a tree structured graph, the lowest common
ancestor of nodes x and y, LC'A(z,y), is defined as the node farthest from the root that is
an ancestor to both v and v [Bender et al., 2005].

In an eCommerce environment, the structure of the ontology is often a tree, but directed
acyclic graphs can also occur. As concepts in a DAG can have multiple parents, there can
exist more than one chain between pairs of concepts. As a consequence, there can be
several LCA nodes; in fact, the number of LCA nodes can grow exponentially with the size
of the graph. Fortunately, this number tends to be small in reality, as most concepts have
only a few parents. For example, a concept in the WordNet ontology has on average 1.03
parents.
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5.3.1 Finding the lowest common ancestor

Finding the lowest common ancestor is also a fundamental problem in graph theory, and has
been widely looked at over the years (a good survey can be found in [Bender et al., 2005]).
Formally, in a tree structured graph, the lowest common ancestor between nodes x and v,
LCA(x,y), is defined as the deepest node that is an ancestor to both = and y, where the
depth of a node z is the length of the longest path from the root to x. The structure of a
tree guarantees the existence and the uniqueness of a lowest common ancestor between any
pair of concepts. However in DAG, there can be many lowest common ancestors, as they
are potentially many paths from one concept to the root. In a DAG, the lowest common
ancestors of nodes = and y, LC'As(x, y), are defined as the deepest nodes that are ancestors
to both x and ¥, and obtained from distinct chains linking = and y. Figure 5.3 illustrates an
ontology with a DAG structure. Take for example concepts / and <. There are two chains
linking these concepts: (h,d, b, e, i) and (h,e, 7). Thus, the lowest common ancestors to
both concepts h and ¢ are concepts b and e, where b is the LCA of the former chain and e
to the latter.

Depth
— 0

Figure 5.3: Example of paths for concepts / and i to the root concept a, where the path are
in bold lines.

Finding the lowest common ancestor in a tree structured graph is not a hard problem.
[Bender et al., 2005] proposed an algorithm based on the Euler tour and the range minimum
query, RMG, that can solve the problem with linear space requirement and O(1) query
time. The algorithm is as follows. First, all n nodes of the tree are visited using an Euler
tour in order to construct the array A of size m = 2n — 1. A is then virtually split in k&
buckets of size log(m)/2, and an array A’ is constructed that contains the minimum value
of each bucket. The idea behind the bucket strategy is to split the big array A in small
intervals in order to reduce the search space. Third, a lookup table 74 is constructed that
will contain the RMG for each bucket separately. At the same time, another lookup table
Ty is built that will answer the RMG for the array A’. Using this construction, the lowest
common ancestor is answered by three look queries, two in the table 7’4 and one in table
Ty

Unfortunately, finding the lowest common ancestors in DAG is much harder. It requires
generating the ancestor-existence matrix, which requires at least transitive closure time
[Bender et al., 2005]. Using this ancestor-existence matrix, all the LCAs can be found with
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a complexity O%58 . However, it remains theoretical, and its explanation goes far beyond
the content of this dissertation.

This dissertation proposes a much simpler algorithm that is easily implementable, and
has successfully been implemented for this thesis. The first idea of the algorithm is to
take advantage of the fact that the lowest common ancestor is the common ancestor with
the biggest depth. Second, as a DAG can have several LCA, a heuristic is proposed for
selecting which one to use during the propagation of the score. The heuristic for selecting
the lowest common ancestors n of concepts x and y uses the following two functions:

e the reinforcement r(n), given as the number of different paths leading to n leading
from z and y, and

e the depth depth(n), given as the length of the longest path between the root and n.

For each possible LCA node n , a heuristic value 7(n) * 2%P*"(") is computed, and the
node with the highest value is chosen as the best lowest common ancestor. This heuristic
is based on the idea that while the amount of propagation should be limited, if a node
appears in many different connections between concepts x and ¥, then it can become more
meaningful as a connection.

Algorithm 4: Finding the lowest common ancestor in a directed acyclic graph for a user u.
Inputs: An ontology \; and two concept x and y
Outputs: The lowest common ancestor [ca for concepts = and y

LCAs — {¢}
Chains, < generate all the chains from concept x to the root
Chains, < generate all the chains from concept y to the root
forall chain, € Chains, do
forall chain, € Chains, do

ancestors < {chain,} N {chain,}

lca < z|arg,eancestors max(depth(z))

LCAs +— LCAsUlca
end

end

9 return lcalargieaercas max (r(lca) x 29rthica))

L NN T R W N -

Formally, Algorithm 4 describes in details the algorithm used for finding which lowest
common ancestor to use in a DAG. Step 1 creates and initializes a set LC'As that will
contains all the possible lowest common ancestors of both nodes x and y. For each of these
nodes, step 2 and 3 respectively find all the chains from these concepts to the root of the
graph. For example, step 2 generates the set {( h,d, b, a),{ h,e,b,a)} for concept h, and
{(i,e,b,a)} for concept i of Figure 5.3. In step 6, the intersection between pairs of chains
of each concept is computed in order to find the common ancestors to both concept = and
y. Note that step 6 initially converts the chains which are sequences of nodes into sets of
nodes. From these ancestors, step 7 selects the lowest common ancestor [ca as the node
with the biggest depth. Then, Ica is added to the set of all the common ancestors, and
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steps 6 to 8 are reiterated on all possible combinations of chains linking concepts = and y.
Finally, step 9 returns the node that maximizes the heuristic function among all possible
lowest common ancestors.

To continue the previous example, Algorithm 4 starts with the first chain of each node
(i.e: (h,d,b,a) and ( 7,e,b,a)). The common ancestors set obtained from these two se-
quences is {b, a}, which implies that step 7 would select node b as lowest common ances-
tor (i.e.: depth of node =2 > depth of node a=1). As node h also possesses the chain
(h, e, b, a), the algorithm reiterates and finds that node e is also a lowest common ancestor.
Thus, the algorithm finds that the lowest common ancestors for nodes % and i are {b, e}.
Finally, the heuristic function is applied these nodes, and the heuristic values 3 * 2! =
and 2 x 22 = 8 are respectively obtained from nodes b and e. As a consequence Algorithm
4 selects node e as the lowest common ancestor.

As a node can have multiple parents, the number of chains can grow exponentially
with the size of the graph. This implies that the complexity of Algorithm 4 can also grow
exponential with the size of the graph. Fortunately, as most concepts have only a few
parents, the worst complexity hardly ever occurs in real life. Moreover, experiments on the
WordNet and GeneOntology showed that Algorithm 4 can produce results in real time.

5.3.2 Upward inference

This situation arises when there is a path going from concept x to its k' parent y (z C;, ¥,
Figure 5.2a). From the graph construction, both concepts have d features in common, but
the concept = has an extra k features that differentiates it from its ancestor.

d features |

0
k features /S(x)

/

-

a
By definition of the model, we know that (ch: score of a concept depends on the fea-
tures defining that concept (A1). Informally, it means that the score of y can be computed
knowing the score of z, S(y|z), by looking at the ratio of features they have in common
and liked by the user. Formally, S(y|z) is defined as follows:

S(ylz) = alz,y)S(x), (5.1)

where a(z, y) is the coefficient of generalization that contains the ratio of features in com-
mon which are liked according to their respective distribution. Note that the assumption
(A1) and (A2 ) of the score function implies the following property.

Property 5.1 Let x,y be two concepts in an ontology \, where the x is a descendant of y
(x C y). Then, S(y) = S(y|x).
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Proof 5.1 By definition, coefficient a(x,y) is the coefficient of generalization that contains
the ratio of features in common to both concepts x and vy, and which are liked according
to their respective distribution. Assumption (Al) implies that a user likes the concept y
because of the features found between the root and y. As y is on the path from the root to
x, ax,y)S(x) measures how much a user likes the features found on the path between the
root and y. As a consequence, S(y) = S(y|z)O

acy) () - el
y)

Figure 5.4: Tllustration of the correspondences between a(z,y) and &(x, y).

Obviously, « is unknown in practice. Furthermore, it is unfeasible to elicit it from the
user, as some features are implicit in the edges of the ontology. Instead, this dissertation
proposes to estimate « by using the a-priori score captured by the concepts in the ontology
(Figure 5.4). By definition, the APS(z) measures the a-priori score that an average user
will give to concept x. As the score of a concept is constructed from the features making
it, APS(x) reflects how much an average user likes the features making =. Thus, the
coefficient of generalization can be estimated as the ratio of a-priori scores:

APS(y)
&(z,y) = APS(z)’

As a consequence, the upwards inference from a concept z to a concept y can be esti-
mated as follows:

(5.2)

S(yla) = a(z,y)S(x). (5.3)

5.3.3 Downward inference

Inversely, we have the case when y is the [*descendant of = (y C ).

d features

—~3S(x)
\

| features\ \

(b)
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From the previous result, it is very tempting to assume that S(y|x) = £S(z), where 3
is a coefficient of specialization that contains the ratio of features in common. However,
this reasoning is not compatible with the third assumptions - (A3) user are risk averse. To
understand this assumption, imagine that the score of the object is equal to the maximum
price a user is willing to pay. Consider two concepts x and y, where y has one more feature
than z. Now consider two users A and B such that A values x more than B does. This
does not automatically mean that A will also attach a higher value to the extra feature that
distinguishes y from x. Notice also that when we were traveling upwards, we were consid-
ering super concepts, which means we were removing known features whose contributions
to the score are likely to be proportional to 1. However, when traveling downwards, we are
adding new (unknown) features to the concept. Therefore, the score of each new feature
need to be considered separately from known one. Using the second assumption that states
that features contribute independently to the score, S(y|x) becomes as follows:

S(ylz) = S(x) + By, z), (5.4)

where [((y, x) is the coefficient of specialization that contains the score of the features
contained in concept y but not in = (Figure 5.5). Again, 3 can be estimated using the
a-priori score:

. APS(x)

B(y,z) = APS(y) — APS(x). (5.5)

Figure 5.5: Illustration of the correspondences between 3(y, z) and ((y, z).

5.3.4 Upward & downward inference

Finally, this section considers the case when there is no direct path between concepts x and

)

d features |

k features 7 \;( | features
/S(x)

(c)
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Figure 5.2(c) shows that in order to transfer the preference, the score needs to be carried
up to the lowest common ancestor z = LC'A, ,,, and then down to the concept y. Equation
5.4 implies that S(y|z) = S(2) + B(y, z), while Equation 5.1 defines S(z|x) as equal to
a(x, z)S(x). Furthermore, as Property 5.1 implies that S(z) = S(z|x), the inferred score
of concept y knowing z becomes as follows:

S(ylz) = S(2) + By, 2) = S(zlz) + By, 2) = S(ylz)- (5.6)

Furthermore, Equations (5.1), (5.4), and (5.6) imply that the score of any concept y can
be inferred from the score of concept = as follows.

S(ylz) = S(zlz) + B(y, 2)
= oz, 2)S(z) + By, 2) (5.7)
= a(z,LCAz,)S(x) + By, LC A, )

Unfortunately, this equation is useless in practice as the coefficients « and 3 are un-
known and cannot be elicited. Using Equations (5.2) and (5.5), the inferred score of con-
cept y knowing the score of x can be estimated as follows:

S(y|z) = a(x, LOA,,)S(x) + By, LC A, ) (5.8)

where LC'A, , is the lowest common ancestor of both concepts « and y, and obtained
using Algorithm 4.

5.4 Finding the closest concept

The inference function defined in Equation 5.7 transfers the score from one concept to
another through their lowest common ancestor. In practice, the user’s ontological profile
usually contains more than one concept. This raises the following question; from which
concept should the inference start?

By construction, the inferred score is made from the user’s score and the a-priori scores.
As the a-priori scores are estimations of how much an average user likes a given concept,
the inference mechanism should minimize the use of it. Thus, it needs to find the closest
concepts to the unknown one so that it can minimize the propagation error. Finding the
closest concept in an ontology is not as easy at it may seem, and it requires evaluating the
similarity between pairs of concepts.

Evaluating semantic similarity between concepts is a fundamental task in the ontology
community. Most authors have focused their research on hierarchical ontologies (HO),
which is not surprising as most ontologies are made of is-a relationships (~ 82% of all
the relations in WordNet 2.0 are is-a relationships, while GeneOntology has ~ 87%). Fur-
thermore, [Maguitman, 2005] has shown that a similarity metric defined on a hierarchical
ontology can be generalized to any kind of ontology by using a weighted combination of
the is-a metrics. Thus, the problem of evaluating the semantic similarity between concepts
in any kind of ontology can be simplified to hierarchical ontologies. To this day, there exist
two main approaches for estimating similarity between concepts in a hierarchical ontology:
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the edge based approach and the node based approach. Unfortunately, existing approaches
fail to achieve high correlation with human ratings, while experiments on the GeneOntol-
ogy have shown that existing techniques are sensitive to the topology of the ontology.

To improve the computation of pairwise similarities, this thesis defines a novel similar-
ity measure for ontologies called Ontology Structure based Similarity (OSS). As shown in
Figure 5.6, OSS computes the similarity between two concepts x and y in four steps. First,
the score of the concept y is inferred from x using Equation 5.7. From this inferred score,
OSS computes how much of the score has been transferred between these two concepts,
T'(x,y), and then takes the lower bound value |7'(x, y)]. Finally, this lower bound value is
transformed into a distance value D(z, y) using the logarithm function.

APS

x,y) S(ylx) T(x,y) LT(xy)1 D(xy)
—

Figure 5.6: Illustration of the OSS approach.

5.4.1 Existing measures of similarity

Many techniques have been proposed for evaluating the semantic similarity between two
concepts in an ontology. At the same time, authors have looked at this problem from either
a distance or stmilarity point of view. These approaches are duals, as the similarity
can be defined as 1 — distance, when distance values are normalized to [0..1]. Concretely,
existing techniques can be categorized as follows:

The edge based approach is the traditional, most intuitive, and simplest similarity mea-
sure. It computes the distance between two concepts based on the number of edges
found on the path between them. [Resnik, 1995] introduced a variant of the edge-
counting method, converting it from a distance to a similarity metric by subtracting
the path length from the maximum possible path length:

simppae(x,y) = (2 x D) —len(x,y), (5.9)

where a and b are concepts in the ontology, D is the maximum depth of the HO, and
len(z,y) is the shortest path between concepts a and b. Another popular variant of
the edge based approach is the metric proposed by [Leacock, 1997], which scales the
shortest path by twice the maximum depth of the HO.

. len(z,
simpeacock (x,y) = —log <2>(<Dy)> (5.10)

The node based approach was proposed by [Resnik, 1995] to overcome the drawbacks
of the edge-counting approach, which considers the distance uniform on all edges.
Resnik defined the similarity between two concepts as the information content of the
lowest common ancestors to both concepts. The information content of a concept
¢, IC(c), is defined as the negative log likelihood of the probability of encountering



5.4. FINDING THE CLOSEST CONCEPT 91

an instance of ¢, i.e. IC(c) = —logP(c). The intuition behind the use of the neg-
ative likelihood is that the more probable a concept is of appearing, then the less
information it conveys. Formally, the similarity is defined as follows.

simresnik(a,b) = ELIE%C )IC(Z) (5.11)
z ,y

While Resnik defined the similarity based on the shared information, [Lin, 1998]
defined the similarity between two concepts as the ratio between the amount of in-
formation needed to state the commonality between these two concepts and the in-
formation needed to fully describe them.

2 x max,cLCA(z,y) IC(Z>
IC(x) +IC(y)

simpin(x,y) = (5.12)

Hybrid approaches combine both approaches defined above. [Jiang and Conrath, 1997]
proposed a combined model that is derived from the edge based notion by adding
the information content as a decision factor. They defined the link strength between
two concepts as the difference of information content between them. Following this,
Jiang’s distance metric is defined as follows:

distjrang(z,y) = 1C(x) + IC(y) —2 x ( max IC(z)). (5.13)
z€LCA(x,y)

5.4.2 Transferring the score from one concept to another

The intuition is that the distance between two concepts x and y is correlated to the amount
of score being transferred between them. Informally, the more score that can be transferred
from one concept to another, then the more similar these concepts are. Moreover, OSS
takes into account the fact that users are pessimistic by considering the fact that unknonw
features should not contribute to the transfer.

Formally, a distance measure is a real valued function that we would like to satisfy the
following axioms:

e identity: D(z,y) =0 a=10
e normalization: 0 < D(x,y) <1
e triangle inequality: D(x,z) < D(z,2) + D(z,y)

It is otherwise customary to also include a symmetry axiom; however, one innovation
of this work is that distance can be asymmetric. Thus, this dissertation does not include
this axiom.

Furthermore, the distance between two concepts must be independent of any particular
amount of score that is being assigned to the concept. In particular, it must be applicable
to any score in the admissible range [0..1]. Thus, distance can be related to the transfer of
score only in a multiplicative, but not in an additive way. Following this, we define the
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transfer of score from a concept z to y, T'(z,y), is defined as the amount of score being
propagated between = and y:

Syle) = S(a) x T(e.y) = T(a,y) = 242 (5.14)
S(x)
Using Equations 5.1, 5.4, T'(x, y) can be decomposed as follows.
T(@,2)=alz,2) aCz / 515

T(zy)=1+52% 2cy \

In an eCommerce environment, S(z) is usually unknown, which renders the computa-
tion of the downwards transfer impossible. However, under the assumption that the score of
any concept 1s uniformly distributed between 0 and 1 (Section 3.3.2), the expected score of
a concept is in fact equal to 1/5. Thus, the downwards transfer 7'(z, y) can be approximated
as 1+ 206(z,y).

As the transfer of score T'(x,y) is multiplicative, this implies the following transitive
property.

Property 5.2 Let x,y,z be three concepts in an ontology N\, where the z is the lowest

common ancestor to both concepts x and y (i.e. y C z and x C z). Then, T(x,y) =
T(x,z) x T(z,y).

Proof 5.2 From Equation 5.14, T'(z,y) is defined as S(y|z)/S(x). Using Equation 5.15,
T(x,y) becomes as follows.

_ S(ylx)
As concept x is a descendant of y, Property 5.1 simplifies the above equation to:
T(w, ) = Tz, 2) S22 (5.17)

5(2)

Finally, as Equation 5.14 implies that S(y|z)/S(z) = T(z,y), T(x,y) simplifies to
T(x,2)T(z,y).0

5.4.3 Getting a lower bound value

When judging the distance between two concepts x and y, the transfer of score from z to
y should not attempt to predict the expected value of the score assigned to y, but a lower
bound on it in order to model the fact that unknown features do not contribute. For upward
propagation, the factor o derived from the a-priori scores reflects this correctly, as the APS
of an ancestor is constructed as a lower bound on scores of its descendants.

On the other hand, for downward propagation, the term 3 derived from the a-priori
score reflects that translation from the lower bound to the expected value at the descendants.
Thus, in order to produce a lower bound, the relation has to be inverted.
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Consequently, a lower bound on the transfer of score between concepts z and y, | T'(x, y) |,
can be defined as follows:

|T(z,2)] =a(x,z) zCz

5.18
\T(2,9)] = gy 2 €Y o ©-18)

where concept z is the lowest common ancestor to both concepts x and y.

5.4.4 The ontology structure based similarity - OSS

The ontology structure based similarity between two concepts = and y is defined as 1 —
D(x,y), where D(x,y) is a distance measure between the concepts. To guarantee that
D(z,y) > 0, and in order to satisfy the identity relation, |7(z,y)]| is scaled into a distance
by taking its negative logarithm: D(z,y) = —log|T'(z,y)|. However, this distance would
not be normalized to fall in the interval [0..1]. By using max D as longest distance between
any two concepts in the ontology, the normalized distance becomes as follows.

log(|T'(x,y)])
D(x,y) = T maxD (5.19)
Thus, the distance measure satisfies the normalization. Such a logarithmic measure has
also been used elsewhere for distance and similarity measure [Jiang and Conrath, 1997]
[Lin, 1998] [Resnik, 1995]. To ease the reading of this dissertation, the proof that Equation
5.19 satisfies the transitive property has been added to Appendix B.
Finally, using the transitive property 5.2, the distance between any concepts x and y in
an ontology is formally defined as follows:

_ log (1+26(y, 2)) — log(a(, 2))
maxD

D(z,y) : (5.20)

where z is the lowest common ancestors to both concepts z and y. As mentioned previ-
ously, the coefficients « and (3 cannot be excited in practice. Fortunately, using Equations
(5.18) and (5.19), the distance between any two concepts in the ontology = and y can be
estimated as follows.
s log(1+ 26(y, LOA(z,y))) — log(a(z, LCA(x,y)))

D(ﬂj,y) - maxD ’ (521)

where LCA(X,y) is the lowest common ancestor to both concepts x and y and is computed
using Algorithm 4.

5.4.5 Example

Table 5.1 illustrates the distance computation between the concepts x and z of the ontology
found in Figure 5.7.
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Concepts n, APS

dedges ! X 0 1/2

! y u 0 1/2

z 0 1/2

. /O \) . s 1 1/3
t 2 1/4

$ \ y 5 1/7
x©u0 o root 5¢d | 1/(7+d)

(a) (b)

Figure 5.7: (a) a simple ontology A and its APSs (b).

Concepts | Direction | Transfer | Distance | D(z,y)
h=1/1 _ 2

e LY Ol B
yN\z |1+268=2log(%)

Table 5.1: Distance between concepts x and z from the ontology found in Figure 5.7, where
the distance is computed using Equation 5.21.

5.5 The overall inference process

Equation (5.7) showed that it is possible to infer the score of any concept y from a concept
x with a known score. However, in an eCommerce environment, a user typically rates more
than one item. This implies that more than one concept will have a score assigned to it, and
a choice must be made to discriminate these concepts. Thus, Equation 5.21 is used to find
the closest concept x from y so that the inference has the smallest error.

Algorithm 5 now explains in details how the scores of all the concepts of the eCatalog
ontological model are inferred. First, the user’s ontological profile UOP is created from
the user’s preference profile U PP using Algorithm 3. Step 2 simply checks that the UOP
contains at least one score. If it does not, then the algorithm terminates at step 3. Otherwise,
step 4 extracts all the concepts from the ontology without score, and inserts them in the new
set UOP'. For each concept y in UOP’, step 7 returns the set of all the closest concepts
with a score to a concept y using Equation 5.21. As it is assumed that users are risk averse,
step 8 finds the closest concept x that will infer the minimum score. Using Equation 5.7,
step 9 then sets the score of y with the inferred value transferred from the score of . Note
that steps 7 and 8 are not necessary when the user’s ontological profile contains only one
concept. In this situation, step 11 directly infers the score of concept y from the value
of the only concept that contains preferences. Once all the scores have been computed,
the complete user’s ontological profile (which is the union of the sets UOP and UOP”) is
returned.
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Algorithm 5: Building a complete user’s ontological profile for a user u.
Inputs: The user’s preference profile U P P, and the eCatalog ontological model
eCOM.
Outputs: A complete user’s ontological profile associated to the eCatalog
ontological model eCOM.
Functions: buildOntologicalProfile( U PP, eCOM) implements Algorithm 3.

1t UOP « buildOntological Profile(UPP,eCOM)
2 if [UOP| = 0 then
3 ‘ STOP-NO-PREFERENCES-FOR-USER
end
4 UOP" — eCOM/{c|c € UOP}
s forally € UOP' do

6 if [UOP| > 1 then
: X {elarg.cvopmin(D(z1))}
8 x — zlargexmin(S(y|r))
9 S(y) < S(ylz)
end
10 else
11 | S(y) < S(y|(z|z € UOP))
end
end

12 return UOPUUQOP’

5.5.1 Example

To illustrate Algorithm 5, re-consider the simple ontology A shown below. This ontology,
along with the APSs, will be used as the eCatalog ontological model.

2 root
- Concepts ng APS
d edges ' X 0 1/2

{

y 0 1/2
z 0 1/2
S 1 1/3

S t
t 2 1/4
/ \ y 5 1/7
x©u0 o z root std | 1/(7+d)

(a) (b)

Imagine a user toto with a unique preference on the movie Appolo 13. Further imagine
that foto assigns the maximum rating of 5 to this movie, which happens to be an instance
of concept z. Using the ontology shown above, Algorithm 3 generates a user ontological
profile that contains the single tuple S(z) = 1. Finally, Algorithm 5 builds the complete
user’s ontological profile contained in Table 5.2.
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Set | Concept | Propagation | Score
UopP X - 1
s / 1x (i) = 3
z / 1x (1) =2
UOP' | root / 1x ((457) = 75
/7
t AN xR +G - =%
7
u AN Ix(R+G-D =14
7
y AN [ Ix(R+G-D =4

Table 5.2: Toto’s Ontological Profile constructed using Algorithm 5.

5.6 Recommending items to a user

Once the score of all the concepts have been inferred, recommending items becomes
straightforward. The idea is to recommend the best N items that the user has not seen,
and which have the highest probability of being liked. This is commonly called the top-N
recommendation strategy.

Moreover, the majority of users are known to like popular items. Non-personalize rec-
ommender systems such as Digg.com and MovieFinfer.com rely on this fact to recommend
items to their users. This is called the aggregated ratings strategy (see Section 2.2.1). Take
for example a user who wants to go to the cinema, but who doesn’t know what to watch.
Further imagine that among the alternatives there are the new Harry Potter - The Order
of the Phoenix and the French movie - Fragile. In this situation, a recommender system
recommending the Harry Potter movie will be right in most cases, as this movie is number
1 in the box office. Note that collaborative filtering also uses the average rating of an item
when predicting the rating of that item to a user (Equation 2.25).

Following these observations, ontology filtering will recommend perviously unseen
items that are instance of the concepts with the highest score, and which are also popular.
As a consequence, this thesis defines the hybrid score of a concept ¢, HS(c) as follows:

HS(c) =pS(c) + (1= p)P(c), (5.22)

where p is a personalization coefficient that ranges in the interval [0, 1], and P(c) is the

popularity of a concept also in the interval [0, 1]. The popularity of concept ¢ is simply
computed as the average of the normalized ratings of all the users on the items which are
instanced of concept c.

P(c) = Licouct fui, (5.23)

Nyratings
where U is the set of all the users in the database, Ru,i is the normalized rating assigned
by user u on item 4, and 7,4ings 1S the total number of ratings for concept c. Note that if
the p coefficient is set to 0, then the popularity score is equivalent to the non-personalized
recommender systems but not similar, as concepts can contain more than one concept. Ob-
viously, the personalization coefficient p can be learnt on a training set, but this dissertation
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sets the coefficient to 1/, for two reasons. First, and for practical reasons in eCommerce
environment, training is usually not feasible as the ratings on the items change too fre-
quently. Second, it allows to introduce a good mix of diversity in the recommendations,
while maintaining the personalized aspect.

Algorithm 6: Recommending the top-N items to user .
Inputs: The complete user’s ontological profile UO P, the number of items NV
wanted in the recommendation set, and a list of possible alternatives, /tems.
Outputs: The top-N recommendations.
Functions: sort(ratings) sorts a list ratings (composed of tuple
(item, hybridscore)) on decreasing value of the hybrid score.

ratings « ||
topN ]
counter «— N
forall © € Items do
c—clce UOPNi€c
ratings < (i, HS(c))
end
7 ratings < sort(ratings)
8 while counter > 0 do
9 topN « topN U ratings|0]
10 ratings «— ratings/ratings|0]
11 counter- -
end
12 return topN

A B A W N -

Formally, ontology filtering recommends the top-N items to a user using Algorithm
6. For each item ¢ to be recommended from /tems, step 5 extracts the concept from the
user’s ontological profile UO P from which the item is instance of, while step 6 computes
the hybrid score of this concept using Equation 5.22. Once all the hybrid scores have
been computed, step 7 sorts the items on decreasing values of the hybrid score computed
previously. Then, steps 8 to 11 select the best /V items, and insert them in the top/NV list.
The algorithm terminates by returning the Top-N recommendation list top/N.

5.6.1 Example

Re-consider the previous example illustrated by Figure 5.8. Let’s imagine three items ¢, J,
k respectively instanced of concepts ¢, u, and y. Further imagine that these three concepts
have the following popularity score: P(t) = 35, P(u) = 4, and P(y) = %. Note that in
practice, these popularity scores are computed off-line using Equation 5.23.
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2 root Concepts e APS

4 features ! y 0 172

; u 0 12

z X 0 1/2

\) S 1 1/3

s t t 2 1/4
f AT
x O uO y root 5+d 1/(7+d)

(b)

Figure 5.8: (a) a simple ontology A and its corresponding a-priori score (b).

Using the scores in Table 5.2, step 6 of Algorithm 6 finds that the hybrid score of
concepts ¢, u and v is 2¥56, 59g4, and 3Yso. Table 5.3 displays the order of the items in the
top — N list when step 7 is completed.

Position in ratings | Item | Concept | Score | Popularity | Hybrid Score
9 5 T9 15 _ 31 -
; T
2 1 t 58 & 52_8+§§_%20'45

Table 5.3: Items with their position in the list ratings when Algorithm 6 is at step 8.

Thus, if the recommender system applies the top-1 recommendation policy, then it is
item k that would be recommended, as it is instance of the concept with the highest hybrid
score (i.e: HS(y) ~ 0.74). Similarly, if the top-2 recommendation policy was used, then
it would have been items £ and j that were recommended; and so forth.



Chapter 6

Learning the structures of the ontologies

The ontologies are fundamental elements of this dissertation. They are used to cre-
ate the eCatalog ontological model, construct the users’ ontological profiles, and
infer missing preferences. However, previous chapters assumed the existence of
these ontologies, without considering their construction. With eCatalogs continu-
ously changing, new techniques are required to build these ontologies in real time,
and without any expert intervention.

This chapters focuses on this problem, and shows that it is possible to learn
these ontologies autonomously by using hierarchical clustering algorithms. Rather
than using the same ontology for all users, another algorithm is defined that per-
sonalizes the ontology based on the user’s preferences. This personalization lets
the system find the ontology that best matches the user’s preferences, which in-
creases the recommendation accuracy. Finally, it is suggested that recommenda-
tion accuracy can be further improved by allowing multiple inheritance edges in
the clustering tree. Thus, a third algorithm is presented that can construct ontolo-
gies with multiple hierarchical structure.

6.1 Introduction

In some simple domains, it is feasible to create anontology modeling the items by hand.
In this situation, the features will usually be explicit, and the ontology will be created by a
group of experts. Unfortunately in most cases, it is infeasible to construct such an ontology,
as the content and the structure of the catalog changes too often. To overcome this problem,
we propose to use clustering algorithms to generate the hierarchical inheritance structure
from a set of users’ ratings. It is these hierarchical structures, along with the a-priori scores,
that will be used as ontologies in the eCatalog ontological models.

In the collaborative filtering research community, it is an established fact that users can
be categorized in different communities, and that different communities of users behave
differently. Following these observations, it is believed that using one (learnt) ontology for
all users is not optimal, and that it is better to select which ontology to use based on the
user’s preferences. Following this, the dissertation will use several hierarchical clustering
algorithms to generate a whole set of taxonomies. Then, Algorithm 1 is used to transform
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these taxonomies into ontologies. Finally, ontology filtering selects the best ontology based
on the user’s preference profile in order to increase the recommendation accuracy.

Unfortunately, hierarchical clustering algorithms produce taxonomies with a simple
tree structure. However, both the eCatalog ontological model and the inference mechanism
can reason over more complex DAG structured ontologies. By generalizing hierarchical
clustering algorithms, and allowing them to consider sub-optimal clusters to merge/split, it
is possible to construct DAGs. This chapter introduces an algorithm that uses this idea, and
experimental results in Chapter 8 show that these ontologies do improve the quality of the
ontology, but at a cost of the computational complexity.

6.2 Clustering algorithms

Over the years, researchers in the data mining community have proposed many clustering
algorithms in order to perform unsupervised learning. These algorithms can be classi-
fied into six categories[Lin and Chen, 2005]: fuzzy clustering, nearest-neighbor clustering,
hierarchical clustering, artificial neural networks for clustering, statistical clustering algo-
rithms, and density-based clustering. This dissertation is interested in building hierarchical
ontologies. Thus, this chapter will focus on hierarchical clustering algorithms, which can
build such structures.

Hierarchical clustering algorithms can in fact be categorized into two subcategories:
distance-based clustering and concept-based clustering. Both approaches construct hierar-
chical trees, but they use very different data representation. With distance-based clustering,
objects are represented in a well define space, like a vector in a 2D cartesian space. Thus,
two or more objects will be assigned to the same cluster if they are close according to
a given distance function. However, with concept-based clustering, objects are described
by a set of concepts, where a concept is usually defined as an attribute-value pair. Given
this representation, two or more objects belong to the same cluster if they share common
concepts.

Distance-based clustering

When considering distance-based clustering, there are in fact two distinct ways to build a
hierarchical tree: the bottom-up or top-down approach. These approaches are respectively
known as the agglomerative clustering and the partitional clustering.

Partitional clustering algorithms start by assigning all the items to be clustered into a
unique cluster. Then, one cluster C is chosen and is then further bisected into C;, where
i € [1,2] clusters. For each item in C}, it is assigned to the cluster C; that optimizes a
distance function. This process continues until either all the items are found on the leaf of
the tree, or if the number of clusters has met a given threshold 6.

Inversely, agglomerative clusterings assign each item to its own cluster C;, where 7 €
[1,n]. Then, the two closest clusters are merged into a unique cluster. As for partitional
clustering, the process reiterates until the entire tree is created, or the number of clusters
has met the threshold 6.
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Figure 6.1: Illustration of the first three clustering steps for the (a) partitional and (b) ag-
glomerative clustering algorithm.

Figure 6.1 illustrates the first three steps of the 6.1(a) partitional and 6.1(b) agglomer-
ative clustering algorithm. The obvious difference between these two approaches is that
partitional clustering algorithms are top-down approaches, while agglomerative clusterings
are bottom-up approaches. The main advantage of the partitional algorithms is their low
complexities, which allow them to cluster millions of elements. However, partitional algo-
rithms can suffer from local minima, and are dependent on the input order of the items. On
the other hand, in general, agglomerative algorithms give better clustering solutions than
partitional algorithms. However, [Zhao and Karypis, 2005] have shown that for clustering
document data sets, partitional clusterings always led to better clustering solutions than
agglomerative ones. The main disadvantage of agglomerative clusterings is their complex-
ities. In the first step of the algorithm, all pairwise similarities must be computed, leading
to a complexity of O(n?).

Concept-based clustering

The most famous (incremental) conceptual clustering algorithm is COBWERB, which was
introduced by [Fisher, 1987]. Contrary to the first two clustering algorithms, items need to
be represented by a set of attribute-value pairs. For example, Table 6.1 illustrates this prin-
ciple on three items that have three attributes: BodyCover, HeartChamber, and BodyTemp.

Name | Body Cover | HeartChamber | BodyTemp
mammal hair four regulated
bird feathers four regulated

fish scales two unregulated

Table 6.1: Example of attribute-value pairs for COBWEB.

Given this representation, a node (class) in the tree represents the probability of the
occurrence of each attribute-value pair for all the instances of that node. Thus, the root node
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represents all the possible attribute-value pairs defined in the system, and nodes become
more specific when traveling down the tree.

For each item to classify, COBWEB will incrementally incorporate it to the classifica-
tion tree by descending the tree along an appropriate path, updating counts along the way,
and performing one of the four operators at each level. These operators are as follows.

e add - adds the item to an existing class,
e create - creates a new class for the item,
e merge - merges two classes, and

e split - splits a class into several ones.

As items are added incrementally, the ordering of the initial input can lead to different
classification results. To reduce this problem, [Fisher, 1987] uses the operators merge and
split. Furthermore, node merging and splitting are roughly inverse operators, and allow
COBWEB to move bidirectionally through a space of possible hierarchies.

The choice of the operator will by be guided by a category utility function that computes
the rewards of traditional virtues held in clustering., i.e.: similar objects should appear in
the same class, while dissimilar ones should be in different classes. Formally, given a
partition of n classes {C}, Cy, ..., C,,}, Equation 6.1 shows the category utility function
used by COBWEB, where P(C}) is the size of the class C} as a proportion of the entire
data set, P(A; = V; ;) is the probability of attribute A; taking on the value V; ;, and P(A; =
V;.;|C%) is the conditional probability of A; = V; ; in the class C.

S P(CH) |55, P(Ai = ViglCh)? = X2, X2 P(A: = Vig)?]

n

6.1

Thus, the category utility function is in fact a trade off between intra-class similarity
and inter-class dissimilarity of objects, where objects are described in terms of attribute-
value pairs like those of Table 6.1. Detailed explanation of the computation of all these
probabilities can be found in [Fisher, 1987].

One of the main advantages of COBWEB over the partitional and agglomerative clus-
tering algorithms is that it allows new items to be added incrementally to the classification
tree, without recomputing the entire tree. Note also that the process is bidirectional, which
means that a node that has been created can be merged again later on. Second, conceptual
clustering uses probabilistic descriptions of concepts, rather than distances. Furthermore,
the operators merge and split guarantee homogeneity of the content of the class. However,
COBWEB has some known problems. First, the classification tree is not height-balanced
which leads to space and time complexity to degrade dramatically. Second, the overall
complexity of COBWEB is exponential to the number of attributes, as the category utility
function requires analyzing all the attribute-value pairs.

Despite these problems, and because most authors assume that the number of attributes
is small, COBWEB is becoming increasingly popular in the Semantic Web. For example,
[Clerkin et al., 2001] proposed to use COBWEB directly on the user-item matrix R to build
meaningful hierarchical ontologies of songs. To do this, they consider each item as an
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attribute, and the ratings assigned to each item is transformed in the feature value good if
it had a rating superior or equal to 4, or bad otherwise. In [Seo and Ozden, 2004], Sea and
Ozden have used COBWEB to generate the ontology from files’ description in order to
perform ontology-based file naming.

6.3 Learning a set of hierarchical taxonomies

Distance based clustering algorithms cluster items based on the optimization of a distance
function, or inversely a similarity function. Thus, the first task is to define a function that
is capable of comparing two items ¢ and 7 from the user-item matrix 2. Sections 2.4.1
and 2.4.2 introduced the three most common similarity functions used by collaborative
filtering: Pearson, cosine, and adjusted cosine; which are respectively defined in Equations
2.19, 2.20 and 2.24. These functions transform the user-item matrix E into an item-to-
item matrix .S, where .5; ; is the similarity between items ¢ and j. As this dissertation uses
rated items to model user’s preferences, a similarity metric will also be used to generate the
similarity matrix S from the user’s rated item. Furthermore, it has previously been argued
that the best similarity function is the adjusted cosine, as it takes into account the difference
in rating of each user’s profile. Notice that this is achieved by subtracting from each user’s
ratings its average rating 1z,,. Thus, this dissertation will use Equation 2.24 to measure the
similarity between two items. Formally, the process for generating the similarity matrix S
is as follows. First, the rated items are extracted from the users’ preference profiles and
aggregated into a user-item matrix R. Then, Equation 2.24 is used to compute the pairwise
similarity between all the items in R. Finally, all these pairwise similarities are stored in
the item-to-item similarity matrix .S.

Next, criteria functions or distance functions need to be defined in order to optimize
the allocation of an item to a given cluster [Zhao and Karypis, 2005]. Table 6.2 shows the
criteria functions that will be used for generating the ontologies, where £ is the number of
clusters to consider, n, denotes the number of elements in cluster 7, C, is the r** cluster,
C! is the centroid of the 7" cluster, and sim(i, j) is the similarity between items i and j.

. . k 1 . ..
1 Iy mazimize) ) ;- (ZMGCT szm(z,j)>
2 I, mazimize Z’:ZI > icc, sim(i, CF)
3 & minimize ZZZI nrsigg(CC,’f,CC)
. t _

4 minimize S e

G S, e
) Hy  mazimizegt
6 Ho ma:m'mizeg—f
7 slink  max;cc, jec; sim(i, J)
8 clink  min;ec, jec, sim(i, j)
9

. . 1 . . .
UPGMA marimise - > iecsjec, Stm(i, j)

Table 6.2: Criteria functions used by distance-based clustering algorithms to merge and
split clusters.
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During partitional clustering, a distance function d is required in order to assign each
item from cluster C; to the cluster C; that optimizes d. The partitional algorithms will use
the criteria 7, 75, &, H;, and H, as distance function. 7Z; and Z, are internal criteria
functions that focus on producing a clustering solution that optimizes the function over the
items of each cluster individually. The essential difference between Z; and Z; is that the
former maximizes the average pairwise similarities between all the items assigned to each
cluster, while the latter represents each cluster by a center of gravity, known as centroid,
and then looks at the similarity between the items and this centroid. Notice that Z; is in
fact equivalent to the very popular K-Means algorithm, with K set to 2. However, & is
an external criterion function as it looks on how the various clusters are different from
each other, and tries to minimize the cosine between the centroid of each cluster. G; is a
graph based criterion function that models the items as a graph (the node corresponds to an
item, while an edge between a pair of nodes measures the similarity between each of these
nodes), and uses a variant clustering quality measure (the min-max cut,[Ding et al., 2001]).
Finally, ‘H; and ‘Hs are hybrid criteria functions that simultaneously optimize multiple
individual criteria functions. Many techniques have been proposed for selecting which
clusters to choose next for bisection, ranging from random policy, to size analysis. In
order to obtain a more natural hierarchical solution, [Zhao and Karypis, 2005] proposed to
choose the cluster among the k possible choices as the one that leads to the k& + 1 clustering
solution that optimized one of the above criteria functions.

The key criterion in agglomerative clustering is the function used to merge a pair of
clusters. The three criteria functions commonly used today are: slink, clink and UPGMA.
The single-link, slink, and complete-link, clink, criteria functions both compute the sim-
ilarities by considering a pair of items in the different clusters. The main difference lies
in the fact that the single-link considers the closest elements of the two clusters, while
the complete-link looks at the furthest pair. However, these criteria functions do not per-
form well in practice because they only use limited information. The UPGMA criterion
function overcomes these problems by measuring the similarity of two clusters as the av-
erage of the pairwise similarity of the items in each cluster. Besides these three functions,
the first six functions in Table 6.2 can also be used for selecting which clusters to merge
[Zhao and Karypis, 2005].

Formally, Algorithm 7 generates a set of 15 taxonomies as follows. First, a matrix .S,
and a set A is initialized. The matrix .S will contain all the item-to-item similarities, while
the set A will store the learnt taxonomies. In step 2, the user-item matrix R is generated
from all the users’ preference profiles, while step 5 computes the matrix S using the ad-
justed cosine similarity function (Equation 2.24). Using S, ; as sim(i, j), and a threshold
0 as the number of leaf clusters, the algorithm generates 15 distinct hierarchical trees using
the partitional (step 7) and agglomerative clustering (step 9) algorithms introduced respec-
tively in subsection 6.2. Note that if the threshold parameter 6 is set to any value less than
the total number of items to be clustered, then some leaf clusters will contain more than one
item. Finally, the algorithm terminates by returning the 15 hierarchical trees. The eCatalog
ontological models can then be created from these clustering trees by using Algorithm 1.
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Algorithm 7: Learning a set of 15 distinct taxonomies, each having a hierarchical structure.
Inputs: All the users’s preference profile U P Ps, and the number of leaf clusters ,0,
desired.

Outputs: A set A containing 15 different taxonomies with hierarchial structure.
Functions: createU serltemMatriz(U P Ps) creates the user-item matrix R from
UPPs, acSim(i, j) computes pairwise adjusted cosine similarities between item i
and 7, and the criteria functions from Table 6.2.

S—¢p,N— ¢
R «— createUserItemMatriz(UPPs)
forall: € R do
forall j € R do
‘ S «— acSim(i, j);
end
end
6 for criteria function 1 to 6 do
7 \ A — AU tree generated by partitional clustering.
end
8 for criteria function 1 to 9 do
9 ‘ A «— AU tree generated by agglomerative clustering.
end
10 return A

N A W N =

6.3.1 Selecting the best learnt eCatalog ontological model

It is a naive assumption to believe that all users behave in the same way. Moreover, each
person perceives differently the world they live in. This dissertation believes that the accu-
racy of the recommendation can be increased by carefully selecting the eCatalog ontologi-
cal model, rather than using the same one for all the users.

Moreover, in order to minimize the propagation error, the inference process defined in
Equation 5.7 needs to find the closest concept with a score to the one we want to infer the
score from. Furthermore, as the inference is done from only one concept, the selection of
the closest concept is fundamental. As users tend to like similar items, this implies that
theses items will be represented by concepts in the ontology which tends to be close to
each other. Thus, if the concepts that represent the items liked by the user are too distant
from the disliked ones, then the inference will introduce a bias towards the liked concepts
(remember that at least 70% of the elicited items are liked by the user).

Following these observations, this dissertation proposes to select the eCatalog ontolog-
ical model based on the user’s preference. This is achieved by choosing the ontology that
minimizes the distance between the liked concepts and the disliked ones. Formally, Algo-
rithm 8 is a two step process that is based on this idea. First, it selects a subset of ontological
model that it thinks will perform the best, and then selects the model that minimizes the
distance between liked and disliked concepts out of the selected ontologies. The first stage
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of the algorithm simply limits the search of the right model as the computation of distances
is computationally expensive. The second stage then looks for the optimal model.

Algorithm 8: Selecting the best eCatalog ontological model from a set of possibilities
eCOM:s for user u.
Inputs: The set of eCatalog ontological model eC'OM s, the user’s preference
profile U P Pontologies A, and the user’s learning set LS .
Outputs: An eCatalog ontological model that best matches the user’s preferences.
Functions: buildOntological Profile(UPP,eCOM) creates the user ontological
profile using Algorithm 3.

Split U PP into two distinct sets: 90% in Knowledge and the remaining in 7'est.
forall \ in eCOM s do
knowUOP « buildOntological Profile( Knowledge, \)
testUOP «— buildOntological Profile(Test, \)
Predict the concepts’ scores in testU O P based on knowU O P using Algorithm 5
prec;(testUOP) « precision of the generated score of testUO P
end
7 besteCOM s «— the eCatalog models with the best prec;(testUOP)
8 forall model € besteCOM s do
9 UOP — buildOntological Profile(U PP, model)
10 Liked < {c|c € UOP A S(c) > 0.8}
11 Disliked «— {c|c € UOP A S(c) < 0.8}

. . ZnELiked meDisliked D(n,m)
12 Dist(model) = [Liked|[ Ddisliked]

A U AW N =

end
13 return eCOM |argeconrevest, Comsmin(Dist(eCom))

Algorithm 8 starts by splitting the user’s preference profile U P P into two distinct sets:
Knowledge and T'est. Knowledge will be used for learning the scores, and will contain
90% of the data in U PP. The Test set will contains the remaining ratings, and will be used
to test the scores learnt on Knowledge. For each of the 15 eCatalog ontological models,
steps 3 and 4 build the user’s ontological profiles for the items contained respectively in
Knowledge, and Test. Using Algorithm 5, step 5 infers the score of all the concepts in
testUO P using the concepts in knowlU O P. Then, the precision of the inferred scores are
computed based on the real score found in T'estU O P, where the precision is defined as the
ratio of correct items found by the size of T'est. In step 7, the eCatalog ontological models
that achieve the best precision are selected. This selection process is as follows. If there are
at least two models with the highest precision value, then these two models are returned.
Otherwise, it is the best eCatalog ontological model along with the second best that are
selected. This selection process ensures that there are always at least two models for the
rest of the algorithm. For each selected model, step 12 uses Equation 5.21 to compute the
distance between the concepts liked by the user and the disliked ones, where n and m are
concepts respectively from the set of concepts Liked that are liked by the user, and from the
set of concepts Disliked that she disliked. Note that step 10 and 11 use the 0.8 threshold
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to classify a concept as liked or disliked, which corresponds to a rating of 4. Finally, step 7
returns the eCatalog ontological model that has the smallest overall distance.

6.4 Learning multi-hierarchical taxonomies

This dissertation believes that the recommendation accuracy can be further be improved if
the search space is slightly increased.

When using classical distance-based clustering algorithms to generate ontologies, all
the implicit features between a concept and its sub-concept are stored in a single edge. This
could potentially limit the concept representation, and thus limit OF’s inference process.
Moreover, the hierarchical clustering algorithms used in Algorithm 7 always select the best
cluster to merge/split based on the optimization of one of the criterion function in Table
6.2. Thus, it ignores other possible suboptimal candidates.

In Chapter 8, experimental results show that, on average, it is the agglomerative clus-
tering with the complete-link criterion function that achieves the best result. Algorithm 9
extends this algorithm in order to build multi-hierarchical taxonomies. An illustration of
one iteration of Algorithm 9 is presented in Figure 6.2.

Agglomerative clustering with clink

C={Cky Cq}
And with Steps 15 -> 20
C={Cy Cy, Cq}
o
N
\ o
\
\
\
\
\

1 step 17 - Xep g I

Figure 6.2: Illustration of the multi-hierarchical structure generated by Algorithm 9.

As for Algorithm 7, the first 5 steps of Algorithm 9 simply create the item-to-item
similarity matrix from the users’s preference profile. The steps 6 to 14, and the step 21
are in fact the classical agglomerative clustering with the complete-link criterion function,
where the complete-link criterion function is being defined in step 10. Given a coefficient
¢ € [0..1] as input parameter, step 15 computes a window size of acceptable clusters based
on the value of the current criterion value and ¢. Given this window size, step 17 looks at
all the possible pairs of clusters that can be made with one of the merged clusters C; or C},
and step 18 checks if its criterion value is within the window size. For each pairs within the
window, step 19 merges them into a unique cluster C'., while step 20 adds C). to the list of
open clusters C'. Notice that z¢, ¢, cannot be bigger than x¢, ¢, as the pair C; C; optimizes
the criterion function in step 10. As cluster C), has already got a parent (i.e.: C}), cluster
C, becomes the second parent of cluster C,. Finally, step 22 returns the DAG structure in

C.
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Algorithm 9: Learning a Multi-Hierarchical ontology with a window size ¢ and threshold
cluster 0 for user u.

N A W N -

21

22

Inputs: All the users’s preference profile U P Ps, and the number of leaf clusters,
coefficient ¢, and 6.
Outputs: An ontology with a multi-hierarchical structure.

S—¢,C—9
R «— createUserItemMatriz(UPPs)
forall : € R do

forall j € Rdo
| S — acSim(i, j);

end

end

Assign each item ¢ to its own cluster C;, and make C' = C'U C;
while |C| > 0 do

end

X —9
forall C;, C; in C do

X — X U(zc,0; = miniec, jec;sim(i, j))
T, 0, max(X)
Cy + merge(C;,C))
Cm — {Ci, Cy}
C—C/C,
windowMinVal «— z¢,c; — prc,c;3 X < ¢
forall C), in C,, and C, in C do
Ty, 0y < MiNpec, g, SIM(D; q)
ifzc, o, > windowMinVal then
C, «— merge(C,,C,)
C—Cud,
end
end
C—CuUCC,

end

return C'

Experimental results show that Algorithm 9 is capable of increasing the recommen-
dation accuracy, when ¢ is in [0, 0.4]. However, the increase of accuracy is at a cost of
computational complexity, as more edges are created. Thus, a tradeoff has to be done
between computational complexity and recommendation accuracy.



Chapter 7

Architecture of ontology filtering

Previous chapters defined various algorithms for building preference profiles and
eCatalog ontological profiles, inferring missing preferences from an incomplete
model, and learning a set of taxonomies from users’ past experience. All these
algorithms are key elements of the ontology filtering recommender system, and
this chapter will define the architecture that puts all the pieces of the puzzle back
together.

Concretely, this chapter describes in detail the three tier architecture used by
ontology filtering. As this dissertation specifically focuses on recommender sys-
tems algorithms, the emphasis will be put on the application layer. However, the
presentation and data layers will also be described, but in less details as it is out
of the scope of this thesis.

7.1 Introduction

As introduced in Chapter 1.2, traditional recommender systems use a 3-tier architecture.
As shown in Figure 7.1, the 3-tier layer is in fact a client-server model composed of the
following layers:

e The Presentation Layer: contains the graphical user interface, GUI, that allows a
person and system to interact with each other. In the eCommerce environment, web
browsers such as Internet Explorer are the most common form of GUI. Furthermore,
these web browsers are located on the customer’s device, which can be anything from
a computer to a mobile phone.

e The Application Layer: is the layer that is in charge of processing the user’s pref-
erences, and making the recommendations. The application layer is made of two
components: the preference manager and the recommendation engine. The former
interacts with a user in order to extract and maintain the user’s preferences, while the
later makes use of the collected preferences to generate the recommendations.

e The Data Layer: is responsible for storing and accessing the data required by the
application layer. Typically, this layer is made of two databases. One for storing the
user’s preferences, and another one for storing the items making the eCatalog.
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Presentation Layer Application Layer Data Layer
% 0..* R Preference
< > g 7 ] —
Web Browser i "_5‘“’5.3 Manager - Data
user = 12 |Recommendation
- Engine
Y Y

Client Server
Figure 7.1: The three tier architecture with a thin-client.

A common dilemma associated with the client-server is the extent to which the client is
used in the recommendation. For example, a thin client simply elicits the user’s preferences
and displays the recommendations, while a fat client will do the same as a thin client but
will also be involved in the computation of the recommendations. For example, java applets
are widely used to make fat clients, as they allow a client to run java-code on their machine.
The main advantage of fat clients is that they distribute the computation over the clients,
which increases the scalability of the system, while reducing the cost of the computer
infrastructure. Moreover, the distribution of the recommendations allows to increase the
user’s privacy. However, thin clients are seen as better solutions for the following reasons:

e Cost - Thin clients are much cheaper to conceive as they simply focus on displaying
the results, without considering expensive distribution steps. Moreover, they reuse
existing free technology such as HTML and PhP, which further reduces the costs.

e Easier to manage - Thin clients are not involved in the computation of the results,
which simplifies the maintenance of the system as a whole. Imagine a situation where
a bug is found in the computation of the recommendation. With a thin client, fixing
the problem usually only requires patching the server, which can be done without
the user’s intervention and knowledge. If some of the computation is done by the
clients, and if you have 1 million customers, then you will need to patch 1 million
applications.

e FEasier to use - Users do not need to install third party softwares, but can simply
use their web browsers to display the results. Furthermore, and to protect the user’s
privacy and security, today’s firewalls and strict security rules in web browsers only
let users perform primitive tasks on their computer.

As with most recommender systems, ontology filtering has been designed on the 3-tier
architecture with a thin client. However, as shown later in this chapter, ontology filtering
allows the computation of the recommendations to be easily distributed over the clients.
Finally note that, to illustrate the ontology filtering process, Appendix C contains snapshots
of a full recommendation cycle for jokes.

7.2 The architecture

Figure 7.2 shows the architecture of the ontology filtering recommender system. As it is
based on the 3-tier paradigm with thin clients, it contains a presentation layer, an applica-
tion layer and a data layer, which are described below.
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Figure 7.2: The architecture of the ontology filtering recommender system.



112 CHAPTER 7. ARCHITECTURE OF ONTOLOGY FILTERING

7.2.1 The presentation layer

The presentation layer is composed of two elements: the device and the user. The user
represents the person who wants some recommendations, while the device is the computer
system that allows the user to interact with the application layer.

More specifically, the user interacts through her device’s web browser using three fun-
damental operations: clicking, selecting, and setting the value of predefined fields. These
operations allow the user to manage her preferences, and select which items among the
recommendations she likes. Note that the first two operations require very low cognitive
thinking from the user, while the third operation allows expert users who have better un-
derstanding of the domain to enter more precise preferences.

Find a joke

Before we recommend you stuff, we need to know more about your taste in jokes
Please rate 2 jokes:
Either:

(a) Enter a joke you know:
Joke

How much did you like it? © Awfull (% )" Really bad * Not good © OK " Excellent( #) | Next»> |
OR

(b) Rate the following joke:
Joke no: 86 (step 1 -2)
A neutron walks into a bar and orders a drink. "How much do I owe you?" the neutron asks.

The bartender replies, "for you, no charge.”
How much did you like t? © Awfull (* ) Really bad ~ Not good & OK  Excellent( 0) Ne)d»_i

Figure 7.3: Snapshot of the preference elicitation interface used in ontology filtering.

Figure 7.3 illustrates the web page that allows a user to state her preferences. In this
figure, the user is being asked to give her preferences on 2 jokes by rating either a known
joke, or a randomly selected one. This figure also illustrates the three fundamental opera-
tions a user can do. For example, a user can select which of the two approaches they want
to use for expressing preferences, and must also select the rating assigned to a joke. If the
user decides to enter a known joke, then the user must enter either the name or part of the
content of the joke in the predefined field Joke. Finally, once the user has finished, she
goes to the next page by clicking on the Next >> button.

7.2.2 The application layer

This is the core layer that contains all the logic of the recommender system. This layer is
in turn composed of the following sub-components:

e The preference manager is responsible for building the user’s preference profile
through elicitation questions, gathering the feedback from the users, and maintaining
their preferences. Recall that in ontology filtering, all the preferences (elicited or
feedbacks) are explicit ratings on items that range in the interval [1, 5].

o The recommendation engine handles the eCatalog ontological models, and uses them,
along with the user’s preference profile, to generate the recommendations.
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Moreover, the behavior of the application layer depends on two states: on-line, or off-
line. These states reflect whether a user is connected to the application layer and requesting
some recommendations, or not. If she is, then the application layer is in an on-line state,
otherwise it is off-line. The main reason for differentiating these two states is to allow the
system to perform some pre-processing of the data in order to speed up the recommenda-
tions. Note that the preference maintenance and feedbacks processes are state independent,
as it can be done independently from a recommendation. For example, a user can give feed-
backs weeks after getting the recommendations. Similarly, a user can modify previously
stated preferences at any point in time.

The off-line phase

Ontology filtering uses ontologies to model the items of an eCatalog. These eCatalog
ontological profiles are constructed using taxonomies that are obtained from a combination
of the following ways:

Manually - In this situation, a group of experts sits around a table, and comes to a consen-
sus about the concepts modeling the universe of discourse. For some simple domains
that do not change too frequently, it is feasible for experts to construct and maintain
such ontologies.

Automatically - However in eCommerce environments, it is usually not realistic to assume
the existence of ontologies, or that experts can create them. To overcome this prob-
lem, ontology filtering proposes to learn them ontologies automatically, and without
any expert intervention using two algorithms: Algorithms 7 and 9. Both algorithms
create taxonomies from the users’ preference profile, but there are two fundamental
differences between them. First, the former algorithm creates a set of 15 distinct
taxonomies, while the latter only produces one. Second, Algorithms 7 produces tax-
onomies with hierarchical structures, while the latter contains a single one but with a
multi-hierarchical structure.

Algorithm 1 is then used over all these taxonomies in order to produce a set of eCatalogs
ontological models. Once these models have been created, a copy is sent to the data layer
for persistent storage, while another remains in memory for the recommendations (i.e.: the
on-line state).

Theoretically, the ontological models should be regenerated as soon as a user submits
new ratings, as these ratings modify the item-to-item matrix. As eCatalogs contain millions
of items, it is unfeasible to regenerate the ontologies every time a user submits a new
rating. However, clustering algorithms allow the ontology learning phase to be performed
daily and in a distributed fashion. For example, a simple distributed algorithm would be to
distribute the construction of each ontology to a different server.

The on-line phase

Once at least one eCatalog ontological model is available, ontology filtering can start pre-
dicting items to the users. Whenever a user wants some recommendations, the on-line
recommendation process is as follows:
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1. The user’s preference profile is built using Algorithm 2. There are two situations to
consider, which depend on whether or not the preference profile exists. If the user is
new to the system, then Algorithm 2 elicits at least 5 ratings from the user. Otherwise,
it checks in its database to see if the profile exists, and if it is valid. If it is, then the
profile is loaded and the process continues to step 2. Otherwise it elicits the missing
information. Checking whether an existing profile is valid or not seems useless, but
it is vital as users have the possibility, through the preference maintenance process,
to modify and delete any or all of their preferences.

2. Using the user’s preference profile U PP, Algorithm 8 goes through the set of avail-
able ontological models, and selects the one that best matches the user’s preference
profile. Recall that the best ontological model, eCOM, is the one that minimizes the
semantic distance between the concepts the user liked and disliked.

3. Algorithm 5 then uses the best model found in step 2, and starts by building the user’s
ontological profile. Then, the missing scores of each concept are inferred from the
closest known score using the inference mechanism defined in Equation 5.8. This
algorithm allows the system to build a complete user’s ontological profile UOP,
where each concept has a score that represents how much the user is going to like the
concept’s instances.

4. Finally, Algorithm 6 generates a set of N recommendations, and returns them to the
user. The recommendation is made by taking a list of possible candidate /tem, and
looking at the hybrid score of the concept to which these items are instanced. Thus,
the N returned items are those whose concepts have the highest hybrid score, where
the hybrid score is computed using Equation 5.22. Note that the personalization
coefficient p is initially set to 0.5, but it can be freely changed by the user.

Once the items have been recommended, the user has the possibility to give feedbacks,
which helps the system updates the user’s preference profiles.

7.2.3 The data layer

The data layer is the memory of any recommender system. Traditional recommender sys-
tems typically have two databases. The first one stores the items contained in the eCatalog,
while the second one contains the preference profiles of all the users. Ontology filtering
adds a third database that will store the eCatalog ontological models.

Once the eCatalog ontological models have been created, a copy is sent to the data
layer in order to be inserted in the database. This allows the system to retrieve the models
in case the system crashes, which is much faster than re-learning them. Another advantage
of using a database is the possibility to update the eCatalog ontological models while the
recommendation engine is running. Thus, it increases the recommender system availability,
and allows the ontological models to be updated whenever required.

Obviously, the eCatalog ontological models can not be stored as such in the database,
but require some transforming before being inserted in the database. Figure 7.4 proposes a
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Concept
ISA Instances
PK | concept_id .
PK | concept _id_child PK,FK1 f:once_gt id
PK |concept_id_parent > eCom_id ¢ PK item_id
aps
popularity _ value

Figure 7.4: A possible entity-relationship schema for the eCatalog ontological model.

simple entity-relationship schema made of three tables. These tables can store all the con-
tent and structure of the eCatalog ontological models. The schema contains the following
tables:

e Concept represents a concept in the eCatalog ontology model, eC'OM,4, and is iden-
tified by concept_id. The fields aps, and popularity value respectively store the
a-priori score, and the popularity value of a concept. Note that it not necessary to
store the score of a concept as it is user dependant, and initially set to 0.0.

e /SA models the inheritance relationships in the eCatalog ontological model. Take for
example Figure 7.5, where concept z is the child of concept y. Thus, table .5 A will
have a field (concept_id_child = x, concept_id_parent = y).

A
|

Figure 7.5: Example of a hierarchical relation in the eCOM, where concept x is the child
of concept y.

e [nstances, as its name indicates, contains all the instances of a concept. Note that
each instance is identified by an item _id
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Chapter 8

Experimental results

Experimental results are now presented that validate the ontology filtering recom-
mender system. These results are presented in two phases. First, the similarity
metric OSS is tested on WordNet and on the GeneOntology, which validate the
inference mechanism. In the second phase, the ontology filtering recommender
system as a whole is tested on two data sets: Jester and MovieLens. These two sets
contain real user ratings respectively on jokes and movies. Experimental results
on both data sets show that ontology filtering significantly increases the accuracy
of the recommendations, while being more scalable.

These results tend to confirm that the user’s preferences follow the topology
of an ontology, and that this topology can successfully be used to infer missing
preferences. We also believe that another reason why collaborative filtering fails
to correctly predict items when few ratings are known is the unrestricted search
space. The experiments shows that, even when very few ratings are known, ontol-
ogy filtering is capable of achieving high accuracy. This suggests that the ontology
can successfully restricts the search space.

8.1 Validation of the model

Testing the inference mechanism is a very complex task as it requires finding a big enough
set of real users, and asking them how much they like an item given another one. Moreover,
the inference mechanism relies on an ontology, which is also very hard to construct.

Fortunately, Chapter 5.4.4 has shown that a similarity function can be derived from the
inference mechanism. Moreover, semantic similarity has been heavily studied in computer
science and linguistic. From this research, a well established evaluation procedure on the
WordNet ontology has emerged.

WordNet, with its 117000 concepts, is one of the biggest ontologies in the world (Ap-
pendix D.1). The goal of WordNet is to develop a system that would be consistent with the
knowledge acquired over the years about how human beings process and see the English
language. In the case of hyponymy, psychological experiments' revealed that individuals
can access properties of nouns more quickly depending on when a characteristic becomes

Thttp://en.wikipedia.org/wiki/WordNet
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a defining property. That is, individuals can quickly verify that canaries can sing because a
canary is a songbird (only one level of hyponymy), but require slightly more time to verify
that canaries can fly (two levels of hyponymy) and even more time to verify canaries have
skin (multiple levels of hyponymy). This suggests that humans store semantic information
in a way that is much like WordNet, because we only retain the most specific information
needed to differentiate one particular concept from similar concepts.

Ontology filtering assumes that users’ preferences follow an ontology, and that such on-
tology can be used to infer missing preferences. From the inference mechanism, a similarity
function called OSS has been derived that can compute the pairwise similarity between any
pair of concepts in the ontology. This similarity function uses a-priori scores of concepts
that behave the same way as users see features in items.

Following this, the first experiment will look at the correlation between the similarities
computed with OS'S and real human evaluation. The experiment shows that OSS correlates
well with human evaluation (over 91%), and significantly outperforms state of the art sim-
ilarity metrics. A similar experience has also been done on the GeneOntology, and results
consolidate the previous findings by showing that OSS significantly outperforms existing
metrics in every situations.

8.1.1 Experiment I - WordNet

When Resnik introduced the node-based similarity approach [Resnik, 1995], he also estab-
lished an evaluation procedure that has become widely used ever since. He evaluated his
similarity metric by computing the similarity of word pairs using the WordNet ontology,
and then considered how well it correlated with real human ratings of the same pairs. More
information about the WordNet ontology can be found in Appendix D.1.

An experiment by [Miller and Charles, 1991] provided appropriate human subject data
for this kind of experiment. In their study, 38 undergraduate subjects were given 30 pairs
of nouns that were chosen to cover high, intermediate, and low levels of similarity. These
subjects were asked to rate the similarity of meaning for each pair in a scale from 0 (no
similarity) to 4 (perfect synonyms). The average rating for each pair represents a good
estimate of how similar two words are, according to human judgments.

Resnik reproduced the Miller&Charles experiment on a subset composed of 28 word
pairs, and found very close correlation between the human judgments obtained by Miller
and Charles. Only 28 word pairs were considered in Resnik’s experiment, because Word-
Net 1.4 did not contain all of the word pairs.

Edge | Leacock | Resnik | Lin | Jiang | OSS
Correlation | 0.603 | 0.823 0.793 | 0.823 | 0.859 | 0.911

Table 8.1: Correlation of various similarity metrics with human judgements collected by
Miller and Charles on WordNet 2.0.

This dissertation reproduces the exact experiment proposed by Miller and Charles, and
uses WordNet version 2.0. Furthermore, to correctly benchmark the 0SS similarity metric,
all of the similarity metrics introduced in Section 5.4.1 have also been implemented and
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tested. The correlations between various metrics and the human ratings are displayed in
Table 8.1.1.

These results show that 0SS achieves over 91% correlation with real user ratings, and
clearly demonstrate significant benefit over earlier approaches (t-obs ~ 3.28 and p-value <
0.02). Note that the hybrid approach defined by [Jiang and Conrath, 1997] performed better
than both edge based and node-based techniques, but the improvement over the information
based approach was not statistically significant (t-obs = 1.46 and p-value ~ 0.08). As
expected, the edge based approach is the worst performing metric as it supposes that the
edges represent uniform distances, which is obviously not true in WordNet.

"D=-log(a) "\, D=log(1+2p)

Figure 8.1: Illustration of the upwards and downwards distance in OSS.

A major difference between OSS and existing similarity metric is the fact that OSS is
asymmetric, which means that the similarity between concepts a and b is different from the
similarity between b and a. To test this aspect, different combinations of the coefficients «
and 3 have been tested in order to test the upward and downward propagation. Note that the
order of the word pairs given to OSS was exactly the same as the one given to the human
subjects in the Miller and Charles experiment. As expected, Table 8.2 shows that the best
correlation is obtained when using o going up and 1 + 23 going down. As mentioned
earlier, these coefficients render the metric asymmetric. In fact, experiments showed that
the upwards distance is up to 15 times greater than the downwards distance when concepts
are very dissimilar.

coefficient Q « 1+28|1+20
coefficient \, | 1 + 273 Q@ Q 1428
Correlation | 0.911 [0.882 | 0.693 | 0.785 |

Table 8.2: Different combinations of the coefficients « and 5 in OSS. The correlation is
computed using the real human judgement from the Miller & Charles’s experiment.

In Section 5.4.2, the downward transfer between two concepts was estimated by using
the expected score of a concept, i.e.: S(x) = 4. To verify if this assumption holds in
practice, OSS was tested with various other possibilities ranging from the minimum APS
in the ontology to 1. Formally, it means that the experiment was reproduced with the
following equation:
log(1 4 083(z, LCA(x, 2))) — log(a(z, LC A(z, 2)))

maxD

simoss(r,2) =1 — ; (3.1

where the coefficient J is not 2 anymore (under the assumption that S(x) = 1/5), but instead
ranges from a value equals to the minimum APS in the ontology to 1.
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1
2 4 minAPS

10 | 0.911 | 0.910 | 0.814

) 1
Correlation | 0.910 | O.

O kol

Table 8.3: Correlation with human judgement when coefficient d ranges from a value equals
to the minimum APS in the ontology to 1. Note that under the assumption that S(x) = 1/,
then ¢ is equal to 2.

Table 8.3 shows that the optimum value does in fact occur when S(x) = 1/, but any
value around that point will not greatly influence the correlation. However, big under-
estimations of the initial score tend to influence the correlation by over 10% as it will
overestimate the coefficient (3.

8.1.2 Experiment II - GeneOntology

To see whether previous results can be generalized, another experiment was performed on
a much bigger scale using the GeneOntology (GO). GO was chosen over other ontologies
as it is one of the most important ontologies within the bioinformatics community, and with
over 20000 concepts, it is also one of the biggest.

As the name suggested, GeneOntology is an ontology describing gene products. For-
mally, the ontology is a DAG, where a concept represents a gene, and where an edge models
is-a or part-of relationships. By definition, a gene product might be associated with or lo-
cated in one or more cellular components; it is active in one or more biological processes,
during which it performs one or more molecular functions. Thus, the DAG is further de-
composed into three orthogonal sub-ontologies: molecular function (MF), biological pro-
cess (BP), and cellular component (CC). More information about the GeneOntology can
be found in Appendix D.2.

As for most real life applications, there is no human data of similarity over which OSS
could benchmarked. Instead, [Lord et al., 2003] proposed to use the Basic Local Align-
ment Search Tool (BLAST - [Altschul, 1990]) as it shows some correlations with concept
similarity. BLAST compares nucleotide or protein sequences to sequence databases and
calculates the statistical significance of matches. In other words, BLAST finds regions of
local similarity between sequences. Thus, this experiment will use the output of BLAST to
estimate the similarity between pairs of proteins.

Formally, the experiment was conducted a follows. First, the February 2006 releases of
the SWISS-PROT protein database? (SPD) , GO?, and BLAST* were downloaded. Then,
all the concepts that were present in both GO and SPD were selected. To reduce the noise
and errors, the proteins that were not annotated by a traceable authors were also removed
(evidence code = T'AS). For all remaining concepts, a BLAST search’was performed in
order to get a list of similar proteins. From this list, three proteins were randomly selected;
respectively one at the beginning, the middle and one at the end. As with the WordNet
experiment, the idea behind this selection is to cover high, intermediate, and low levels of

2ftp://ftp.ebi.ac.uk/pub/databases/
Shttp://www.geneontology.org/GO.downloads.shtml#ont
“http://ncbi.nih.gov/BLAST/download.shtml

Sblastall -p blastp -d swissprot -i in.txt -0 out.txt -e 1000 -v 1000
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concept similarity. During a search, BLAST associates a score to each result that measures
the similarity with the input protein. Therefore, it is this score (after normalization) that
has been used as benchmark measure.

After the BLAST searches, the similarities between the concepts representing the input
proteins and the resulting ones were measured using all of the metrics defined in Sec-
tion 5.4.1. Finally, the deviation between the normalized BLAST score and the similarity
values of all the concepts was measured using the mean absolute error measure (MAE,
[Herlocker et al., 2004], Section 2.1.2). For each of GO’s sub-ontologies, Table 8.4 shows
the deviation values (MAE) for all the similarity metrics.

Edge | Leacok | Resnik | Lin | Jiang | OSS
MF 0.450 | 0.234 | 0.224 | 0.223 | 0.200 | 0.185
BP 0.392 | 0.275 | 0.314 | 0.312 | 0.269 | 0.259
CC 0.351 | 0.303 | 0.286 | 0.292 | 0.343 | 0.260

Average | 0.398 | 0.271 [ 0.274 | 0.276 | 0.271 [ 0.235 |

Table 8.4: MAE of various similarity metrics on the three sub-ontologies of the GeneOn-
tology: molecular Function (MF), biological process (BP), and cellular component(CC).

The results are very interesting in two points. First, it shows that none of the existing
techniques dominates another one. For example, Jiang’s metric has a lower deviation on the
MF ontology than Resnik’s metric, but it is not true for the CC ontology. These results can
be explained by the fact that the topology of the sub-ontologies differ widely. For example,
BP has 10796 concepts and 85.3% of is-a relations, MF has 7923 concepts and 99.9% of
is-a relations, while CC has only 1181 concepts and 59.8% of is-a relations.

Finally, it can be seen that the OSS similarity function has the lowest deviation, what-
ever the sub-ontology. This suggests that OSS is more robust than existing techniques, and
that it is also significantly more accurate (with p-values<0.01). We believe that this re-
sults are achieved because the algorithm used in BLAST shares some similarities with our
a-priori score.

ofanBoy | ] cfonpnde] |
\ﬁ_l Iﬁ_l
n m

Figure 8.2: An ontology modeling the sequence describing genes, where the hierarchy is
arranged based on what the genes have in common.
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Imagine an ontology that represents genes’ sequences, where the hierarchy is arranged
in such way that concepts represents genes having the some part of their sequences that
intersects. In such hierarchy, an edge represents the extra bit of sequence that differentiates
a child concept from its parents. To simplify this example, we make the hypothesis that
each concept has only one continuous subsequence in common with its parents, and that
this common subsequence always starts from the beginning of the sequence. As a conse-
quence, an ontology as shown in Figure 8.2 can be constructed. Note that such ontology
can be easily constructed with real life sequences by breaking up the sequences into smaller
part, and modeling each subpart with its own ontology. Multiple inheritance can then be
used to link all the sub-parts together. The GeneOntology does share some commonalities
with this model as concepts in the ontology represent families of genes that have common
subsequences.

G |anBnde| |
CS(c)
Figure 8.3: Tllustration of common subsequence of a concept ¢, C'S(c).

Under these hypotheses, we define the common subsequence of a concept ¢, C'S(c),
as a function that measures the length of the sequence that concept ¢ and its descendants
have in common. Moreover, we assume that the function is normalized in the interval
[0, 1]. Figure 8.3 illustrates the C'S function on concept ¢;. Thus, the probability that the
lenght of the subsequence of a concept c is superior to the threshold x, P(C'S(c) > x),
is equal to 1 — x. However, this probability ignores the fact that a concepts can have
descendants, which directly influences this probability. Furthermore, for a concept ¢, to be
a parent of ¢;, ¢, must have part of its sequence that intersects with ¢;. As a consequence,
CS(cr) < CS(c;) as concept ¢; contains some subsequence that differentiates it from c.
Therefore, the probability that the common length of any concept c is superior to a threshold
xis equal to (1 — )", where n is the number of descendants of c. Note that we count all
descendants of ¢ and c itself, to account for the fact that each concept may have instances
that do not belong to any sub-concept. Thus, for a concept c to satisfy the function C'S(c),
all the instances of its descendants must satisfy this function, as well as all the instances of
c.

Thus, the probability distribution of the score for a concept ¢ is P(CS(c) < z) =
1 — (1 — z)™*!, with the following density function:

d

folw) = o (1= (1= 2)™*Y) = (n+1). (1 - 2)" 8.2)

As a consequence, the expected lowest bound of the length of the common subsequence
of a concept ¢, E(C'S(c)), can be obtained by integration of the density function as follows.
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1
E(CS(c) n—f—l/azl—az”dm
0

n+11 1 (71 _ \n+l
— 1) |- +/ d-a" (8.3)

n+1 o Jo n+1

1/((n+1)(n+2))

:n—|—2

Equation 8.3 shows that the expected lowest bound of the length of the common subse-
quence concept c is in fact equal to the lowest bound of the score ¢, APS(c).

8.2 Ontology filtering with a static ontology

The previous experiments have shown that OSS significantly outperforms state of the arts
similarity metrics on WordNet and the GeneOntology. In short, these results showed that
OSS is the most accurate at predicating human similarity judgement. Moreover, it tends to
confirm the fact that the inference mechanism can successfully infer missing preferences,
as OSS is derived from it.

Following these results, this section will look at whether or not the ontology filtering
recommender system gives more accurate recommendations than existing recommender
systems. Obviously, it is impossible to compare all the approaches, instead, this dissertation
uses the item-based collaborative filtering as benchmark (see Section 2.4.2). This technique
was used for two main reasons. First, CF has proven to be the most popular and most
effective recommender system in practice. Second, ontology filtering uses the same data to
learn the ontology as the collaborative filtering, which makes it a fair comparison. Note that

the experiments that validate the learnt ontology approach will be described in the Section
8.3.

8.2.1 Experimental set-up

The data for this experiment is drawn from the famous MovieLens data set®. MovieLens
is the most famous data set in the recommender system community; it contains the ratings
of 943 real users on at least 20 movies. There are 1682 movies in total, which can be
described by 19 themes: drama, action, and so forth. Using the weighted additive model,
WADD, described in Section 2.3.3, a movie can be described as follows:

p
= wpve(d), (8.4)
k=1

where vy, is the utility of the k" theme, wy, is the weight of the k' theme, and p is the
total number of themes item 7 has. Thus, the theme of a movie can be seen as a discrete

®http://www.cs.umn.edu/Research/GroupLens/data
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attribute taking the value O or 1, as a theme may or may not appear in a movie. As a
consequence, the utility of a theme will be computed from the ratings a user has assigned
to a movie. As a user expresses preferences on a small number of movies, only a few
utility values can in fact be computed. To overcome this problem, the remaining utility
values will be estimated using ontology filtering. Unfortunately, computing the weights is
much harder, and would request asking the user too many elicitation questions. Instead, the
equal weight policy was used [Zhang and Pu, 2005], as it has a very high relative accuracy
compared to more complex ones. Formally, this policy assigns the same weight to each
attribute, while making sure that the sum of these weights equals to 1. Note that more
complex methods such as multiple regression can also be used to estimate such weights.

( Score K {( Concept ) APS

Children
A

Documentary

Thriller
( Fantasy )

Adventure

e

@C Acton ) ( Scifi )
(Western ) ( War )

Figure 8.4: Hand made ontology for the MovieLens data set.

In Chapter 7.2.2, it is explained that an ontology can be created either from a consensus
among a group of experts, or by using clustering algorithms. Using the movies’ themes, it
is in fact possible to design such ontology. With the help of some online dictionaries and
IMDb.com’, the author of this thesis created the ontology illustrated in Figure 8.4. Note
that the author of this thesis does not claim to be a movie expert, but created this ontology
for the sake of this work. Many people would (and have) argued that this ontology is
very basic, and could be refined by adding more information such as multiple hierarchy.
However, as shown later in this section, experimental results show that ontology filtering
with this simple ontology actually outperforms item-based collaborative filtering.

http://reviews.imdb.com/Sections/Genres/
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Figure 8.5: Illustration of the set up for experiments III and I'V.

To evaluate ontology filtering, some training data must be extracted from the data set in
order to build the users’ preference profiles, and to test the recommendations. Formally, for
all the experiments in this section, the training and test sets were obtained as follows (Figure
8.5). For each user in MovieLens, all of her ratings are inserted either in the Intermediate
set - IS or in the user-item matrix - R. As its name indicates, the user-item matrix K contains
all the users’s preference profiles for the users who rated less than 65 movies. This matrix
is used by collaborative filtering for building the neighborhood of items. On the other hand,
the intermediate set /.S is used for creating the users’ preference profiles, and for testing
the behavior of the recommender systems, where the set of users in 1.5 is called U,e;.
For each reaming user in /.5, its ratings are randomly split in two partitions: /SL and
IST. The former set contains exactly 50 ratings, while the latter contains the remaining
ones. These two intermediate sets are used to study the behavior of the recommendation
algorithms with different amounts of rating data to learn the model. In the first scenario,
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S ratings are extracted from /.SL and inserted into the user’s learning set - LS, in order to
simulate the case when few preferences about the user are known. Obviously, all the items
in I.ST are inserted in the fest set - TS, which is used for computing the prediction using
the top-N recommendation policy, with N set to 5. Then, the experiment is reiterated by
increasing the size of the learning set to respectively 10, 20, 40 and 50 rated items.

For each user in the learning set, the on-line phase of the ontology filtering process is
applied in order to obtain some recommendations (see Section 7.2.2). To summarize this
process, the 4 main steps are given below. For each user in the learning set, the user’s
preferences profile U PP is built by simply copying all the ratings from the user’s learning
setinto the U PP. As the ontology filtering possesses just one ontology, Algorithm 8 simply
returns this unique ontology. Given this ontology, Algorithm 5 builds the user’s ontological
profile by computing the score of the concept that has an instance in U P P. Then, missing
scores are inferred using ontology filtering’s inference mechanism. Finally, Algorithm 6
generates a set of 5 recommendations from the items found in the user’s test set 7.5, and
the mean absolute error is used to measure the accuracy of those recommendations. Note
that this algorithm is slightly modified as an item can be instanced of one or more concepts.
As a consequence, the overall score of an item is computed using the WADD model defined
in Equation 8.4.

8.2.2 Experiment III - Behavior of ontology filtering

This experiment focuses on the ontology filtering approach, and looks at its behavior when
modifying the way the weights and value function are computed. Thus, four distinct strate-
gies have been implemented, which are as follows:

e OF is the ontology filtering process as defined in Section 7.2.2, where the missing
utility values are inferred, and weights are computed using the equal weight policy.

e Random inference has the weights computed using the equal weight policy, but the
missing utilities are replaced by random values.

e Random weight uses the inference mechanism to infer missing utility values, but uses
random weights.

e Random policy uses random values for both the weights and utility values.

For each of this strategy, Algorithm 6 generates a set of 5 recommendations from the
items found in the user’s test set 7'S, where the hybrid score is computed only from the
user’s own score (i.e.: personalization coefficient p is set to 1).

Figure 8.6 shows the recommendation accuracy of the top-5 items using the mean ab-
solute error metric (MAE, Section 2.1.2). As expected, it is the ontology filtering approach
OF that performs the best, as it has the lowest mean absolute error. As the size of the
user’s learning set increases, more and more scores can be precisely learnt, which reduces
the need of the inference mechanism. Note however that there is not a big variation in accu-
racy which tends to show that the inference mechanism is doing a good job. The random
in ference strategy always performs significantly worse than OF' (p-value < 0.5), which
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suggests that the inference mechanism can indeed estimate the user’s preferences. Surpris-
ingly, the ontology filtering approach produces recommendations which are much better
than the random weight policy. This shows that the weights are also very important in
the WADD model. On the other hand, the behavior of the random policy is not a surprise
and is coherent with the fact that everything is randomly generated, which obviously gives
worse predictions than with the user’s preferences.

1.05
. \
* % o % =
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g 0.9
0.85
——OF
0.8 == Random Inference
Random Policy
0.75 =>¢=Random Weight
5 10 20 30 40 50
Size of the user's learning set LS

Figure 8.6: Ontology filtering versus other strategies for inferring the value functions and
weights.

8.2.3 Experiment IV - Ontology filtering vs other techniques

This next experiment focuses on whether the ontology filtering recommender system with
the learnt ontology is better or worse than existing approaches. Again, testing all the rec-
ommender systems is impossible. Instead, this experiment looked at the most popular
approach on the web today - item-based collaborative filtering (CF). CF was also chosen
because the ontology learning mechanism uses the same data. Furthermore, content ap-
proaches were not considered as they require a lot of information to compute an accurate
model of the user, which is not available in this situation.

The set-up of the experiment remains the same as the previous experiment, but it is now
the following 5 recommendation strategies which are being evaluated.

e Random is the most naive approach. It simply selects 5 items randomly from the
user’s test set 7'S.

e Popularity is a simple but very effective non-personalized strategy that ranks the
movies based on their popularity. The popularity of each movie was computed using
the user’s rating in the user-item matrix R.
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e OF is the ontology filtering process as defined in Section 7.2.2, where the missing
utility values are inferred and weights are computed using the equal weight policy.
However, the hybrid score of a concept is computed only from the user’s score (i.e.:
the personalization coefficient p is set to 1).

e OF_pop is the ontology filtering process as defined in Section 7.2.2, where the miss-
ing utility values are inferred and weights are computed using the equal weight pol-
icy. In this situation, the hybrid score of a concept is computed exactly as mentioned
in Algorithm 6, which means that it combines both of the previous approach (i.e.:
coefficient p is set to 0.5).

e CF is the item-based collaborative filtering, where the pairwise item similarities are
computed using the adjusted cosine metric. The number of neighbors was set to 90
as [Mobasher et al., 2004] and [Sarwar et al., 2001] have shown that the optimum for
MovieLens is very close to this value. Note that to reduce the bias, the author did
not implement this algorithm himself, but instead used the freely available package

Multilens?.
13
|
1.2 ‘x
\
11 7€ Pe—tg e e e <
\ =@— Popularity
% AV
s 1 \ —{ll— OF_pop
L\ OF
0.9
\ ==3é= Random
* s <~ ¥ = CF
08 " o o ———— —
— a3 —t
0.7 T T T T T 1
5 10 20 30 40 50
Size of the user's learning set LS

Figure 8.7: Ontology filtering versus other recommender strategies.

First, the predictive accuracy of each method is measured using various size of the
learning set LS. Figure 8.7 plots the recommendation accuracy of the various recommender
systems when different sizes of learning sets are used to build the users’ preference profiles.
This graph clearly shows the weakness of CF when only a few ratings are used to learn the
model. This is known as the cold-start problem, where a minimum number of ratings need
to be known in order to find the right neighborhood of similar users, i.e. at least 20 in this

8http://knuth.luther.edu/ bmiller/multilens.html
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case. Note that when only 5 items are available, CF has a MAE of 2.59, which is twice
as bad as the random policy. This simply reflects the fact that when so few ratings are
available, then CF is totally unable to predict the ratings of some items. However, OF does
not suffer from this problem and shows significant improvement over CF (p-value<0.01),
when we have less than 30 ratings in the learning set. In more advanced experiments, CF
was found to overcome OF when users had over 65 ratings in their preference profiles.
Surprisingly, the popularity metric performs well, even better than CF when the number of
ratings in LS < 50, which shows that users tend to like popular items. For example, take
a random user who wants to watch a movie, and imagine that you have two choices; either
the latest Harry Potter, or the Swiss movie Vitus. In this situation, most users will choose
the Harry Potter movie as it is very famous, and most people heard about it. As expected,
the best accuracy is obtained when OF is combined with the popularity approach. The
combination of the scores allows the system to better discriminate between good and bad
items with a higher confidence.

Second, the novelty of the recommendations generated with each approach was com-
pared against the Popularity one. The motivation for this experiment lies in the previous
movie example. Recommending a Harry Potter movie is actually not very smart, as most
people may already have seen it or read the book. Instead, a smart recommender system
should recommend items that a user will never have seen otherwise. Unfortunately, novelty
is very hard to measure as it requires asking the user if he knew or heard about the items
which have been predicted. Moreover, there is no standard way of measuring the novelty
as there is for the accuracy. Instead, the dissertation used the novelty metric defined by
Equation 2.4.
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Figure 8.8: Novelty of various recommender techniques compared to the popularity ap-
proach.
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Again, the results are very interesting in two points (Figure 8.8). First, it shows that it is
OF that produces the best non-obvious recommendations, whatever the size of the learning
set. The novelty value of ontology filtering is always greater than 33%, which means that
a third of the recommendations were novel. Second, CF’s novelty seems to improve when
there are less than 10 ratings, and then decreases steadily down to the 20% threshold. This
behavior can be explained if we superpose this result with the MAE. When there are less
than 20 ratings, CF’s accuracy is very low, which tends to indicate that items were selected
from many diverse neighborhoods.

Finally, the ontology filtering with the hybrid score tells us that the use of popularity
data can improve the overall recommendation accuracy over our simple OF approach, but
this gain is then lost in recommendation novelty. Thus, a tradeoff must be done between
the recommendation accuracy and its novelty. This also explains why the personalization
coefficient p is set to 0.5, half way between pure personalization and pure popularity rec-
ommendation.

8.3 Ontology filtering with the learnt taxonomies

The previous two experiments have shown that ontology filtering with a predefined on-
tology can successfully estimate missing preferences. Furthermore, they have shown that
ontology filtering can outperform item-based collaborative filtering, while keeping a higher
degree of novelty in the recommendation. Finally, it was shown that the popularity of items
can be used to increase the prediction accuracy (Algorithm 6), but at a cost in novelty.

Following these results, the rest of this chapter looks at whether or not the ontology
filtering recommender system with the learnt taxonomies can also give more accurate rec-
ommendations than item-based collaborative filtering. The taxonomies generated by the
various clustering algorithms are also studied, and results show that no unique clustering
algorithm is able to rule the other ones. Moreover, it is shown that hierarchical distance-
based clustering algorithms are sensitive to both the size of the user’s preferences and the
size of the clustering trees. Fortunately, experimental results show that personalizing the
ontology based on the user preferences does help to increase the recommendation accuracy,
while reducing the problems faced by single clustering algorithms. At the same time, the
intuition that letting some concepts have more than one parents is verified, but experimental
results on Jester shows that it is at a cost in computational complexity.

Note that Appendix E.2 contains an experiment that compares ontology filtering with
the various ontologies. Unfortunately, due to the bias in the nature of the experience set-up,
it has not been included in this chapter but in Appendix E for further information.

8.3.1 Experimental set-up

To evaluate ontology filtering with the learnt taxonomies, several experiments have been
performed on two famous data sets: MovieLens® and Jester'®. MovieLens is the data set
used in Experiment III and IV, while Jester is another famous data set that contains the

http://www.cs.umn.edu/Research/GroupLens/data
Ohttp://www.ieor.berkeley.edu/~goldberg/jester-data/
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users’ ratings on jokes collected over a period of 4 years. The data set contains over 4.1
Million ratings and is actually split into three zip files: jester-data-1.zip, jester-data-2.zip,
jester-data-3.zip. In this dissertation, only the first data set was used as it contains already
24,983 users on all the 100 jokes.

These sets were used for three reasons. First and most importantly, they are the most
widely used data sets, which makes it easy for other researchers to reproduce the experi-
ments. Second, both of those data sets contain (real) human ratings on items, which are
necessary for filling in the user-item matrix R, and learning the ontologies. Finally, these
sets are very different in content and sparsity, where the sparsity is defined as the fraction
of entries in the matrix R without values [Sarwar et al., 2001] over the total number of
possible entries. For example, MovieLens contains movies that can easily be defined with
some features such as the theme, duration, and so forth. Jester is made up of jokes, which
is much harder to describe, and thus, is an ideal candidate to test our ontology learning
algorithm. Notice also that the sparsity of MovieLens(0.937) is much greater than the one

of Jester(0.447).
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Figure 8.9: Illustration of the set up for experiments V to VIII.

As with the previous experiments, some training data must be extracted from these
data sets in order to build the preference profiles, and the ontologies. Formally, for all
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the experiments in this section, the training and test sets were obtained as follows (Figure
8.9). First, all the users who rated less that 65 items were removed. The remaining users
were then split in two distinct partitions: Intermediate set - IS and user-item matrix - R.
As it name indicates, the user-item matrix /2 contains all the users’ preference profiles for
the users who rated at least 100 items. This matrix is used by collaborative filtering for
building the neighborhood, while the same data is used by ontology filtering for learning
the ontology. On the other hand, the intermediate set IS is used for creating the user’s
preference profile and testing the behavior of the recommender systems. Thus, for each
remaining user in /.5, its ratings are randomly split in two partitions: [SL and [.ST. The
former set contains exactly 50 ratings, while the latter contains the remaining ones. Note
that in the previous experiments, the collaborative filtering model was learnt on users who
rated less than 65 items. This set-up forces the CF’s model and the ontologies to be learnt on
users who rated at least 100 items. There are two reasons for this. First, CF and clustering
algorithms perform better when the matrix [? is not too sparse. Second, it is possible to test
both CF and OF in various sparsity situations, as the Jester data set contains 100 jokes and
some users have rated all of them.

In the first scenario, 5 ratings are extracted from /.S L and inserted into the user’s learn-
ing set - LS, in order to simulate the case when few preferences about the user are known.
Obviously, all the items in I ST are inserted in the fest set - TS, which is used for comput-
ing the prediction using the top-N recommendation policy, with N set to 5. In the second
scenario, all 50 items in I SL are inserted in LS to see how CF and OF behave when suf-
ficient ratings are available for learning the model. Note that the experiments will be first
executed with the first scenario, and then with the second. Note also that the first scenario
is identified on the graphs with the notation * — 5LS, where * is either OF or C'F'; while
the second one used the notation * — 50LS.

Collaborative filtering requires the number of neighbors £ to be set before making the
recommendation. Similarly, ontology filtering used a parameter 6 that sets the number of
leaf clusters in the ontology. To reduce the bias, the experiments will always use the same
value for both % and 6. The recommendation accuracy of the predictions made by both CF
and OF are measured using the standard F1 metric (Section 2.1).

For the clustering algorithms, the toolkit CLUTO!! version 2.1.1 was used as it im-
plements all of the partitional and agglomerative clustering algorithms used by Algorithm
7. On the other hand, the java package WEKA'? version 3.4 was used for the COBWEB
algorithm.

8.3.2 Experiment V - Evaluating the item-to-item similarity metrics

Ontology filtering uses ontologies to infer missing preferences. In Section 6.3, Algorithms
7 and 9 were define to learn the underlying structures of these ontologies, followed by
Algorithm 8 for selecting which one to use. The clustering algorithms used in Algorithms
7 and 9 rely on the the item-to-item similarity for evaluating the distances between each

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
http://www.cs.waikato.ac.nz/~ml/weka/
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item. It was suggested in these algorithms to use adjusted cosine for computing all the
pairwise similarities from the user-item matrix £.

In the literature, it is argued that the adjusted cosine is the best performing metric when
performing item-based collaborative filtering, (CF). This is because the adjusted cosine
can take into account the difference in rating scale between two users. To test whether
the similarity metric influences the ontology generated using Algorithm 7, the following
experiment was preformed. Using Pearson correlation - Equation 2.19, cosine similarity-
Equation 2.20, and the adjusted cosine similarity - Equation 2.24 iteratively, all the pair-
wise similarities were generated from the user-item matrix R, which were then used in
Algorithm 7 to learn a set of taxonomies. For each user in U, the best ontology was
selected using Algorithm 8. This ontology is then used to infer the missing user’s prefer-
ences, and for predicting the ratings of the items in the user’s test set 7'.S. This experiment
is reiterated using various values for the threshold 6 in Algorithm 7, with respectively 5 and
50 items in the user’s learning set LS. The same experiment was also performed in paral-
lel with the item-based collaborative filtering, where the number of neighbors £ is always
equal to 6.

Collaborative Filtering Ontology Filtering
Pearson | Cosine | Adjusted Cosine | Pearson | Cosine | Adjusted Cosine
Jester 0.324 | 0.310 0.328 0.364 | 0.364 0.368
MovieLens | 0.176 | 0.161 0.176 0.278 0.286 0.290
Average 0.250 | 0.236 0.252 0.321 0.325 0.329
STDEV 0.009 0.004

Table 8.5: Average recommendation accuracy of CF and OF when using different simi-
larity metrics to build the item-to-item similarity matrix S. The accuracy is measured by
averaging the F1 value of all the users.

Table 8.5 shows the average prediction accuracies of the recommendations made by
ontology filtering algorithms and item-based collaborative filtering. From these results,
two very interesting observations arise. First, with an average F1 value of 0.329, the best
predication accuracy is obtained when ontology filtering uses the adjusted cosine similarity
metric to compute the item-to-item similarities. However, the improvement in accuracy is
not statistically significant over the traditional cosine and Pearson measures. This tends to
show that the similarity metric on the generated ontology is the most important factor.

As expected, it is the adjusted cosine similarity that gives the best decision accuracy for
collaborative filtering. This confirms previously obtained results in the literature. However,
theses results show that the similarity metric has a greater influence on collaborative filter-
ing. The standard deviation of the three different metrics for CF is equal to 0.009, which is
more than double the one of ontology filtering.

8.3.3 Experiment VI - Evaluating Algorithms 7 and 8

In this next experiment, the performance of the taxonomies generated by Algorithm 7 is
studied, and whether or not the ontology personalization made by Algorithm 8 helps to
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increase the prediction accuracy. Using Table 6.2, Algorithm 7 generates 15 different on-
tologies: 6 using the partitional approach, and 9 with the agglomerative approach. Table
8.6 summarizes the various algorithms and notations used in this experiment. Note that
the COBWEB algorithm is used to benchmark the learnt ontologies. For all the users in
Uyser, the 15 ontologies were then used individually to create the user’s ontological profile,
and infer the missing preferences of all the concepts. Then, the top-N recommendations
were generated using the inferred ontological profile over the item in the user’s test set 7'5,
where the hybrid score of a concept is set to the score of that concept (i.e.: the popularity
of a concept is not considered = p = 1).

P-Z; Partitional clustering using the criterion function Z;

P-7o Partitional clustering using the criterion function Z

P-& Partitional clustering using the criterion function &;

P-G; Partitional clustering using the criterion function G;

P-H;  Partitional clustering using the criterion function H;

P-Hs  Partitional clustering using the criterion function Hsy

A-7;  Agglomerative clustering using the criterion function Z;

A-To  Agglomerative clustering using the criterion function Zy

A-&  Agglomerative clustering using the criterion function &

A-G;  Agglomerative clustering using the criterion function G;

A-H;  Agglomerative clustering using the criterion function H;
A-Ho  Agglomerative clustering using the criterion function Ha
A-UP  Agglomerative clustering using the criterion function UPGMA
A-SL  Agglomerative clustering using the criterion slink

A-CL  Agglomerative clustering using the criterion clink

COB  The incremental concept-based clustering algorithm COBWEB
OF Ontology filtering using Algorithm 7 and 8

Table 8.6: Notations used by the various algorithms in Experiment VI.

As for the previous experiment, the prediction accuracy is measured using the F1 metric
defined in Equation 2.3. The underlying assumption is that a good ontology should generate
good recommendations, and thus increase the prediction accuracy. However, the results
obtained by the different criteria functions significantly diverge within the same family of
algorithms (i.e.: partitional or agglomerative). As a consequence, using a simple average
measure over all the criteria would induce too much bias, especially when we consider the
fact that there are more agglomerative algorithms than partitional ones. Thus, the F1 results
were transformed into relative F1 value, rF'1. This is done by dividing the F1 results by
the maximum possible value between the 15 possible ontologies. Notice that the relative
F1 value is very similar to the relative Fscore introduced in [Zhao and Karypis, 2005]. To
have a better understanding of the behavior of each ontology, they have been tested with
different numbers of leaf clusters, ranging from 5 to the number of items available.

Table 8.7 displays the relative F1 values, where each result element of the table is com-
posed of two sub-elements x, y. The first element « was obtained when only 5 items were
present in the user’s learning set LS, while y was obtained when the user had 50 items
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in its learning set. The first 15 rows of Table 8.7 contain the accuracy of the recommen-
dations obtained using the ontology learnt by a particular clustering algorithm. The row
COB contains the recommendation accuracy when only the COBWEB algorithm is used
to learn the ontology, while the last row shows the full ontology filtering process as defined
in Algorithms 7, and 8. In short, this experiment observed the behavior of a combination
of ontologies, when users had respectively very small and moderate preference profile.

5 10 20 40 60 80 100 AVG

P-7; 0.92,092 0.97,1.00 1.00,0.95 0.98,092 0.93,095 0.89,090 0.90,0.94 | 0.94,0.94
P-Z, 1.00,1.00  0.99,0.94 0.98,0.95 0.98,0.95 0.90,0.92 0.90,0.91 0.90,0.91 | 0.94,0.94
P-& 0.72,0.86  0.69,0.77 0.78,0.70  0.79,0.82 0.76,0.71 0.76,0.73  0.85,0.90 | 0.77,0.78
P-G; 0.67,0.60 0.72,0.62 0.74,0.68 0.91,0.82 0.98,0.97 1.00,1.00 1.00,0.89 | 0.86,0.80
P-H; | 0.96,099 1.00,1.00 0.93,1.00 0.89,1.00 0.91,0.95 0.87,0.87 0.85,0.90 | 0.92,0.96
P-Hs | 096,094 0.98,098 094,097 0.87,0.95 0.78,090 0.81,0.85 0.85,0.90 | 0.89,0.93
A-Z; ] 092,098 0.95097 097,092 0.96,092 093,095 0.89,0.90 0.90,0.94 | 0.93,0.94
A-Zy | 094,096 097,097 098,093 0.93,091 0.89,091 0.84,0.92 0.88,0.96 | 0.92,0.94
A-& | 0.79,091 0.73,0.84 0.67,0.61 0.67,0.60 0.71,0.65 0.80,0.76 0.85,0.91 | 0.75,0.75
A-G; | 0.67,060 0.72,063 0.77,0.69 0.91,0.82 1.00,0.96 1.00,0.96 0.97,0.94 | 0.86,0.80
A-H; | 0.74,0.73 0.83,0.77 0.77,0.72 0.80,0.74 0.83,0.80 0.84,0.82 0.86,0.93 | 0.81,0.78
A-Ho | 0.85,0.84 0.83,0.85 0.81,0.76 0.73,0.68 0.85,0.81 0.88,0.86 0.90,1.00 | 0.84,0.83
A-UP | 094,095 0.98,093 096,092 0.97,096 094,096 0.90,0.91 0.88,0.98 | 0.94,0.94
A-SL | 0.67,0.60 0.69,0.60 0.70,0.64 1.00,0.97 1.00,1.00 0.96,0.92 0.97,0.98 | 0.85,0.82
A-CL | 095,1.00 0.96,097 096,096 097,092 0.950.95 0.89,090 0.89,0.97 | 0.94,0.95
COB | 0.70,0.65 0.70,0.64 0.67,0.64 0.64,0.63 0.62,0.63 0.61,0.62 0.63,0.70 | 0.65,0.64
OF 1.07,1.11 1.10,1.08 1.08,1.05 1.08,1.05 1.05,1.06 0.94,1.02 0.92,0.96 | 1.04,1.05

Table 8.7: Relative F1 values obtained on the Jester dataset. The notation x, y means that
users in U, had respectively 5 and 50 ratings in their learning set LS. The number of
leaf clusters ranges from 5 to 100.

From this table, it can be seen that, on average, ontology filtering using Algorithm 8 to
select the best learnt ontology performs better than any of the simple clustering algorithms
alone (rF'1 = 1.04 and rF'1 = 1.05), whatever the size of the users’ learning set. This tends
to confirm our intuition that not one ontology is strictly better than the others, but rather that
some users will reach a better accuracy with a given ontology. Notice that having a relative
score superior to 1 for OF is not a mistake. It is due to the fact that the maximum value
for the normalization is selected from the 15 simple clustering ontologies only. Another
important result is that the ontology learnt by COBWERB is the worst performing ontology.
The main reason for this lies in the definition of COBWEB: it is a conceptual clustering
algorithm. As a consequence, items need to be defined by a set of attribute-value pairs. In
our eCommerce context, this data is unavailable as we only have a set of rated items. This is
also an indication that the technique [Clerkin et al., 2001] of transforming the item-to-item
similarity matrix into attribute-value pairs is not suitable in this domain. When 5 items are
used for learning the user’s score, the partitional clustering with the 7, criteria function (P-
7-) has the best average relative score. Then, partitional clustering with the ; function (P-
'H1) becomes the best algorithm when 50 items are used for building the user’s preference
profile. This tends to go in the direction of Zhao’s conclusions [Zhao and Karypis, 2005]
that partitional clustering algorithms perform better than agglomerative ones. Notice the
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evolution of the clustering P-G; with the number of clusters. When few leaf clusters are
created, then P-G; performs poorly. However, when we have many clusters, P-G; performs
really well, which tends to show that the graph criterion requires many leaf clusters to
generate a good ontology. When the number of clusters are set to either 40, 60, or 80,
and LS to 5, then interestingly agglomerative algorithms do perform better than partitional
clustering ones. This would indicate (and the results with MovieLens confirm this) that
agglomerative clustering needs enough leaf clusters to perform correctly, while partitional
algorithm seems better with less clusters. It makes sense when we consider the fact that
partitional algorithms are top down approaches that recursively split clusters. Thus, too
many splits may degrade the ontology, as it generally increases the variance. Inversely,
agglomerative clusterings are bottom up approaches that recursively merge clusters.

5 20 60 100 500 1000 1668 Average
P-7; 0.84,0.86 092,091 0.99,093 0.94,090 1.00,0.87 1.00,0.88 0.99,0.86 | 0.95,0.89
P-1, 0.88,0.78 0.80,0.93 0.80,097 0.74,0.89 0.81,0.87 0.97,0.87 0.87,0.87 | 0.84,0.88
P-& 0.90,1.00 0.84,094 0.69,0.92 0.64,0.89 0.68,0.72 0.64,0.68 0.89,0.90 | 0.75,0.83
P-G; 0.92,0.87 0.88,0.88 0.72,0.92 0.68,0.90 0.82,0.89 0.88,0.79 0.88,0.79 | 0.83,0.86
P-H; | 093,094 1.00,1.00 0.80,1.00 0.74,0.93 0.99,096 0.92,091 0.82,091 | 0.89,0.95
P-H, | 0.88,0.92 0.82,0.85 0.67,0.89 0.63,0.86 0.70,0.84 0.70,0.72 0.80,0.73 | 0.74,0.83
A-Z; | 073,052 0.65,0.51 0.52,0.54 0.48,0.50 0.51,048 0.91,0.81 1.00,0.81 | 0.69,0.59
A-Z, | 0.85,0.65 0.75,0.59 0.61,0.62 0.57,0.60 0.58,0.60 0.90,0.82 0.91,0.80 | 0.74,0.67
A-& | 075,059 0.65,0.53 0.53,0.55 048,052 0.75,0.85 0.85,1.00 0.81,1.00 | 0.69,0.72
A-G; | 0.75,0.57 0.67,0.58 0.55,0.67 0.54,0.71 0.67,0.74 0.91,0.80 0.82,0.79 | 0.70,0.69
A-H; | 0.88,0.83 0.91,090 0.75,091 0.79,0.92 0.86,091 0.84,0.79 0.70,0.79 | 0.82,0.86
A-Ho | 1.00,090 0.88,090 0.77,091 0.84,0.92 0.87,0.86 0.83,0.77 0.74,0.75 | 0.85,0.86
A-UP | 0.88,0.72 0.77,0.66 0.62,0.69 0.58,0.66 0.61,0.64 0.92,0.85 0.96,0.83 | 0.76,0.72
A-SL | 073,052 0.64,048 0.53,0.56 0.48,0.53 0.51,048 0.61,0.70 0.90,0.68 | 0.63,0.56
A-CL | 089,091 0.92,092 1.00,093 1.00,1.00 0.98,1.00 0.94,0.79 0.97,0.78 | 0.96,0.90
COB | 0.83,0.71 0.72,0.64 0.59,0.67 0.55,0.65 0.58,0.64 0.52,0.55 0.51,0.92 | 0.62,0.68
OF 1.21,1.27 1.20,1.34 1.18,1.34 1.10,1.35 1.21,1.28 1.08,1.20 0.81,1.07 | 1.11,1.26

Table 8.8: Relative F1 values obtained on the MovieLens dataset. The notation x, y means
that users in U, had respectively 5 and 50 ratings in their learning set L.S. The number
of leaf clusters ranges from 5 to 1668.

As shown in Table 8.8, the MovieLens results are very similar to those obtained with
the Jester data set. For example, personalized ontology filtering performs better on average
than any of the clustering algorithms taken separately, whatever the size of the learning set
LS. As a matter of fact, the improvement is even more significant than with Jester. Sec-
ond, the ontology produced by COBWEB is again giving a very poor prediction accuracy.
For the first time, the agglomerative clustering with the clink criteria function is the best
performing clustering algorithm when 5 items are used for learning the user’s model. Note
however, that P-Z; is nearly as good as A-CL, and thus no clear conclusion can be drawn
from this result. When 50 ratings are used to populate the user’s learning set LS, the best
performing ontology is again the one learnt using the partitional clustering with the H;
function. This tends to suggest that, on average and when sufficient data about the user is
known, partitional clustering with the H; criteria function performs the best. A detailed
analysis of the ontology size reveals in fact that the agglomerative clustering with the clink
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function can outperform P-Z; if the number of clusters are set to either 100 or 500. For-
tunately, our ontology filtering approach with Algorithm 8 is capable of predicting which
ontology to use as its relative F1 score is always bigger than 1, and whenever the number
of clusters are less or equal to 1000.

Jester MovieLens Average
P-7; 0.25,1.27 147.42,4.39 73.83,2.83
P-7 0.26,1.35 185.81,5.53 93.04,3.44
P-& 0.27,1.39  196.62,5.86 98.45,3.62
P-G, 0.44,222 120.77,2.22 60.60,2.91
P-H; | 047,239 1293.98,38.53 647.22,20.46
P-Hy, | 0.53,2.71 1592.28,47.42 796.41,25.06
A-Z; | 0.20,1.01 34.79,1.04 17.49,1.02
A-Z, | 0.21,1.07 35.90,1.07 18.05,1.08
A-& | 0.22,1.10 37.60,1.12 18.91,1.11
A-Gy | 0.22,1.12 33.98,1.01 17.10,1.07
A-H; | 0.33,1.70 694.59,20.68 347.46,11.19
A-Hy | 0.36,1.84 835.54,24.88 417.95,13.36
A-UP | 0.20,1.01 36.59,1.09 18.39,1.05
A-SC | 0.20,1.00 37.23,1.11 18.71,1.05
A-CL | 0.20,1.00 33.58,1.00 16.89,1.00
COB | 0.75,3.84 30816.00,917.67 | 15408.38,460.75

Table 8.9: Execution time T required for the clustering algorithm to generate the ontologies
(in seconds). The element x of the tuple z,y is in seconds, while y measures the relative
time 7" from the best clustering algorithm (1.0 being the best).

When considering which clustering algorithm to use, the accuracy of the prediction
should not be the only criterion. The execution time required to build the ontology should
also be an important aspect. Table 8.9 displays the execution time (in seconds) required for
the clustering algorithm to generate its tree, and the relative execution time. The relative
execution time of an algorithm a, r7T'(a), is computed as the ratio of the execution time
T of algorithm a over the minimum time T of any of the 15 algorithms. As expected,
the execution time does vary a lot from one algorithm to another. The worst performing
algorithm is COBWEB, which requires nearly 9 hours to come up with a clustering tree
on MovieLens! This result was expected as the complexity is exponential to the number
of attribute-value pairs, which in this case is equal to the 1682 different items (attributes)
and two values (good or bad). As a consequence, COBWEB clearly does not scale well
to big problems. However, it is good to point out that this computation can be broken into
smaller parts, as COBWEB is an incremental algorithm. Very surprisingly, agglomerative
clusterings took less time to compute than partitional clusterings, which is obviously not
what is expected when reading the general literature. This is not a mistake, and there
are two explanations for this. First, the most expensive step in agglomerative clustering
is the pairwise similarity computation of all the pairs of items. In ontology filtering, the
matrix S containing this data has already been computed, and thus removes this O(n?) step.
Second, as highlighted by Zhao [Zhao and Karypis, 2005], the pair-wise similarities of the
improvements in the value of the criterion function achieved by merging a pair of clusters
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7 and j do not change during the different agglomerative steps, as long as ¢ and j are not
selected to be merged. Finally, Table 8.9 shows that using the criteria functions H; and
'H, significantly increases the execution time of the clustering algorithm. These results are
coherent with the theory as H; and H, are both hybrid functions that respectively combine
criteria Z; with &;, and Z, with &;.

Previous results suggested that a comprise between the predication accuracy and the
clustering time has to be done. For example, when users have 50 items in their training
set, it is the partitional clustering algorithm with the H; criterion function that performs
the best. However, it takes over 1200 seconds for P-H, to generate the tree, which is
20 times more than the fastest algorithm. As a consequence, this dissertation proposes to
combine the execution time together with the prediction accuracy in order to measure the
global efficiency of a clustering algorithm. Thus, the efficiency of a clustering algorithm a,
Eff(a), is defined as follows:

rF1l(a)

Eff(a) = T(a)’ (8.5)

where rF'1(a) is the relative F1 of algorithm a, and 7T (a) is the relative time required
by algorithm a to build the taxonomy.

Jester MovieLens | Average
P-7; 0.744  0.209 0.477
P-Z, 0.697 0.156 0.427
P-& 0.558 0.136 0.347
P-G; | 0373 0235 0.304 0.32
P-H; | 0.391 0.024 0.208
P-Hs | 0.335 0.017 0.176
A-Iy 0.924 0.618 0.771
A-Z, | 0.864 0.658 0.761
A-& 0.680 0.628 0.654
A-Gy | 0.742  0.689 0.715
A-H; | 0468 0.041 0.255 0.65
A-H, | 0453 0.034 0.244
A-UP | 0935 0.681 0.808
A-SL | 0.836  0.538 0.687
A-CL | 0.943 0.930 0.936
COB | 0.169 0.001 0.085

Table 8.10: Efficiency of the various clustering algorithms used to generate the ontologies,
with the efficiency computed with Equation 8.5.

Using Tables 8.7, 8.8, 8.9, and Equation 8.5, the efficiency of all the clustering algo-
rithms were computed, and the results are displayed in Table 8.10. With an average effi-
ciency of 0.65; agglomerative algorithms are, on average, twice as efficient as partitional
ones. As one can see, the best performing algorithm is the agglomerative clustering with
the clink criterion function. Its good results are explained by very good predication accu-
racy, along with the lowest clustering time. Remember that in OF’s situation the similarity
matrix S is pre-computed, which removes the O(n?) complexity step from agglomerative
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filtering. To the opposite, COBWERB is the less efficient algorithm. Its low prediction ac-
curacy and excessive clustering time on the MovieLens data set lead to an efficiency value
close to 0.09.

8.3.4 Experiment VII - Behavior of multi-hierarchical ontologies

In this experiment, the objective is to test whether the multi-hierarchical ontology generated
by Algorithm 9 does increase the recommendation accuracy or not. To test this aspect, the
previous experiment with the Jester data set was reproduced, but using only Algorithm 9 to
generate the ontology. Recall that Algorithm 9 generates a unique multi-hieratical ontology
from the users’ preference profiles (see Section 6.4).
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Figure 8.10: Number of extra clusters generated by steps 15 to 20 of Algorithm 9.

First, the experiment looked at the number of extra clusters generated by steps 15 to
20 of Algorithm 9. As expected, the dotted line in Figure 8.10 shows that by increasing
the window size coefficient ¢, many extra clusters are being created. Notice that following
algorithm 9, one extra cluster implies that 2 clusters will have at least 2 parents. An interest-
ing aspect to consider is whether keeping increasing the size of the window always improve
the accuracy of the recommendation. The plain line in Figure 8.10 shows the average accu-
racy of the recommendation made by using Algorithm 9 for generating the ontology. The
average accuracy was obtained by averaging the F1 values when respectively using 5, 10,
20, 40, 60, 80, and 100 leaf clusters in the ontology. Note also that the F1 metric values
were scaled up to fit in the interval 0 to 90 by using the formula y = 3000 * F'1 47, — 900.
The solid line clearly indicates that increasing the window size leads to better prediction ac-
curacy. However, if the window becomes to big (i.e. ¢ > 0.4), then the structure becomes
overloaded by inheritance edges, which significantly increases the search space and de-
creases the recommendation accuracy. Finally, notice that increasing the coefficient o will
also increase the computational resources required to build the ontology. Thus, a tradeoff
will need to be done between prediction accuracy and ontology quality.
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The second part of the experiment looked at the overall recommendation accuracy of
ontology filtering using the multi-hierarchical ontology compared to using a simple ontol-
ogy generated from the agglomerative clustering. Figure 8.11 shows the prediction accu-
racy of the top-5 recommendation strategy obtained using the ontology filtering approach
with different ontologies, and with different sizes of learning sets. The plain line models
ontology filtering using Algorithm 9 to build the ontology, while the doted line is OF that
uses the classical agglomerative clustering with the clink criterion function for the ontol-
ogy construction. These lines are respectively represented by Algorithm_9_* and A_clink_*,
where * corresponds to the size of the learning set.
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Figure 8.11: Accuracy of ontology filtering for the Jester data set when the ontology is
generated from either the classical agglomerative clustering with clink, or with Algorithm
9 with ¢ set to 0.4.

These results tend to go in favor of OF’s hypothesis, which states that a multi-hierarchical
structure can further improve the recommendation accuracy compared to simple hierarchi-
cal one. As one can see, the ontology generated with the multiple inheritance algorithm
reaches nearly always the best prediction accuracy, with the best improvements when the
ontology contains at least 80 leaf clusters. When using traditional agglomerative clustering,
the prediction accuracy fluctuates up and down depending on the number of leaf clusters,
and significantly decreases when the ontology contains 100 leaves. This shows that if the
granularity of the ontology is too small, then this leads to poor recommendation. This be-
havior is reduced with the multiple inheritance algorithm, which seems more robust to the
number of leaf clusters. This can be explained by the fact that Algorithm 9 builds many
extra inheritance edges, which means that the inference process has a higher probability of
finding a shorter path between two given concepts. This shorter path will allow more score
to be transferred between these concepts, which leads to a better inference process. Note
that both approaches reaches their optimal values when the number of leaf clusters is be-
tween 40 to 60, which means that each cluster must contain between two to three instances.
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This is consistent with the definition of a cluster that should contains a set of instances
sharing identical features, rather that containing single instances

Even if these results show encouraging improvement when using multi-hierarchical on-
tologies, this does not compensate the explosion in complexity by considering sub-optimal
clusters. Moreover, Algorithm 9 requires that the window size parameter ¢ is carefully
selected. Thus, more work is required in order to better select these sub-optimal clusters to
reduce the complexity. As a consequence, this dissertation leaves this as future work, and
will carry on by using the ontologies generated using traditional clustering algorithm.

8.3.5 Experiment VIII - Ontology filtering vs collaborative filtering

Experiment V showed that ontology filtering was more robust to the similarity metric than
the item-based collaborative filtering. Then, experiment VI showed that personalizing the
ontology lead to better prediction accuracy compared to using the same ontology for users.
Following these results, this last experiment focuses on whether the ontology filtering ap-
proach defined in details in Section 7.2 is in fact better or worse than classical item-based
collaborative filtering.

For this experiment, ontology filtering is compared to the traditional item-based collab-
orative filtering using the adjusted cosine similarity for computing the similarity between
pairs of items. Ontology filtering uses Algorithm 7 to generate all the ontologies, Algo-
rithm 8 to select the best ontology to be used by each user, Algorithm 5 to build a complete
user ontological profile, and then Algorithm 6 to recommend the top-N items. Note that
this time, the hybrid score is computed using both the popularity and user’s score (i.e:
personalization coefficient p = 0.5).

The performance of CF greatly depends on the number of neighbors used to compute
the prediction (Equation (2.25)). At the same time, the ontologies generated by Algorithm
7 will be different depending on the number of leaf clusters (i.e.: the threshold @) that were
specified. To include these aspects, the experiment was iterated using various values of leaf
clusters and neighbors, where the number of leaf clusters is always set to the number of
neighbors (i.e: k = 0).

Figure 8.12 shows the accuracy of the OF and CF recommender systems on the Jester
data set. The dashed lines represent collaborative filtering, while the plain lines model on-
tology filtering. As before, the notation x—5L.5 and *—50L.S means that 5 and respectively
50 items were used to learn the model (i.e.: find the close neighbors for CF, and build the
user’s preference profile for OF). The x-axis shows the number of neighbors that were used
for CF, which is also the same parameter used for the number of leaf clusters in Algorithm
1. The y-axis measures the accuracy of the recommendation using the F1 metric.

First, and most important, ontology filtering using the learnt ontologies performs much
better than CF. The result is even more emphasized when very few ratings (only 5, OF-5LS)
are used to learn the model. As a matter of fact, the improvement of OF is always signif-
icant (p-value << 0.01), whatever the number of leaf clusters used to build the ontology.
Furthermore, OF with just 5 ratings to build the U PP performs better than CF with 10
times more data for its model construction. When 50 ratings are used for constructing the
user’s model, OF’s accuracy remains better than CF’s one, and with significant improve-
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ment (p-value << 0.02), except when the number of leaf clusters is set to 20 (p-value =
0.31).
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Figure 8.12: Accuracy of collaborative filtering and ontology filtering for the Jester data
set. For each recommender system, the experiment was run once with only 5 ratings to
learn the model (5LS), and then a second time with 50 rated items (50LS).

Notice that the accuracy of CF actually increases with the number of neighbors, and
then decreases again. This is a well known result [Herlocker et al., 1999], and is due to
two reasons. First, CF needs to have enough neighbors in order to correctly predict items.
Second, if too many low correlated neighbors are included in the computation, then the
accuracy decreases. This phenomenon seems amplified when 50 items are present in LS.
OF is more robust to the number of clusters in the ontology than CF is to the number of
neighbors. This is because OF inference is done using the closest element, while CF uses
a neighborhood of items.

Figure 8.13 shows the accuracy of the same experiment, but performed on the Movie-
Lens data set. Notice that for Jester, the maximum number of neighbors was set to 100 as
Jester contained 100 items. However, MovieLens contains 1682 different movies, which
can lead to a hierarchical tree with 1682 leaves. However, due to the sparsity of the user-
item matrix, the similarities between some items could not be computed, which lead to
only 1668 clusters. Again, OF performs much better than CF, and always shows significant
improvement when 5 ratings are used to learn the model (with a p-value <0.01). When
50 ratings are used, then the improvement remains statistically significant if the number
of neighbors is less than 250 or bigger than 1000 (detailed p-value can be found in Ap-
pendix E.3). Note that CF is again very dependant on the number of neighbors. If not
enough good neighbors are selected, then the prediction accuracy remains poor. Inversely,
if too many low correlated neighbors are considered, then the prediction accuracy decreases
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[Herlocker et al., 1999]. Ontology filtering is more robust to the number of leaf clusters,
which tends to show that the ontology and the inference mechanism are useful in the rec-

ommendation process.
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Figure 8.13: Accuracy of collaborative filtering and ontology filtering for the Movilens
data set. For each recommender system, the experiment was run once with only 5 ratings
to learn the model (5LS), and then a second time with 50 rated items (50LS).

When looking at the behavior of CF, the results are similar to the ones observed with
Jester. However, the accuracy seems independent from the number of neighbors when it is
less than 100. This can be explained by the fact that the MovieLens data set is much sparser
than Jester. Thus, many more ratings are necessary to build a correct model of the users.
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Figure 8.14: Average improvement in % of the F1 metric of OF over CF.
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To summarize, Figure 8.14 contains the average improvement of the prediction accu-
racy of ontology filtering over collaborative filtering. Theses results are obtained by av-
eraging the F1 value obtained by the different pairs of number of clusters and neighbors.
When only 5 items are used to learn the user’s preference model, ontology filtering in-
creases the prediction accuracy by 111% for MovieLens and over 18% for Jester. When
50 items are inserted in the learning set, the improvement of ontology filtering decreases
as collaborative filtering starts to have enough ratings to locate good correlated neighbors.
Notice that, on average, the improvement on the MovieLens data set is more than six times
bigger than the one obtained on Jester. This is explained by the fact that the MovieLens
data set is much sparser than Jester, which implies that CF requires many ratings for finding
the appropriate neighborhood. These results tend to suggest that ontology filtering is able
to successfully restrict the search space.

Overall, it can be seen that OF is performing extremely well and always leads to sig-
nificant improvement over CF when 5 ratings are used to build the preference model. Fur-
thermore, OF with just 5 ratings in the learning set has a prediction accuracy that is nearly
as good, sometime better, than the one of CF with ten times more training data. When 50
ratings are used to build the preference model, collaborative filtering performs better than
with 5 ratings, but its accuracy remains worse than the one obtained by ontology filtering.
This tends to suggest that the learnt ontologies are of good quality. One important fact that
needs to be taken into account is that CF’s accuracy tends to be proportional to the number
of neighbors. When the size of the user’s preference set increases, this leads to significant
scalability problems. Ontology filtering is less critical to this problem as the inference is
carried out from the closest concept, not on a neighborhood.

8.4 Discussion

These experiments bring more insight into the use of clustering algorithms to build on-
tologies, and the behavior of these ontologies in ontology filtering. From these, five main
conclusions can be drawn.

1. The inference mechanism defined in Equation 5.8 can be derived to build a robust
similarity function. Experimental results on WordNet and on the GeneOntology have
shown that this function significantly outperforms state of the art similarity functions,
and can better correlate with human judgments. The inference mechanism has also
proven useful for estimating the utility values assigned to various themes. These ex-
periments tend to suggest that the inference mechanism can correctly transfer prefer-
ences from one concept to another.

2. As expected, the adjusted cosine function is the function that produces the best item-
to-item similarity. However, experiments have also shown that the difference with
the classical Pearson or cosine functions is not statistically significant. Furthermore,
ontology filtering seems much more robust to these three metrics than collaborative
filtering.
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3. When considering the prediction accuracy of partitional and agglomerative cluster-
ings for building ontologies, there is no clear winner even though on average, par-
titional ones seem slightly better. However, when considering the efficiency of the
algorithm, then the agglomerative clustering with clink criterion function signifi-
cantly outperforms the others. Moreover, the accuracy will greatly be influenced by
the number of leaf clusters set as parameter.

4. The intuition that using the same ontology for every user is sub-optimal seems cor-
rect, and explains why Algorithm 8 that personalized the ontology based on the user’s
preferences leads to significant increase in prediction accuracy.

5. The second intuition of considering sub-optimal clusters in order to generate multi-
hierarchical ontologies seems also verified. However, even if experimental results
have shown some improvement in the recommendation accuracy, this is at a greater
cost in computational complexity which explodes with the window size .

Beside significantly improving the prediction accuracy over traditional item-based col-
laborative filtering, ontology filtering has other advantages. Following the previous analysis
in Section 2.7, the advantages and drawbacks of ontology filtering are summarized in Table
8.11.

Approach | Input Data Advantages Disavantages
OF Ratings on some Items | No domain knowledge needed | Training data

Low cognitive requirement Shilling problem!
Good prediction accuracy Latency problem?
Implicit feedbacks sufficient Ontology construction
Good domain discovery Scalability?
Preserve user’s privacy
Partially solve cold-start
More scalable than CF3

Table 8.11: Brief tradeoffs analysis of ontology filtering; ! when learning the ontologies
with Algorithm 7, 2 when using multi-hierarchical ontologies, and * when using a small set
of hierarchical ontologies.

As with collaborative filtering, ontology filtering requires little domain knowledge and
low cognitive resources from the user, as her preferences are expressed as rated items. How-
ever, ontology filtering has been found to be more accurate on both Jester and MovieLens,
while keeping a high degree of novelty. This goes in line with [Ziegler et al., 2005] who
suggested to use an ontology in order to increase diversity in the recommendation. Further-
more, experimental results show that ontology filtering performs better than collaborative
filtering that uses 10 times more data to learn the user’s preference model. Ontology filter-
ing turns out to be also more scalable than collaborative filtering, as the inference is done
from the closest concept rather than from a neighborhood. The last experiment revealed
that ontology filtering took on average less 15 ms to comme up with the top-5 recommen-
dations, which is over 10 times less than collaborative filtering. However, it is fair to point



146 CHAPTER 8. EXPERIMENTAL RESULTS

out that this fact does not hold in two situations. First, if the set of available eCatalog on-
tological models is too big, then the search of the optimal one for a given user will greatly
increase the computational time. Second, the search of the lowest common ancestor is lin-
ear in complexity only if hierarchical ontologies are considered, not with DAG structured
ones. Another advantage of ontology filtering is to significantly reduce the cold start prob-
lem. This is due to the fact that an ontology adds a structure on top of the eCatalogs, which
limits the space of possible items to search for. Notice that the recommendation does need
to be done on the server, but can actually be done by the clients if it has the ontologies.
This potentially solves the privacy problem as the system will not know the user’s prefer-
ences, and increases further the scalability of the system as the computation is distributed.
One could argue that the privacy problem could also be solved for item-based collaborative
filtering if the item-matrix S is sent to the user. This would indeed solve the privacy of
the user, but could violate the privacy of others, as the matrix 12 could be reconstructed
from S, if sufficient data is known. Remember that ontologies used in ontology filtering do
not contain pairwise similarities but just a-priori scores. Thus, it makes it much harder to
reconstruct the matrix R, as a malicious user would just have partial ordering of the items.

Unfortunately, as the ontologies are learnt using previous users’ ratings, ontology fil-
tering can also suffer from shilling attacks and sparsity issues. Similarly, the latency issue
remains a problem with learnt ontologies as no ratings are available. When items can be
described by attributes (i.e.: explicit features), then unrated items can be predicted by asso-
ciating them to items with a score that have similar attributes. These three problems remain
open and are left as future work. Unfortunately, the ontology construction will remain
a handicap for ontology filtering as this structure takes time to build. Nevertheless, this
construction time can be reduced by using Algorithm 7, but it will never be insignificant.
Finally, note that ontology filtering can also suffer from scalability issues when using on-
tologies with DAG structure, as finding the lowest common ancestor in a DAG is O(n*5%8),



Chapter 9

Conclusions

All goods things come to an end, eventually.
A common say.

9.1 Scope

With the rise of the internet, people are becoming overwhelmed by information. To help the
user in this process, researchers have come up with recommender systems. A recommender
system is a computer program that helps people find relevant items based on the person’s
preferences and others. Nowadays, two kinds of recommender techniques are becoming
increasingly popular in eCommerce Sites: collaborative filtering and the preference based
approach.

Collaborative filtering (CF) recommends items to the user based on the experiences of
others. Thanks to Amazon.com, this technique is now the most popular approach as it has
shown good recommendation accuracy in practice. The fundamental assumption behind CF
is that similar users like similar items. Thus, the ability of CF to recommend items depends
on the capability of identifying a set of similar users. Furthermore, it does not build an
explicit model of the user’s preferences. Instead, preferences remain implicit in the ratings
that the user gives to some subsets of products. Despite being popular, CF has two well
known problems: the cold-start problem and the scalability. The former problem occurs
when a new user enters the system and is asked to rate many items, which is usually more
than what a user can or is willing to rate. The latter problem arises because the computation
of the neighborhood of similar items grows with the number of items and users.

The other technique is the preference-based approach, (PBA). Here, a user is asked
to express explicit preferences for certain attributes of the product. If preferences are ac-
curately stated, then multi-attribute utility theory provides methods for finding the most
preferred product even when the set of alternatives is extremely large and/or volatile. Thus,
PBA does not suffer from problems encountered by collaborative filtering. However, the
big drawback of preference-based methods is that the user needs to express a potentially
quite complex preference model. This may require a large number of interactions, and
places a higher cognitive load on the user since she has to reason about the attributes mod-
eling the products. To be able to reason over the items, MAUT also requires that products
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are modeled by a set of well defined attributes. Depending on the domain of application, at-
tributes are very hard to express and frequently change. This partially explains why MAUT
is only used in simple domain such as notebooks.

This dissertation believes that the problems faced by the above approaches are due to
the lack of appropriate model for representing the items, and the preference elicitation
overload. Thus, a new technique called ontology filtering is proposed that can overcome
most of the problems faced by previous approaches, while achieving a better prediction
accuracy than the item-based collaborative filtering. The main novelties of this technique
are to model the items by ontology, and to use this ontology to infer missing preference
values in order to build a complete user preference model.

To illustrate ontology filtering, a prototype has been implemented that can recommend
jokes to the user. Appendix C contains a full scenario, along with some illustrations of this
prototype.

9.2 Contributions

This section outlines the main results and contributions of this thesis.

Modeling eCatlogs with an Ontology - The idea of using a taxonomy for modeling the
items of an eCatalog is not new and was introduced by [Middleton et al., 2004].
However, four aspects make the ontology used by this dissertation very different
from existing work.

1. In previous work, authors use simple taxonomies that are assumed to be freely
available to the system. This work makes no such assumption, and proposes an
algorithm that can learn these ontologies automatically, and without the user’s
intervention. Moreover, more complex structures such as directed acyclic graph
are also considered.

2. The ontology does not need to have the features explicitly modeled by the
edges, but instead can remain implicit. This allows to model complex domains
such as joke or wines.

3. Ontology filtering is capable of extracting the information contained in the
topology of the ontology. This information is then used to compute the a-
priori score of each concept, and infer missing information through an inference
mechanism.

4. The ontology is used directly for making the prediction, while other researchers
combine it with collaborative filtering to fill in missing ratings and reduce the
sparsity of the user-item matrix R.

Extracting the information of an ontology : This dissertation shows that, under three
fundamental assumptions, the topology of the ontology contains some information.
This information can be extracted and used to compute the a-priori score of a concept
¢, APS(c), which happens to be equal to one over the number of descendants of ¢
plus two.
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Using the APS and the ontology to infer missing preferences : Users express their pref-
erences by rating a set of items. In the ontology model, these items are instanced of
some concepts. Thus, these preferences can be used to compute the score of a con-
cept. Given the a-priori scores and a score, this dissertation defined an inference
mechanism that can infer the score of any concept in the ontology given one unique
score.

A new similarity function is derived from the inference mechanism, which allows to com-
pute the pairwise similarity of any pair of concepts in the ontology. Moreover, exper-
imental results have shown that this new similarity function outperforms state of the
art metrics, and better correlates with human judgements on the WordNet ontology.

Learning the ontologies automatically : This dissertation acknowledges the fact that as-
suming the existence of an ontology is unrealistic. As a consequence, two algorithms
for learning these ontologies automatically are introduced. The first one allows on-
tology filtering to build a set of 15 distinct hierarchical ontologies, while the second
extends classical agglomerative clustering and builds a multi-hierarchical ontology.

Personalizing the ontology : Given a user u, it is commonly agreed in collaborate filtering
that some neighbors correlate more than others with w. Similarly, this dissertation
also believes that some ontologies are better for representing the user’s preferences
than others. That is why an algorithm is introduced that can select which ontology to
use, given the user’s preferences.

An ontology filtering architecture has been presented that combines all of the previously
stated algorithms in order to generate recommendations to the user based on her pref-
erences. Moreover, the resulting system allows to reach a much higher recommen-
dation accuracy than collaborative filtering, even when 10 times less data about the
user is known.

Experimental results are provided that give more insight into ontology filtering and clus-
tering algorithms. Moreover, these experiments allow to validate the ontology filter-
ing on data sets containing real user judgements.

In short, ontology filtering allows to build better recommender systems that can recom-
mend items to the user with high accuracy, while reducing the number of questions asked
to the user. Ontology filtering has another three significative advantages over collaborative
filtering:

1. Scalable - ontology filtering scales better to big problems as the inference mechanism
is done from the closest concept with some preference, rather from a neighborhood.
Note also that clustering algorithms such a K-means partitional clustering can cluster
thousands of items in minutes.

2. No parameter training - ontology filtering does not have any parameter that requires
training, and can be used directly on any data set that contains rated items. Note that
the number of leaf concepts can be set to the maximum number of items.
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3. Explanation - ontology filtering can easily explain how recommendations are com-
puted as it uses the closest concept to the user’s preferences. This allows the system
to build trust with its users, and increases the user’s satisfaction and loyalty.

9.3 Limitations

Obviously, this dissertation does not claim that ontology filtering can solve all the rec-
ommendation problems. Limitations of the presented approach can be summarized in the
following way:

Fundamental Assumptions : Ontology filtering makes three fundamental assumptions
about the score of a concept. First, the score depends only on the features making
an item. Second, each feature contributes independently to the score. Third, features
that are unknown make no contribution to the score. The first assumption is not very
restrictive as the features can be captured implicitly in the edges. However, the other
two assumptions induce the following limitations:

1. feature independence eliminates the inter-dependance between features, and al-
lows the score to be modeled as the sum of the scores assigned to each feature.
Thus, modeling features such as the price of an item could be problematic as
the price usually depends on all the other features. Note however that the multi-
attribute utility theory makes an even stronger assumption to build the additive
value function [Keeney and Raiffa, 1993] [Payne et al., 1988].

2. low risk domain is where ontology filtering can be used due to the third assump-
tion. In other domain such as gambling, the third assumption will not hold as
people are risk seeking rather than risk-averse. Financial domain is another ex-
ample where ontology filtering will probably not be very useful as the risk of
failure is very high and people are ready to spent a significative amount of time
expressing their preferences.

The Ontology construction can take a significant amount of time, especially if hand-
crafted. To reduce this problem, ontology filtering allows ontologies to be learnt
automatically in order to build the eCatalog ontological model. However, even if
these ontologies can be learnt off-line, the clustering algorithms can take significant
amount of time, if the system contains millions of items and users. Fortunately, this
time can be greatly reduced by parallelizing the computation of the ontologies.

Multiple-Hierarchy ontology can increase the recommendation accuracy but at a great
cost in computational time. When considering directed acyclic graph structure, two
problems arise:

1. ontology construction time is significantly longer as more than one cluster can
be merged (or split) at each iteration.
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2. finding the lowest common ancestor is not trivial in a DAG as there can be
more than one path connecting two concepts. Moreover, the best algorithm for
finding a LCA in a DAG has a complexity of O(n*0%®).

The a-priori score is computed based on the idea that users are risk averse, and that the
score of the leaves are uniformly distributed in the interval [0, 1]. In practice how-
ever, not all the scores of the leaves will be uniformly distributed, and some will be
higher than others. This uneven distribution also implies that the ontology should
be balanced. Obviously, balanced ontologies rarely exist, but clustering algorithms
minimize this problem by trying to have equal number of instances in each leaf clus-
ter.

9.4 Future research

The above limitations indicate that more research can be undertaken to improve ontology
filtering. Given these limitations, this section highlights the possible new research direc-
tions.

Relaxing the assumptions would cover wider domains of application and reduce the lim-
itations of the three fundamental assumptions. For example, it would be very inter-
esting to consider the situation where feature dependance is taken into account.

Improve the ontology construction by considering more clustering algorithms. This dis-
sertation has used basic partitional and agglomerative clustering algorithms, but more
complex algorithms such as fuzzy k-means or Possibilistic K-means would allow to
consider non-linear properties and softer class membership. Incremental clustering
algorithms would also be useful to reduce the computational time by reusing existing
ontologies.

Adding more semantic relations : Currently, only inheritance edges are being consid-
ered. However, as shown by WordNet, other relations such as meronym and holonym
have proved useful. Note that adding extra relations will also influence the inference
mechanism.

Improving the a-priori score of concepts would also increase the recommendation accu-
racy as the inference mechanism uses them to estimate propagation coefficients. For
example, two assumptions are used to compute these a-priori scores. First, the score
of the leaves concepts are all uniformly distributed. Second, the user is risk averse,
which implies that for a user to like a concept ¢, she must like all the instances of the
descendants of c and of c itself. Thus, the APSs could be improve by relaxing these
assumptions.

9.5 Conclusion

Currently, there are two widely used techniques to solve the recommendation problem. The
first approach is collaborative filtering that recommends items based on the experience of
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similar users. The second one is the preference-based approach that models items by its
features, and uses only the user’s preferences to recommend her items.

Despite being very popular, these recommender systems fail to achieve high recommen-
dation accuracy in eCommerce environments; especially when users’ preferences are rare.
Our analysis shows that it is due to two fundamental problems. First, current recommender
systems use inappropriate models of the items, which leads to unconstrained search space.
Second, recommender systems must elicit too many preferences from the user in order to
build the user’s preference profile.

This dissertation proposes the ontology filtering approach that can overcome most of
the problems faced by previous approaches, while achieving better prediction accuracy than
item-based collaborative filtering on Jester and MovieLens. The intuition behind ontology
filtering is that the information captured by the topology of the ontology can be used to
estimate missing preferences. The main novelties of this technique is to model the content
of the eCatalog and infer missing preferences using the ontology, and use the inferred
information in order to directly recommend items to the user.



Appendix A

Classification of recommender
techniques

To ease the reading of this appendix, Table A.1 gives the section number where the ap-
proach in table A.2 has been discussed.

’ Recommendation Technique \ Section where this technique is introduced
Non-Personalized Recommender System 221
Content-Based Recommender System 2.3.1and 2.3.2
Preference-Based Recommender System 233
Memory-Based Collaborative Filtering 24.1
Model-Based Collaborative Filtering 2.4.2
Knowledge-Based Recommender System 2.5

Table A.1: Sections where the various approaches in Table A.2 have been introduced.

Table A.2 shows the correspondences in terminology between the authors that have
been studied in Section 2.2.
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Dissertation Memory-Based Model-Based Knowledge-Based | Content Based | Preference Non
Collaborative Filtering | Collaborative Filtering Based Personalized
[Schaffer et al., 1999] Item to item People to People Item to item Attribute Aggregated
Correlation Correlation Correlation Based Rating
[Terveen and Hill, 2001] | Collaborative Filtering | Collaborative Filtering Content Based | Content Based
[Burke, 2002] Collaborative Filtering | Collaborative Filtering | Knowledge-Based | Content Based | Utility-based
[Adomavicius and Collaborative Filtering | Collaborative Filtering | Knowledge-Based | Content Based | Content Based

Tuzhilin, 2005]

Table A.2: Overview of the techniques used in Recommender Systems and their name given by various authors.




Appendix B

Transitivity of OSS

To verify that the distance measure satisfies the triangle inequality, consider the transfer
from concept z to z (Figure B.1 exported from Section 3.3.2), and the additional concepts
s and t.

2 root
- Concepts n, APS
d edges ' X 0 1/2
L y u 0 1/2
z 0 12
S 1 1/3
S t
t 2 1/4
/ y 5 1/7
x ©u0 o z root S+d | 1/(7+d)
(@) (b)

Figure B.1: (a) a simple ontology A and its APSs (b).

This dissertation believes that the primary objective of a similarity measure is to simu-
late a user’s behavior and closely correlate with it. In particular, a quantitative measure of
similarity should express the ratio of numerical scores that may be assigned to each con-
cept. The score could reflect how much an item is preferred, or how friendly it is to the
environment.

Assume first that s is a node on the path from z to y. Then if s is part of the upward
path from z to y, equation (5.2) implies that | T'(x, s)|= APS(s)/APS(z)and |T'(s,y)| =
APS(y)/APS(s). Furthermore, and because |7 (z,y)| = APS(y)/APS(x), it is easy to
see that:

—log(|T(x,y)]) = —log([T'(z,s)] x [T(s,y)])
= —log(|T(z,s)]) —log(|T(s,y)])

As a consequence, D(z,y) = D(x,s) + D(s,y) and thus the triangle inequality holds
as D(x,z) = D(z,s) + D(s,y) + D(y, z). If t is part of the downward path from y to
z, then we get that |T'(y,t)| = 1/(1 + 20(t,y)) and |T'(t,2)| = 1/(1 + 28(z,t)). By
definition, |7 (y, z)] is equal to 1/(1 + 2(3(z,y)), and Equation 5.5 implies that 5(z,y) =
B(z,t) + B(t,y). Thus, we get the following equation:

(B.1)
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~log(|T(y, 10%(1+ng y)

o8 <1 +20(2,y) +4ﬂ(z t)ﬁ(t:t/)) (B.2)

1
log<1—|—2ﬂzt 1+ 26(t, )>
—log(|T'(y,t)]) — log(|T(t,2)])

which shows that the triangle inequality also holds when ¢ is on the downwards path
connecting y and z.
Now consider the case where s is not on the path from z to z. Due to the graph structure,
the paths from x to s and from s to z will both contain a common part between a node s
and a node d that is on the path from x to z. Since all transfers are < 1, this part can only
increase the combined distance, so the triangle inequality holds.



Appendix C

Ontology filtering: a scenario

To illustrate the ontology filtering approach, a prototype has been constructed that closely
follows the architecture defined in chapter 7. Using the Jester dataset as eCatalog, the
prototype recommends 5 jokes to the user based on her preferences that were either directly
elicited or obtained as feedback. Formally, the recommender problem for this scenario is
as follows.
Given a collection of 100 jokes, recommend 5 items to the user Vincent based
on his preferences.

C.1 The scenario

Vincent! is a computer scientist with a big sense of humor, and loves starting a day of work
with a good joke. The problem that Vincent faces is the frustration against classical humor
web sites that do not take his (engineer) sense of humor into consideration. Fortunately,
Vincent heard about this new joke recommender system while at a conference in Hyder-
abad, India. After talking to some researchers there, Vincent was promised an access to the
web site as soon as it would be in a stable version. Couple of weeks later, Vincent receives
an email with the address of the recommender system and the password. Let’s imagine that
Vincent tries to use the web site to get some recommendations.

Vincent starts by opening the web browser of his computer, and types in the URL
of the ontology filtering recommender system. For ontology filtering to retrieve the right
preference profile, Vincent must identify himself with the password he received in the email
(Figure C.1). Once Vincent is identified, the recommender systems notices that he has no
preference profile. Thus, OF starts the elicitation process by asking Vincent to either rate
joke 17, or to enter a known joke (Figure C.2). As Vincent loves joke 17, he gives it 5 stars.

After answering 5 elicitation questions, ontology filtering shows the first recommenda-
tion that it has computed based on the 5 elicited preferences. Figure C.3 shows that OF
recommends joke 89 in less than 5 milliseconds. Under the joke, Vincent can find a brief
textual explanation of why this joke has been recommended to him. From this, he learns
that joke 89 is instanced of concept 1000021, and that the hybrid score of this concept is
0.7019 (i.e.: the average of Vincent’s score and the popularity score). However, what is

! Any resemblance with the author of this dissertation will be total coincidence
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more useful for Vincent is to know that this joke was recommended to him because he
rated joke 11 with 5 stars. This means that ontology filtering started the inference from the
concept 100010 representing joke 11.

As Vincent is a nosy engineer, and to be sure that it is really joke 11 which is the
reason of this recommendation, Vincent decides to modify his preferences by clicking on
the Modify my preferences link located to the left of the recommended joke. As a result,
ontology filtering displays all of Vincent’s preferences, with the option to either delete them
or modify them (Figure C.4). Vincent selects joke 11 and updates the rating from 5 to 3
stars (Figure C.5). Figure C.6 shows the new recommendation that is generated from the
updated preferences. As expected, the recommendation changes, and the new joke gets
recommended because of the preference Vincent had on joke number 10.

Vincent remembers that one of the researchers at the conference told him that ontology
filtering is capable of personalizing the ontology based on the user’s preferences. He also
remembers that the trick to identify the ontology is to look at the first digit of the concept.
For example, the recommendation in Figure C.6 is instanced of concept 100065, which
means that it was derived using the first ontology. As computer scientists cannot stop
messing up things that work (notice how the joke that was recommend in C.6 matches an
engineer’s sense of humor), Vincent changes all of his preferences that had 5 stars rating
to 4 stars. Figure C.7 confirms the updates, and also displays the updated preferences.

To get some more recommendations, Vincent clicks on the Find recommendations
links located to the left Figure C.7. Less than 5 milliseconds later, ontology filtering pro-
duces a new recommendation (Figure C.8). Again, Vincent is impressed that the system
is capable of predicting him jokes with engineers in it. But Vincent also notices that
this time the recommendation was made using the third ontology, and that the score was
inferred from concept 300082.
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ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Identification
Email vincent schickel-zuber@
Password sessssse
Forgotten your password?

[ Login |

New user: create a free account!

Copyngth Vincent Schickel-Zuber - EPFL. Version 0.0.2 last update 2305 2007

€ Local intranet

& 100%

Figure C.1: The identification page where user Vincent identifies himself.
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& ontologyFiltering - Windows Internet Explorer = | e
@ v [E] nttp: localhost 3085 WebApplication MainFrameservletdstate=2 - 42| % Pl
W | ontelogyFiltering &8 o v [ Page - QP Tock - »

3 OntologyFiltering - Beta | (Gl |

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Welcome vincent Find a joke
Modify my profile
Modify my password

Modify my preferences Before we recommend vou stuff, we need to know more about your taste m jokes
Select services Please rate 5 jokes:
Find recommendations
Either:
(a) Enter a joke you kmow:
Joke
How much did you like it? © Awdfull (# ) Reallybad ~ Not good ® OK ~ Excellent( )| Next>> |
OR

(b) Rate the following joke:

Joke no: 17 (step 1 - 5)

How many men does it take to screw i a light bulb?

One...men will screw anything,

How much did vou like it? = Awfull (% ) Realybad  Notgood = OK & Excellent 5[ Next>> |

Copyrigths Vincent Schickel-Zuber - EPFL. Version 0.0 last update 20/05/2007

Done € Local intranet & 0% -

Figure C.2: Ontology Filtering asks Vincent to either rate joke 17 or enter a joke of his
choice. Vincent loves joke 17 and gives it 5 stars.
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# ontologyFiltering - Windows Intemet Explorer == es
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FEDERALE DE LAUSANNE

Welcome vincent
Modify my profile
Modify my password
Modifr my preferences

Select services
Find recommendations

Find a joke

Recommendation 1 - 5 (4.832457 milliseconds): Joke no: 89

A radio conversation of a US naval ship with Canadian authorities ...

Americans: Please divert vour course 15 degrees to the North to avoid a collision.

Canadians: Recommend you divert YOUR course 15 degrees to the South to avoid a collision.

Americans: This is the Captain of a US Navy ship. I say again, divert YOUR course.

Canadians: No. [ say again, you divert YOUR course.

Americans: This is the aircraft carrier USS LINCOLN, the second largest ship in the United States” Atlantic Fleet. We are
accompanied by three destroyers, three cruisers and numerous support vessels. I demand that you change your course 15

degrees north, that's ONE FIVE DEGREES NORTH, or counter-measures will be undertaken to ensure the safety of this
ship.

Canadians: This is a lighthouse. Your call.

How much did vou like #t? ~ Awfull (# ) Reallybad * Not good ® OK © Excellent( ) [ Nextz> |

Brief texutal explanation of the recommendation

ID of the item recommended:= 89
1D of the concept to which the item is instanced= 100021
Score of concept = 0.7018866922627044 (user's score = 0.610040428143442, popularity score 0.797683333333333)

1D of concept where the inference started:= 100010
Score of concept 100010:= 0.8510205263157893(user's score := 1.0, popularity score 0.695633333333333)
ID of the item m concept 100010 that you set preference on =11

Copyngths Vincent Schuckel-Zuber - EPFL. Version 0.0.2 last update 29052007

€ Local intranet #1000 -

Figure C.3: The joke that is recommended to Vincent once the elicitation process is over.
Joke 89 is recommended to Vincent as it is very close to joke 11 that he previously rated

with 5 stars.
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Figure C.4: Ontology filtering shows Vincent’s preferences.
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Figure C.5: Vincent updates his preferences on joke 11 by changing the rating from 5 to 3
stars.
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Figure C.6: The new recommendation that is made once Vincent has updated the rating of
joke 11.
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dropping the tape measures - the whole thing is just a mess. An engineer comes along and
Joke sees what theyre trying to do, walks over, pulls the flagpole out of the ground, lays it flat, 4 S
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Figure C.7: Vincent updates all of his preferences with 5 stars to 4 stars.
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Bricf texutal explanation of the recommendation

ID of the item recommended:= 49
ID of the concept to which the item is instanced:= 300095
Score of concept = 0.7100780344753245 (user's score = 0.6683843458795015, popularity score 0.753565)

ID of concept where the inference started:= 300082
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Figure C.8: Final recommendation made when no more preferences have a 5 star ratings.
Note that the recommendation is now made using the third ontology, where the ontology is
identified by the first digit of the identifier given to a concept.
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Existing ontologies

D.1 WordNet

WordNet! is a large semantic lexicon of the English language, developed at the Cognitive
Science Laboratory of Princeton University. It groups English words into sets of synonyms
called synsets, which are linked together with various semantic relations. These relations
can be of four different types:

e Hypernym - The generic term used to designate a whole call of specific instances. Y
is a hypernym of X if X is a kind of Y.

e Hyponym - The specific term used to designate a member of a class. The hyponym
relations is the inverse of the hypernym. X is a hyponym of Y if X is a kind of Y.

e Meronym - The name of a constituent part of, the substance of, or a member of
something. X is a meronym of Y if X is part of Y

e Holonym - The name of the whole of which the meronym names a part. Y is a
holonym of X if X is a part of Y.

Figure D.1 contains an extract of WordNet for the synset red-wine. These relations can
be summarized as follows. Note that the term IS-A is commonly used to denote kind-of.

Relation | Meaning Example Inverse relation
Hyponym | Kind-of | red-wine is a kind-of motor wine Hypernym
Meronym | Part-of red-wine is part-of sangria Holonym

Table D.1: Summary of the WordNet relations.

As of 20072, WordNet contains over 155’000 words organized in over 117°000 con-
cepts for a total of 207°000 word-sense pairs. The words are separated into nouns, verbs,
adjectives, and adverbs because they follow different grammatical rules.

"http://wordnet.princeton.edu/
Zhttp://wordnet.princeton.edu/man/wnstats. 7WN
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Berverage

— > Kind-of

—_——— Part-of

————————

Figure D.1: An extract of WordNet for the synset red-wine.

The goal of WordNet is to develop a system that would be consistent with the knowl-
edge acquired over the years about how human beings process language. In the case of
hyponymy, psychological experiments® revealed that individuals can access properties of
nouns more quickly depending on when a characteristic becomes a defining property. That
is, individuals can quickly verify that canaries can sing because a canary is a songbird (only
one level of hyponymy), but require slightly more time to verify that canaries can fly (two
levels of hyponymy) and even more time to verify canaries have skin (multiple levels of
hyponymy). This suggests that we too store semantic information in a way that is much
like WordNet, because we only retain the most specific information needed to differentiate
one particular concept from similar concepts.

Ontology filtering assumes that user’s preferences follows an ontology, and that such
ontology can be used to infer missing preferences. From the inference mechanism, a simi-
larity function has been derived that can compute the pairwise similarity between a pair of
concepts in the ontology.

The similarity metric used by ontology filtering was tested on WordNet 2.0. Among
the 155’000 words present, the experiment focused (only!) on the 117°097 nouns, which
represents over 81’000 concepts*. Moreover, the meronym and holonym relations have ben
discarded as ontology filtering and other similarity metrics only use inheritance relation.
Note however that these discarded relations count for less than 18% of all the relations in
WordNet.

D.2 The GeneOntology

5

3http://en.wikipedia.org/wiki/WordNet

“http://wordnet.princeton.edu/man2.0/wnstats. 7WN

Due to author’s lack of knowledge in biology, some of the content of this section has been extracted from
the GeneOntology web site
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The Gene Ontology® (GO) project is a collaborative effort to address the need for con-
sistent descriptions of gene products in different databases. The project began as a collabo-
ration between three model organism databases, FlyBase’ (Drosophila), the Saccharomyces
Genome Database® (SGD) and the Mouse Genome Database’ (MGD), in 1998. Since then,
the GO Consortium has grown to include many databases, including several of the world’s
major repositories for plant, animal and microbial genomes. See the GO Consortium page
for a full list of member organizations.

The GO project has developed three structured controlled vocabularies (ontologies) that
describe gene products in terms of their associated biological processes, cellular compo-
nents and molecular functions in a species-independent manner. There are three separate
aspects to this effort: first, the development and maintenance of the ontologies themselves;
second, the annotation of gene products, which entails making associations between the
ontologies and the genes and gene products in the collaborating databases; and third, de-
velopment of tools that facilitate the creation, maintenance and use of ontologies.

The use of GO terms by collaborating databases facilitates uniform queries across them.
The controlled vocabularies are structured so that they can be queried at different levels:
for example, you can use GO to find all the gene products in the mouse genome that are in-
volved in signal transduction, or you can zoom in on all the receptor tyrosine kinases. This
structure also allows annotators to assign properties to genes or gene products at different
levels, depending on the depth of knowledge about that entity.

Each entry in GO has a unique numerical identifier of the form GO:nnnnnnn, and a
term name, e.g. cell, fibroblast growth factor receptor binding or signal transduction. Each
term is also assigned to one of the three ontologies, molecular function, cellular component
or biological process.

The majority of terms have a textual definition, with references stating the source of the
definition. If any clarification of the definition or remarks about term usage are required,
these are held in a separate comments field.

Many GO terms have synonyms; GO uses ’synonym’ in a loose sense, as the names
within the synonyms field may not mean exactly the same as the term they are attached to.
Instead, a GO synonym may be broader or narrower than the term string; it may be a related
phrase; it may be alternative wording, spelling or use a different system of nomenclature; or
it may be a true synonym. This flexibility allows GO synonyms to serve as valuable search
aids, as well as being useful for applications such as text mining and semantic matching.
The relationship of the synonym to the term is recorded within the GO file.

The three organizing principles of GO are cellular component, biological process and
molecular function. A gene product might be associated with or located in one or more
cellular components; it is active in one or more biological processes, during which it per-
forms one or more molecular functions. For example, the gene product cytochrome ¢ can
be described by the molecular function term oxidoreductase activity, the biological process
terms oxidative phosphorylation and induction of cell death, and the cellular component
terms mitochondrial matrix and mitochondrial inner membrane.

®http://www.geneontology.org/
"http://flybase.bio.indiana.edu/
8http://www.yeastgenome.org/
“http://www.informatics.jax.org/
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D.2.1 Cellular component

A cellular component is just that, a component of a cell, but with the proviso that it is part of
some larger object; this may be an anatomical structure (e.g. rough endoplasmic reticulum
or nucleus) or a gene product group (e.g. ribosome, proteasome or a protein dimer). See
the documentation on the cellular component ontology for more details.

D.2.2 Biological process

A biological process is series of events accomplished by one or more ordered assemblies of
molecular functions. Examples of broad biological process terms are cellular physiological
process or signal transduction. Examples of more specific terms are pyrimidine metabolism
or alpha-glucoside transport. It can be difficult to distinguish between a biological process
and a molecular function, but the general rule is that a process must have more than one
distinct steps.

A biological process is not equivalent to a pathway; at present, GO does not try to
represent the dynamics or dependencies that would be required to fully describe a pathway.

Further information can be found in the process ontology documentation.

D.2.3 Molecular function

Molecular function describes activities, such as catalytic or binding activities, that occur
at the molecular level. GO molecular function terms represent activities rather than the
entities (molecules or complexes) that perform the actions, and do not specify where or
when, or in what context, the action takes place. Molecular functions generally correspond
to activities that can be performed by individual gene products, but some activities are
performed by assembled complexes of gene products. Examples of broad functional terms
are catalytic activity, transporter activity, or binding; examples of narrower functional terms
are adenylate cyclase activity or Toll receptor binding.

It is easy to confuse a gene product name with its molecular function, and for that reason
many GO molecular functions are appended with the word “activity”. The documentation
on gene products explains this confusion in more depth. The documentation on the function
ontology explains more about GO functions and the rules governing them.

D.2.4 Ontology structure

The terms in an ontology are linked by two relationships, is_a and part_of. is_a is a simple
class-subclass relationship, where A is_a B means that A is a subclass of B; for example,
nuclear chromosome is_a chromosome. part_of is slightly more complex; C part_of D
means that whenever C is present, it is always a part of D, but C does not always have to
be present. An example would be nucleus part_of cell; nuclei are always part of a cell, but
not all cells have nuclei.

The ontologies are structured as directed acyclic graphs, which are similar to hierar-
chies but differ in that a child, or more specialized, term can have many parents, or less
specialized, terms. For example, the biological process term hexose biosynthesis has two
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parents, hexose metabolism and monosaccharide biosynthesis. This is because biosynthe-
sis is a subtype of metabolism, and a hexose is a type of monosaccharide. When any gene
involved in hexose biosynthesis is annotated to this term, it is automatically annotated to
both hexose metabolism and monosaccharide biosynthesis, because every GO term must
obey the true path rule: if the child term describes the gene product, then all its parent terms
must also apply to that gene product.
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Appendix E

Detailed experimental results

E.1 WordNet

The results in Table E.1 were computed using the following similarity metrics:

(2 x D) —len(a,b)
maxD

simppare(a,b) =

simprpacock(a,b) = —log ( 5% D

maXcELCA(a,b) IC<C)
max.D

simresnik(a,b) =

2 x IC(LC A(a, b))
1C(a) + 1C(b)

S’imL[N(a, b) =

(IC(a) + IC(b) — 2 x IC(LCA(a,b)))
maxD

simyrang(a,b) =1 —

log(1 + 26(b, LCA(a, b))) — log(é(a, LC'A(a,b)))
maxD

simoss(a,b) =

(E.1)

(E.2)

(E.3)

(E4)

(E.5)

(E.6)

where max D is the maximum value that is used to reduce the similarity values in the
interval [0, 1]. The ontology which is being used is WordNet 2.0, and the human ratings are

extracted from [Miller and Charles, 1991].
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APPENDIX E. DETAILED EXPERIMENTAL RESULTS

Word Pair Human | Edge | Leacock | Resnik | Lin | Jiang | OSS
car automobile | 0.98 1 1 1 1 1 1
gem jewel 0.96 1 1 1 1 1 1
journey voyage 0.96 0.97 1 0.66 | 0.84 | 0.88 | 0.96
boy lad 0.94 0.97 1 0.76 | 0.89 | 0.88 | 0.95
coast shore 0.93 0.97 1 0.78 |0.98 | 0.99 | 0.98
asylum | madhouse 0.90 0.97 1 0.94 1 0.97 | 0.94
magician wizard 0.88 1 1 1 1 1 1
midday noon 0.86 1 1 1 1 1 1
furnace stove 0.78 0.81 0.45 0.17 |10.20 | 0.29 | 0.39
food fruit 0.77 0.78 0.42 0.01 |0.01 | 033 | 0.61
bird cock 0.76 0.97 1 040 |0.60| 0.73 | 0.94
bird crane 0.74 0.91 0.69 040 |0.60| 0.73 | 0.94
tool implement | 0.74 0.97 1 0.41 093] 097 | 0.94
brother monk 0.71 0.97 1 0.83 1094 | 091 | 0.89
crane implement | 0.42 0.89 0.61 0.23 | 0.35| 0.58 | 0.39
lad brother 0.42 0.81 0.46 0.17 [0.19| 0.23 | 0.24
journey car 0.29 0 0 0 0 0.17 | 0.32
monk oracle 0.27 0.81 0.46 0.17 |0.20| 0.33 | 0.35
cemetery | woodland 0.24 0.75 0.39 0.01 |0.01| 0.15 | 0.10
food rooster 0.22 0.64 0.28 0.01 |0.01 | 036 | 0.61
coast hill 0.21 0.89 0.61 0.50 |0.59| 0.61 | 0.22
forest graveyard 0.21 0.75 0.39 0.01 | 0.01 | 0.15 | 0.21
shore woodland 0.16 0.72 0.36 0.05 |0.05] 0.16 | 0.15
monk slave 0.14 0.89 0.61 0.17 |0.21 | 0.37 | 0.37
coast forest 0.11 0.83 0.5 0.05 |0.05| 0.16 | 0.14
lad wizard 0.11 0.87 0.56 0.17 |0.18 | 0.20 | 0.21
chord smile 0.03 0.72 0.36 0.24 |0.27 | 0.34 | 0.36
glass magician 0.03 | 0.694 0.33 0.16 | 0.17 | 0.21 | 0.11
noon string 0.02 0 0 0 0 |0.118 | 0.10
rooster voyage 0.02 0 0 0 0 0.08 | 0.07
| Correlation | 1 060 08 | 079 [0.82] 0.86 | 0.91 |

Table E.1: Correlation of various similarity metrics with human judgements collected by
Miller and Charles.
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E.2 Predefined ontology vs learnt ontologies

This section looks at the difference in recommendation accuracy for the ontology filtering
that uses either a predefined ontology, or a set of learnt ontologies.

To test this aspect, the following experiment was performed. First, the MovieLens data
set was split in two sets. The first one contains all the users who have rated less than 65
ratings and is used for generating the ontologies, while the other set is used for testing the
recommendation strategy. Note that experiment setup is the same as in Section 8.2.1.

The baseline ontology is the one defined in Section 8.2. The learnt ontologies are ob-
tained by applying Algorithm 7, which constructs a set of 15 different ontologies from the
users who have rated less than 65 ratings. For this specific experiment, only the user’s score
is used for extracting the top-N items (i.e. the personalization coefficient p in Algorithm 6
is set to 1.0).

First, 5 items were inserted in the users’ learning set, and ontology filtering was run on
both sets of ontologies. Figure E.1 shows the accuracy of ontology filtering in the two situ-
ations. As it can be seen, the expert’s ontology performs better when the learnt ontologies
have either very few or a lot of leaf clusters. This shows that if the granularity (i.e.: the
number of instances in each concept) of the ontology is inadequate, then recommendation
accuracy decreases. To reduce this problem, ontology filtering also uses the popularity of
concepts in the computation of the hybrid score (Algorithm 6).
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Figure E.1: Ontology filtering with 5 items in the users’ learning set, and using either the
ontology generated by the thesis’s author, or the set of 15 ontologies learnt using Algorithm
7.

Second, the experiment was reproduced but using 50 items in the learning set. Sur-
prisingly, ontology filtering with the learnt ontologies always perform better than with the
unique expert’s ontology. A potential reason for this is the fact that ontology filtering has
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Figure E.2: Ontology filtering with 50 items in the users’ learning set and using either the
ontology generated by the thesis’s author, or the set of 15 ontologies learnt using Algorithm
7.

15 ontologies to choose from, and contains enough ratings to select the best one. As a mat-
ter of fact, further experiments have shown that the performance of each learnt ontology
taken separately is usually worse that the expert’s one.

It is acknowledged that there are too much bias in this experiment to conclude to any
results. Moreover, and because no ontology could be designed for jokes, the experiment
was only done on MovieLens and not on the Jester data set. Thus, this experiment is given
only as pure information, and has not been used further.

The bias in the experiment could be reduced by asking a group of experts to also come
up with 14 different ontologies. These ontologies, along with the one designed by the
author, could then be used in order to assure that there are the same number of ontologies
in both set-ups. This experiment is left as future work.

E.3 Improvement of OF over CF

This section gives the exact p-values for the improvement of ontology filtering over collab-
orative filtering. The details of the experiment can be found in Section 8.3.5.
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# clusters in ontology | OF 5LS | OF _50LS
10 2.15E-12 0.011
20 4.15E-12 0.316
40 3.66E-12 0.002
60 3.15E-12 0.008
80 2.64E-12 | 7.62E-06
100 438E-12 | 2.15E-12

Table E.2: P-values that measures the improvement of ontology filtering over collaborative

filtering for the Jester data set.

# clusters in ontology | OF 5LS | OF _50LS
10 4.42E-13 | 7.674E-12
20 1.91E-14 | 3.94E-12
40 5.69E-15 | 7.24E-13
60 6.30E-14 | 5.35E-11
80 441E-15 | 2.11E-12
100 8.02E-15 | 1.46E-08
250 0.033 0.036
500 5.92E-06 0.179
750 0.001 0.414

1000 0.001 0.102
1668 0.008 0.013

Table E.3: P-values that measures the improvement of ontology filtering over collaborative
filtering for the MovieLens data set.
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