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Abstract
Navigation is defined as the capability of planning and performing a path from the

current position towards a desired location. Different types, or strategies, of navigation

are used by animals depending on the task they are trying to solve. Visible goals can

be approached directly, while navigation to a hidden goal usually requires a memorized

representation of relative positions of the goal and surrounding landmarks.

Neurophysiological and behavioral experiments on rodents suggest that different brain

areas are responsible for the expression of different navigation strategies. Specifically, dorsal

striatum has been related to storage and recall of stimulus-response associations underlying

simple goal-approaching behaviors, whereas hippocampus is thought to store the spatial

representation of the environment. Such a representation is built during an unrewarded

spatial exploration and appears to be employed in cases when simple stimulus-response

strategies fail. Discovery of neurons with spatially correlated activity, i.e. place cells and

grid cells, in the hippocampal formation complements behavioral and lesion data suggesting

its role for spatial orientation.

The overall objective of this work is to study the neurophysiological mechanisms under-

lying rodent spatial behavior, in particular those that are responsible for the implementation

of different navigational strategies. Special attention is devoted to the question of how var-

ious types of sensory cues influence goal-oriented behavior.

The model of a navigating rat described in this work is based on functional and anatom-

ical properties of brain regions involved in encoding and storage of space representation and

action generation. In particular, place and grid cells are modeled by two interconnected

populations of artificial neurons. Together, they form a network for spatial learning, capa-

ble of combining different types of sensory inputs to produce a distributed representation

of location. Goal-directed actions can be generated in the model via two different neural

pathways: the first one drives stimulus-response behavior and associates visual input di-

rectly to motor responses; the second one associates motor actions with places and hence

depends on the representation of location. The visual input is represented by responses of

a large number of orientation-sensitive filters to visual images generated according to the

position and orientation of the simulated rat in a virtual three-dimensional world.

The model was tested in a large array of tasks designed by analogy to experimental

studies on animal behavior. Results of several experimental studies, behavioral as wells as

neurophysiological, were reproduced. Based on these results we formulated a hypothesis

about the influence that the rat’s perception of surrounding environment exerts on goal-

oriented behavior. This hypothesis may provide an insight into several issues in animal

behavior research that were not addressed by theoretical models until now.

Keywords: rat, model, navigation, place cells, grid cells, geometry of space, neural net-

work, reinforcement learning.
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Résumé
La navigation est la capacité de prévoir et de parcourir le trajet liant une position

actuelle à une position cible. Différents types de navigation, ou stratégies, peuvent être

utilisées par l’animal selon la tâche qu’il essaie de résoudre. Une cible visible pourra

être approchée directement alors que la navigation vers une cible cachée nécessitera une

représentation interne des positions relatives de la cible et de l’environnement.

Les expérimentations comportementales et neurophysiologiques sur les rongeurs suggèr-

ent que différentes aires du cerveau sont responsables de la réalisation des stratégies de

navigation. En particulier, le striatum dorsal est lié aux stratégies d’approche directe d’une

cible visible alors que l’hippocampe est susceptible de contenir une représentation spatiale de

l’environnement. Une telle représentation s’établit lors d’une phase d’exploration spatiale et

semble être employée quand les simples startégies à base de stimulus-réponse échouent. La

découverte de neurones de l’hippocampe dont l’activité est corrélée à la localisation spatiale

de l’animal comme les cellules de lieu ou les grid cells s’ajoute aux données comportemen-

tales et issues de lésions expérimentales et ne fait que confirmer son rôle dans l’orientation

spatiale.

L’objectif principal de ce travail est l’étude des mécanismes neurophysiologiques qui

sous-tendent les comportement de navigation spatiale chez les rongeurs, notament ceux

qui génèrent les différentes stratégies de navigation. Une attention particulière sera portée

sur la question de savoir comment les différents types d’indices sensoriels influencent le

comportement de navigation vers une cible.

Le modèle de navigation du rat décrit dans ce travail est basé sur les propriétés fonction-

nelles et anatomiques des régions du cerveau qui participent à l’encodage et à l’enregistre-

ment de la représentation spatiale et la génération des actions. Par exemple, les cellules

de lieu et les grid cells sont modélisées par deux populations interconnectées de neurones

artificiels. Ensemble, elles forment un réseau d’apprentissage spatiale, capable de com-

biner différents types de stimulus sensoriels pour produire une représentation distribuée de

l’espace. Les actions visant à atteindre une cible peuvent être produite par le modèle via

deux voies neuronales différentes: la première gère les comportement à base de stimulus-

réponse et associe directement les stimulus visuels aux réponses motrices; la seconde associe

les actions motrices au lieu oú se trouve l’animal et dépend donc de la représentation de

l’espace. Le stimulus visuel est représenté par l’ensemble des réponses d’un grand nombre

de filtres sensibles à l’orientation appliqués à l’image visuelle perçue par le rat simulés dans

un environnement à trois dimensions.

Le modèle est testé dans un ensemble de tâches conçues par analogie avec des expériences

comportementales réelles. Les résultats de quelques études expérimentales, aussi bien com-

portementales que neurophysiologiques, sont reproduits. Enfin, une hypothèse concernant

l’influence qu’à la perception de l’environnement sur le comportement du rat est formulée sur

la base des résultats des simulations. Cette hypothèse pourra fournir un éclairage théorique

nouveau sur différents problèmes rencontrés par la recherche comportementale sur l’animal.

Mots clés: rat, modèle, navigation, cellules de lieu, grid cells, géométrie de l’espace,

réseau de neurones, apprentissage par renforcement.
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Chapter 1

Introduction

1.1 Motivation

Probably the oldest question in neuroscience is how actions are generated by living
organisms. Early theories suggest that any action is a response to an appropriate
stimulus, and hence any behavior may be described as a complex chain of associations
between stimuli and responses (Pavlov, 1927). An alternative theory, relatively recent,
is that organisms constantly build and update a model of the external world. Actions,
in this case, are chosen by the organism so as to bring the highest possible outcome,
according to the world model (Glimcher, 2003), and not in response to any sensory
stimuli. The first theory suggests that any action is a response, while the second one
that there is no such thing as a response.

Consider a rat swimming in a tank filled with some opaque liquid, e.g. milky
water. If the water is cold enough, the rat wants to get out of it as fast as possible.
A small circular platform can be introduced in the water-tank, such that the rat can
climb on it in order to avoid staying in the water. If the platform protrudes slightly
above the water, so that the rat can see it, it will learn very quickly to swim directly
to the platform from any location in the water-tank (Morris, 1981).

In agreement with the first theory, this behavior can be explained by a learned
stimulus-response chain. Whenever the rat sees the platform, it centers its image in
the view field and swims straight until the platform is reached.

However, when the platform is submerged below the water level, so that it becomes
invisible for the rat, the rat can still learn to swim straight to the platform from any
location in the pool (although the learning is slower, Morris (1981)). The most
intuitive explanation for this behavior is that once placed in the water-tank, the rat

1



2 CHAPTER 1. INTRODUCTION

estimates its position relative to the goal and calculates the path. This explanation
suggest that rat has some sort of a map in the head with respect to which the positions
can be estimated. The map in this case represents a model of the environment.

Note that invoking a concept of a map in the first case would be an unnecessary
complication, while it is hard to explain the second case by a stimulus-response chain.

Hence we can examine both theories in a simple experimental setting. The next
step is to understand what is exactly happening in the rat’s brain during these ex-
periments in order to reject either one or the other theory, or come up with a new
one. In the limit of infinite time the answer to the question posed in the beginning
of this introduction may be answered.

In the meantime, an interesting question is whether we can understand currently
available experimental data. By understanding we mean the ability to build a com-
puter model that can reproduce, at least to some extent, these data. We believe that
such a model can provide an insight into the processes underlying decision making in
the rat, thereby decreasing the amount of time needed to get the final answer.

Hence in this work we propose a model of rat navigation that can reproduce several
experimental results, both behavioral and neurophysiological. Our main attention is
devoted to the following questions: (i) how different strategies might be implemented
in the rat brain and (ii) what is the role of sensory stimuli (both internal and external)
during goal-oriented navigation.

1.2 Road-map of the thesis

This thesis consists of three main parts. The first part (Chapters 3 and 4) reviews
neurophysiological and behavioral data concerning the biological networks underlying
navigation and spatial representation in the rat. In the second part (Chapter 5)
we propose a bio-inspired model of goal-oriented behavior. Finally, in the last part
(Chapters 6 and 7) results of computer simulations in various experimental paradigms
are presented and discussed. Topics treated in each chapter are:

Chapter 3 reviews spatial navigation in rats. In particular, it presents evidence for
the existence of at least two different navigational strategies: taxon and locale; next,
it reviews behavioral and lesion data that suggests dissociation of these navigational
strategies in terms of underlying memory systems and action-generating pathways;
finally, several existing theoretical models of navigations are described and their main
advantages and drawbacks are discussed.

Chapter 4 reviews anatomical and neurophysiological data concerning the hip-
pocampal formation, brain structure thought to be involved in encoding and storage
of a spatial representation of the environment. In addition, firing properties of place
cells and grid cells – neurons with spatially correlated activity residing in the hip-
pocampal formation – are reviewed. Finally, short descriptions of several theoretical
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models of place- and grid-cell activity are given.
Chapter 5 presents a new model of rat goal-oriented behavior, with detailed de-

scription of its components and learning algorithms.
Chapter 6 analyzes properties of modeled grid- and place cells. First, cell activities

are analyzed during exploration of a novel environment; second, dynamics of place-
cell firing fields are examined in geometrically manipulated environments. Discussion
of the simulation results concludes the chapter.

Chapter 7 examines results of computer simulations that tested model perfor-
mance in several behavioral tasks. Each simulation is followed by a discussion, and a
general discussion concludes the chapter

Chapter 8 summarizes the contributions and possible future developments of this
thesis.
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Chapter 2

Background

2.1 Neural networks

The model presented here relies on the artificial neural network paradigm (Hertz et
al., 1991; Haykin, 1994). A neural network is a massively parallel distributed system
suitable for storage and processing of complex information.

The elementary constituents of a biological neural network are simple comput-
ing units referred to as neurons. Each neuron i receives a large number of input
connections termed dendrites, and transmits its response through the axon output
connection. The computational power of a neural network derives from the massive
interconnections between its neurons. Synapses are the elementary components that
mediate the interaction between neurons.

An artificial neural network is a machinery designed to model the adaptive way
in which the brain processes information to perform a given task. In particular, a
neural network resembles the brain in two aspects (Haykin, 1994): (i) It acquires
the necessary knowledge to solve a problem through a non-symbolic learning process;
(ii) Storing this knowledge occurs through the modification of the weights of the
inter-connections between neurons (i.e., synaptic plasticity).

Therefore, artificial neural networks offer a suitable tool for designing a model of
navigation with learning capabilities, and allow us to model the functional properties
as well as anatomical interconnections between the brain regions involved in spatial
learning.

We employ a highly simplified neuronal model in which the firing activity, or rate,
of a neuron is measured by temporally averaging the number of spikes emitted by
the neuron during a particular time window (Hertz et al., 1991). The concept of rate

5



6 CHAPTER 2. BACKGROUND

coding has been largely employed in artificial neural systems for its simplicity and
power.

2.2 Reinforcement learning

Learning of navigation strategies in the model is performed using reinforcement learn-
ing (RL). Here we present a brief overview of the main concepts of RL (for a com-
prehensive introduction to the RL theory see Sutton and Barto (1998)).

In reinforcement learning an agent can be in certain states and perform actions.
By performing an action, the agent changes its state, in which it can choose a new
action. At certain states, the environment, in which the agent operates, can present
a reward to the agent. RL is a class of methods which aims at optimizing the agent’s
behavior in order to maximize the reward.

Environment

action a

reward r

state s

Agent

Figure 2.1: Agent-environment interaction in reinforcement learning (adapted

from Sutton and Barto (1998)).

States, actions and policies

At each discrete1 time step t, the agent is in some state state st ∈ S where S is the
set of all possible states. In this state it can select an action at ∈ A(st) where A(st)
denotes all possible actions available in state st. At the beginning of the next time
step, it receives a scalar reward rt+1 ∈ R and ends up in state st+1. Note that states
and actions are vectors. The agent has to decide which action to execute at each time
step, given the perceived state (Fig. 2.1). This can be described as a mapping of the
states to actions. This mapping is called a policy π(s, a | ω) where ω is a vector of
tunable parameters:

1We only consider the time-discrete case here, but generalizations to continuous time have been

proposed (Doya, 1996, 2000)
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π(s, a | ω) = Pr{at = a | st = s, ωt = ω} (2.1)

It specifies the probability of selecting action a when in state s, given the param-
eters ω. A policy which always selects the action which seems best according to the
current information is called a greedy policy. It tries to maximize rewards according
to the current knowledge even if this would prevent access to more abundant rewards
in the future. An ǫ-greedy policy selects the greedy action most of the time, but with
small probability ǫ randomly chooses between other available actions.

Rewards and returns

We mentioned earlier that the objective of learning was to maximize the reward. Here
we focus on tasks that have a terminal state, which means that at some time step tT
the trial or episode terminates. The expected return R(st) is then defined as the total
discounted reward from time t up to the end of the trial:

R(st) = rt+1 + γrt+2 + γ2rt+3 + . . .+ γ(T−t−1)rT =
T−t−1∑

k=0

γkrt+1+k (2.2)

where γ ∈ [0, 1] is the reward discount rate. It determines how important a future
return is if it were received at the present time. The higher γ the more far-sighted
is the agent. If γ = 0, future rewards are worth nothing. For the remainder of this
thesis, we always refer to the discounted version when speaking of return. The RL
task now consists in tuning the parameters ω of policy π(s, a|ω) such as to maximize
the discounted expected return.

Value functions and Bellman equation

In order to plan an appropriate action, the agent has to estimate how good it is to
be in some state, and how much an action is worth in that state. These expected
returns are called value functions. They depend on what actions the agent will take
in the future, i.e. on the agent’s policy π. The state-action value function Qπ(s, a) is
defined for taking action a at state s, following policy π thereafter:

Qπ(s, a) = Eπ{Rt|st = s, at = a} (2.3)

The state-action value function follows a recursive relationship to their previous
or successor value, i.e. for policy π, state s and action a, state-action values satisfy
the following equation:
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Qπ(s, a) =
∑

s′

Pa
s→s′

[

Ra
s→s′ + γ ·

∑

a′

π(s′, a′)Qπ(s′, a′)

︸ ︷︷ ︸

V π(s′)

]

(2.4)

where Pa
s→s′ denotes the probability that state s′ is reached when taking action a in

state s. Ra
s→s′ is the expected value for the reward received when action a leads from

state s to s′. Equation (2.4) is called the Bellman equation for Qπ. Due to such recur-
sive relationships the state-action value can be propagated to a previous state-action
pair. The Bellman equation forms the basis of many approaches for approximating
value functions, in particular for the temporal-difference (TD) learning.

Temporal difference learning

One of the most important methods to estimate the value functions is temporal dif-
ference (TD) learning. It allows the agent to learn directly from experience by iter-
atively updating state-action value estimates. Several variants of TD-learning have
been proposed.

According to the Sarsa algorithm, state-action value Q(st, at) is updated at each
time step by amount ∆Q(st, at):

∆Q(st, at) = η · δt (2.5)

δt = [rt+1 + γQ(st+1, at+1) −Q(st, at)] (2.6)

where η is the learning rate and δt is the reward prediction error, that corresponds
to the difference between the actual reward rt+1 and the predicted reward Q(st, at)−
γQ(st+1, a

π
t+1).

Sarsa is an on-policy method because it updates Q by actually performing action
at+1. For small learning rates η, Sarsa converges to an optimal state-action value
function Q∗ if all state-action pairs are visited an infinite number of times and if the
policy converges to the greedy policy (Singh et al., 2000).

Q-learning algorithm, in contrast to Sarsa is an off-policy algorithm. The update
of the state-action value function is performed according to Eq. (2.5), but the reward
prediction error is calculated based on the best, rather than the selected action:

δt =
[

rt+1 + γmax
a
Q(st+1, a) −Q(st, at)

]

(2.7)

Q-learning directly estimates Q∗ while following an arbitrary policy. Like Sarsa, it
also converges if all state-action pairs are tried indefinitely (Watkins, 1989; Watkins
and Dayan, 1992; Jaakkola et al., 1994).
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Eligibility traces

So far the value functions have been calculated on the basis of a neighboring state
or state-action pair only. Eligibility traces (ETs) extend this idea to benefit from
estimates that lie further away in time. ETs can be combined with almost any TD
learning variant. An ET is a memory of previously occurred states or state-action
pairs. The update of the value function estimates can then be done for all states and
actions eligible for learning. For Q-learning, an eligibility trace et(s, a) at time t can
be defined as follows:

et(s, a) =

{
γλet−1(s, a) + 1 if(s, a) = (st, at)
γλet−1(s, a) else

(2.8)

For undiscounted returns (γ = 1.0), this trace decays exponentially with a trace
decay factor of λ. When the future rewards are discounted, however, the ET decays
at least with the discount rate (λ ≤ 1). With eligibility traces, the update ∆Q(st, at)
of Eq. 2.5 extends to:

∆Q(st, at) = η · δt · et(s, a) (2.9)

Equations 2.8 and 2.9 make all previously visited state-action pairs eligible for
learning. Most recent actions get more “credit” for the current estimate of expected
return and their values are modified to a greater extent than for decisions taken far in
the past. For Q-learning, eligibility traces are valid only until a non-greedy action is
taken (Watkins, 1989). This considerably reduces the benefit of ETs for Q-learning.
Other variants of off-policy TD methods seem to work well in practice but their
convergence is still an open question (Peng and Williams, 1996), but see also (Precup
et al., 2000).

Continuous spaces and generalization

One of the problems in reinforcement learning is that the learning speed highly de-
pends on the dimensionality of the state and action spaces. A related issue is the case
of continuous spaces. Both problems can be solved by using function approximation
for the state and action values.

The key idea is that updating an estimate for a specific state also affects the
estimates of similar states.

This idea thus applies to the problem of continuous states/actions as well as to
generalization. In special cases, convergence has been proved, whereas other cases are
known to diverge (Gordon, 1995; Baird III, 1995; Tsitsiklis and Roy, 1996; Sutton
et al., 1999; Precup et al., 2000, 2001). In our model (Chapter 5), we implicitly use
function approximation to generalize in continuous state and action spaces.
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2.3 Environment model

This thesis follows the animat approach, in which the modeling of cognitive functions
takes explicit interest in the interactions between the modeled individual and its
environment (Guillot and Meyer, 2001).

The performance of the model is assessed through experimental tests using a
computer program, referred to as ‘simulated rat’, which is able to gather external
sensory information from the environment and use it, along with a self-motion input,
to select among future possible actions.

The experimental environment is modeled as a three-dimensional virtual room, the
size and visual features of which are set depending on the experiment (see below).
The position of the simulated rat in the room is changed in discreet time steps of
0.125 s according to its speed (constant and equal to 16 cm/s) and direction. At
each time step an input visual image is generated by calculating a snapshot of the
virtual environment according to the position and gaze direction of the model animal
using a standard computer graphics algorithm (ray casting, Foley et al. (1995)). The
horizontal view field of the model rat is 300◦.

Testing environments

Two types of experiments were conducted, similar to ‘behavioral’ and ‘neurophysio-
logical’ experiments with rats.

For behavioral experiments simulating watermaze tasks were performed in a square
room of 2m×2m with high walls. Photographs of a typical laboratory environment
were attached to the walls of the room with the aim of simulating multiple visual
cues. The experimental arena, located in the center of the room, was surrounded by
a grey circular wall 1.2m in diameter and 0.2m high so as to simulate the wall of the
watermaze (environment B-I, Fig. 2.2). An invisible target area 6 cm in diameter
located in the southwest quadrant of the simulated watermaze served as a hidden
goal. Environment B-II was designed analogous to the experiment of Cheng (1986)
and consisted of a rectangular room with grey walls and distinct landmarks in the
four corners. The room size was 1m×0.5m with walls of 0.6m hight.

For ‘neurophysiological’ experiments on the model, i.e. when activities of single
cells were analyzed, we re-used environment B-I, except that the circular watermaze
was replaced by a square area of 1m×1m with transparent walls at the center of the
room (environment N-I, Fig. 2.2). In the experiments with shrinking and stretching
environments two series of rectangular rooms were used (N-II and N-III). In each
series the first room (N-IIa and N-IIIa) is referred to as ‘original’ environment and
the other rooms as shrunk (N-II) or stretched (N-III) versions of the original room.
All rooms had the same width (1.2m) and their lengths were 1.8m, 1.5m, 1.2m, 0.9m
and 0.6m for the N-II series and 0.6m, 0.75m, 0.9m and 1.2m for the N-III series.
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Figure 2.2: Testing environments used in computer simulations. In each row the left

part of the figure shows the top view of the virtual room and the right part shows

an example snapshot of the room (the black dot and the arrow show the position and

direction at which the snapshot was taken). The circle in the top view of room B-I

marks the border of the simulated watermaze. The dotted line in the top view of the

room N-I marks the area accessible to the model rat in this environment. The dashed

line in rooms N-IIa-e and N-IIIa-e marks a linear trajectory of the model rat.

The lengths were chosen to approximate the real experimental conditions (Gothard
et al., 1996; O’Keefe and Burgess, 1996). Each room had grey walls 0.6m high.
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Chapter 3

Rat navigation

Navigation is defined as the capability of planning and performing a path from the
current position towards a desired location (Gallistel, 1990). Two fundamentally
different types, or strategies, of navigation can be distinguished (O’Keefe and Nadel,
1978). Taxon navigation is the one in which goal-oriented movements are defined by
a reference to a specific sensory cue (or a set of cues) external to the organism, e.g.
movement in the direction of a particular landmark or away from it, movement along
a wall, movement in the direction of a specific odor, etc. In contrast, locale navigation
defines movement as happening from one place to another, where ‘place’ is an abstract
notion defined as a position on the map of the environment (experimental evidence
for the existence of such a map in the mammalian brain is reviewed in Chapter 4).
An important difference between these two types, or strategies, of navigation1 is in
the flexibility with which different goal-directed paths can be generated. Whereas the
taxon navigation suggests a particular path and is easily disrupted by the alteration
of relevant cues, the locale navigation is flexible in the choice of the path from one
place to another and is relatively resistant to the effects of environmental changes.

Several dichotomies related to the one of locale/taxon are used in the experimental
literature (see Table 3.1) and reflect different aspects of the two strategies

Egocentric vs Allocentric. The egocentric frame of reference is defined relative
the animal. The current position of the animal defines the origin of such a reference
frame and its the current heading defines the reference direction (i.e. 0◦, Fig. 3.1a).
In contrast, the allocentric frame of reference is defined with respect to static sensory
cues external to the animal, i.e. independent of the animal’s current position and

1A number of different taxonomies of navigation exist that propose further subclasses of either

the taxon or locale navigation (see Gallistel (1990); Trullier et al. (1997); Redish (1999))

13
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Navigation type taxon locale
Frame of reference egocentric allocentric
Learning mode stimulus-response place
Dimensionality of trajectory space 1D (route) 2D (map)

Table 3.1: Distinctions between stimulus-response and cognitive navigation strategies

heading. For example, the center of a recording chamber can serve as the origin of
an allocentric reference frame, and direction towards the eastern wall can serve as
a reference direction. An important distinction between the goal-oriented behaviors
organized in the two reference frames is that knowing the goal position in the ego-
centric reference frame is sufficient to approach the goal, whereas knowledge of the
goal’s allocentric coordinates can be used only if the current allocentric position of
the animal is known as well.

Response vs Place learning. Behavioral experiments dealing with dissociation
between different navigation strategies (see Section 3.1) usually describe behavioral
decision in terms of response and place strategies (the terms are equivalent to the
taxon and locale strategies, but emphasize the result of learning). The response
learning strategy2 amounts to remembering a specific motor response to a set of
visual or other sensory stimuli (e.g. turning right in the central junction of the cross
maze, Fig. 3.1b), whereas the place strategy requires memory for a location of the
food with respect to the extra-maze visual cues. The two strategies can be dissociated
by observing rat behavior in altered experimental conditions: animals that learned
the response strategy will repeat the same motor response, while those who learned
the place strategy will go to the same place. Such dissociation experiments together
with lesion studies (see Section 3.1) provide an insight into the biological mechanisms
that implement those strategies.

Routes vs Maps. Finally, the taxon and locale strategies can be distinguished on
the basis of trajectories that these strategies generate. The taxon behavior suggests
movement along a one-dimensional route since each stimulus-response association
implies a particular motor response or movement in a particular direction. In contrast,
the locale strategy does not specify how to get from one place to another, allowing for
making shortcuts and detours. In addition, locale strategy can be used to approach
the goal from novel starting positions, provided that these starting positions belong to
the map, whereas taxon navigation assumes an exact repetition of learned responses
and hence unable to generalize to novel starting positions not seen during training.
The latter distinction has been used to experimentally dissociate the two strategies.

2Sometimes it is also referred to as stimulus-response or cue-response strategy, when response to

a particular visual cue is learned
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Figure 3.1: (a) Circular environment with a cue card (arc). If the goal (circle) is

visible, its egocentric direction (with respect to the rat) can be estimated from visual

input as 90◦ to the left. The goal can be approached solely on the basis of this

egocentric information, i.e. without knowing the relative positions of the cue card

and the goal. If the goal is hidden, its position has to be remembered with respect

to the cue card. In order to approach the goal, an estimation of rat’s position in this

allocentric reference frame is required. (b) Cross maze with the food source in the right

arm. If the starting position is changed from the bottom arm (used during learning)

to the top one, the response strategy leads the animal to the left arm (L), whereas the

place strategy leads them to the right arm (R).

Large body of experimental evidence, both behavioral and neurophysiological,
suggest that the two strategies are implemented by distinct brain areas. In particular,
expression of the taxon navigation has been related to the function of the dorsal
striatum of the basal ganglia, whereas locale navigation is thought to be mediated by
the hippocampus and nearby areas.

This chapter is organized as follows: Section 3.1 describes behavioral and le-
sion data showing that the two strategies can be acquired independently from each
other and hence mediated by different memory systems; Section 3.2 is devoted to the
question of how a particular memory system can modulate goal-oriented behavior;
Section 3.3 reviews the role of sensory cues during goal-oriented behavior, in particu-
lar the influence of geometry of space is discussed; finally, Section 3.4 reviews existing
models of navigation.

3.1 Memory systems underlying navigation

3.1.1 Locale and taxon strategies in the watermaze

The difference between locale and taxon navigation strategies has been investigated
in the watermaze as well as in radial mazes (including T-mazes).
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Locale strategy in the watermaze was first demonstrated by Morris (Morris, 1981).
In the standard version of this task, the rat is placed in a circular pool filled with
colored water and has to learn the location of a platform hidden somewhere in the
pool. The rat is released from different starting locations in the watermaze in dif-
ferent trials so that it has the opportunity to see the extra-maze cues from different
perspectives and to encode a representation of the location of the platform based on
the relations among them. The kind of memory formed is flexible in the sense that,
after the rat has learned the task, it can find the platform even after being released
from a starting location that it has never experienced during the training. Lesion or
inactivation of the hippocampal formation (including the fimbria fornix) disrupts this
kind of place learning (Da Cunha et al., 2003; Morris et al., 1982; Sutherland et al.,
1983).

However, Eichenbaum et al. (1990) showed that fimbria fornix-lesioned rats were
able to learn a version of this task in which they were trained to always begin from
the same location. This kind of training encouraged rats to associate the extra-maze
cues with a particular swim trajectory, which was reinforced by successful escape from
the water. It also offered the rats the opportunity to see all the cues as a unique set
of extra-maze stimuli (i.e. an environment snapshot) that could be associated with a
response strategy to find the platform. In other words, this protocol transformed the
water maze task from a multiple relational task including multiple distal stimuli into
another task that could be solved in a stimulus-response (S-R) way.

As learning of spatial/relational tasks has often been suggested to depend on the
hippocampus or fimbria fornix (Morris et al., 1982; O’Keefe and Nadel, 1978; White,
2004), S-R habit learning, in which a stimulus or a set of stimuli is repeatedly asso-
ciated with a rewarded response, has often been reported to depend on components
of the basal ganglia, such as the dorsal striatum (McDonald et al., 2004; Packard et
al., 1989; Packard and McGaugh, 1992a; White, 2004) and the substantia nigra pars
compacta (Da Cunha et al., 2003; Cunha et al., 2006; Miyoshi et al., 2002).

A double dissociation of the dependency on the hippocampus and the SNc for
the watermaze tasks with hidden and visible platforms has been demonstrated by
Da Cunha et al. (2003). A double dissociation of the hippocampus and the dorsal
striatum for acquisition of these two tasks has been demonstrated by Packard and
McGaugh (1992a).

In Chapter 7 we will use our novel model of navigation (described in detail in
Chapter 5) to reproduce some of the experimental results described above, in partic-
ular those of Morris (1981); Morris et al. (1982); Eichenbaum et al. (1990).

3.1.2 Radial mazes

A similar dissociation of the locale and taxon strategies has been shown in experiments
with radial mazes.
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Using an 8-arm maze, McDonald and White (1993) showed a triple dissociation
of learning and memory functions in the mammalian brain. This dissociation was
demonstrated by assessing the behavioral effects of lesions to the amygdala, dorsal
striatum, or hippocampus. Groups of rats with lesions to these brain areas were
trained on three behavioral tasks including a (i) a stimulusresponse habit task, (ii) a
spatial memory task, and (iii) a conditioned cue preference task.

(i) During acquisition of the stimulusresponse (SR) habit task (Packard et al.,
1989), rats learned an association between a particular stimulus (light) and a motor
response (turn) that is repeatedly reinforced. Rats with lesions of the dorsal striatum
were impaired at this SR habit task but rats with lesions of the lateral amygdala or
hippocampus showed normal acquisition of this task.

(ii) For the spatial version of the radial maze, rats learned to obtain eight food
rewards (one found at the end of each arm) by entering each arm once and avoiding
previously visited locations within each day (win-shift task). Evidence suggests that
during training, rats form a spatial representation of the environment and use it to
distinguish visited from unvisited arms (O’Keefe and Speakman, 1987; S. Suzuki et
al., 1980). Rats with lesions of the hippocampus were impaired at this form of spatial
learning whereas rats with lesions of the lateral amygdala or dorsal striatum showed
normal acquisition of this task.

(iii) For the conditioned cue preference task, rats learned to associate different
visual cues with the presence or absence of highly palatable and rewarding food. On
the test day, the rats were given a choice between the two arms, neither of which
contained food. Normal animals spent more time in the arm and associated cue
condition that was associated with food than the other arm that was never associated
with food. Rats with lesions of the lateral amygdala were impaired at this form of
classical conditioning but rats with lesions of the dorsal striatum or hippocampus
showed normal acquisition of this task.

Together, these findings demonstrate a triple dissociation among memory systems
(White and McDonald, 2002) and leads to conclusion that learning in each of these
situations required some unique information processing that was normally mediated
by one of the damaged brain structures. These data also suggest that the different
systems may acquire information independent from one another.

3.2 Basal ganglia

The data above suggests that that different memory systems mediate the expression
of the two navigation strategies. The next question is how these memory systems are
involved in the generation of behavior.

In addition to its role in S-R learning described above, the basal ganglia has
been related to the high-level control of movement because of its involvement in such
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motor disorders as Parkinson’s and Huntington’s diseases (Graybiel, 2000; Packard
and Knowlton, 2002). The anatomy of basal ganglia connections suggests that, at
least in part, these structures operate as part of recurrent circuits (loops) with the
cortex (Alexander and Crutcher, 1990; Alexander et al., 1986). Broad subdivisions
exist within these cortico-basal ganglia loops, suggesting that different loops operate
in relation to different types of cortical function, and potentially to different types of
behavior. Before describing these loops we briefly review the anatomy of the basal
ganglia.

The main input structures to the BG are the striatum and the sub-thalamic
nucleus (STN) (see Fig. 3.2). The striatum is innervated by almost all cortical areas
and the hippocampus. It is further subdivided along the dorso-ventral axis into the
dorsal striatum, or caudate putamen (CP) whose main afferents come from cortical
areas and the nucleus accumbens (NA), which is innervated by both the hippocampus
and cortical areas.

The dorsal striatum is anatomically divided in two regions: patch and matrix.
The matrix is structurally segregated in isolated neural compartments and projec-
tions from this area to output structures of the BG preserve the compartmental
segregation, except for projections to the STN. Such a segregated structure has been
proposed to implement independent sensory-motor associations (Mink, 1996). This
is in agreement with behavioral studies described above which suggest the role of the
dorsal striatum in stimulus-response behaviors.

The NA is one of the major targets of the fornix (Witter et al., 1990) which can
carry place information from subiculum and CA1. Lesions of NA produce deficits
in the hidden platform version of the watermaze, but not in the visible platform
(Annett et al., 1989; Sutherland and Rodriguez, 1990), suggesting that it can mediate
hippocampus-dependent navigation.

The main outputs of the BG are the substantia nigra pars reticulata (SNr) and the
globus pallidus pars interna (called entopeduncular nucleus (EP) in rodents). This
areas project back to the cortex, in particular to the motor cortex, the brainstem
and to the superior colliculus, areas that are involved in motor control (Amaral and
Witter, 1995; Heimer et al., 1995; Mink, 1996).

This closed cortico-striatal-cortical circuit is subdivided in parallel independent
loops originated in different regions of cortex, passing through specific sub-regions of
the BG nuclei (Alexander and Crutcher, 1990; Alexander et al., 1986), and projecting
back from there to the same cortical areas. In particular, two such loops can be related
to the implementation of the locale and taxon strategies:

1. Motor loop, consisting on the dorsal pathway of the BG, including the CP, the
globus pallidus and the lateral part of the SNr. It also involves motor regions of
the cortex. It has been suggested to be involved in instrumental memory, and
developing of stimulus-response associations (Graybiel, 1998).
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Figure 3.2: Schematic representation of the interconnectivity in the BG. Projections

from the hippocampus and amygdala to the ventral part of the striatum are not repre-

sented. Dopaminergic projections are represented by dashed arrows. Open arrowhead

denotes excitatory connections and filled arrowheads denote inhibitory connections.

See the text for further description.

2. Limbic loop, corresponding to the ventral pathway of the BG, including the
ventral striatum (particularly the NA) and the hippocampus (Thierry et al.,
2000). Several models of hippocampus-dependent navigation have proposed the
NA as the putative locus for selecting actions based on place coding projections
from the hippocampus (Burgess et al., 1994; Brown and Sharp, 1995; Arleo and
Gerstner, 2000b).

Each one of these loops may be further segregated in independent parallel sub-circuits.

The dorsal striatum and nucleus accumbens receive dopaminergic input from sub-
stantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) of the basal
ganglia, respectively. Dopaminergic neurons in these areas tend to synapse on the
same spines than cortical and hippocampal afferents (Freund et al., 1984). Dopamin-
ergic activity is believed to regulate the plasticity of cortico-striatal synapses (Schultz,
2002) and hence provides the possibility of reward-based learning in the basal ganglia,
in particular reward-based learning of navigational strategies.

Our model of navigation, described in Chapter 5, is based on the anatomical
data described above. In particular, the taxon navigation pathway in the model is
a simplified implementation of the cortico-striatal motor loop, whereas the locale
navigation pathway represents the limbic loop.
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3.2.1 Reward-based learning

There is increasing evidence that dopamine is involved in reward-related learning.
As mentioned before, dopaminergic neurons (DNs) in the SNc and VTA project to
the caudate putamen, nucleus accumbens and most parts of neocortex. DNs show
regular or tonic firing patterns, as well as transient or phasic firing activity. DNs
phasic activity is related to primary rewards (Hollerman and Schultz, 1998) and
predicted reward (Schultz, 1998; Apicella et al., 1992; Schultz et al., 1992).

Several studies suggest that phasic dopamine release could serve as a biological
implementation of the TD-error of reinforcement learning (Houk et al., 1995; Schultz
et al., 1997; Suri and Schultz, 1998, 1999, 2001; Doya, 2002) and code for the reward
prediction error (see Chapter 2).

As mentioned before, dopaminergic neurons in the striatum tend to synapse on
the same spines as the afferent axons from cortical areas. It is therefore possible
that DNs influence or modulate either synaptic transmission or synaptic plasticity of
cortico-striatal connections (Freund et al., 1984; Sesack and Pickel, 1990; Smith et
al., 1994). There are at least two possibilities how DNs can influence learning. First,
dopamine has been shown to focalize cortico-striatal transmission, which only allows
the strongest signals to pass (Otmakhova and Lisman, 1998; Schultz, 1998; Redgrave
et al., 1999; Schultz, 2002). This can be seen as a gating signal which only enables
the most important inputs to reach the postsynaptic neuron. Alternatively, phasic
dopamine release might directly influence plasticity in the target area. In striatum,
prefrontal cortex and hippocampus, dopamine agonists enhance synaptic potentia-
tion whereas antagonists impair potentiation (Otmakhova and Lisman, 1996, 1998;
Gurden et al., 1999; Kerr and Wickens, 2001). In recent experiments dopaminergic
neurons in the SNr were electrically stimulated to simulate a reward prediction er-
ror. This resulted in potentiation of cortico-striatal projections (Wickens et al., 1996;
Reynolds et al., 2001). Prefrontal and auditory cortex also show potentiation if a
phasic dopamine release is simulated (Bao et al., 2001; Blond et al., 2002).

Other neuromodulators have been suspected to correspond to reinforcement learn-
ing variables. Serotonin may regulate the discount rate of future rewards (Eq. (2.2)).
Indeed, rats with depleted serotonin levels tend to impulsively favor small immediate
over larger, but delayed rewards (Doya, 2000; Mobini et al., 2000; Doya, 2002)

Noradrenaline seems to be involved in the control of arousal and relaxation and is
suspected to govern the exploration-exploitation tradeoff (Doya, 2000, 2002). Activity
of noradrenergic neurons is correlated with the accuracy of action selection, especially
in urgent situations (Aston-Jones et al., 1994; Usher et al., 1999)

Acetylcholine may regulate the speed of learning (η in equation 2.5) (Doya, 2000,
2002).

In our model of navigation, reward based learning of navigational strategies is
performed in the simplified model of basal ganglia subareas, in particular, caudate
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nucleus and nucleus accumbens. In agreement with the data described above our
learning algorithm makes use of the reward signal, presumably received by these
subareas in the form of phasic dopamine input. More specifically, the dopamine
signal is associated with the reward prediction error δ (see Chapter 2).

3.3 Role of sensory cues during goal-oriented be-

havior

During both locale and taxon navigation, animals rely on different types of sensory
cues. In the taxon condition external cues that mark the position of or direction to
the goal are important. In the Morris watermaze the visible platform itself or another
intra-maze object that marks the position of the platform can be used as an beacon
(Morris et al., 1982; Packard and McGaugh, 1992a; Devan and White, 1999). In
the watermaze task with the constant start (Eichenbaum et al., 1990; Cunha et al.,
2006), a configuration of landmarks visible from the starting position can serve as an
extra-maze directional cue. In homing tasks where the use of self-motion cues was
prevented, the animals could return to the starting position using smell (Maaswinkel
and Whishaw, 1999).

The locale navigation was shown to depend on path integration (i.e. integration of
self-motion information over time (Etienne, 1998; Maaswinkel and Whishaw, 1999)) in
addition to distal visual cues (McNaughton, Leonard, and Chen, 1989; Knierim et al.,
1995; Wilson and McNaughton, 1993). Behavioral studies suggest that when several
types of cues are available that give conflicting predictions about the goal location,
visual cues predominate over other types of cues, e.g. olfactory and self-motion (S.
Suzuki et al., 1980; Maaswinkel and Whishaw, 1999). Is there a similar hierarchy
within the set of all possible visual cues? Cheng (1986) and later Gallistel (1990)
suggested that geometry of environment plays a primary role during navigation.

3.3.1 Geometric module hypothesis

Cheng (1986) proposed that information about the shape of the surrounding envi-
ronment, presumably extracted from the visual information, predominate over the
non-geometric information such as texture, visual pattern, etc. In Cheng’s experi-
ments, food-deprived rats were shown food hidden inside a rectangular box. Multi-
modally distinct features (including olfactory, visual, and tactile characteristics) were
attached to the corners of the box. After disorientation the rats were allowed to
search for the food. Surprisingly, the rats made systematic rotational errors, i.e. they
went to the location that was diagonally opposite to the correct location, as if they
were orienting by the rectangular shape of the room and discarded information from
the corner landmarks. Similar findings have been reported by other investigators
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(Margules and Gallistel, 1988; Cheng and Newcombe, 2005) and have led to the pro-
posal that disoriented rats re-orient themselves in a familiar environment by means
of a ‘geometric module,’ impenetrable to non-geometric information (Gallistel, 1990;
Wang and Spelke, 2003).

Impenetrability, or encapsulation, of a mind module (Fodor, 1983) means that
it deals only with a restricted subset of potentially available sensory data. Such a
property increases the efficiency of computation to which the module is dedicated
by limiting the number of relevant inputs. In the case of the geometric module this
subset is represented by the information about the spatial arrangement of surrounding
surfaces, the shape of the environment. The non-geometric information, according to
this hypothesis, is not used during reorientation due to the encapsulation property. In
a follow-up experiment Cheng (1986) has shown that rats were able to distinguish one
corner from the others on the basis of the landmark information, if they started each
trial from the same location (the center of the arena). This result was taken as an
evidence that rats could see the landmarks but did not use them during reorientation,
in agreement with the geometric module hypothesis.

In a study aimed at testing directly the geometric module hypothesis Pearce et
al (Pearce et al., 2004) first trained rats to swim to a target platform hidden in
the corner of a featureless rectangular water pool, and then examining their corner
choices in an environment with a different shape (a kite-shaped pool). In this new
environment, one of the corners was identical to the target corner in the training
environment. If the rats were orienting themselves using only the shape information,
then their corner choices in the new environment would be random, since the shapes
are different. In contrast, rats in this experiment choose the similar-to-target corner
significantly more often than would be predicted by chance. These results contradict
the geometric module hypothesis and suggest that rats might use local-cue matching
strategy in this task.

One of the major goals of the present study is to analyze the rat’s behavior in
the experiments of Cheng (1986) and (Pearce et al., 2004) from the point of view of
neuronal networks that are thought to underly navigational behavior. In particular,
in Sections 7.2 and 7.3 our model is used to reproduce these results.

3.4 Models of rodent navigation: state of the art

In this section several models of rodent navigation and action control are reviewed.
Two types of models are presented. Section 3.4.1 reviews models of locale navigation.
These models rely on a stored representation of space which interacts with neural
representation of action (i.e. directions of movement) or goal locations. Section 3.4.2
reviews the second type of models, in which the neural circuit of the BG implements
reward-based action selection (Houk et al., 1995; Montague et al., 1996; Doya, 1999).
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They propose that the BG, and more specifically its dorsal pathway, encode different
sensory-motor programs (corresponding to S-R associations).

3.4.1 Models of Hippocampus-dependent navigation

Burgess et al. (1994)

In the navigation model of Burgess et al. (1994), place cells in the subiculum project
to a population of eight goal cells. A head direction system consisting of eight cells
with fixed one-to-one connections to the goal cells attributes a particular direction to
each goal cells. These connections are gated by a reward signal, such that goal cells
are only activated if a head direction cell is active and a reward is delivered.

Every time the agent reaches a rewarding location, it looks in all eight directions.
In each of them, a reward is delivered at the late phase of the θ cycle. Hebbian-type
learning is then applied to the binary synapses from the subicular place cells to the
goal cells. Place cells that fire at the late phase of θ tend to have receptive fields
located ahead of the present position. A goal cell coding for ‘north’, for instance, is
thus contacted by subicular cells located to the north of the goal. As the receptive
fields of subicular place cells are very large, the fields of the goal cells are also large.
This allows the system to estimate its bearing and distance with respect to the goal
location from almost any place of the environment after only one trial.

This model postulates goal cells in the subiculum which are necessary for locale
navigation. This is in contradiction to experimental data where fornix lesions impair
rats in the hidden water maze (Eichenbaum et al., 1990; Sutherland and Rodriguez,
1990; Packard and McGaugh, 1992a). Furthermore, the goal cells in this model create
a global basin of attraction towards the goal. Local information such as obstacles are
not taken into account. Finally, this learning mechanism also suffers a ‘distal reward’
problem because only those place cells whose fields contain the goal may learn place
to action associations.

Brown and Sharp (1995)

In the model by Brown and Sharp (1995) a population of ‘motor’ cells in nucleus
accumbens receives spatial information from the hippocampal place cells (Fig. 3.3).
Together with a head direction system, the model learns to perform movement com-
mands which lead to a rewarding location. Nucleus accumbens cells are separated in
two clusters of 60 motor neurons and the same amount of inhibitory interneurons.
Each of the 60 place cells is connected to a unique interneuron of each cluster. Each
interneuron in turn projects to a unique subset of 59 motor cells, which form the
output of the navigation system. These synapses are fixed.

Every time the agent encounters a rewarding position in the environment, head
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Figure 3.3: Navigation architecture proposed by Brown and Sharp (1995): Nucleus

accumbens (NA) consists of two populations; one for right turns, the other for left

turns. Each place cell (PC) has a fixed connection to an inhibitory neuron in each NA

cluster. Each interneuron is connected to a unique subset of excitatory output cells,

containing all but one “motor” cells. Head direction (HD) cells learn to select left or

right turn motor cells by reinforcement-modulated Hebbian learning.

direction cells modify their synaptic weights to the active motor unit using a reward-
modulated Hebbian-type learning rule. An exponentially decaying memory trace of
pre– and postsynaptic coactivation enables the agent to propagate reward information
along its trajectory. Most recently active synapses are strengthened most, while the
change in synaptic efficacy for previously active synapses is smaller.

In test trials, the two active motor units compete for action selection. A left turn
is performed if the ‘left’ motor unit is more active than the right and vice versa. The
model is able to solve the hidden water maze task.

This model updates its place-action mapping only when a rewarding location is
encountered. Places that are far away from the goal are only associated to actions
using a global temporal activity trace. The existence of such long memory traces in
animals is still an open question.

Abbott and coworkers (1996, 1997)

The work by Abbott and coworkers (Blum and Abbott, 1996; Gerstner and Abbott,
1997) suggests that hippocampal region CA3 is the neural substrate for navigation
maps. Learning on the recurrent CA3 connections using spike timing dependent
plasticity results in a shift of receptive fields towards the goal location. Initially, CA3
place cells have perfectly Gaussian receptive fields with high overlap. Training consists
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of repeated trials, ending when the agent reaches the goal location. This procedure
introduces an inhomogeneity with respect to the experienced trajectories: No path
can lead from the target to other places because trials end at the goal location.

Navigation maps to multiple targets can be represented simultaneously: Place cell
activity is modulated by the distance to the target location. After learning, navigation
maps to multiple targets can be recalled. Routes to novel target location can also be
generated by superposition of the learned maps.

The learning rule used in this model produces a shift of the place fields in the
direction opposite to the goal location. In order to use this shift for navigation, the
original place field centers are accessed explicitly to calculate the agent’s next move-
ment, which is a biologically implausible operation. Furthermore, this model of locale
navigation is entirely concentrated in the hippocampus. It is not consistent with the
impairments reported in the hidden water maze following fornix or nucleus accum-
bens lesions (Eichenbaum et al., 1990; Sutherland and Rodriguez, 1990; Packard and
McGaugh, 1992a).

Gaussier and coworkers (1998, 2000, 2002)

In the navigation model by Gaussier and coworkers (Gaussier et al., 1998, 2000,
2002), a transition prediction network based on place cells ‘proposes’ candidate future
places (see Fig. 3.4). Competition within the transitions recognition layer selects
the most active transition (e.g. node BD, leading from place B to place D). This
competition is biased by a goal planning layer. Motor actions are associated to
transitions using Hebbian-type learning.

The goal-planning layer contains units which code for the same transitions as
the recognition layer. Here, however, the transition units are interconnected with
constant synaptic weights wij < 1. Whenever a motivation input activates a node
(e.g. DG1, the transition from place D to goal G1), this activity A0 = 1 propagates
back to all other transitions. Activities Ai = maxj(wijAj) are calculated iteratively
until the network settles in a stable state. Once stabilized, node activities are set
according to their distance to the goal location. These activities bias the competition
in the transition recognition layer, such that transitions which lead to the goal on the
shortest path are favored.

According to this model, locale navigation is implemented in the hippocampus,
which is in contradiction with experimental data, suggesting that the fornix projection
to nucleus accumbens is necessary to solve the hidden water maze task (Eichenbaum
et al., 1990; Sutherland and Rodriguez, 1990; Packard and McGaugh, 1992a). The
goal planning layer operates on the symbolic place transition nodes. The shortest
path to the goal in this layer needn’t correspond to the shortest path in the real
environment.
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Figure 3.4: Navigation architecture proposed by Gaussier and coworkers: Transition

predictions are made in CA3 (not shown) and propagated to the CA1 network. There,

winner-take-all (WTA) competition selects the most active transition and executes

its attributed motor command. Competition is biased by transition units in the goal

planning system which, according to motivation, back-propagates transitions to goal

locations (e.g. DG1) through the network.

Foster et al. (2000)

The model proposed by Foster et al. (2000) (Fig. 3.5) is based on an actor-critic
architecture for temporal-difference (TD) reinforcement learning (see section 2.2). A
layer of place cells (PCs) with perfectly tuned Gaussian receptive fields provides the
navigation system with the agent’s position within its environment.

A ‘critic’ neuron c receives input from each PC i. Its firing rate rc =
∑

iwciri
represents the estimated “value” of the current agent position. The critic also outputs
a reinforcement signal δ in the form of a temporal difference of current and previous
activities (i.e. position value prediction error). This signal is used to improve value
estimation by modifying afferent connection weights wci towards δ ·ri and thus reduce
the error δ.

An actor network consisting of eight neurons is responsible for selecting actions.
Each cell a codes for a direction of movement and receives afferent connections of
strengths wai from each PC i. Actions are selected stochastically, but cells with a high
firing rate ra =

∑

iwairi are favored over cells with low firing rates. The weights wai
are modified using Hebbian-type learning, modulated by the critic’s error signal δ.

Using this mechanism, navigation to a stable hidden goal location can be learned
in about ten trials. When a learned target is relocated, however, relearning the new
location takes longer due to interference with the previous goal location. To overcome
this difficulty, a coordinate system (CS) is added to the model: The CS consists of
five neurons: two of them represent the current position of the agent (x, y), the next
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Figure 3.5: Navigation architecture proposed by Foster et al.: An actor-critic ar-

chitecture is employed to learn a navigation map. Places are coded by a place cell

population (PCs). The actor selects actions whereas the critic estimates the quality

of these actions. The critic also generates a reinforcement signal signal δ which guides

learning of better actions and quality estimations. A task-independent coordinate

system (CS) is learned from place cell activity. Once learned, CS can store the goal

location and propose goal-oriented actions acoord by vector subtraction.

two code for a goal location (xg, yg) to be learned, and the remaining neuron is an
action neuron acoord. The mapping of place cell activity to coordinates (x, y) is learned
using TD-learning. Each time the reward is found (i.e. at the end of each trial), the
current estimated coordinates (x, y) are copied into the goal memory (xg, yg). The
‘abstract’ action acoord neuron competes with all other actor cells for action selection.
Its activity, however, doesn’t depend on the agent location, but on how well the
coordinate system is tuned. Modification of its weight wcs is similar to other actor
neurons, i.e. modulated by δ. Whenever acoord is selected, the direction of movement θ
is given by vector subtraction of goal–and current coordinates.

During learning, the agent’s movement is restricted to eight predefined headings.
Furthermore, learning does not generalize to neighboring directions. The coordinate-
system module, once adapted, creates a global basin of attraction. Local information
such as obstacles are then completely ignored. The direction of the next movement is
algorithmically calculated by explicitly accessing the coordinates of the goal location,
which is not biologically plausible.

Arleo et al. (2000, 2001)

Arleo and Gerstner (2000b); Arleo et al. (2001) propose a locale navigation system
using reinforcement learning (Sutton and Barto, 1998). It is based on the spatial
representation outlined in Section 4.4.1. Each place cell projects to four ‘action cells’,
coding for north, south, east and west respectively (Fig. 3.6). The synaptic strengths
represent a ‘navigation map’ and are modified using a reward-based learning method:
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Figure 3.6: Navigation architecture proposed by Arleo et al.: Place cells (PCs) drive

a set of four action cells (ACs). Connections strengths wij are modified by a reinforce-

ment learning rule.

Suppose that the agent is at place A. The activity ri(s) =
∑

j wijrj of action cell i
depends on place cell activities rj and synaptic weights wij. It estimates the ‘value’
of action ai(s). When taking action ai, the agent reaches place B and gains access to
action value estimates of the new place. The weights wij are adapted to correct for
bad estimates at the previous place A. In particular, Watkins Q(λ) (see Section 2.2) is
used. This model can learn to navigate from any place in the environment to a hidden
goal location. During learning, only one of the four actions can be taken (winner-
take-all mechanism). Once the navigation map is learned, however, generalization to
continuous actions can be achieved by interpolating between the discrete actions.

A ‘reward expectation cell’ (REC) learns to associate place cell activity with the
goal location G0 using a Hebbian-type learning rule. REC is highly active at G0 before
learning. When the location of the goal has been learned, the reward is expected and
the cell is silent at G0. If the reward is relocated to place G1, however, REC is
strongly depressed at G0. This depression triggers the relearning of the navigation
map. Goal location G0 will then be forgotten.

During learning, the agent’s movement is restricted to four predefined headings.
Because there is no generalization mechanism in action space, the learning time would
increase if more headings were allowed.

3.4.2 Models of Basal ganglia and S-R learning

The basal ganglia, and particularly its dorsal pathway, has been largely modeled as
implementing the reinforcement paradigm. The interpretation of the dopaminergic
activity as encoding the reward prediction error have been the base of such models
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Figure 3.7: (a) Schematic diagram of a model of the basal ganglia implementing the

reinforcement learning algorithm. Adapted from (Doya, 2002). (b) Direct and indirect

pathways in the output of the BG as modeled by Berns and Sejnowski (1996). Thick

arrows: cortical projections to BG. Solid arrowheads: inhibitory connections; open

arrowheads: excitatory connections.

(Montague et al., 1996; Doya, 1999; Montes-Gonzalez et al., 2000; Baldasarre, 2002).
See (Khamassi et al., 2005; Joel et al., 2002; Houk et al., 1995) for reviews.

In general, those models are designed to select among a repertoire of specific
sensory motor programs (or S-R associations), associated to discrete actions in the
reinforcement learning paradigm. Cortical projections to the striatum provide in-
formation about the state s, and dopaminergic activity represents the TD signal δ.
The striatum uses this signal to learn the state value functions V (s), and the action
value function Q(s, a) corresponding to the policy P (a|s) (Doya, 2000). The dorsal
striatum-patch is proposed as the neural locus for learning the state value function
V (s); whereas the action values Q(s, a) would be encoded in the matrix area. Each
independent compartment (i.e. channel) in the latter area is proposed to encode the
Q-values of independent actions.

A competition mechanism dependent on the Q-values is implemented in the output
structures of the BG. Such a competition is believed to take place through a process of
selected des-inhibition in the so-called direct/indirect pathways to the output nuclei
of the BG (Mink, 1996; Berns and Sejnowski, 1996).

In general, these models have been applied to bio-mimetic agents to implement
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prevent navigation commands to be performed. Adapted from (Girard, 2003).

selection among independent stereotypic actions like landmark approaching, wall fol-
lowing, mating (i.e. look for other agents) or battery recharge (Khamassi et al., 2005;
Doya and Uchibe, 2005; Montes-Gonzalez et al., 2000). Each action is encoded in
separate striatal channels.

Recently, Girard et al.(Girard et al., 2005; Girard, 2003) proposed a model which
integrates the action-selection mechanism with navigation skills. The model is com-
posed of two modules, one selecting directions of movement and the other selecting
different stereotypic actions. These modules are assimilated to the ventral and dorsal
pathways in the BG, respectively (Fig. 3.8).

Both modules are based in the model proposed by Gurney et al. (2001a, 2001b).
The dorsal module selects among non-locomotor stereotypic actions. The ventral
module performs a competition between two types of navigation (i) A landmark
approaching strategy and (ii) A trajectory planning system based on a topological
representation of the environment and goals (Filliat, 2001). The output of this module
encodes directions of movement in allocentric coordinates.

An asymmetric interaction between the modules is proposed. Non-locomotor ac-
tions in the dorsal module can inhibit the navigation signals generated in the ventral
module (i.e. they can stop the navigation). This interaction is proposed to reside
in a difference in the relative influence of sub-thalamic projections to the dorsal and
ventral pathways.

Navigation in this model relies on a topological representation of space. This rep-



3.4. MODELS OF RODENT NAVIGATION: STATE OF THE ART 31

resentation consists in a graph whose nodes encode for explored locations. Each node
stores allothetic information of those locations, and the connections between nodes
encodes distance and orientation of the represented places. The process of navigation
is implemented algorithmically and is not biologically plausible. In addition, the se-
lection depends on predefined parameters and no learning mechanism is proposed to
adapt this process.
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Chapter 4

Spatial representation in the rat

As the complexity of the task and the perceptual capabilities of biological organisms
increase, an explicit spatial representation of the environment appears to be employed
to support navigation (Tolman, 1948). Since the discovery of place cells (O’Keefe and
Dostrovsky, 1971), i.e. neurons whose activity is primarily correlated with animal’s
spatial location, the hippocampus is thought to provide a neural basis for such a
representation (O’Keefe and Nadel, 1978).

A recent discovery of grid cells in the dorsal entorhinal cortex opened up a pos-
sibility that place cells inherit some of their properties from the entorhinal neurons,
which constitute a principal source of feed-forward input into the dorsal hippocam-
pus where the place cells were first observed (Fyhn et al., 2004; Hafting et al., 2005).
The entorhinal-hippocampal network is thus a primary candidate for the biological
locus of the cognitive map of the environment, a necessary prerequisite for the locale
navigation strategy (McNaughton et al., 2006).

In this chapter we first review the anatomy of the hippocampal formation, an area
of mammalian brain where place cells and grid cells are found (Section 4.1). Then in
Sections 4.2 and 4.3 we describe basic neurophysiological properties of these neurons
and finally review existing computational models of their activity in Section 4.4.

4.1 Anatomy of the hippocampal formation

The hippocampal formation (HF) is a limbic brain area which occupies a considerable
percentage of the rat’s brain (Fig. 4.1a). It includes the hippocampus (HPC), the
entorhinal cortex (EC) and the subicular complex (SbC) (Amaral and Witter, 1989,

33
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Figure 4.1: Anatomy of the hippocampal formation. (a) Schematic rat brain with

the hippocampal formation highlighted (Amaral and Witter, 1995) and coronal section

of the hippocampus (Praxinos and Watson, 1998). (b) Subregions of the hippocampal

formation (Witter et al., 2000). HPC, hippocampal formation; fx - fimbria fornix;

DG - dentate gyrus; CA1/CA3 - Cornu Ammonis subregions; SUB - subicilum; PrS -

pre-subiculum; PaS - para-subiculum; MEC - medial entorhinal cortex; LEC - lateral

entorhinal cortex; PER - perirhinal cortex.

1995).

Inputs to HF: EC is a target of most higher cortical associative areas. HF can
therefore operate on highly processed sensory information from all sensory modali-
ties (Burwell and Amaral, 1998). Through the fornix bundle, the hippocampal forma-
tion receives afferent connections from subcortical areas, in particular cholinergic and
GABAergic projections from the medial septum. Cholinergic input targets mainly the
excitatory pyramidal and granule cells, as well as inhibitory GABAergic interneurons.
GABAergic septal neurons, on the other hand, selectively synapse on GABAergic in-
terneurons only (Freund and Antal, 1988).

Outputs of HF: There are two main outputs of the HF: One pathway leaves the
HF through the subiculum and projects to subcortical areas. It innervates thalamic
nuclei, amygdala and–via the fornix fiber bundle–nucleus accumbens (NA) (Witter,
1993; Legault et al., 2000). A second pathway projects back to the higher cortical
areas through EC (Insausti et al., 1997).

Internal connectivity in HF: EC is the primary sensory input area of the HPC.
It consists of a medial (mEC) and a lateral (lEC) regions. HPC can be further
divided into the dentate gyrus (DG) and the Cornu Ammonis (CA). CA has four
subregions, but CA1 and CA3 are the most prominent (Amaral and Witter, 1989;
Witter, 1993; Amaral and Witter, 1995). SbC is composed of the subiculum (Sb),
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the pre-subiculum (prSb) and para-subiculum (paSb) (Amaral and Witter, 1989).
The simplified scheme of internal connectivity between HF subregions is shown in
Figure 4.2. Sensory information can be processed in two parallel pathways: the first
pathway goes from the EC directly to the DG, CA3 and CA1 via the perforant path
(Yeckel and Berger, 1990; Witter et al., 2000). The second pathway includes EC to
DG projections as well but then mossy cells in the DG project to the CA3 pyramidal
cells via different set of axons called mossy fibers. Pyramidal cells in the CA3 are
recurrently connected and also project to the CA1 via Shaffer collaterals (sc). CA1
projects to the subiculum, and both CA and subiculum project via fornix-fimbria
system to subcortical areas, in particular nucleus accumbens, and to the deep layers
of the EC. (O’Keefe and Nadel, 1978; Witter, 1993).

Entorhinal cortex

Entorhinal cortex is the cortical gateway to the hippocampus. A distinction can
be made between the medial (MEC) and the lateral (LEC) areas. EC follows the
general neo-cortical architecture of a six-layered structure that has been extensively
studied (Kosel et al., 1981; Witter, 1993; Insausti et al., 1997).

Inputs to EC: Both MEC and LEC receive projections from sensory associative
areas (visual, auditory and somatosensory) as well as from the parietal, temporal and
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frontal areas via perirhinal and postrhinal cortices (Witter, 1993; W. A. Suzuki and
Amaral, 1994; Insausti et al., 1997; Liu and Bilkey, 1997). Olfactory information
from the olfactory bulb and piriform cortex is conveyed directly and via perirhinal
cortex (Kosel et al., 1981; Witter et al., 1989, 2000). The subiculum as well as CA1
send their output mainly to MEC, but also to LEC. DG and CA3 do not innervate
EC (Amaral and Witter, 1989; Witter, 1993).

Outputs of EC: EC cortical efferents target primarily perirhinal, orbitofrontal
and piriform cortices, but parietal, temporal, frontal and occipital areas are also
innervated (Silva et al., 1990; Witter, 1993; Insausti et al., 1997). Via the perforant
path, EC conveys multisensory information from its cortical afferents to DG, CA3,
CA1 and Sb (Amaral and Witter, 1989; Witter, 1993). Cells with periodic spatial
firing fields (grid cells, see Section 4.2) have been observed in the dorsal part of the
MEC. The most dorsolateral band of the MEC provides strongest input to the dorsal
part of the hippocampus where place cells with sharpest and most information-rich
firing fields were observed (Fyhn et al., 2004).

Internal connections in EC: Neurons in the deep regions connect to cells in the
superficial layer of EC(Amaral and Witter, 1989; Witter, 1993; Amaral and Witter,
1995). There is also evidence for strong synaptic innervation from the lateral to the
medial region (Quirk et al., 1992).

Dentate gyrus

DG granule cells receive processed sensory input from EC. Granule cells then project
to mossy cells. Mossy cells laterally contact other mossy cells as well as strongly
project to CA3 (Claiborne et al., 1986; Amaral and Witter, 1995; Hastings et al.,
2002). Throughout the entire life, neurogenesis occurs in the rat DG. Stem cells
migrate into the granule layer and differentiate into fully functional and networked
granule neurons (Bayer, 1982; Kuhn et al., 1996; Ciaroni et al., 1999; Hastings et al.,
2002).

Cornu Ammonis or hippocampus proper

The hippocampus proper consists of four subregions CA1-CA4, with CA1 and CA3
being the most distinguishable. Place cells, i.e. cells with spatially correlated activity
(see Section 4.3), have originally been found in CA1 (O’Keefe and Dostrovsky, 1971),
but later were also observed in CA3 and DG as well (Jung and McNaughton, 1993).

Inputs to CA: The CA3 region receives strong projection from DG via the mossy
fibers. Both CA1 and CA3 are also innervated by EC via the perforant path (Amaral
and Witter, 1989; Amaral, 1993; Witter, 1993; Amaral and Witter, 1995; Hastings et
al., 2002).
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Outputs from CA: CA1 an CA3 pyramidal cells connect to subiculum via the Shaf-
fer fiber bundle. The angular bundle connects CA1 to EC (perforant path) (Amaral
et al., 1991). CA1 projects directly to septum and the nucleus accumbens via fimbria-
fornix (O’Keefe and Nadel, 1978) as well as to the subicilum and the EC (Witter et
al., 2000).

Internal connections in CA: CA3 neurons laterally send outputs to other CA3
neurons via the Shaffer collaterals. Also via the Shaffer fibers, CA3 connects to
CA1 (Amaral and Witter, 1989; Amaral, 1993; Amaral and Witter, 1995).

Subiculum

The subicular complex (SC) consists of the subiculum (Sb), the pre-subiculum (prSb),
whose dorsal part forms the post-subiculum (poSb) and the para-subiculum (paSb).

Inputs to SC: The main input to Sb originates in CA1 and EC (Amaral et al.,
1991). The paSb is innervated by the retrosplenial cortex whereas prSb is reached
from areas in the temporal and parietal lobes, as well as from thalamic nuclei, which
project onto poSb (Burgess et al., 1999).

Outputs from SC: Via the fornix fiber bundle, Sb projects on the nucleus ac-
cumbens (NA) and the septal complex. Sb also innervates entorhinal and prefrontal
cortex, amygdala and the thalamus. prSb and paSb also synapse on EC (Amaral and
Witter, 1989; Witter, 1993).

Internal connections in SC: Within SC, Sb projects to prSb and paSb and prSb
also synapses on paSb (Amaral and Witter, 1989; Witter, 1993).

Theta rhythm

The hippocampal EEG shows distinct patterns depending on the rat’s behavior. Dur-
ing motion (active or passive (Gavrilov et al., 1996)), the EEG shows a 6–12Hz os-
cillation called theta rhythm (O’Keefe and Recce, 1993; Burgess et al., 1994; Skaggs
et al., 1996). Theta is also observable during sensory scanning (e.g. sniffing) and
REM-sleep (Buzsáki, 2002). On top of that, firing is synchronized to a gamma os-
cillation of 40–100Hz throughout the whole hippocampal formation (Chrobak et al.,
2000; Csicsvari et al., 2003). Subcortical cholinergic and GABA-ergic inputs from the
septal region seem to be responsible for generating the hippocampal theta rhythm
(Winson, 1978; Buzsáki, 1984; Miller, 1991; Hasselmo and Bower, 1993). When sep-
tal input is inactivated, the CA3 place fields are disrupted whereas the CA1 fields are
unaffected. Simultaneously, acquisition of place learning tasks is impaired (Brand-
ner and Schenk, 1998) and errors in working memory increase significantly (S. J.
Mizumori et al., 1989).

While eating, drinking or awake-immobility as well as in slow-wave sleep, how-
ever, the EEG shows large field high irregular amplitude signature, termed sharp
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waves. During each sharp wave event, a high frequency ripple volley of 140–200Hz
occurs(Chrobak et al., 2000; Chrobak and Buzsáki, 1996). It is speculated that
theta/gamma waves synchronize input from cortex to hippocampus, whereas sharp
waves/ripples modulate output from hippocampus back to cortex (Chrobak et al.,
2000).

4.2 Grid cells in the dorsomedial entorhinal cortex

Individual neurons in the layer II of the dorsal part of the MEC (dMEC) have spatial
firing fields that resemble hexagonal grids extending over the whole space (Fyhn et
al., 2004; Hafting et al., 2005). These firing grids can be characterized by the grid
spacing, grid orientation and the relative spatial location of the grid (i.e. its spatial
phase) as illustrated in Fig. 4.3a. For each cell, grid spacing is defined as the distance
between two neighboring vertices of the grid, which is constant for any one cell. Grid
orientation is defined as the angle between an arbitrary reference direction (e.g. 0◦

in the figure) and the direction to the fist counter-clockwise vertex of the hexagon.
The spatial phase of the grid is defined as a spatial position of the grid relative of
other grids, i.e. it characterizes the mapping of the firing grid on the actual space
(e.g. the floor of the recording room). Each vertex of the grid is characterized by
its size, described in the experiments by the area covered by the central peak of the
spatial autocorrelogram using a threshold of 0.2 (Hafting et al., 2005).

The grid cells are topographically organized (Hafting et al., 2005), Fig. 4.3b.
Nearby cells share the same spacing and orientation but have different spatial phases,
i.e. the firing fields of these cells have identical size and orientation, but are offset
relative to each other. Hence in the following they are said to belong to a grid-
cell population (by analogy to the e.g. population of orientation-sensitive cells with
identical tuning curves and different preferred orientations). The cells that are far
apart (along the dorsoventral axis of the dMEC) differ by grid spacing, grid orientation
and field size (i.e. belong to different grid-cell populations). The more ventral is
the location of the population the larger is the grid spacing and field size. Grid
orientations differ without any systematic relationship.

Firing grids of individual cells have the following properties (Hafting et al., 2005):
(i) The grid pattern is expressed immediately upon exposure to a novel environment,
i.e. the grid cells fire the first time the animal passes through the field, both in
light and in the dark. (ii) The firing grids are anchored to the external cues in the
environment. If a single controlling cue card is rotated 90◦ the firing grid rotate
similarly. (iii) The grids persist after cue removal. After initial period of 10 min with
the lights on, the grids were maintained for 30 min in total darkness. However, for
the majority of cells the darkness period caused a weak dispersal of the vertices.

Our model, presented in the next chapter, describes a neural network in which
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Figure 4.3: (a) Schematic drawing of a firing field of a single grid cell. Large rectangle

represents the recording chamber, circles represent the locations of elevated firing. (b)

The grid cells are organized in different populations along the dorsoventral axis of the

dMEC. Cells in each population share the same spacing and orientation (defined as in

a). The more ventral is the location of a population, the larger is spacing and field

size.

neurons have periodic firing fields with hexagonal spatial pattern, similarly to the
dMEC grid cells (see Chapter 6). The role of this network is assumed to be the
integration of self-motion input over time, i.e. path integration.

4.3 Hippocampal place cells

A place cell is a neuron whose firing activity is primarily correlated with the animal’s
spatial location. A place cell emits action potentials only when the animal is in a
specific region of the environment, which defines the place field of the cell.

Place cells recorded in CA3-CA1 areas of the hippocampus have spatially-localized
place fields that together tend to cover uniformly the environment, and at any mo-
ment only a small proportion of these cells is active. The set of overlapping place
fields is thought to encode a distributed representation of the environment (Wilson
and McNaughton, 1993). The shape of place fields varies: The firing rate can be dis-
tributed approximately like a circular two-dimensional Gaussian (Samsonovich and
McNaughton, 1997), but it may also be elongated in one dimension (especially along
walls). Rarely a place cell may have a place field in several different environments
(Kubie and Ranck, 1983) and a single place cell can have multiple peaks of activity in
a single environment (Muller et al., 1987; O’Keefe and Burgess, 1996; McNaughton
et al., 1983). There is no topographic relationship between anatomical structure of
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the CA3-CA1 populations and environment (O’Keefe and Conway, 1978; Muller and
Kubie, 1987; Thompson and Best, 1989)

When the animal follows repeatedly the same route, CA1 place fields, which are
initially symmetrical, expand backward with respect to the animal’s direction of move-
ment. Such a change only take place during the same block of trials, and its effect
disappear the next day (Mehta et al., 1997).

Spatially localized firing of CA1 cells was observed even after selective lesions of the
DG, (McNaughton, Barnes, et al., 1989) and partial and complete lesions of the CA3
(S. J. Mizumori et al., 1989; Brun et al., 2002, respectively). Furthermore, directional
selectivity in linear tracks is also observed in rats with complete disruption of CA3
inputs to this area. Place fields remain stable across sessions and the firing activity
was theta-modulated. These studies suggest that an intact CA3 is not required
to maintain the place and directional properties of CA1 neurons which might be
supported by the direct feedforward projection from the EC..

Cells with location sensitive firing were also observed in subiculum and the en-
torhinal cortex. Subicular place fields are broader than those in the hippocampus
proper. Furthermore, subiculum exhibits a similar place field topology across differ-
ent environments (Sharp and Green, 1994; Sharp, 1997, 1999), and seems to be largely
influenced by self-motion information (McNaughton et al., 1996). Earlier reports in
place-sensitive cells in the EC reported broad single peaked firing fields (Quirk et al.,
1992). Recent data (Section 4.2) have shown a gradual change from multi-peaked to
single-peaked firing fields along the dorsolateral to ventromedial axis of the dMEC
(Fyhn et al., 2004).

4.3.1 Firing determinants of place cells

The discharge of place cells is highly correlated with the location of the animal.
However, place cells are also sensitive to visual cues, self motion information (e.g.
speed and orientation), sound, odor and reward (McNaughton et al., 1983; Markus
et al., 1994, 1995).

Sensory information

Place cell activity is influenced by both idiothetic and allothetic inputs, and there
exists a wealth of experimental data focused on the main determinants of place cell
firing, as well as the interactions between different sources of information.

Distal vs local visual cues. Several studies suggest that activity of the place cells
relies primarily on visual information (Etienne et al., 1996; Maaswinkel and Whishaw,
1999; Save et al., 2000). Moreover, distal visual cues were shown to be of primary
importance in the control of the firing fields (O’Keefe and Conway, 1978). Rotation
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of a single cue card attached to the wall causes a similar rotation of place fields
(Muller and Kubie, 1987). A similar control was observed when the only available
cues were three objects placed at the periphery of the cylindric watermaze so as to
form a triangular configuration (Cressant et al., 1997, 1999). However, when the
same objects were placed at the center of the maze, their rotation (as a rigid set) did
not result in a corresponding rotation of place fields for most of the cells, suggesting
poor cue control by the configuration of intra-maze objects.

Non-visual external sensory input. When visual cues are not available, rats
can rely on other sensory modalities to drive the place cells firing. Olfactory cues
have been observed to contribute to the stability of place fields (Lavenex and Schenk,
1996; Save et al., 2000). Furthermore, when exploring an environment containing
three-dimensional objects as local cues, blind rats display an exploratory pattern
that led them to make contact with the objects more often than sighted rats (Save
et al., 1998). Presumably, this behavior allows the animal to calibrate its internal
estimations (i.e. path integrator) using tactile information.

Idiothetic cues. Hippocampal place cells exhibit location-sensitive activity in ab-
sence of visual cues (e.g. in darkness), suggesting that they may be driven by move-
ment related internal signals. For instance, removing visual cues does not alter the
activity of hippocampal place code (O’Keefe and Conway, 1978; Hill and Best, 1981;
Pico et al., 1985; Muller and Kubie, 1987; O’Keefe and Speakman, 1987; McNaughton,
Leonard, and Chen, 1989; Quirk et al., 1992); and place cells in visually symmetric
environments have asymmetric visual fields (Sharp et al., 1990). Moreover, when
the place cells are established in darkness, they persist in subsequent light conditions
(Quirk et al., 1990; Markus et al., 1994).

Save et al. (1998) recorded place cell activity in early blind rats, and found
place field similar to those recorded in sighted rats. It suggests that motion-related
information (and possibly non visual sensory information) may be sufficient to form
a stable place code in the hippocampal formation.

Interaction between internal and external information. Despite the fact that
internal motion-related information may be used to update place cell firing (i.e. by
path integration, M. L. Mittelstaedt and Mittelstaedt (1980); Etienne and Jeffery
(2004)), this information is prone to accumulate errors over time. This requires a
process of re-calibration based on external sensory input to take place in order to
maintain an accurate estimation of position (H. Mittelstaedt, 1983; Gothard et al.,
1996; Etienne et al., 1996; Save et al., 2000; Redish et al., 2000).

Gothard et al. (1996) studied the nature of interaction between internal and ex-
ternal information in the place cell activity. They observe that, in case of mismatch
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between the information provided by external and internal cues, the population ac-
tivity changes in order to align itself with one of the two. Gothard et al. (1996)
conclude that the dynamics of these changes were determined by the degree of the
perceived mismatch. Using a similar protocol Redish et al. (2000), conclude that in
addition to the mismatch, a temporal delay (different from an animal to another, but
consistent within animal) was required to make the transition.

This data suggest that both types of information compete in a dynamical process
to control place cells firing.

Direction of movement

Experimental data have shown that the firing of place cells does not depend on the
heading direction when the animal is foraging freely in an open environment. In
contrast, on radial mazes or linear tracks the firing of these cells is becomes strongly
directionally selective (Muller et al., 1994; Gothard et al., 1996). Furthermore, place
directionality also appears in open environments when the animal is constrained to
follow the same path between points of special significance (Markus et al., 1995).

Influence of environmental geometry

Several reports suggest that the shape of the surrounding environment influences the
location and shape of the place fields of hippocampal cells. Muller and Kubie (1987)
first recorded place cells in a gray cylinder with a white cue card on the wall, and
then in a gray square-shaped box with the same visual appearance (i.e. with the cue
card on the same location relative to the laboratory). Many cells that were active in
the cylinder stopped firing in the square box and the fields of the cells active in both
environments were markedly different in shape location and size.

O’Keefe and Burgess (1996) measured CA1-CA3 pyramidal cells of rats exploring
four different boxes (a small square; a horizontal rectangle; a vertical rectangle; and
a large square) located within a rectangular room. The location of peak firing in
different boxes was found to depend on environmental features such as the distance to
one or several walls, or the ratio of the distances to two opposite walls. Furthermore,
the place fields changed their shape according to manipulations of the environment.
In some cases, in boxes differing along one dimension the place fields either stretched
or doubled their place fields along the changing direction.

Geometry of an arrangement of objects may also influence place field stability.
Firing fields are more poorly controlled by three objects if their arrangement is an
equilateral triangle then if it is an isosceles triangle (Cressant et al., 1997, 1999).
The distinction between geometry of the environment and single visual cues may be
viewed as the distinction between configural versus single landmarks (Poucet et al.,
2003). Importance of configural cues suggests filtering out high-frequency cues (like
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small objects) in favor of coarse-grained cues, allowing for faster spatial learning and
higher resistance to unreliable cues. These advantages have previously been suggested
to characterize cognitive mapping abilities of animals (O’Keefe and Nadel, 1978).

In our model, presented in the next chapter, location-sensitive activity of place
cells results from the feed-forward projection of the upstream grid cells. We will show
that the feed-forward input hypothesis can explain many properties of place cells,
including their reliance on distal configural cues, firing in the darkness, place-field
rotation following rotation of visual cues, rapid development in a novel environment
and dependence of place-field shapes on the environmental layout (see Chapter 6).

4.4 Modeling space representation: state of the

art

The ability of animals to navigate in complex task-environment contexts has been
the subject of a large body of research over the last decades. Due to its spatial
representation properties reviewed above, the hippocampus has been studied and
modeled intensively. Below we review the principal theories attempting to explain
the hippocampal role, and we describe some models of the mechanisms beneath place
cell firing.

Recent discovery of grid cells provided a possibility that place cells inherit some
of their properties from a downstream population of the entorhinal neurons. In par-
ticular, neurophysiological properties of grid cells suggest that they may perform
integration of self-motion information over time (i.e. path integration) (Hafting et
al., 2005). In Section 4.4.2 we review two models that address the issue of how the
grid-cell network might perform path integration.

4.4.1 Models of place cells

Sharp (1991)

The model of place cell activity proposed by Sharp (1991) implements a 3-layer com-
petitive learning scheme of Rumelhart and Zipser (1986) (Fig. 4.4a). Input layer
includes binary sensory cells of two different types that encode the agent’s distance
and bearing to one or more landmarks. Type 1 neurons fire whenever the agent is
within a certain range of its preferred landmark (or landmarks). The size of this
range varies among cells. Type 2 cells are also sensitive to the landmark distances,
but in addition they are sensitive to the landmark bearings. The bearing range varies
between cells as well. The tuning of these cells (which landmarks at what distance
and bearing range activate a given cell) of both types of cells is random and remains
fixed throughout the experiments.
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Figure 4.4: Place cell model proposed by Sharp (1991): (a) system architecture.

Shaded areas mean winner-take-all competition. (b) Environment with eight land-

marks. Sensory cells encode the view considering only the distance d (type 1), or the

distance d as well as bearing φ to dedicated landmarks (type 2).

The intermediate layer is comprised of three populations (clusters) of 20 neurons.
Each cell j receives input hj =

∑

iwji from all sensory neurons i of the first layer.
In each cluster, the cell j∗ with the largest input h∗j = maxj hj is the winner with
activity 1, whereas all other cells within the cluster are silent (i.e. implementing a
winner-take-all (WTA) scheme). The three active cells in the second layer are eligible
for Hebbian-type learning in their input synapses wji.

The three active cells of the second layer project their activity onto the third
layer, which consists of one cluster of 20 neurons. The same WTA mechanism as
in the intermediate layer is applied here, and again, the winner-neuron adapts its
weights using Hebbian learning. In this layer, which is proposed to be located in the
hippocampus, place cells with omni-directional place fields are reported by Sharp for
simulations in the circular environment with eight landmarks evenly spaced along the
wall (Fig. 4.4b). When the movement of the agent in this environment is restricted
to follow paths like in an eight-arm-maze, simulated place cells are unidirectional, in
agreement with experimental data (McNaughton et al., 1983).

As many subsequent models, this model relies on an abstract visual system where
the exact distances to the eight landmarks are available. All eight landmarks are
also perfectly distinguishable by the sensory cells. Since the place cells in this model
are purely visual, they can not maintain spatially selective activity in the dark, in
contrary to experimental data (Quirk et al., 1990; Markus et al., 1994; Save et al.,
2000).
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Figure 4.5: Place cell model proposed by Burgess et al. (1994): (a) system architec-

ture. Shaded areas mean winner-take-all competition. EC: Entorhinal cortex, HPC:

Hippocampus, SUB: subiculum. (b) θ Phase precession: Firing of EC neurons is ‘late’

when the angle |α| between agent heading and place field center is < 60◦, “middle”

when 60◦ < |α| < 120◦ and ‘early’ when |α| > 120◦. The shaded area is the place-field

center, which is, by construction, located between the two landmarks.

Burgess et al. (1994)

Burgess et al. (1994) offer a model of place cells consisting of four layers of neurons,
as depicted in Figure 4.5a.

Sensory cells in this model encode distances to external landmarks. A set of 15
sensory cells is attributed to each landmark of the environment. Per theta cycle,
sensory cell i fires a number of spikes ni which depends on the difference between
the actual distance to the landmark and its preferred distance di. The tuning curves
are large and of triangular shape, and the preferred distances uniformly cover the
environment.

One layer above, each cell in entorhinal cortex (EC) receives input from two
predefined sensory cells i and j and fires ⌊ni · nj/2⌋ spikes. The two afferent sensory
cells are chosen such that each is coding for a different landmark and the location of
their peak firing activities coincides with the center of the entorhinal cell’s receptive
field. The angle α between the agent’s heading and the egocentric orientation of the
place-field center determines the phase (with respect to the theta rhythm) at which
spikes are fired (Fig 4.5b): If |α| < 60◦, the cell fires at a “late” phase, if 60◦ < |α| <
120◦, the phase is “middle”, and else the cell fires “early” in the theta cycle. Burgess
et al. (1994) postulate that phase precession as seen in hippocampal place cells is
generated in EC, which forwards this information to its target structure.

Each neuron in the EC layer connects to half of the cells in the hippocam-
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Figure 4.6: Architecture of the model proposed by Wan, Redish and Touretzky. Dur-

ing exploration, landmark information (type T , distance r and egocentric bearing θ)
is combined with head direction Φ to produce allothetic landmark bearing φ. The

allothetic bearing memory stores (T, r, φ). Path integration updates position (x, y).

Place cells use all this information to tune their receptive fields.

pus (HPC). The synaptic weights are binary (0 or 1). Initially, most connections
are turned off. A Hebbian-type learning rule allows these synapses to be switched
on if the pre–and postsynaptic cells are both maximally active. The input to each
place cell in HPC is proportional to the sum of presynaptic spikes at active synapses.
Neurons in the HPC layer are clustered into five groups of 50 neurons. In each group,
only the four cells with largest inputs are allowed to fire spikes (Rumelhart and Zipser,
1986).

Each HPC place cell projects to half of the cells in the subicular layer (SUB)
of the model. The same Hebbian learning procedure as between EC and HPC is
implemented here. The only difference is that in SUB, cells are arranged in ten
groups of 25 neurons. As a consequence, each cell has to compete with less cells,
which results in larger place fields as in HPC.

In addition to the abstract vision model (i.e. distances to landmarks), the mecha-
nism which determines the phase of firing with respect to the theta rhythm depends
on the bearing to the cell’s center of receptive field. It is not clear how the rat can
compute this bearing. Similarly to Sharp (1991), the place cells in the model are
purely visual, i.e. they can not maintain firing in the absence of visual cues

Wan, Redish and Touretzky (1994, 1996, 1997)

The model by Wan, Redish and Touretzky (Wan et al., 1994; Touretzky and Redish,
1996; Redish and Touretzky, 1997a, 1997b) consists of separate populations for the
local view, head direction, path integrator and place code (Fig. 4.6). All populations
interact with each other in order to form a consistent representation of space.

The visual input provides the system with the following information about each
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landmark: its type Ti, distance ri and bearing angle θi. The compass bearing φik of
landmark i, viewed from place (x, y) is then calculated and stored. This calculation
also requires information about the agent’s current heading Φ which is provided by
the head direction system.

The head direction system keeps track of the compass bearing Φ of the agent by
integrating angular velocity signals form vestibular cues and efferent motor copies of
motor commands. If the agent is disoriented, the current heading can be reset by the
local view system by comparing the egocentric and compass bearing of landmarks.

The path integrator updates the agent’s position (x, y) within the environment
by summing up motor efference copies. When reentering a familiar environment, the
internal state of the path integration system may be incorrect. It can, however, be
recalibrated using visual input. This is done via the place code module.

The place code population combines information about the local view and the
internal path integration system. Each newly recruited place unit tunes to the fol-
lowing parameters: (i) Type T , distance d and compass bearing φ of two randomly
chosen landmarks, (ii) retinal angle difference α = θi − θj between two (possibly dif-
ferent) randomly selected landmarks, (iii) position information (x, y) given by path
integration. Place units compute a fuzzy combination of these parameters discarding
missing or unreliable inputs.

In contrast to previous models, the model of Wan, Redish and Touretzky include
path integrator explicitly into the calculation of place cell activity allowing for spatial
firing in darkness. The model is still highly abstract since it relies on distances and
bearing to landmarks, and, moreover, requires a predefined set of landmark types.

McNaughton et al. (1996)

McNaughton et al. (1996) emphasize the importance of idiothetic inputs for place cell
activity, by proposing that hippocampus itself performs path integration. According
to this idea, exteroceptive information is a second order correlate, and is used to
initialize and calibrate path integration by associative learning.

The core of the theory is the multi-chart hippocampal hypothesis: the synaptic
matrix of recurrent CA3 connections provides a large set of preconfigured quasi-
independent reference frames. Each of these reference frames can be imagined as a
two-dimensional surface (a chart) consisting of a random subset of the total CA3 place
cell population. Neighboring cells in each chart are defined by synaptic strength of
recurrent connections, such that cells that are strongly mutually connected are consid-
ered neighbors. At any time, only one chart can be active, representing the currently
used reference frame (i.e. the currently used representation of the environment).
Which chart is selected depends on the collection of cells that are active: a chart with
a well localized activity pattern will be more likely selected than a chart exhibiting a
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scattered activity. Under this assumption, a disoriented animal entering an unknown
environment would select an arbitrary preconfigured chart. In subsequent visits to
the same environment the same chart will be chosen as a consequence of learned
associations between external sensory information and activity of cells belonging to
this chart.

The cell activity within a chart is based on an attractor dynamics producing a
Gaussian-like blob of activity. Within the active chart, a blob of activity tracks the
animal’s position over time. The mechanism for shifting this activity blob over the
network is an extension, from one to two dimensions, of the head- direction model
proposed by Skaggs et al. (1995). The path integrator circuit (Fig. 4.7) involves,
beyond the CA3 layer (P), a population of PHxM cells coding for (i) the animal’s
current position (P), (ii) the animal’s current heading (H), and (iii) the current self-
movement information (M). The firing activity of each cell i PHxM is correlated with
all three variables simultaneously in agreement with experimentally observed neurons
in the subicular complex which exhibit conjunctive coding of place, speed and head
direction (Sharp and Green, 1994). In the model, PHxM cells and CA3 cells form a
loop to update the spatial map: CA3 cells store the current position, while PHxM
cells signal the displacement due to self-motion and head-direction information.

Samsonovich and McNaughton (1997) have validated the above path integration
model through numerical simulation. Their results fit several experimental data in-
cluding doubling, reshaping, and vanishing of place fields in distorted environments
(O’Keefe and Burgess, 1996; Gothard et al., 1996), directionality of place fields dur-
ing linear motion (Gothard et al., 1996) and slow place field rotation after animal
disorientation (Knierim et al., 1995).

In this model, similarly to previous models, the local view information is repre-
sented as a sum of Gaussian components tied to important environmental features
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(e.g. walls of recording apparatus or feeding locations), and are thus abstracted from
the question of how the importance of these particular features is learned by the an-
imal. Moreover, no mechanism is proposed of how the associations between the path
integrator and external cues is learned. In addition, new experimental data (Fyhn et
al., 2004; Hafting et al., 2005) suggest that path integration might be performed by
the entorhinal neurons upstream from the hippocampus.

Gaussier and colleagues (1998, 2000, 2002)

The models by Gaussier and colleagues (Gaussier et al., 1998, 2000, 2002) rely on
landmark detection from real panoramic camera images. For each detected landmark
in turn, its type and compass bearing (the agent has a built-in compass) are repre-
sented in a merged “what” and “where” matrix. The landmark-type neurons form a
winner-take-all network, whereas the landmark-bearing network supports generaliza-
tion by “spreading” activity to neighboring neurons.

When a place seems interesting (e.g. close to a goal location), a place cell of the
place recognition layer is recruited and units from the view-matrix connect to it. In
contrast to most of the models, place recognition is assumed to take place before
reaching CA3/CA1 fields, i.e. either in the EC or DG. At each time step, the activ-
ity of place cells is calculated in two steps: first, the initial activation is determined
according to the similarity between stored and currently perceived landmark infor-
mation (i.e. the what-where matrix); second, a winner-take-all mechanism resets the
activities of all but the winning cell to zero.

The cells in the downstream layer, attributed to CA3/CA1 fields, learn transitions
between places as identified by the sequence of cell activations in the place recognition
layer.

Although visual input in the model is provided by a real camera, the camera images
are aligned using an artificial compass. In addition, the winner-take-all mechanism in
the place recognition layer suppresses all but one neuron. This is in contradiction with
experimental data suggesting distributed and redundant nature of the hippocampal
place code. Finally, in the absence of visual input, this model does not work due to
the lack of a path integration component.

Arleo et al. (2000, 2001)

Arleo et al. (Arleo and Gerstner, 2000a, 2000b; Arleo et al., 2001; Arleo and Gerstner,
2001) propose a spatial learning system based on low-level feature extraction of real
camera images from a miniature robot. Idiothetic representations are calibrated using
visual stimuli (figure 4.9).

The feature extraction module transforms the high-dimensional camera image
into a filter-based representation. Two alternatives are described: (i) linear vision
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camera: Walsh-like filters are tuned to various patterns and spatial frequencies. (ii)
2d camera: A set of modified Gabor filters are tuned to different orientations and
spatial frequencies. A log-polar retinotopic sampling grid is placed on the image and
the filter set applied to each “retina” point.

At each time step, the agent takes four “snapshots”, one in each cardinal direction.
For each orientation, the filter activities are stored in a population of “snapshot cells”
(SC). An unsupervised growing network scheme is employed which recruits visual
place cells (VPC) when necessary. Synapses from SCs to VPCs are initialized and
modified using a Hebbian-type learning rule. VPCs are suggested to occupy superficial
lateral entorhinal cortex.

Vestibular input drives populations of head direction (HD) and path integra-
tion (PIC) cells. PIC is postulated to be located in superficial medial entorhinal
cortex, whereas the HD system is is distributed across ante–and laterodorsal thala-
mic nuclei, lateral mammillary nuclei and postsubiculum. Position information from
VPC is used to recalibrate path integration. Similarly, the bearing angle to a salient
landmark (a lamp) in conjunction with VPCs are used to recalibrate the head direc-
tion system.

PIC and VPC project to place cells in the hippocampus proper (PC). The same
unsupervised growing network scheme and Hebbian learning is applied to PCs. Re-
alistic place fields are reported for both visual systems.

In this model, four real camera snapshots provide visual stimulus at each location.
However, the images must always be taken in the four cardinal directions, which is
equivalent to having a high-precision compass.

4.4.2 Models of grid cells

Discovery of grid cells in the dMEC (see Section 4.2) inspired two different lines of
research, the first one investigating the mechanisms underlying the spatial firing of the
grid cells themselves (Fuhs and Touretzky, 2006; McNaughton et al., 2006), and the
second one looking at implications of the grid-like spatial representation for existing
theories of hippocampal activity (Solstad et al., 2006; Rolls et al., 2006).

There are two main theories of how a network of neurons can produce hexagonal
spatial activity patterns. The computational model by Fuhs and Touretzky (2006)
relies on the fact that in a two-dimensional sheet of neurons a hexagonal activity
pattern can emerge spontaneously if the mutual connections are local with longer-
range inhibition and shorter-range excitation. Each subpopulation of grid cells is
modeled as such a two-dimensional sheet of neurons. Path integration is performed
in this network by shifting the activity patterns along the corresponding sheets on
the basis of velocity input. The translation of the activity pattern is performed on
the basis of neuronal interaction within the same sheet without involving additional
populations of neurons.
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The second model of grid-cell activity is proposed by McNaughton et al. (2006).
In their model, each grid-cell subpopulation is represented by a single two-dimensional
sheet of neurons similarly to the model by Fuhs and Touretzky (2006). However, the
periodic activity pattern is achieved through a circular symmetry of the recurrent
weight matrix. Although periodic weight matrix is mathematically equivalent to the
repeating patches of locally connected neurons, a possible biological implementation
and predictions of these two models are different (e.g. problems due to border effects
in the Fuhs & Touretzky’s model are eliminated by periodic connectivity, but existence
of circular weights in biological networks is questionable). Path integration in this
model is performed by translation of the activity pattern as well, but requires an
additional population of cells with conjunctive coding of place, speed and direction.
Existence of such cells in deeper layers of the dMEC was experimentally proven by
(Sargolini et al., 2006).

Although both models discuss how path integration might be performed by the
grid-cell network, none of them discusses in any detail how the cumulative error is
corrected. Any system that updates its position estimate solely on the basis of self-
motion signals is subject to the cumulative error, i.e. drift of position estimate from
the true position over time.

The two models described above and ones by Solstad et al. (2006) and Rolls et al.
(2006) suggest that single-peaked Gaussian-like place field of downstream CA1 neu-
rons might result from a weighted summation of grid-like spatial patterns. However,
no attempts have been made to see whether such a scheme is compatible with other
place field properties like, e.g., their dependence on the shape if the room.



Chapter 5

A new model of spatial learning
and navigation in the rat

Our model of goal-oriented behavior consists of two separate pathways capable of
generating motor actions (Fig. 5.1). The first, direct, pathway associates visual input
directly with motor actions and implements stimulus-response, or taxon, behavior. We
think of this pathway as a simplified model of the anatomical connections between the
cortex and the dorsal striatum (caudate putamen in the rat) thought to be involved
in the development of stimulus-response associations (Packard and McGaugh, 1996a;
White and McDonald, 2002). The second, indirect, pathway generates actions based
on a learned representation of space and drives a locale navigation strategy. The
spatial representation is stored in a simplified model of place cells in the hippocampus
and modulates motor actions through the nucleus accumbens (Brown and Sharp,
1995; Redish, 1999). The model hippocampus receives input via dorsal entorhinal
cortex (dMEC) where integration of self-motion cues is performed in a network of
grid cells (Fyhn et al., 2004; Hafting et al., 2005). Path integration is influenced
by the visual input. Goal-directed movements through the environment, generated
by the taxon or locale strategy, are encoded by two populations of action cells that
model movement-related functions of either the caudate putamen (CP) or the nucleus
accumbens (NA).

In this chapter we give detailed description of the model components and learning
equations. The illustration and analysis of model performance in various tasks are
presented in Chapters 6 and 7.

53



54 CHAPTER 5. A NEW MODEL OF RAT BEHAVIOR

GC

dMEC

ventral BG
AC (locale)

Path
Integration

Motor output

CA1

Place
Cells

PC

HD

dorsal BG
AC (taxon)

Visual input

Oriented
Gabor filters

II

I

II

II

Sb
Head Direction

CP NA

Figure 5.1: Model overview. Motor actions of the simulated are controlled via two

pathways: direct (I) and indirect (II). Colors represent different brain areas: cortex

(blue), hippocampal formation (pink), basal ganglia (green). Full lines represent neural

projections in the model, dashed lines symbolize an algorithmic implementation of a

particular function. GC - grid cells, PC - place cells, HD - head direction, AC - action

cells, dMEC - dorsocaudal medial entorhinal cortex, BG - basal ganglia, CP - caudate

putamen, NA - nucleus accumbens, Sb subiculum.
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Figure 5.2: Model of visual input. a, Input image (rectangle) is sampled by a set of

overlapping orientation sensitive filters (circles, an example of a real filter is shown in

b). Filters are arranged in a rectangular grid and 8 filters of different orientations are

placed at each point of the grid. The number of filters drawn is less then the model

actually uses, for simplification. b, Example of a Gabor filter (Eq. 5.1) sensitive to

orientation 90◦.

5.1 Model of visual input

The rat visual system was modeled by processing the input images using a large set of
orientation-sensitive visual filters with localized receptive fields, described as Gabor
wavelets. Experimental evidence suggests that in the rat (i) the variation in ganglion
cell density is relatively small across the retina; (ii) the receptive field size of the cells is
approximately constant (Dean, 1990; Goodale and Carey, 1990); (iii) a vast majority
of cells (∼90%) in the primary visual cortex are orientation sensitive; and (iv) the
size of the center of their receptive field (e.g. of the ON center) is 3-13◦ in diameter
(Girman et al., 1999). As a simplification, we modeled the output of the primary
visual processing system as responses of a set of overlapping orientation-sensitive
complex Gabor filters of width σg = 1.8◦ (spatial wavelength 1/2σg) distributed
uniformly across the view field of 300◦. More specifically, a rectangular sampling
grid of 96x12 locations is used and 8 filters of different orientations are placed at
each point of the grid as schematically shown in Fig. 5.2a. An example of a two-
dimensional Gabor filter sensitive to vertical lines in the image is shown in Fig. 5.2b.
Such a Gabor filter is a two-dimensional complex wavelet defined in the space domain
as:

g(~xkl, ~wm) = exp

(

−
‖~x− ~xkl‖

2

2σ2
g

)

· exp (i~ωm · (~x− ~xkl)) (5.1)

where ~xkl = (xkl, ykl) is the coordinate of the grid point (k, l) at which the filter
is centered in visual space, ~wm/‖~wm‖ defines the filter orientation, ‖~wm‖/2π is the
frequency of the modulating sinusoidal wave, σg is the width of the circular receptive
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field and ~x is running over all pixels in the image. Sampling is sufficiently dense so
that the distance between grid point is 2σg.

A response of the filter to the corresponding portion of the image I perceived at
time t is characterized by its amplitude:

Gklm(t) =

√
(

ℜ[g(~xkl, ~wm)] ∗ I(t)

)2

+

(

ℑ[g(~xkl, ~wm)] ∗ I(t)

)2

(5.2)

where ℜ[·] and ℑ[·] are the real and imaginary parts, respectively, and 〈∗〉 denotes
integration over visual space. The set of the filter amplitudes Gklm(t) = G(~xkl, ~wm, t)
serves as the internal representation of the visual snapshot observed at time t, i.e.
the local view. In a non-symmetric environment every combination of place and
orientation would cause different activations of the filter set so that different places
and gaze directions can be distinguished on the basis of the difference between the
filter response amplitudes. The description of visual input by the responses of filters
avoids the definition of cues or landmarks, so that the model can work in enclosures
with rich or scarce visual cues. We will show that the activity of the set of filters
represents measures like distances to walls or landmarks implicitly without the need
to define them.

5.2 Action selection model

Our model implements two different goal-navigation strategies, taxon and locale nav-
igation. As suggested by the review of animal navigation in Chapter 3 the two
navigational strategies can be characterized by the following properties:

• Locale strategy uses an allocentric frame of reference frame, while taxon strategy
uses an egocentric one.

• The two strategies are supported by distinct memory systems. Whereas the
taxon strategy can be mediated by the dorsal striatum, the locale strategy
depends on the hippocampus.

• The two strategies can be learned simultaneously in a single task. Reward-based
learning of the two strategies may be performed in the basal ganglia where the
reward signal is represented by phasic dopamine input.

• The two strategies compete for controlling behavior.

According to these assumptions, the two strategies are encoded in the model by
two different populations of action cells (Fig. 5.3). The first set of action cells, consid-
ered as a simplified model of caudate putamen (CP), implements taxon navigation;
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Figure 5.3: Navigation model.

the second set of action cells models navigation-related functions of the nucleus accum-
bens (NA) and implements locale navigation. Each population consists of Nac=360
cells. Cell k in CP codes for egocentric turn by angle ψCP

k = 2πk/Nac, while cell k
in NA codes for a movement in an allocentric direction ψNA

k = 2πk/Nac. Action cells
are driven by presynaptic input and fire at rate

rCP
i =

∑

j

wCP
ij r

pre
j (5.3)

where the index j runs over all presynaptic cells. For the taxon strategy the rate of
the presynaptic cells is given by the response amplitude of the visual filters to the
current visual image Gj, where j runs over all positions ~xkl in the image and all filter
orientations ~wm. For the locale strategy Eq. (5.3) describes analogously the activity
of cells in NA, but the presynaptic cells are the place cells rpre

j = rpc
j (Eq. (5.18), see

Section 5.3).
Given the activities of the action cells in population CP, the optimal action ac-

cording to the taxon strategy is given by the maximally active action cell:

Ψ̂CP = argmax
ψCP

i

rCP
i (5.4)

In the case of locale strategy, the optimal action is given by the population vector
of the action-cell activities:

Ψ̂NA = arctan

∑

i r
n
i sin(ψni )

∑

i r
n
i cos(ψni )

(5.5)

Actions Ψ̂CP and Ψ̂NA are encoded in different reference frames and are assumed
to be recoded by the motor system into actions ΨCP and ΨNA defined in the egocentric
frame of reference of the organism. For the CP no conversion is necessary, whereas
for the NA it takes into account the current head direction Φ (Section 5.3.1):
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ΨCP ≡ Ψ̂CP (5.6)

ΨNA = Ψ̂NA − Φ (5.7)

Values ΨCP and ΨNA represent optimal predictions of the egocentric goal direction
according to the taxon and locale strategy, respectively. These predictions have to
be exploited in order to get to the goal as fast as possible, given the current level of
knowledge about the outcomes of the actions. However, in a novel environment a set
of available actions has to be explored first in order to learn the outcomes of different
actions. A possible way of balancing the exploration and exploitation is to choose
the optimal action most of the time, while choosing a random action with a small
probability ǫ, thus following an ǫ-greedy policy (see Chapter 2). This procedure was
adopted in the simulations with ǫ = 0.1.

We apply a simple algorithmic approach for the readout of the action cell activities
and their conversion into a unified reference frame Eqs. (5.4 - 5.7). However, in a
more biologically plausible setting both operations can in principle be performed by
using lateral interactions between actions cells (Deneve et al., 1999, 2001).

The two navigation strategies are implemented as follows.

1. Taxon strategy. In this scenario the simulated rat learns the associations be-
tween the configuration of cues visible from the starting position (i.e. a local
view) and the direction towards a goal (Eichenbaum et al., 1990; Da Cunha et
al., 2003; Cunha et al., 2006). Experimental data suggest that animals with
hippocampal lesions follow stereotyped trajectories (O’Keefe and Nadel, 1978),
hence we assume here that for a purely taxon strategy the initial choice of move-
ment direction from the starting position determines whether the model rat hits
the goal or not in the current trial. A simulation of one trial consists then of
presenting a snapshot of the environment taken from the starting position and
subsequent rotation by angle ΨCP calculated according to Eq. (5.6). The trial
ends after the animal performs the rotation.

2. Locale strategy. When the model rat is placed into a familiar environment,
activities of place cells signal the current location. This location signal propa-
gates to the action cell population and the next action consists of turning by
angle ΨNA (Eq. (5.7)) and then moving by distance ~v∆t, where ~v is the constant
speed of the model rat. This movement changes the position of the animal in
the maze, thereby changing the internal position estimate, generating the next
action and so on. The trial ends when the animal reaches the goal.
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Learning of behavior

Appropriate synaptic weights wNA
ij or wCP

ij in Eq. (5.3) for both strategies are learned
according to Q-learning, an online temporal-difference (TD) update rule (see Chap-
ter 2). In our model the estimate of the Q-value of a movement in direction ψi in
state st is identified with the firing rate of the corresponding action cell (Arleo and
Gerstner, 2000b; Strösslin et al., 2005), i.e.

Qn(st, at = ψni ) ≡ rni (5.8)

where rni is calculated according to Eq. (5.3) according to the current strategy (n =
NA or n = CP). This value is updated after each time step by changing weights wnij
according to:

∆wnij(t) = η δn(t) enij(t) (5.9)

where η = 0.0001 is the learning rate, δn(t) is the TD error and enij(t) is the eligibility
trace of past state-action pairs. The eligibility trace of a synapse is increased each time
the synapse has participated in generating a movement and decays with a constant
γλ

enij(t+ 1) = exp
[
−(ψni − Ψn)2/2(σnψ)2

]
rnj + γλenij(t) (5.10)

The exponential term ensures that actions ψni similar to the actually performed
action Ψn (Eqs. (5.4,5.5)) are also eligible for learning, thereby providing general-
ization in the action space (Strösslin et al., 2005). The generalization width σn has
been tuned to provide fast convergence separately for NA and CP populations (see
Table 5.1 for parameter values). Since a taxon trial is finished after a single orienta-
tion step (see above), we eliminate memory of previous trials by setting λ = 0 for the
taxon strategy.

Equation (5.9) can be interpreted as a Hebbian learning rule that depends on
joint pre- and postsynaptic activity conditioned on the presence of a ‘success’ signal
δ. As reviewed in Chapter 3, this signal is likely to be related to phasic activity of
dopamine neurons in the SNc and VTA of the basal ganglia (Schultz et al., 1997).

Competition between strategies

The fact that a single learning trial of the taxon strategy always consists of a single
step, does not permit to perform competition between strategies on a timestep-by-
timestep basis in the present model. Hence, a simplified competition scheme was
adopted. For each experimental trial both strategies are simulated in separate runs
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with identical starting conditions and weights wNA
ij and wCP

ij are updated according
to the outcome of each strategy for this trial.

The preferable, or the winner strategy for each trial is determined from the history
of the outcomes of both strategies after all trials have been performed. Thus, the
locale strategy is considered a winner for a particular trial, if it was more successful
during preceding trials than the taxon strategy. More specifically, let n be the number
of the current trial andN l

n, N
t
n ≤ N denote the number of successful trials when driven

by the locale and taxon strategy, respectively, among the N trials that preceded trial
n (i.e. n−N,n −N + 1, . . . , n − 1). Then the winner strategy for trial n is defined
as follows:

• If N l
n > N t

n then locale strategy is the winner in trial n.

• If N t
n ≥ N l

n then taxon strategy is the winner. The equality is included in
this case since the direct (taxon) pathway is assumed to require less effort for
producing an action (or, alternatively, produce the next action faster) than the
indirect (locale) one.

Successful trials are defined based on the aim of the learning task, separately for each
experiment (see Chapter 7).

Thus, an a posteriori analysis of the model (i.e. after all trials have been com-
pleted) is able to characterize both the behavior of an ‘intact’ animal, i.e. the one
which always chooses the winning strategy, as well as that of a ‘lesioned’ animal. In
the lesioned animal only one strategy is always used, so no competition occurs.

5.3 Space representation model

Recent experimental data suggest that sensory information about the environment is
transformed into an accurate location signal already in the dorsal band of the medial
entorhinal cortex (dMEC), the structure upstream from the hippocampus (Fyhn et
al., 2004). In addition, direct projections from the dorsal entorhinal cortex to the
CA1 field of the hippocampus are sufficient to produce place cell activity in this area,
bypassing dentate gyrus and CA3 areas (Brun et al., 2002). Hence we model the
place cell activity as a result of feedforward input from the upstream population of
cells with periodic spatial firing fields (grid cells), similar to the neurons observed in
the dMEC.

5.3.1 Path integration in the network of grid cells

The dorsal band of the medial entorhinal cortex (dMEC) contains neurons with pe-
riodic hexagonal spatial firing fields (Fyhn et al., 2004) (see Section 4.2). The fact
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ba

Figure 5.4: a. Organization of a modeled grid-cell population that produces hexago-

nal firing pattern. The population consists of N2
gc cells and each cell has six equidistant

neighbors. Black arrows show how the cells near the edges of the chart are connected.

b. Two examples of population activity plotted in the chart coordinates.

that grid-like firing fields persist in darkness suggests that grid cells are driven by
self-motion information. Since grid cells in different layers have different spatial fre-
quencies and orientations, the population of all grid cells together can represent spa-
tial position with a high degree of accuracy and could perform path integration, i.e.
integration of self-motion information over time (Hafting et al., 2005).

Our model of the grid-cell network consists of Q populations of cells. Each pop-
ulation can be represented as a two-dimensional chart consisting of cells with lateral
connections. The organization of a chart is schematically shown in Figure 5.4a. Each
circle in this chart represents one dMEC cell and the spatial arrangement of the circles
reflects the connectivity between the corresponding cells. There are three essential
properties of the connectivity pattern which give rise to the hexagonal firing pat-
terns of each individual cell. First, the closest neighbors of each cell form a regular
hexagon, the vertices of which define three principal directions of the chart (shown
by the dashed lines). Second, each cell is connected with non-zero weights only to
the cells along these principal directions, e.g. the cell shown in black in the figure
has connections to the cells along the dashed lines only. Third, the cells near the
edge of the chart are connected to the cells on the opposite edge (‘periodic boundary
condition’) as shown by the arrows in the figure. The size of the chart is defined as
the number of cells along a principal direction denoted by Ngc (i.e. the number of
cells in the chart is N2

gc).

Given a two-dimensional population of cells organized as shown in Figure 5.4,
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each cell can be assigned an index along each of the three principal directions. Then
the weight between cells with indices i and j along the same direction is given by:

wgc
ij = exp

(
cos(2π(i− j)/Ngc) − 1

σ2
gc

)

(5.11)

where σgc = 1.2 defines the lateral spread of the weights and Ngc = 25 is the number
of cells along one principal direction of the chart. If two cells do not lie along one of
the principal directions, the weight between them is set to 0. Note that the actual
spatial distribution of the cells in the brain is irrelevant, as long as the connections
between them are as given by Eq. (5.11).

Evolution of activities oi(t) in the recurrent network are described by two coupled
equations:

ui(t+ 1) =
∑

j

wgc
ij oj(t) (5.12)

oi(t+ 1) =
ui(t+ 1)2

1 + µ
∑

j uj(t+ 1)2
(5.13)

where the constant µ = 0.015 controls the height of the activity peak in the stable
state (Deneve et al., 1999). Presented with a nonzero input, the network stabi-
lizes after a few iterations and the activity in the stable state can be approximately
described by a Gaussian function (see Fig. 5.4b). Movements of the model animal
through the environment cause corresponding shifts of the activity packets in each
grid cell population as described by the update rules below.

In this model, the hexagonal grid-like spatial layout of the firing fields is due to
the periodic structure of lateral connections, which are identical for all grid-cell pop-
ulations. The difference in spacing and field size between cells belonging to different
populations is caused by differences in the update rules that convert the movement of
the animal into the movement of the activity packet across the charts (McNaughton
et al., 2006). An alternative connection scheme that avoids periodic boundary condi-
tions has been described in Fuhs and Touretzky (2006). We note here that simulation
results presented in Section 6.2.1 do not depend on the actual implementation of the
grid-cell dynamics as long as the resulting firing pattern is periodic.

Integration of self-motion information

Since the form of the activity packet in the stable state is constant over time, its
position in the q-th chart can be described by a vector, denoted by ~P q(t), defined
in the chart coordinates. Assuming that the speed of the animal is constant and
described by the vector ~v, the update of the activity packet position in the q-th
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population due to internal estimates of speed and direction (i.e. proprioceptive and
vestibular inputs) is modeled as

~P q
pi(t) = ~P q(t− 1) + νqRq~v + ~ηq (5.14)

where ~P q(t − 1) is the activity packet position at the previous time step, ~ηq is a
zero-mean Gaussian noise term describing errors in internal estimations of speed and
direction (with standard deviation equal to 5% of the displacement since the previous
time step), νq defines the mapping of the absolute value of the speed vector from
spatial coordinates to the coordinates of the q-th chart and Rq is the rotation matrix

Rq =

∣
∣
∣
∣

∣
∣
∣
∣

cos(ξq) − sin(ξq)
sin(ξq) cos(ξq)

∣
∣
∣
∣

∣
∣
∣
∣

(5.15)

that defines the mapping of the animal movement direction to the direction of the
activity packet. The parameter ξq ∈ [0, π] is fixed for a given chart and ξq = 0 is
chosen such that the animal movement along the horizontal spatial axis corresponds
to movement of the activity packet along the horizontal axis of the q-th chart. As an
example, consider a population with ξq = 0 and assume that the animal is running
along a horizontal spatial axis. If the value of νq is such that running over spatial
distance L causes the activity packet to make a full cycle across the chart, then the
observed distance between the maximal firing locations (i.e. the grid spacing) will
be equal to L and grid orientation will coincide with the horizontal axis of space.
According to Hafting et al. (2005) grid spacings of different dMEC populations vary
from 300 mm to 800 mm and grid orientations cover 360◦. Hence, in the model we
set νq and ξq as

νq = 2π/Lq, where Lq = 300 + 500 ·
q − 1

Q− 1
(5.16)

ξq = π ·
q − 1

Q− 1
(5.17)

where q = 1, 2, . . . , Q. Distinct values of parameters ξq imply that movement of
the animal along a spatial direction corresponds to movements of activity packets
in different directions in the corresponding charts, allowing for a large number of
locations being represented uniquely by the combined activity of all grid-cell layers
(Fuhs and Touretzky, 2006).

As reported in Hafting et al. (2005), grid spacings increase along dorsoventral
location in the dMEC, whereas no such relationship were observed for the grid orien-
tations. For simplicity, we take the same index q for both spacings and orientations
and note that in order to be fully consistent with the data, grid orientations should
be distributed randomly between 0 and π (which amounts to a random permutation
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of orientations in Eq. (5.17)). Such a change will not, however, change principally
any of the results.

Upon the entry into a novel environment, the activity packets are assigned random
positions ~P q in the corresponding charts and current gaze direction Φ is initialized
by an arbitrarily chosen direction, which also defines the ‘horizontal’ spatial axis.

We do not model explicitly the head-direction system (Arleo and Gerstner, 2001;
Skaggs et al., 1995). After initialization, the head direction estimate is updated
according to the egocentric angular rotations of the simulated rat. Cumulative errors
in the head-direction estimation are modeled via the noise term η in Eq. (5.14).

5.3.2 Place cells

A single grid cell population can represent the animal position uniquely only over a
limited area defined by the grid spacing (Eq. (5.17)). However, since different spatial
frequencies and orientations are represented in different grid-cell populations, their
combined activity can encode a unique spatial position over a large space. Hence, we
model the activity rpc

i of a CA1 hippocampal place cell as a consequence of feedforward
projections from the grid-cell population (Brun et al., 2002; Solstad et al., 2006):

rpc
i = [upc

i − θpc]
+ =

[
∑

j

wpc
ij r

gc
j − θpc

]+

(5.18)

where upc
i =

∑

j w
pc
ij r

gc
j is the potential of cell i, rgc

j is the activity of grid cell j, wpc
ij

is the connection weight, θpc is the activity threshold, [x]+ = x if x > 0 and [x]+ = 0
otherwise.

The weights wpc
ij are not fixed but learned during the initial exploration of the

environment and readjusted by Hebbian learning later on. During exploration, a
place cell is ‘recruited’ from a pool of cells on each time step, provided that the
current location is represented by less than T = 20 sufficiently active place cells, i.e.

∑

k

H(rpc
k − θu) ≤ T (5.19)

where H(x) = 1 if x > 0 and H(x) = 0 otherwise. This condition limits the cell growth
after sufficiently long exploration. The same cell can be occasionally chosen more than
once for the same or different environments. This is consistent with experimental
evidence that a place cell can have multiple place fields in one environment as well as
place fields in different environments (Muller et al., 1987; Kubie and Ranck, 1983).

Once cell i is recruited, the weights wpc
ij of the cell are set equal to the current

activity of the grid cells, i.e., wpc
ij = rgc

j (t) where t represents the time step of ex-
ploration at the moment of recruitment. On subsequent time steps the weights are
updated using competitive Hebbian learning in the form:



5.3. SPACE REPRESENTATION MODEL 65

∆wpc
ij =

{

ηupc
i (rgc

j − wpc
ij u

pc
i ), if upc

i > θu

0, otherwise
(5.20)

which yields normalized weight vectors such that
∑

j w
2
ij = 1,∀i (Oja, 1982). The

normalization ensures that maximal output firing rate is bounded by the norm of the
inputs, i.e. rpc

i ≤ M =
∑

j(r
gc
j )2. We note that M is constant since the bump of

activity in a grid-cell population has a fixed size and amplitude. The thresholds in
Eqs. (5.18,5.20) are fixed at the values θpc = 0.4M and θu = 0.6M .

In standard competitive learning (see, e.g. Hertz et al. (1991)) the inputs and
outputs are binary and only the weight vector of one output unit, the winner, is
updated after the presentation of a pattern (Sharp, 1991). Here we use a soft version
of the competitive learning where many output units are updated at each time step
and the strength of the update depends on the output unit activity. This allows for
faster learning and is biologically more plausible.

In order to use the place cell activity for goal navigation an explicit decoding of
position signal is not required (Section 5.2). But in order to analyze the results, it is
convenient to calculate explicitly the position encoded by the place cell population.
Here we apply the population vector for this purpose:

~p pc =

∑
~p pc
i rpc

i
∑
rpc
i

(5.21)

where ~p pc
i = (x, y)T is the position where the cell i was recruited during exploration.

5.3.3 Head direction and visual input

The representation of the animal location described so far is updated using only
self-motion input and is therefore subject to a cumulative error due to noisy es-
timates of the movement speed and direction (Eq. (5.14)). This cumulative error
can be corrected by using associations between external stimuli and path integration
(McNaughton et al., 1996). Since these associations have to be learned during ex-
ploration, there is an initial period during which only path integration is available;
however, once enough visual information has been accumulated, vision may influence
the path integration estimates.

In the model, the visual information at each time step is represented by a local
view (i.e. a set of visual filter activities Gklm, Eq.(5.2)). During exploration, the
local views are stored in memory together with the current estimates of the gaze
direction (initially derived from the path integration). After enough local views have
been memorized, they can be used to provide an estimation of the allocentric head
direction and position – which can then be used to readjust the path integrator
implemented in the model grid cells.
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Each local view in the model is represent by a hypothetical ‘view cell’. Similar to
the recruitment of place cells described in the previous subsection, we recruit ‘view
cells’ by the following procedure. If the current view at time t does not lead to a strong
activity of at least T = 20 view cells, a new view cell i is recruited and initialized with
a basis function center ρvc

ij = Gj(t) that represents the current view at time t. Here
Gj(t) denotes the activity of a visual Gabor filter with index j at time t, j runs over
all filters. We think of the ‘view cells’ as a simplified model of the memory of local
views outside of the hippocampus (Gillner and Mallot, 1998; Spiers et al., 2001).

Instead of modeling the head direction system explicitly we use the following
algorithmic procedure to estimate the gaze direction from stored local views. Suppose
that a local view i taken from a location x has been stored in memory together with
the gaze direction Φi. At a later time the model animal returns to the same location
but with unknown head orientation. In order to estimate the gaze direction Φ̂, we
determine the angle ∆Φ = Φ̂ − Φi that leads to the best alignment of the current
local view with the stored one (Fig. 5.5). Given the discreet sampling grid of the
visual filters, we define an index u = ∆Φ ·Ncols/V where V = 300◦ is the total angle
of the horizontal view field and Ncols = 96 is the number of columns in the filter
grid. The goodness of an alignment with shift ∆Φ can be formally defined as the
normalized cross-correlation Ci(∆Φ) between the current view and the stored view i
(Lewis, 1995):

C̃i(u) =

∑

klm

(

Gi
klm − 〈Gi〉

)(

Ĝk−u lm − 〈Ĝ〉

)

√

∑

klm

(

Gi
klm − 〈Gi〉

)2
√

∑

klm

(

Ĝk−u lm − 〈Ĝ〉

)2
(5.22)

where summation is over the indices of the overlapping filters1 (see Fig. 5.5b), 〈.〉 is
the average filter activity and u is the amount of the relative shift between the local
views.

Searching for the maximum of Ci across all possible shifts ∆Φ yields the correct
angle

Φ̂ = Φi + argmax
∆Φ

(

Ci(∆Φ)

)

. (5.23)

where Ci(∆Φ) is the cross-correlation function (Eq. (5.22)) with the corresponding
change of variables. Generalizing this idea to all the views taken from all different
locations yields the gaze direction estimate

1Since the view field is circular, the shifts in (5.22) are circular and take into account the width

of the view field
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iΦ
∆Φ
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Φ̂
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j

Figure 5.5: Estimation of gaze direction and position from alignment of local views.

a. Alignment of one-dimensional local views. Dots denote the filters and black lines

denote the filter amplitudes. The local view i has to be shifted left to coincide with

local view j. b. A more detailed illustration of the same concept. The large square

represents the top view of a room with two landmarks. The two arcs represent two

local views as in a (arc widths denote the view field size and arrows represent the

corresponding gaze directions. The new gaze direction Φ̂ can be predicted from the

old one by estimating the difference ∆Φ that corresponds to the best alignment between

the filter responses.

Φvis = argmax
Φ

(
∑

i

Ci(∆Φ)
∣
∣
∣
Φi+∆Φ=Φ

)

(5.24)

Angle Φvis represents an algorithmic estimation of the allocentric head direction
from the set of stored local views and is used to initialize internal head direction
estimate Φ upon the entry into a familiar environment (see below). While our model
is algorithmic (Franz et al., 1998), rather than ‘neuronal’, it captures the fact that
head direction cells are anchored to visual cues of the environment (S. J. Y. Mizumori
and Williams, 1993).

Readjustment of path integration

As mentioned above, each stored local view i is represented by a view cell which is
modelled as a radial basis function with center ρvc

ij . Given the estimation of the gaze
direction Φvis, the activity of a view cell given by

rvc
i = exp

(

−
1

2σ2
vc

[
1

Ωi

‖G − ~ρ vc
î
‖

]2)

· exp

(
cos(Φvis − Φi) − 1

σ2
Φ

)

(5.25)
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where ~ρ vc
î

is the center of the radial basis function after shifting by an amount Φvis−Φi,
G is the set of responses of the visual Gabor filters to the currently perceived view,
‖.‖ is the Euclidean norm and Ωi = V − (Φvis − Φi) is a normalization factor that
accounts for the overlap of the the two visual fields. The second exponential term
gives more weight to the comparisons with larger overlap, i.e. similar direction of
gaze. The value of the parameter σvc controlling the sensitivity of the visual system
was chosen separately for each testing environment such that the average difference
between two stored views for that environment causes rvc

i = 0.3. The resulting values
were σvc = 0.16 for environments N-I and B-I and σvc = 0.08 for environments N-II,
N-III and B-II. The cell directionality is controlled by the parameter σΦ = 1.3.

Readjustment of the path integration network is performed via associative con-
nections between view cells and grid cells. Connection weights wvis projecting from
view cells to the grid cells are learned using associative Hebbian learning with weight
decay:

∆wvis
ij = γ0(1 − wvis

ij )rgc
i r

vc
j − γ1w

vis
ij (5.26)

where γ0 = 0.1 is the learning rate and γ1 = 0.01 a decay factor. The first term
represents the standard Hebbian rule with a soft bound to implement a maximum
weight value of 1 and the second term prevents saturation of all weights.

Because of the Hebbian learning procedures, a view cell j develops strong connec-
tions to those grid cells that code for the corresponding location. After learning, the
stimulation of the visual system alone will cause a ‘location’ signal ~P q

vc in all grid cell
populations:

~P vc
q =

∑

j ~p
q
i w

vis
ij r

vc
j

∑

j w
vis
ij r

vc
j

(5.27)

where ~p qi is the position of the grid cell i on its chart. This position estimate resulting
from vision alone is used to update the path integrator

~P q(t) = ~P q
pi(t) + α(~P q

vc(t) − ~P q
pi(t)) (5.28)

where ~P q
pi is the estimation of the new position due to integration of speed and direc-

tion signals (Eq. (5.14)) independent of visual input and α controls the importance
of visual input. Its value is chosen according to the following scheme:

α =

{

0.1, if
∑

iH(rvc
i − θvc) ≥ T

0, otherwise
(5.29)

where θvc = 0.4. This scheme ensures that in the beginning of exploration when not
enough local views are stored in memory, no readjustment of path integration takes
place. To avoid large drift of the path integration estimate when exploring novel
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areas the exploration strategy was chosen such that the modeled animal learns the
connections wvis in a small localized area, before it moves on to the next one.

If an animal is put back into a known environment (i.e. with existing place cell
population) the following reorientation procedure is performed. First, the current gaze
direction is reset by the allocentric estimate (Eq. (5.24)); second, view cell activities
are calculated according to Eq. (5.25). Third, the view cell activities are propagated
via the connections to all grid cell populations; and finally activity packet positions
are set to ~P vc

q (Eq. (5.27)) in all Q populations of grid cells.

Number of columns in the filter grid Ncols 96

Number of rows in the filter grid Nrows 12

Number of filter orientations Norie 8

Gabor filter spatial width, degrees σg 1.8

View field of the model rat, degrees V 300

Size of the action cell population Nac 360

Probability of a random action ǫ 0.1

Future discount factor γ 0.8

Eligibility trace decay factor λ 0.8

Width of generalization profile in the action space, degrees σNA
ψ 20

σCP
ψ 5

Learning rate η 10−4

Size of the grid cell population N2
gc 625

Number of grid cell populations Q 6

Lateral spread of the weights σgc 1.2

Divisive normalization constant µ 0.015

Place cell activity threshold (relative to the max.) θpc/M 0.4

Competitive learning threshold (relative to the max.) θu/M 0.6

Number of active cells to consider a location as familiar T 20

View cell directionality σΦ 1.3

Learning rate for calibration weights γ0 0.1

Decay rate for calibration weights γ1 0.01

Activity threshold for calibration θvc 0.4

Table 5.1: Model parameters. The value of parameter σvc controlling the sensitivity

of the visual system is chosen depending on the testing environment (see Section 5.3.3),

and thus not shown here.
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5.4 Latent vs motivational learning

Following O’Keefe and Nadel (1978) we distinguish two learning regimes: latent learn-
ing and motivational learning.

In the typical latent-learning situation an animal is put in a novel environment
and allowed to explore. The animal is neither hungry nor thirsty, and the location
of food or water within this environment is not the source of motivation for the
animal’s exploration. If the animals are subsequently made hungry or thirsty, they
learn to go to the reward location faster than if there was no such a ‘pre-exposure’
session, suggesting that some information is acquired even during an unrewarded
exploration. Such demonstrations of latent learning (Blodgett, 1929; Tolman and
Honzik, 1930; Tolman, 1948) suggest that during the pre-exposure sessions rats might
acquire information specific to the spatial layout of the environment, i.e. its spatial
map (White, 2004).

The ability of latent learning has also been related to the question of the overall
aim of spatial exploration. Early behavioral data suggest that environment explo-
ration is not observed in the animals with hippocampal lesions and that hippocampal
rats tend to produce repetitive, stereotyped behaviors (see Chapter 6 of O’Keefe and
Nadel (1978) for a comprehensive review of the role of hippocampus in exploration).

In our model, learning in the entorhinal-hippocampal network is considered to be
an instance of latent learning. Several properties of this network make this consider-
ation possible: (i) learning in the modeled network results in acquisition of a spatial
map of the environment expressed in population activity of modeled hippocampal
neurons (ii) learning equations (5.20,5.26) do not depend on the presence of reward,
(iii) exploration (or pre-exposure) phase is required for learning place fields.

The second learning regime requires positive ‘motivation’ in order to learn, i.e it
depends on the presence of reward (Eq. (5.9)). Motivational learning may depend
or not on the space representation. In fact, we will show that in certain tasks the
model learns location of the goal faster after the pre-exposure session (i.e. when the
place fields were already learned), than without the pre-exposure, in agreement with
experimental data mentioned above. Therefore, before proceeding to the analysis
of motivational learning in the model, we examine properties of the latent learning
system, i.e. spatially-selective cells in the hippocampal formation.



Chapter 6

Properties of spatial representation
in the model

In the previous chapter a new model of goal-oriented behavior was presented. This
model describes two different types, or strategies, of goal navigation. The first strat-
egy performs actions associated directly with currently perceived sensory stimuli and
represents an instance of a stimulus-response, or taxon, behavior (e.g. approaching
a visible goal). The second, locale, strategy, uses a memorized representation of rel-
ative positions or surrounding sensory cues. The goal location is remembered with
respect to this representation such that it can be approached even in the absence of
sensory cues, provided that the current position and orientation with respect to this
representation are known. The current chapter examines the properties of the space
representation in the model.

Behavioral data suggests that learning of such a representation does not depend
on the presence of reward, a type of learning referred to by early researches as latent
learning (Blodgett, 1929; Tolman and Honzik, 1930). Lesion data suggest that the
hippocampus is involved in latent learning and is necessary for tasks where an inter-
nal representation of the environment is necessary (O’Keefe and Nadel, 1978). The
behavioral and lesion data are complemented by a large number of neurophysiological
studies showing that activity of neurons in different parts of the hippocampal forma-
tion is highly correlated with a spatial position of the animal. In particular, grid cells
in the dorsal entorhinal cortex (Fyhn et al., 2004) and place cells in the CA fields of
the hippocampus (O’Keefe and Dostrovsky, 1971) have been thought to play a major
role in mediating spatial behavior.

In the set of computer simulation described below we examined firing properties

71
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of grid and place cells that encode the spatial representation in the model, focusing
on the following issues:

• How does a self-motion information influence activity of grid and place cells?

• What is the role of visual information during spatial exploration?

• What is the mechanism of interaction between the two types of input?

To address these questions we conducted four computer experiments. Section 6.1
describes the experimental setup, Section 6.2 analyzes firing fields of place and grid
cells during unrewarded exploration, Section 6.3 examines an interaction between
path integration and visual input in changing rectangular environments and, finally,
in Section 6.4 the experimental results are discussed.

6.1 Experimental setup for latent learning

Four different experiments were conducted. In Experiment 1 firing fields of grid and
place cells were analyzed while the simulated rat explored a square area 1×1 m.
located in the middle of a large room with multiple visual features (environment N-I,
see Chapter 2). Cell activities were analyzed in three different conditions:

Open field exploration. The simulated rat was allowed to explore the testing
arena by performing movements in random directions. Upon the first entry to the
environment, the path integration network was initialized as described in Section 5.3.1
and subsequently updated according to the update equations (5.14) and (5.28).

Darkness was simulated by turning off visual input to the grid cells after an initial
exploration period. After 10 min. (4800 time steps) of exploration in darkness the
visual input was turned back on.

Cue-rotation condition was subsequently simulated by interrupting the explo-
ration, rotating the walls of the experimental room 90◦ clockwise, and restarting
the simulation from a different location. Upon the re-entry into the environment a
reorientation procedure was performed as described in Section 5.3.3.

In the next three experiments the influence of geometric manipulations on the
place-cell activity was analyzed. For that purpose two additional of sets of rectangular
environments were used.

In Experiment 2, a set of shrinking rectangular environments (N-II, see Chapter 2)
was used, and the simulated rat was running back and forth along a line parallel to the
northern wall of the enclosure, simulating movement along a linear track. During the
training phase, the simulated rat explored the linear track in the original environment
(N-IIa) until a sufficient number of place cells were created. The path integration
network was initialized differently at the two ends of the linear track. This was done
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to be consistent with the evidence that place cells are directional in linear mazes
(Gothard et al., 1996). In the second, testing phase, the simulated rat was exposed
to each of the shrinking environments (N-IIb – N-IIe) in turn; place-cell activities
were analysed while the simulated rat was moving along the track in these novel
environments.

In Experiment 3 a similar procedure was repeated, but this time in the set of
stretching rectangular environments (N-III, see Chapter 2). The training and testing
phases were identical to the ones in the second experiment.

In the last experiment (Experiment 4) environments N-IIIa and N-IIIe from Ex-
periment 3 were used, and the simulated rat was allowed to move in two dimensions.
The path integration network was initialized once before the experiment. During the
training phase the simulated rat explored randomly the area of the original box (N-
IIIa) until a sufficient number of place cells were created. During the testing phase,
it moved in a zigzag fashion through the wide box such that directional dependence
of place fields could be assessed.

6.2 Experiment 1: learning spatial representation

For all experiments described below the number of grid-cell populations in the model
was Q = 6. This was enough to produce single localized peak of activity in the
place-cell population, in all experimental environments.

In Experiment 1 the activities of grid cells and place cells were analyzed during
exploratory behavior of the simulated rat.

6.2.1 Grid cells

An analysis of cell activities in the conditions of Experiment 1 shows that the mod-
eled dMEC cells exhibit grid-like activity pattern from the beginning of exploration,
generated by hardwired lateral connections in the model (Fig. 6.1a). Similarly to
biological grid cells, the simulated cells have hexagonal firing fields extending over
the whole area of the testing environment, due to periodic lateral connections in the
grid-cell subpopulations (Fig. 6.1b-d). Cells that belong to different grid-cell popula-
tions differ by grid spacing and orientation as well as by the sizes of the peak firing
locations (Hafting et al., 2005). The difference in spacing and orientation is due to the
mapping of speed and direction of the animal movement into the speed and direction
of the movement of activity packets in different populations (Eq. (5.17)).

The firing fields of the grid cells in the model persist in darkness (Fyhn et al.,
2004), but drift slowly due to the noise in the path integrator (Fig. 6.1e,f). To examine
the drift of the path integration update, grid-cell activities were analyzed separately
during the first and second halves of the darkness period and the difference map was
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h i j

Figure 6.1: Firing field properties of modeled grid and place cells. (a) Trajectory of

the modeled rat at three subsequent moments during exploration. Red (green) dots

mark the locations where the firing rate of an example grid (place) cell was higher

than 0.7 of its maximum over the whole environment. (b-d) Color coded rate maps

of three grid cells from different populations (blue - minimum rate, red - maximum

rate). (e) Rate map of the cell shown in b measured during 10 min (4800 time steps)

exploration in the absence of visual input. (f) Rate difference map between the first

half and second half of the darkness period for the cell shown in e. Difference in the

locations of the red and blue peaks expresses the drift of the firing grid (green color

corresponds to zero difference). (g) Rate map of the cell shown in d measured in the

environment with rotated visual cues (the black bar denotes cues on the northern wall

in the non-rotated environment). (h-j) Firing rate maps of the place cell shown in a
in the original environment (h), in darkness (i) and with rotated visual cues (j).
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calculated (Fig. 6.1f). The difference in locations of positive and negative peaks in
the difference map corresponds to the amount of drift. Note that in the combined
map (Fig. 6.1e) this drift is expressed as a weak dispersal of locations of peak firing
(Hafting et al., 2005).

In the cue-rotation condition the firing fields of the modeled grid cells rotated
together with visual cues (Hafting et al., 2005) (Fig. 6.1d,g). In the context of the
model this is explained as follows. Since the model represents and stores local views
as responses of a set of orientation-sensitive filters, a view taken, e.g., in the northern
direction corresponds to a view taken in the eastern direction after cue rotation. This
has two consequences: first, the current gaze direction is incorrectly estimated as
‘north’ during the reorientation procedure, (Eq. (5.24)); second, since the grid-cell
network is influenced by the view upon the entry (Section 5.3.3), rotation of visual
cues causes a corresponding rotation of the grid-cell firing patterns.

We emphasize here the crucial influence of the head direction estimation (Eq. (5.24)).
Rotation of the firing fields is a direct consequence of the error in the estimation of
an allocentric gaze direction. This error is caused by the fact that currently perceived
view in the rotated environment is correlated maximally with the snapshots that were
taken in the northern direction and stored during exploration.

Rotation of all visual cues in the present experiment is equivalent to rotation of
a single controlling cue card (Hafting et al., 2005). Note here that the model avoids
definition of what is a cue card or a landmark. The maximum correlation estimation
gives a most likely amount of rotation on the basis of similarity between local visual
features in the visual field.

6.2.2 Place cells

Each place cell in the model represents a subset of most active grid cells at a certain
location in the environment, as a result of competitive learning. Therefore, in the
conditions of Experiment 1, the simulated place cells (i) exhibit location sensitive
firing from the first time the simulated rat passes through the field (Hill, 1978); (ii)
have place fields that persist in darkness (Quirk et al., 1990); and (iii) rotate their
firing fields following a rotation of visual cues (O’Keefe and Conway, 1978) (Fig. 6.1h-
j).

The results of Experiment 1 show that the place cells in the model depend on the
path integration as well as on the visual input. However, contrary to most previous
models, this dependence is inherited from the upstream population of grid cells.

In the simple scenario of the Experiment 1 the dependence on the visual input
is expressed as a rotation of firing fields following the rotation of visual cues, while
dependence on the path integration follows from the ability of these cells to fire in
the absence of visual cues. These two phenomena, observed in biological place cells
as well, served as a reason to think that place cells perform a combination of the two
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types of sensory signals (i.e. internal and external) (Quirk et al., 1990; O’Keefe and
Conway, 1978; Jeffery and Keefe, 1999).

Further insights into the mechanism of this combination come from experiments
in which place cells were recorded while the geometry of the surrounding environment
was manipulated. O’Keefe and Burgess (1996) were first to observe a sensitivity of
the place-cell activity to changes in the geometric layout of a rectangular testing
arena. Their results suggested that the activity of place cells depends on distances
to the nearby walls and were interpreted in favor of the hypothesis that geometry
of space plays an important role for spatial orientation, presumably mediated by
the hippocampal place cells (Wang and Spelke, 2003; Cheng and Newcombe, 2005).
However, when Gothard et al. (1996) investigated the mechanism of interaction
between vision and path integration when rats were running on a shrinking linear
track, they realized that such interaction might explain the dependence of place-cell
activity on distances to walls observed by O’Keefe and Burgess (1996)

In a set of experiments below we show that our model is consistent with exper-
imental data of Gothard et al. (1996) and O’Keefe and Burgess (1996) and hence
explains the influence of environmental geometry by the process of correction of path
integration using learned associations between visual snapshots and grid cells.

6.3 Dynamics of place fields in geometrically ma-

nipulated environments

6.3.1 Experiment 2: Shrinking linear track

Before presenting results of Experiment 2, we briefly describe the setup of the exper-
iment of Gothard et al. (1996). In this experiment, rats were trained to shuttle back
and forth along a linear track with a movable box on one end and a fixed reward site
on the other (Fig. 6.2). The box remained at the same location throughout the entire
training period (Box 1). During testing, the track was shortened on some trials by
moving the box towards the reward site, when the box was behind a rat and presum-
ably outside of its visual field. On these testing trials the box was randomly moved
between five different locations (Box 1 to Box 5).

Cell recordings show that in all five conditions, cells located near the ends of the
track kept their place fields at fixed distances to the nearby walls. In contrast, cells
located near the middle of the track lost their place fields in the shortest-box condition
(Box 5). Similar experimental results were also reported by Redish et al. (2000).

We tested the effect of shrinking of the environment on the place field activity
in our model. The simulation reveals that cells that had firing fields near the walls
in the original environment (N-IIa) kept their fields close to the same walls in the
shrunk environments (Fig. 6.3). This is explained in the model by the inertia of the
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Movable Box

Box 5

Box 1

Box 2

Box 3

Box 4

Fixed Reward Site

Inbound Journey

Figure 6.2: Experimental setup used by Gothard et al. (1996) The rat is trained in

a linear track to alternate between a fixed site and a movable box (Box 1). The rat is

later tested in the same track, but with the box moved between five different positions

(Box 1 to Box 5) on some trials.

path integration network, represented by parameter α in Eq. (5.28). Even for big
mismatches between visually estimated position and the path-integration estimate,
correction signal to the grid-cell populations during the first several steps after path
integration reset is small, but accumulates with time.

This accumulated correction signal can have two consequences, depending on size
of the mismatch:

• For a small mismatch (N-IIb and N-IIc, Fig. 6.3) place cells in the middle of
the track have narrower place fields and the position of the place fields shifts in
a direction opposite to the direction of movement.

• For a large mismatch (N-IId and N-IIe, Fig. 6.3), place cells near the middle of
the track loose their place fields.

Figure 6.4 explains these effects in the framework of our model. Suppose that
two grid cell populations labeled q = 1 and q = 2 are mapped onto the real space as
shown by two parallelograms in Figure 6.4b. Suppose further that at the moment the
activity packet positions in both populations correspond to the actual position A of
the rat, while visual input predicts a different position B. If the mismatch between A
and the visual estimate B is small (Fig. 6.4b) then the cross-talk between vision and
path integration (Eq. (5.28)) makes the two activity peaks merge at an intermediate
position between A and B, indicated by the cross in the figure. Thus, visual input in a
slightly shortened track ‘pulls’ the grid-cell activity packets forward, and this forward
movement of the activity packets causes a forward movement of the corresponding
subset of active place cells. Place cells near the middle of the track shift their place
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N−IIb

N−IId

N−IIe
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Figure 6.3: Place fields (rpc as a function of the model rat’s position on the track)

of four modeled CA1 cells in the original (N-IIa; top graph) and shrunk (from top

to bottom: N-IIb, N-IIc, N-IId, N-IIe) environments during the rightward movement.

Note that cell 2 has a large field in the original environment, that shrinks and finally

disappears in shrunk environments.

fields backwards, since in this case they are activated in advance compared to the
position where they would have been active on the basis of a pure path-integration
update. This effect is similar to the one described by Samsonovich and McNaughton
(1997) for a single activity packet, but generalized to the case of the multi-layer path
integrator.

However, for a large mismatch (Fig. 6.4c) the activity packets in different charts
are shifted in different directions due to the periodicity of the lateral connections (or,
equivalently, to the periodicity of the firing fields). Hence, the superposition of several
grid-cell activity packets (Eq. (5.18)) is not coherent with the superposition learned
during training, so that the place-cell stimulation remains subthreshold. In this case,
place cells with preferred positions between A and B loose their place fields.

In order to characterize the dynamics of the whole population of cells, the vector
of place-cell firing rates measured in each location of the shortened track was cross-
correlated with the firing rate vectors corresponding to each location on the original
track (Gothard et al., 1996). More specifically, let x be the position of the simulated
rat along the original track, x′ the position of the rat along a shrunk track and rpc

i (x)
the vector of place-cell firing rates (Eq. (5.18)) when the rat is in position x. Then
the cross-correlation matrix between the firing rates in the original and shrunk tracks
is calculated as:
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Figure 6.4: Schematic illustration of mismatch correction in the grid-cell populations.

In all plots, the large square is the top view of the room and the black line is the linear

track. a. Dotted lines show a possible mapping of the grid-cell chart corresponding

to a population labeled q = 1 onto the floor of the room, A is the current position

of the rat on the track. b. Same graph as in (a) but the mapping of the grid cell

chart corresponding to another population (q = 2) is added (dashed line). Activity

packets in both charts are in positions that correspond to A. Suppose that B is the

visually estimated position. Due to the influence of vision both activity packets move

towards B, leading to a coherent signal sent to place cells in the hippocampus, so that

place cells between A and B fire. c. If the mismatch between A and B is too big, the

activity packet in the first population moves in the direction of B’, while that of the

second population moves in the direction of B. Summation of the grid cell activities is

no longer coherent so that the place cells between A and B loose their place fields.
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Figure 6.5 shows the cross-correlation matrices between firing rates in the original
track (vertical axis) and each of the shrunk track (horizontal axes) when the rat was
moving from left to right (top row) and from right to left (bottom row). The band
of a strong correlation along the diagonal on the full track (N-IIa, Fig. 6.5) expresses
the fact that the population vectors were similar for nearby locations. Since place
fields were larger in the middle of the track (e.g., cell 2, Fig. 6.3), the correlations
extend over a broader band on both sides of the diagonal. Small deformations of
the environment were tracked by the grid-cell activity packets due to the influence
of visual input. These deformations result in shifted and narrowed place fields of
cells near the middle of the track (environments N-IIb,c). For larger deformations,
however, these place cells loose their place fields (N-IId,e). The disappearance of the
place fields is a consequence of the fact that a combination of the grid-cell activity
packets from different population was no longer coherent, due to the strong influence
of the visual input as explained above.

6.3.2 Experiments 3 and 4: Stretching rectangular rooms

In the last two experiments, we analyzed place field dynamics in a stretching rect-
angular box (environment N-IIIa – N-IIIe, see Chapter 2). In order to highlight
the relation to the shrinking track experiment, we first considered the case of linear
movement and then turned to movement in two dimensions.

In the linear case (Experiment 3), similarly to the previous simulation, population
vectors near the two ends of the linear track correlated strongly with the population
vectors near the two ends of the track seen during training (i.e. cells near the walls
keep their size and distance to the nearby wall approximately constant, Fig. 6.6a). In
contrast, a decrease in the slope of the high cross-correlation band suggests that place
cells with preferred position near the middle of the original environment extended
their place fields. Moreover, in the widest box, cells with preferred position between
the two bands corresponding to different directions of movement (e.g. exactly in the
middle of the original environment) had different peak firing locations depending on
the direction of movement (Fig. 6.6a,b environment N-IIIe).

These results are in agreement with data from (O’Keefe and Burgess, 1996) who
report that when place fields were learned in a narrow rectangular room with gray
walls and later recorded in a wide rectangular room, those in the middle of the
environment have stretched together with the room. Furthermore, the stretched
fields consisted of two directional subcomponents that were activated depending on
the direction of movement.
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N−IIbN−IIa N−IIc N−IId N−IIe

Figure 6.5: Cross-correlation matrices between place-cell firing rates in the shrunk

environments (horizontal axis) and the original environment (vertical axis) for the five

environments and two directions of movement (shown by the black arrows). The red

lines correspond to the locations of the cross-correlation maxima when the position

of the rat is measured with respect to the left (lower line) or right (upper line) wall.

Small arrows in the upper-left plot mark the locations of maximal firing in the original

environment of the four cells shown in Figure 6.3.
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N−IIIa N−IIIb N−IIIc N−IIId N−IIIe
a

b cell 1 cell 4cell 3cell 2

N−IIIe

N−IIIa

N−IIIe

N−IIIe

Figure 6.6: Place-field deformation in a stretching environment. (a) Cross-correlation

matrices in the original (N-IIIa; top row) and stretched (N-IIIb-e) boxes when the

model rat was moving along a linear trajectory in two different directions (shown by

the black arrows) (b) Two-dimensional place fields of four different place cells for the

original (N-IIIa) and stretched (N-IIIe) versions of the box for leftward movement

(bottom); rightward movement (2nd from bottom) and averaged across directions (3rd

from bottom).
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In order to show that the same effect is preserved in the two-dimensional environ-
ment, we conducted Experiment 4, in which the simulated rat was allowed to move
in two-dimensions, similarly to the rats in the experiment of O’Keefe and Burgess
(1996). Figure. 6.6b shows firing fields of four cells in the narrow (N-IIIa) and wide
(N-IIIb) boxes for different directions of movement. Cells 1 and 4 with preferred po-
sitions near walls in the original environment (Fig. 6.6b, top row) retained their field
sizes and distances to the closest walls in the stretched box (second row). Their peak
firing locations did not depend on the direction of movement (two bottom rows). In
contrast, cells 2 and 3 with preferred positions near the middle of the original box
extended their place fields in the stretched box. Furthermore, the peak firing loca-
tions depended on the direction of movement (Fig. 6.6b, two bottom rows) such that
when moving from left to right the left part of the field is more active, whereas when
moving from right to left the right part of the field is active, in agreement with data
of O’Keefe and Burgess (1996).

6.4 Discussion

Results of the simulations demonstrate that the model is able to capture a number of
neurophysiological properties of grid and place cells: (1) CA1 and dMEC cells exhibit
spatially-localized firing fields (O’Keefe and Conway, 1978; Muller et al., 1987), (2)
anatomical topology is not observed in the CA1 population, but cells in the dMEC
are organized in several subpopulations with different frequencies and orientations
(O’Keefe and Conway, 1978; Kubie and Ranck, 1983; Muller and Kubie, 1987; Hafting
et al., 2005), (3) cells in the CA1 and the dMEC exhibit localized firing from the first
time the rat passes through their place fields (Hill, 1978; Wilson and McNaughton,
1993; Hafting et al., 2005), (4) both cell types retain their location sensitivity in the
absence of visual input (i.e. in darkness) (O’Keefe and Conway, 1978; Hill and Best,
1981; Muller and Kubie, 1987; O’Keefe and Speakman, 1987; Quirk et al., 1992; Fyhn
et al., 2004) (5) firing fields of both cell types rotate following rotation of visual cues
(Muller and Kubie, 1987; Cressant et al., 1997, 1999; Hafting et al., 2005) (6) CA1
cells stretch their fields if the environment is stretched and some place fields disappear
when the environment is shrunk (O’Keefe and Burgess, 1996; Gothard et al., 1996;
Redish et al., 2000).

We note that Gothard et al. (1996) were first to propose the idea that interaction
between visual input and path integration can explain results of O’Keefe and Burgess
(1996). This suggestion was later tested by Samsonovich and McNaughton (1997) in
their model. The key contributions of our model in this respect are (i) reproduction
of the same results using interconnected network of grid cells and place cells, and
without an explicit representation of walls in the model and (ii) an implementation
of a correction mechanism by means of which the path integration, performed in the
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model by the grid-cell network, is updated using two-dimensional local views of the
environment.

In this work we do not propose a new model of grid cell activity (Fuhs and Touret-
zky, 2006; Solstad et al., 2006; Rolls et al., 2006; McNaughton et al., 2006). Rather,
we try to answer the question whether the feed-forward projection hypothesis for the
development of place fields of the hippocampal CA1 cells is consistent with the known
properties of place cells, e.g. dependence of their place-field shapes on the geometric
layout of the environment (O’Keefe and Burgess, 1996) and dynamics of the place
fields during movement along a shrinking linear track (Gothard et al., 1996). The
results of the simulations in this chapter suggest that the answer is positive.

We would like to stress the two important points that distinguish our model from
other models of place cells (including those that model place cell activity as a result of
feed-forward projections from grid cells (Solstad et al., 2006; Rolls et al., 2006)): (i)
visual input is represented in the model by the activities of a large set of orientation-
sensitive filters applied to input visual images and (ii) visual information influences
grid-cells directly, but place cells only indirectly via the grid cells.

Although many properties of place cells mentioned above were reproduced by
other models (see Section 4.4.1), most of these models used the abstract notions of
distances and bearings to walls or landmarks. However, it is not clear how a landmark
or a wall are represented in the rat’s brain, and so these models rely on abstract
human notions when trying to explain cell activities. In contrast, our model suggests
that many of these properties can be explained, at least to some extent, by simply
considering local visual features that constitute local views of the environment, and
their interactions, without artificial separation of these features into belonging to a
wall or to a landmark.

For example, neurophysiological data suggest that distal visual cues exert stronger
control over place fields than nearby cues (Poucet, 1993; Poucet et al., 2003). In a
watermaze study of Cressant et al. (1997), when the only visual cues in the envi-
ronment were three objects located in the periphery of the maze close to the walls,
their rotation (as a whole) was followed by rotation of place fields. However, when
the same objects were placed near the center of the watermaze, they failed to control
place field locations after rotation.

In the context of our model these results can be explained as follows. When the
objects are located at the periphery, their rotation controls place-field locations in
the same way as did visual cues in Experiment 1 (Fig. 6.1i,j). In this case, local
views in the rotated state look exactly the same as in the non-rotated state, since
they are simply rotated as a whole relative to each other. In this case the place
fields will look rotated, due to the correlation-based algorithm of the head-direction
estimate. In contrast, when the objects are located near the center of the maze, the
estimation of a reference direction from the set of local views is difficult, because the
left-right relationship between the object positions on different snapshots could be
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reversed (Cressant et al. (1997)). As we will see in the next section, snapshot-based
estimation of the reference direction, in the case when different objects can occupy
the same positions relative to the rat, results in orientation errors due to inability to
extract detailed differences between the objects based on limited number of snapshots.
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Chapter 7

Simulation of rat goal-oriented
behavior

As the complexity of the task and perceptual capabilities of biological organisms in-
crease, an explicit spatial representation of the environment appears to be employed
to support navigation (Tolman, 1948). It has been hypothesized that such a repre-
sentation is encoded by hippocampal place cells during a process of unrewarded ex-
ploration of a novel environment (O’Keefe and Nadel, 1978). In the previous chapter
we examined properties of the modeled spatial representation, stored in the simulated
populations of location-sensitive cells. In this chapter we proceed to the question of
how such a representation can be used for goal-oriented behavior.

Our review of animal navigation in Chapter 3 suggests that animals can use locale
and taxon strategies depending on the task. Thus, the first major goal of the present
chapter is to analyze the reward-based learning algorithms that implement locale
and taxon strategies in the model. Our analysis is focused on the advantages and
limitations of the two strategies as well as on the conditions under which one or the
other strategy is preferable.

The second major goal of the chapter is to examine the model behavior in a set of
tasks in which rats exhibited a preference for the geometric cues (i.e. the shape of the
environment) over non-geometric visual features (see Section 3.3.1). We believe that
understanding of the surprising behavior of rats in these tasks might provide an insight
into the processes underlying the rat’s perception of the surrounding environment.

We focus on tho experimental paradigms: Morris watermaze task with hidden
platform (Morris, 1981) and rectangular room with hidden food source (Cheng, 1986).
The two paradigms were chosen for two reasons. First, the watermaze task has

87
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been used in numerous studies to demonstrate the rats’ ability to use extra-maze
cues for goal navigation in both the locale and taxon regimes; hence it provides
an experimental paradigm that allows for comparison between the two strategies in
exactly the same sensory environment. Second, none of these studies suggested that
the spatial layout of the surrounding environment might be of primary importance
for navigation. In contrast, experiments of Cheng performed in the task conditions,
which can be thought of as a dry-land variant of the watermaze task, have lead to a
surprising conclusion that the geometry of a surrounding space is the primary factor
during the goal-oriented behavior. By modeling the goal oriented navigation in these
two paradigms we aimed at understanding the distinctions and similarities in the task
conditions and rat behaviors that have lead to such different conclusions.

Each section in this chapter presents results from a different set of simulations.
Section 7.1 investigates learning of a hidden goal in the watermaze by the two nav-
igation strategies; Section 7.2 proposes a view-based reorientation hypothesis that
explains results of Cheng (1986) without invoking the ‘geometric module’ concept;
Section 7.3 explores further the distinction between geometric and non-geometric cues
in the context of the experiment of Pearce et al. (2004). Finally, we conclude with
general discussion of our results in Section 7.4.

7.1 Locale and taxon navigation strategies in the

watermaze

To study properties of the two goal-navigation strategies we have chosen the exper-
iments of Morris (1981) for the locale navigation and Eichenbaum et al. (1990) for
the taxon navigation. In both experiments rats had to find a submerged platform
in a circular pool filled with milky water. In the standard Morris task the rats are
placed into the pool in a different location on each trial. In these conditions, rats
with hippocampal lesions were impaired compared to normal rats.

In contrast, in the experiment of Eichenbaum et al. (1990) the same starting
position was used in all trials. In this case, lesions of fornix (connecting hippocampus
with NA) did not prevent rats from learning, suggesting that different navigation
strategies could be used by rats in these experiments. To study further the conse-
quences of fornix lesions, the rats were released from a novel starting position, not
used during training (Eichenbaum et al., 1990). Whereas intact rats swam directly to
the platform, fornix-lesioned rats failed to do it. Hence the impairment was related
specifically to the ability of the lesioned rats to generalize their knowledge of the
platform position to novel starting locations.

We tested our model in the computer versions of the two tasks. We then analyzed
the effects of ‘lesions’ (i.e. inactivation of either locale or taxon pathways in the
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Figure 7.1: Experimental setup and simulation results for the two watermaze tasks.

(a) Four starting positions (black circles) in the circular maze were used in the variable

start task. (b) In the constant start task only the starting position S was used during

training. Arrows show the direction to the invisible target platform in each condition.

model) on the model performance for the two tasks and during the novel-start tests.

7.1.1 Experimental procedures

Computer simulations consisted of two parts: simulations in the variable-start con-
dition were designed by analogy to the experiment of Morris (1981), whereas the
constant-start condition corresponded to the experiment of Eichenbaum et al. (1990).
In both conditions the same virtual environment was used (environment B-I, see
Chapter 2).

Before the training trials started, the simulated rat was given a pre-exposure ses-
sion, during which it explored the area of the watermaze without any rewards given,
until a sufficient number of place fields were learned. Hence, during the training trials
the simulated rat could either learn the goal location using the representation of the
environment built during the pre-exposure (i.e. use locale strategy), or use taxon
strategy. During the training, platform 6 cm in diameter was located in the SW
quadrant of the simulated watermaze (Fig. 7.1).

In the variable-start condition, a training trial started by placing the simulated
rat in one of the four starting positions shown in Fig. 7.1a, chosen at random in the
beginning of the trial. In the constant-start condition, the simulated rat was placed
always in the S position at the start of a trial (Fig. 7.1b). Initial orientation of the
simulated rat in both condition was randomly chosen between 0◦ and 360◦.
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Competition between strategies and performance comparison

As described in Section 5.2, the competition between the two strategies was modeled
trial-by-trial, rather then timestep-by-timestep. On each trial the simulated animal
performed two separate runs, one using locale strategy and the second one using
the taxon strategy (see below). The performance of a particular strategy on a trial
was coded by binary value (success/failure). The winning strategy for each trial was
determined after all training trials were completed as the one having more successes
during N = 10 preceding trials. An intact animal was assumed to always use the
winning strategy, and a lesioned animal could only use the available strategy. Hence
after all training trials completed, performance of intact animals could be compared
with that of lesioned animals.

For visualization purposes, performance of a particular strategy on each trial was
assigned either value 0 (if it was a success) or 1 (failure). After all trials were com-
pleted, the two binary vectors, corresponding to the two strategies were smoothed
with a running average filter with N -trial kernel, resulting in smoothed performance
curves.

Simulation of locale navigation. From the starting position the simulated rat
was allowed to move around the watermaze according to locale strategy rules (see
Section 5.2) until the platform was hit. At this moment the rat received a positive
reward. Wall hits were negatively rewarded. At the end of the trial the weights
between place cells and action cells in NA were updated according to (Eq. (5.9)).

The outcome of the locale strategy run on this trial was considered as a success, if
the time to reach the platform (i.e. the escape latency) was not higher then predefined
threshold τ , which was calculated as

τ = µasym + σasym

where µasym and σasym are the average values of the escape latency and its standard
deviation after the performance stabilized (in the present simulations after 20 trials).
Otherwise the locale strategy was considered a failure.

Simulation of taxon navigation. At the starting position the simulated rat per-
formed an egocentric turn according to the taxon strategy rules (see Section 5.2). If
the resulting heading direction was not more than 10◦ off the direction to the center
of the platform, the rat was given a positive reward (success). Otherwise no reward
was given (failure). At the end of the trial the weights between visual filters and
action cells in CP were updated according to (Eq. (5.9)).
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Novel-start tests for the constant-start condition

As mentioned before, experimental data suggest that after training in the constant
start condition, intact rats are able to swim directly to the hidden platform from
novel starting positions, whereas rats with fornix lesions are impaired in this task
(Eichenbaum et al., 1990).

In order to compare model performance with these results, we performed a set
of novel-start tests. After training in the constant-start condition, all weights in the
model were fixed, and the simulated animal was given 100 testing trials from positions
W and E, not used during training. As before, each testing trial consisted of two runs,
one according to locale strategy and the second one according to taxon strategy.

7.1.2 Results

Ten different animals were simulated for each condition. Each of the animals had
a different spatial map learned during the pre-exposure session. Results presented
below are averaged over the ten animals.

Figure 7.2a shows the two performance curves corresponding to the locale (red)
and taxon (blue) strategies across 200 training trials in the variable start condition.
In this graph, performance close to 1 for trial n means that most of preceding 10 trials
were not successful (according to the corresponding strategy), whereas performance
close to 0 means that most of the preceding trials were successful. In this case the
locale strategy was more efficient than the taxon strategy across all training trials.

The effect of lesions of either HPc/NA (the locale system) or CP/SNc (the taxon
system) in the model can be determined from Figure 7.2a by considering only one of
the two curves corresponding to non-lesioned system. Hence, the model predicts that
intact animals, as well as animals with damage of the CP or SNc, are able to learn
the variable start task in, whereas animals with damaged hippocampus (or NA) are
impaired in this task. This is consistent with several experimental studies (Cunha et
al., 2006; Morris et al., 1982; Eichenbaum et al., 1990; Sutherland and Rodriguez,
1990).

Considering the locale strategy alone, the performance stabilized after approxi-
mately 10-15 trials as shown by the evolution of average escape latency (Fig. 7.2a),
in agreement with animal data (Morris et al., 1982; Cunha et al., 2006). At the
asymptote of the performance the simulated rat adopted approximately direct paths
from any starting position to the hidden platform as shown by the learned action
map (Fig. 7.2c,d).

In the constant start condition the situation was different (Fig. 7.3a). In the
taxon regime the simulated rats were able to learn the task due to the presence of
a stable association between the starting position and the goal (Eichenbaum et al.,
1990; Cunha et al., 2006). The locale strategy was preferable over the taxon strategy
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Figure 7.2: Results of simulation in the variable start condition. (a) Performance

curves for locale (red) and taxon (blue) strategy for 200 training trials. The colored

bar at the top of the graph shows the winning strategy, i.e. the strategy that was more

successful in N = 10 preceding trials (red - locale, blue - taxon). (b) Evolution of the

escape latency (time to reach the platform) across trials, averaged over all animals.

Dashed line marks the threshold τ for a successful trial (see text). (c) Navigation map

of animal 1 after training 30 trials (locale strategy). Arrows show learned directions

towards the platform (i.e. ΨNA at the sample location, (Eq. (5.5))) and arrow lengths

correspond to the value of the optimal action (Eq. (5.8)). (d) Since the arrow lengths in

c are proportional to the action value, arrows near the periphery of the maze far from

the starting location are hardly visible. Here the same plot was redrawn excluding the

arrows from the well explored part of the maze so that the arrows near the periphery

had a larger visible length.
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in the beginning of training, while this relationship reversed after a longer training,
as shown by the colored bar at the top of the plot (Fig. 7.3a). The speed of learning
in the locale regime was similar to that in the variable start condition, as seen from
the comparison of the escape latencies (Fig. 7.3b and Figure 7.2b).

Considering lesion effects in this case, the model predicts that (i) neither HPc/NA
nor CP/SNc lesions prevent animals from learning this task and (ii) hippocampal ani-
mals might learn slower than intact animals in the beginning of training. Both effects
have been observed in animals with lesions of fornix (the fiber bundle connecting
HPc and NA) in the constant start version of the watermaze task (Eichenbaum et
al., 1990).

Novel starts

Performance curves for the novel-start tests suggest that the taxon strategy was not
successful during the novel-start tests, in contrast to the locale strategy (Fig. 7.4a). In
other words, the results are consistent with the evidence that animals with hippocam-
pus lesions were not able to solve the task, while intact animals were not impaired
in this case. In addition, there was no difference in the escape latencies between the
simulated rats trained in the variable-start and constant-start conditions (Fig. 7.4b),
similarly to the rats in the experiment of (Eichenbaum et al., 1990).

The latter effect can be understood by looking at the navigation map formed
during training in the constant start condition (Fig. 7.3c,d). Direction of the arrows
near the periphery of the maze towards the goal location (Fig. 7.3d), suggests that al-
though during training the simulated rats were always released from the same starting
position, they had a chance to explore the whole area of the maze as a consequence
of exploration/exploitation tradeoff adopted in the model (Section 5.2).

In order to see why the taxon strategy was so inefficient, we analyzed the heading
directions separately at the starting positions W and E (Fig. 7.4c,d). The doubly-
peaked heading histograms suggest that two different sets of visual cues controlled
the behavior.

An analysis of the model revealed that the first set of cues was given by the
images on the walls of the room seen in the direction of the platform during training,
whereas the second set of cues was induced by the upper edge of the watermaze wall,
which had a constant relationship with the direction to the platform during training.
To make this point clear, consider a snapshot of the environment taken from the
starting position towards the hidden goal (i.e. from position S in the direction of
135◦, Fig. 2.2, environment B-I). During training this snapshot was associated with
the turning angle of zero degrees (i.e. in this case the animal has to swim straight
ahead to hit the platform). Imagine that during a novel-start trial the simulated
rat is placed at position W, looking in direction 45◦. In this case, the image of the
extra-maze wall is changed accordingly, but the contour of the wall remains the same,
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Figure 7.3: Results of simulation in the constant start condition. (a) Performance

curves for locale (red) and taxon (blue) strategy. (b) Evolution of escape latency across

trials, averaged over all animals. Dashed line marks the threshold τ for a successful

trial. (b,c) Example of a navigation map learned after 30 trials in the constant start

condition. In c the arrow lengths are rescaled for better visibility
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Novel−start tests
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Figure 7.4: Performance in the novel-start tests. (a) Performance curves for the

locale (red) and taxon (blue) strategies in 200 testing trials from starting positions W

and E. (b) Mean escape latency ±SE during novel-start tests using locale strategy in

comparison to the latency of first training trial (random search) and at asymptote of

training performance. (c,d) Distributions of headings (taxon strategy) during novel-

start tests from W (c) and E (d) positions. The dotted lines indicate the direction

defined by cues from the watermaze wall (see text for details). Arrows indicate correct

direction to the platform. Bin size is 1◦.
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due to circular shape of the pool. Depending on the saliency of visual features of the
wall contour vs features from the wall images, the rat will either rotate in agreement
with extra-maze cues, or not rotate at all. Hence, based solely on the cues from the
wall of the pool, the platform direction would be (incorrectly) estimated as 45◦ from
the W position and -135◦ from the E position (dotted lines in the figure).

To summarize, the simulated rats in this experiment had no difficulties to reach
the platform if they were using locale strategy; in contrast, when using taxon strategy
the model rats (i) never took the right direction to the platform, since the two sets of
controlling cues gave wrong predictions; (ii) sometimes chose a direction consistent
with the cues from the watermaze wall, discarding the extra-maze cues;(iii) sometimes
chose the direction consistent with extra-maze cues; A similar range of behaviors was
reported for the rats in the constant-start watermaze (Eichenbaum et al., 1990).

7.1.3 Discussion

In this set of simulations the model was tested in the watermaze task with variable
and constant starting positions. The results of these simulations are consistent with
the following experimental evidence:

(i) Lesions of hippocampus prevent animals from learning the variable start version
of the reference memory watermaze (RMW) task (Morris et al., 1982; Da Cunha et
al., 2003; Sutherland et al., 1983); however, lesions of taxon subsystem (e.g. SNc) do
not produce any impairment in this case (Cunha et al., 2006)

(ii) Constant start version of the RMW task can be solved by intact animals, as
well as animals with either fornix or SNc lesions (Eichenbaum et al., 1990; Cunha et
al., 2006), however hippocampal animals learn slower, especially in the beginning of
training (Eichenbaum et al., 1990).

(iii) Locale strategy was preferable over the taxon strategy in the beginning of
training, while this relationship reversed after longer training. This is in agreement
with the data showing that animals gradually shift from place-learning to response-
learning when given extensive training (Packard and McGaugh, 1996a; Chang and
Gold, 2003). The taxon strategy in the model learns associations between snapshots
of the environment taken in a particular direction and the rotation angle resulting in
the correct heading. Hence, in the beginning of training, i.e. when the simulated rat
has seen only a small amount of all possible snapshots from the starting position, its
performance is low. However, when progressively more snapshots are experienced, it
gets more and more accurate until each snapshot corresponds exactly to the optimal
rotation angle (i.e. approximately until trial 160, Figure 7.3a). In contrast, the locale
strategy associates place fields with movement directions and hence already after the
first trials can reduce the escape latency significantly (Fig. 7.3b)

(iv) Inactivation of the locale pathway in the model resulted in the inability of
the simulated rat to choose the direction to the platform during the novel-start tests
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(Figure 7.4a). In contrast, intact (or CP/SNc-lesioned) simulated rats were as fast as
the simulated rats trained in the variable start condition. These results are consistent
with evidence that fornix-lesioned, but not intact, rats were impaired in the novel start
tests after constant-start training (Eichenbaum et al., 1990). In the model this is due
to the fact that learning of locale strategy involves random exploration of surrounding
area (the amount of exploration in the model is controlled by parameter ǫ, Section 5.2
and Chapter 2). The parts of the environment that were later used as novel starting
positions were visited in the process of exploration, and thus participated in learning of
goal-directed actions. This is exactly the type of process observed by Sutherland et al.
(1987) who concluded from their experiments that rats must (1) be familiar with the
distal cues viewed from the region of the novel starting location, and (2) swim through
the vicinity of the novel starting location as part of a swim path associated with an
invisible goal. However, simulated rats that were using taxon strategy were learning
associations between snapshot taken from the starting positions with corresponding
swimming direction, and hence were not able to this information when the set of
snapshots was different (due to difference in position).

Concerning the latter point, we note that in a significant part of testing trials from
the novel starting positions (Fig. 7.4c,d) the simulated rats chose swimming direction
relative to featureless watermaze wall and discarding visual pattern on the extra-
maze walls. As explained before this is due to the fact that in certain snapshots the
edge of the watermaze wall on the snapshot was more informative about the platform
direction than other cues.

However, an alternative interpretation of rat’s choices in these trials is that the
rats oriented with respect to the circular wall of the pool, i.e. its geometric shape.
Although this might seem as a valid interpretation, the explanation of this effect in
our model does not depend on the geometry of the environment per se, i.e. the shape
of the room, but rather on the structure of incoming visual inputs which are not by
themselves sensitive to the geometric properties (i.e. whether the feature is coming
from a wall that forms a part of the room’s shape, or from another object).

In the next set of simulations we focus on reproduction of experimental data that
addressed directly the question of influence of environmental geometry for spatial
orientation tasks.

7.2 Is there a geometric module in the rat brain?

Cheng (1986) observed that when disoriented rats tried to relocate food buried in
a rectangular room with visual landmarks in the corners, they often searched in a
location that was rotationally opposite to the correct location (i.e. exhibited rota-
tional errors, see Fig. 7.5a). The rotational errors may be explained by suggesting
that in a disoriented state rats ignore visual landmarks and orient themselves using
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Figure 7.5: Experimental setup of Cheng (1986) (a) Working memory task. The

large rectangle is the environment, corners contain distinct landmarks. Crosses mark

starting positions. On the first part of a trial rats searched for food hidden at the

location marked by the solid circle (solid arrow shows an example of path stored

from the learning phase). Once the food was found and partially eaten, the rat was

removed, disoriented and placed at a different starting position from which it had to

find the remaining food. Dotted circle marks the location rotationally opposite to the

correct food location, and dashed arrow shows a path corresponding to the rotational

error. Different food locations and starting positions were used in different trials. (b)

Reference memory task. The starting position (the small cross) and food location

(circle) are constant from trial to trial.

solely the rectangular shape of the room, with respect to which the correct and its
diagonally opposite locations are indistinguishable (Gallistel, 1990). Cheng suggested
further, that extraction of the shape information from the sensory input might be a
function of the geometric module, i.e. a mind module responsible for reorientation
(see Section 3.3.1 for a short review). An evolutionary argument was proposed in
favor of the existence of such a geometric module by Gallistel (1990).

It turned out that a crucial feature of this experiment was that starting posi-
tions and hidden food locations were different in each trial, since when the rats were
trained in the same environment but with fixed starting position and food location
(Fig. 7.5b), the number of rotational errors decreased significantly (although they
were still systematic (Cheng, 1986)). An interpretation of these results suggested by
Cheng was that although non-geometric features could be detected (as suggested by
decreased number of errors in the experiment with fixed starting position), they are
discarded during reorientation, presumably because the reorientation is based solely
on the shape information. This is consistent with the property of impenetrability of a
mind module for the information irrelevant for the module function (Gallistel, 1990;
Wang and Spelke, 2003).

Results of the simulations performed in the previous section suggest a different
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interpretation of these data. Since in the working memory experiment of Cheng
different starting positions were used in each trial, our model suggests that the only
successful strategy is the locale one. Taxon strategy can not be applied in this case,
due to the lack of stable sensory-response associations linked with reward. Hence the
rotational errors in this case are likely to be caused by the application of the locale
strategy. This conclusion is supported by the fact that in the second experiment of
Cheng, when such a stable association was possible, the rats did less rotational errors,
presumably because the taxon strategy was used in this case.

What is the difference between the locale and taxon strategies that could explain
rotational errors when the former strategy is used? As discussed in Chapter 3, the
locale strategy encodes actions in an allocentric frame of reference, while the taxon
strategy in an egocentric one. In order to be able to use an action encoded in an
allocentric frame of reference, the animal must determine its allocentric heading from
the alignment between the currently perceived visual cues and a representation of the
environment stored in memory. In contrast, actions encoded in an egocentric frame
of reference do not need to know the allocentric heading, since they are associated
directly with the visible cues. From that we may conclude that it is specifically the
reorientation phase that causes the rotational errors (Wang and Spelke, 2003), in
particular the allocentric heading estimation.

In our model, the reorientation is performed by matching a currently perceived
snapshot with the snapshots stored in memory during exploration. In a rectangular
environment with symmetrically arranged landmarks, the snapshots taken in opposite
directions from rotationally opposite locations are highly similar. Hence, given the
imperfect visual acuity of rats, the diagonal errors can be caused in our model by the
ambiguity of visual cues in the process of snapshot matching, i.e. during reorientation.

We conducted a set of computer simulations in order to check the following two
hypotheses: (A) rotational errors in the working memory experiment can be explained
in the model by errors in the estimation of the allocentric direction; (B) decreased
number of rotational errors in the reference memory experiment is a consequence of
taxon strategy

7.2.1 Experimental procedures

Similarly to the previous case, the present task included constant-start and variable-
start conditions. These two conditions corresponded to the working memory (Fig-
ure 7.5a) and reference memory (Figure 7.5b) experiments of Cheng (1986), respec-
tively. These simulations were conducted in the virtual environment B-II designed
by analogy to the rectangular box used in the Cheng’s experiments (see Chapter 2).
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Reorientation trials

In order to check hypothesis (A), we performed a set of 1000 reorientation trials in
the variable-start and constant-start conditions.

In the variable-start condition the simulated rat was placed into one of the five
starting positions inside the box (marked by the crosses in Figure 7.5a), while in the
constant-start condition the center of the box was always chosen. Initial orientation
was randomly chosen between 0◦ and 360◦.

Once placed at the starting location, the simulated rat performed reorientation
procedure as described in Section 5.3.3, i.e. current allocentric heading was estimated
from the set of local views stored during the pre-exposure session (Eq. (5.24)) and
path-integration network was reset accordingly.

The outcome of a reorientation trial was considered as correct when the absolute
value of the difference between the estimated and a real allocentric headings was
less then 10◦, a rotation error when the difference was greater then 170◦ and a miss,
otherwise.

We also estimated position errors after the reset of the path integration system
using visual information. The estimated position was considered as correct, if the
distance to the true position of the simulated rat was less than 10 cm; rotational
error if the distance to the position, diagonally opposite to the true position, was less
than 10 cm; and a miss otherwise.

Simulation of taxon strategy

In order to check hypothesis (B), taxon navigation was simulated in both the variable-
start and the constant-start conditions analogously to the watermaze simulations.

7.2.2 Results

Reproduction of the working memory experiment

The results of the simulations show that rotational errors observed1 by Cheng (1986)
can be reproduced by our model (Fig. 7.6). In order to show that rotational errors
were indeed caused by the properties of visual cues, we performed 1000 reorientation
trials (with random starting positions) in a cue-rich environment (N-I, see Chap-
ter 2) and a perfectly symmetric rectangular environment (N-IIIa). No orientation
errors were observed in the cue-rich environment, since snapshots taken in different
directions can be well distinguished by the visual system. In contrast, in a perfectly
symmetric rectangular environment each snapshot corresponds to the two opposite
orientations, making the number of rotation errors equal to the number of correct

1Animal data combine rats choices in two versions of the working memory task, i.e. with and

without the white wall (Cheng, 1986)
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Figure 7.6: Bars show percentage of correct choices, rotational errors and misses

for real (black) and simulated (dark gray) rats in the working experiment of Cheng

(1986) and variable-start condition, respectively. In light grey and white the results of

1000 reorientation trials in the cue-rich (N-I) and symmetric (N-IIIa) environments,

respectively, are shown.

rotations (Fig. 7.6a). Since in all three cases considered here the room was either
rectangular or square, these results indeed suggest that the number of rotational er-
rors might be controlled by the structure of visual features rather then the room
geometry.

In the model, the allocentric direction, estimated during the reorientation phase,
is used to reset the path integration network. Hence, rotational errors in the direction
estimation should correspond to the rotational errors in the position estimation. Next
we checked whether this is the case. Figure 7.7a shows the comparison between
distributions of heading and position errors after reorientation. In this case significant
difference between the heading and position estimates was observed only for rotational
errors (t-test, p < 0.05).

To examine the reason for this difference, we plotted the heading and position error
distributions separately for the starting position at the center of the box and starting
positions at the periphery (Fig. 7.7b,c). At the central position both the correct turn
and a rotational error should result in the same position estimate, resulting in the
high number of rotational errors for the central position (Fig. 7.7b). There was also
an increase in the number of correct answers, probably due to a smaller number of
misses (see below).
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Combined Center Non−centera cb

Figure 7.7: Distribution of errors in orientation and position when the simulated rat

performed reorientation trials from all 5 starting positions (a), only the central starting

position (b) and only the 4 starting positions in the periphery (c). Note that a and b
correspond to variable-start and constant-start experimental conditions, respectively.

For the case of the non-central positions (i.e. near the middle points of the four
walls) there was a good agreement between heading and position estimates (Fig. 7.7c).
The high percentage of misses suggests that visual information is more ambiguous
near the walls than in the center. An example of such an ambiguous situation is
when the simulated rat is near a wall and looks directly toward it. In this case, the
wall occupies a large portion of the view field and hence snapshots taken from this
position may be similar to the ones taken towards the wall from other positions in
the periphery.

Thus the discrepancy between the heading and position estimates observed for
the rotational errors in Figure 7.7a is due to the effect of the central position. In
conclusion, there was a good correspondence between heading and position estimates,
but heading estimate was more precise, justifying its choice for performance measures
in this simulation.

Reproduction of the reference memory experiment

We have proposed (hypothesis (B)) that decrease in the number of rotational errors
in the experiment with fixed start can be explained by suggesting that rats in this
experiment used taxon strategy.

Figure 7.8 shows an evolution of the ratio of the number of rotational errors
and the number of correct turns across taxon training trials in the constant start
condition. The number of rotational errors is as high as the number of correct turns
in the beginning of training, but decreases with learning until ≈0.3, reproducing
qualitatively results of Cheng (1986).

A possible alternative explanation for the smaller number of rotational errors in
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Figure 7.8: Evolution of the ratio of the number rotational errors vs the number of

correct turns averaged over animals and smoothed by a running average with 10-trial

kernel

this case is that when at the central position, the allocentric heading estimate is
more precise than if all five starting positions are used (Figure 7.7a,b). In order to
estimate the decrease of rotational errors due to this difference we calculated the
mean ratio of rotational errors and correct answers for reorientation trials from the
central position (0.48±0.07, dash-dot line in Fig. 7.8). From the comparison with the
ratio calculated from the experimental data of Cheng (1986) (21 rotational errors vs
71 correct answers, dashed line), we may conclude that it is unlikely that the effect
of central position can account for the decrease in the rotational errors.

To summarize, the results of our simulations confirmed our suggestions that the
rotational errors may be caused by the ambiguity in visual input and that the decrease
in the rotational errors in the fixed-start experiment can be a consequence of the
change in navigational strategies (from locale to taxon).

7.2.3 Discussion

Simulated rats exhibited rotational errors in the testing environment, similarly to
real rats in the experiments of Cheng (1986). Rotational errors in the simulations are
caused by two main factors: ambiguous visual features and limited accuracy of the
visual system.

To clarify this point, consider two sample snapshots taken by the simulated rat in
opposite directions from the center of the box (Fig. 7.9a). In these snapshots large
part of cues (e.g. wall edges) represent ambiguous information since they belong to
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a

b

Figure 7.9: (a) Two snapshots taken from the central position in the direction of the

north-west landmark (154◦) and in the diagonally opposite direction. (b) Comparison

between rat performance data in the experiment of Cheng (1986) and distribution of

headings in reorientation trials in the variable start conditions.

both snapshots. Non-ambiguous information is represented by the visual pattern of
the landmarks.

Depending on learning strategy, visual information is used differently during learn-
ing. During reorientation required by locale strategy (using Eq. (5.22) and Eq. (5.24)),
a local view observed upon the entry to the box at the start of a trial is compared
with local views stored in memory. Since there is a limited number of local views
taken in the vicinity of the starting position, correlation will be sometimes higher for
the correct orientation and sometimes for the rotationally opposite, depending on the
exact position and orientation of the rat. The number of orientation errors can not
be decreased by learning, since the representation of the environment stored in the
grid cells and place cells is not updated during goal learning.

The situation is different during the taxon learning regime. In the beginning of
learning, when the number of observed local views is low, the number of rotational
errors is high (Fig. 7.8). However, as learning progresses, different local views become
associated with the corresponding motor actions more and more accurately, leading to
the decrease of rotational errors. As a conclusion, the model suggests that the decrease
in the number of rotational errors is due to the switch between the navigational
strategies.

Explanation for the rat behavior in Cheng’s experiment given above is in contrast
to the view that rotational errors are due to the insensitivity of the geometric module
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to non-geometric information, i.e. its encapsulation (Cheng, 1986; Wang and Spelke,
2003) (see Section 3.3.1). In our model it is due to the assumption that the same
information is acquired and processed differently depending on the learning strategy.

In addition to the issue of geometry discussed above, several behavioral studies
suggested the preference for configural cues (i.e. sets of discrete cues) over single
landmarks during navigation (Poucet et al., 2003). For example, S. Suzuki et al.
(1980) trained rats to locate rewarded arms in an 8-arm maze, placed in a large
cylindrical enclosure with multiple extra-maze stimuli. When the array of stimuli was
rotated as a whole, the rats were choosing the arms in agreement with the rotated cues;
however, when the cues were rearranged such that the relative positions of different
stimuli changed, the performance was markedly disturbed. In another experiment
(Benhamou and Poucet, 1998), rats were trained to find a hidden platform in a
circular pool where the only cues were three different objects placed near the periphery
of the pool. When the objects were arranged in the form of an isosceles triangle, the
rats had no problem to remember the platform location; however, when the object
arrangement was an equilateral triangle, the rats were unable to swim directly to the
platform.

Although these results were not directly simulated here, it is easy to see that the
model is consistent with them. In the first experiment, irrespectively of what strategy
the rats actually used, rearrangement of cues would make local views different from
those used during learning. Hence in the testing trials the model predicts that both
strategies will be disrupted. This will not happen if the cues are rotated, since it will
not change the local views, but simply change the directional reference, which either
will not make any difference at all (in case of the taxon strategy) or will be taken into
account during the head direction estimation (in case of the locale strategy)2.

In the second experiment the situation is similar to the one in the Cheng’s working
memory task. The object arrangement in the form of an equilateral triangle makes the
environment three-fold symmetric, and hence causes the orientation errors (but in this
case they are not diagonal, as in the two-fold symmetric rectangular environment).
In this case, the position between any two objects (which corresponds to the platform
location in this experiment) is equivalent to the positions between any other two
objects. Hence the model predicts that goal search will be concentrated near the
middle points of the edges of the triangle, as it was observed in the experiment. The
fact that rats in this experiment did not use object identities when released from
different starting positions, but did use them when released from the center of the
pool can be explained as above by the ambiguity of visual cues.

In conclusion, the approach to visual information processing adopted in the model
suggests that the effects of both geometric (Cheng, 1986) and configural cues (Poucet,
1993; Poucet et al., 2003) can be explained on the basis of visual features that con-

2In a disoriented animal
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stitute visual snapshots.

The following predictions can be made on the basis of the present results:

• Since rotational errors are mainly caused by a symmetric arrangement of visual
features in the environment, their number can be decreased by either making the
overall arrangement of landmarks non-symmetric or by making the landmarks
sufficiently different.

• The model suggests that improvement in performance in the reference memory
paradigm vs the working memory paradigm of Cheng is due to a switch from
the locale to taxon strategy. Hence we predict that lesioning the taxon pathway
(CP or SNc) will increase the number of rotational errors during the constant-
start condition relative to controls, while not changing the performance in the
variable-start condition.

• Sensory cues in the Cheng’s experiments included distinct odors attached to the
corner landmarks. Here we assume that visual cues, when they are available,
override olfactory cues (Maaswinkel and Whishaw, 1999). If it is true that the
rotational errors are caused primarily by the properties of visual input, switching
off the lights during working memory experiment should result in decrease of
rotational errors (at least on the trials in which the goal is hidden near the odor
source).

In summary, the results of these simulations suggest that the dissociation between
the geometric vs non-geometric cues (or configuration of cues vs identities of its con-
stituent cues) is a consequence of competition between ambiguous and non-ambiguous
visual features during reorientation. In environments in which the arrangement of
walls is symmetric, the edges of walls represent ambiguous cues, whereas visual pat-
terns attached to the walls (e.g. landmarks) represent non-ambiguous cues. We claim
that behavioral decisions made on the basis of the ambiguous cues may appear to be
caused by the room geometry, but could in fact be based on sets of local features,
arranged in a symmetric and hence ambiguous configuration. Thus, there is no need
in the concept of a ‘geometric module’ involved in the computation of the geomet-
ric shape congruence during reorientation. Moreover, behavioral data attributed to
the encapsulation of the geometric module, i.e. the assumption that non-geometric
information is encoded but not used during reorientation, can be explained by the
switching between navigational strategies.
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7.3 Transfer of goal information between environ-

ments

The issue of the geometric module can be considered from another, more general
point of view, namely whether animals use global or local cues during goal search
(Poucet, 1993; Learmonth et al., 2001; Pearce et al., 2004; Poucet et al., 2003). If an
animal identifies the goal location based only on local cues situated next to the target
(e.g. nearby landmarks), then the goal search consists of looking for a location with
appropriate local features (Learmonth et al., 2001; Pearce et al., 2004). However, if
the goal location is remembered with respect to a global cue, e.g., the geometric shape
of the environment or its principal symmetry axis (Cheng, 1986, 2005), then the goal
search implies (i) extraction of the global cue from the sensory input and (ii) going to
the goal according to the extracted global cue. From this point of view, the behavior
of rats in the experiments of Cheng is an instance of the global-cue behavior, where
the global cue is extracted from the sensory input by means of the geometric module.

An experimental study aimed at a dissociation of the two types of search (i.e.
local-cue vs global-cue) was conducted by Pearce et al. (2004). In this task rats were
trained to swim to a target platform hidden in one corner of a featureless rectangular
water pool (corner C, Fig. 7.10a). After several learning sessions, their corner choices
were examined in a kite-shaped pool (Fig. 7.10b). The target corner in the rectangular
training environment is defined up to the rotational error since no cues can be used
to distinguish corner C from its diagonally opposite (C’). In the kite-shaped pool the
bottom corner is geometrically equivalent to the corners C and C’ of the rectangular
training room, whereas the upper corner is equivalent to the corners I and I’. Rats’
choices during three 4-trial testing sessions in the kite-shaped pool are shown in
Figure 7.10c.

According to the local-cue hypothesis, rats remember the local properties of the
target corner in the rectangular training pool, e.g. that the target corner is located to
the left of the long wall (with respect to the rat inside the pool), or that it has the long
wall to the right of the short wall (Pearce et al., 2004). The result of matching these
local properties in the kite-shaped pool leads to identifying either corner C (since it
lies to the left of the long wall and has a long wall to the right of the short one), or
corner A (since it lies to the left of the long wall) as the correct corners. Hence the
local cue hypothesis provides an explanation of the preference of the corners C and A
over corners I and O, but fails to explain why corner A was chosen at least as often
as corner C.

The global-cue hypothesis predicts that rats remember the location of the target
corner with respect to a global characteristic of the environment, e.g. the environment
shape (Cheng, 1986) or its symmetry axis (Cheng, 2005; Cheng and Gallistel, 2005).
In the former case rats would be lost in the kite-shaped pool since the shapes are



108 CHAPTER 7. SIMULATION OF RAT GOAL-ORIENTED BEHAVIOR

I

C

C

C’ I

I’

A O

a b

c

Figure 7.10: Setup and results of the experiment of Pearce et al. (2004). a,b.

Training (a) and testing (b) environments used in the experiment. The target corner

C in the training pool corresponds to the bottom corner of the kite-shaped pool (open

circles). The black dots mark four starting positions in the kite shaped pool. The

dotted lines show symmetry axes for the two environments. c. Percentage of trials

on which rats swam directly to each of the four corners in the kite-shaped pool across

three testing sessions, four trials each (reproduced with permission from Pearce et al.

(2004)).
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Figure 7.11: (a). Visual cues from the rectangle can be aligned with visual cues

from the kite-shaped pool using either corners AIO (solid line) or corners ACO (dashed

line). Each alignment is associated with the direction to the ‘target’ corner (circles)

(b) Probabilities of choosing each to the four corners in the model as a function of pC

different, i.e. no corner preferences should be observed. Hence, in this experiment
rats should not be able to orient themselves by the shape of the environment. In
the latter case the symmetry axis of the rectangle (i.e. the line that goes through
the middle points of edges IC and I’C’) should be matched to the symmetry axis of
the kite-shaped pool (i.e. line AO) and the authors suggest that rats would choose
corners C and A of the kite-shaped pool equally often since their position roughly
correspond to the position of the target corner (and it diagonally opposite) in the
rectangular room (Cheng and Gallistel, 2005). The drawback of this explanation is
that it is hard to put it to quantitative terms, since that would require knowledge of
distances or angle magnitudes; even if such a quantification could be done it is not
clear how well it would generalize to other similar cases.

We wondered whether our view-based reorientation mechanism can explain corner
choices in the kite shaped pool (i.e. without any explicit representations of walls or
symmetry axes). According to our hypothesis, the view-based reorientation procedure
is performed upon the entry to the kite-shaped pool. The view-based reorientation
in the model is performed by finding the best match between the local view observed
upon the entry to the pool and local views stored during exploration. In environments
where visual features are represented only by the edges of rectangular featureless walls,
the outcome of the reorientation procedure can be predicted by a simple probabilistic
algorithm described below.

First, consider the case when after learning in the rectangle, the simulated rat is
placed at the starting position 1 (Fig. 7.11a). There are four possible cases:

1. the current local view contains corner AIO and the head direction is determined
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(using Eq. (5.24)) from the alignment with corner C’IC of the rectangle. In this
case the obtuse-angled corner O will be interpreted as the ‘correct’ corner (see
Fig. 7.11a).

2. the current view contains corner AIO and is aligned with corner C’I’C of the
rectangle. In this case the apex-angled corner is perceived as correct.

3. the current view contains corner ACO and is aligned with corner I’CI of the
rectangle. In this case corner C will be chosen as the correct corner

4. the current view contains corner ACO and is aligned with corner I’C’I of the
rectangle. In this case the direction towards C’ (Fig. 7.11a) is interpreted as
the direction to the correct corner. Since C’ does not exist in the kite-shaped
pool, we assume that one of the ‘neighboring’ corners A or I is chosen with
probability pai = 1/2

In the limit of many trials the four possible outcomes are equally probable (because
of the symmetry of the rectangular training environment), and the corner choices after
reorientation can be described by a simple probabilistic model where each of the four
outcomes is assigned probability 1/4. Starting position 2,3 and 4 can be analyzed in
a similar way yielding the following corner probabilities

pC
1 = pC

2 = 1/4 pC
3 = 0 pC

4 = 1/2

pA
1 = pA

2 = 1/4 + 1/4 · pai pA
3 = 1/2 pA

4 = 1/2 · pai (7.1)

pO
1 = pO

2 = 1/4 pO
3 = 1/2 pO

4 = 0

pI
1 = pI

2 = 1/4 · (1 − pai) pI
3 = 0 pI

4 = 1/2 · (1 − pai)

where the subscript denotes the starting position. Note that from position 3 only
corner AIO is perceived the same way as in the training room, so corners A and O
are chosen with probability 1/2. A similar argument is applied to starting position 4.

Finally, at each starting position the ‘rat’ might have used some new information
learned about the testing environment and go directly to the correct corner with
probability pC. The probabilities of going to each of the four corners are then given
by:

p(C) = pC + (1 − pC)
∑

i

pstpC
i

p(X) = (1 − pC)
∑

i

pstpX
i

where X = A,O, I, and probability of choosing a starting position is pst = 1/4.
Substituting numerical values from Eq. (7.1) we get:



7.3. TRANSFER OF GOAL INFORMATION BETWEEN ENVIRONMENTS 111

p(C) =
1

4
+

3

4
pC

p(A) =
3

8
−

3

8
pC (7.2)

p(O) =
1

4
−

1

4
pC

p(I) =
1

8
−

1

8
pC

where letters C,A,O, I denote corresponding corners (Figure 7.11b).
In agreement with the experimental data (Figure 7.10c), the calculated probability

of choosing corners C or A is higher than that for corners I and O for the values of the
parameter pC in the range pC ∈ [0.04, 0.13]. Moreover, corner A is chosen more often
than corner C for smaller values of pC. A possible interpretation of this result is that in
the beginning of testing rats used the goal information transferred from the training
phase (which corresponds to smaller values of pC), but as testing progressed they
learned a representation of the testing environment that allowed them to approach
the corner C directly (during testing trials a hidden platform was located at corner
C of the kite-shaped pool).

7.3.1 Discussion

During testing in the kite-shaped pool, the rats in the experiment of Pearce et al.
(2004) exhibited strong preference of the bottom corner over the top corner. This
behavior can not be a consequence of random search (since the two corners are geomet-
rically equivalent), suggesting that this preference was transferred from the training
in the rectangular pool. In this section we considered a possible mechanism of this
transfer, namely that the rats used local views stored from the training phase in order
to direct their search during testing.

In this experiment, rats were released from different starting positions on different
trials and the target platform was hidden, hence we assumed that they used locale
strategy (see Section 7.1). The simulation of the working memory experiment of
Cheng (Section 7.2) suggested that the outcome of a reorientation trial can be a good
predictor of the rat’s choice of the target location on this trial. The calculations
performed above suggest that this might be the case for the experiment of Pearce et
al. (2004) as well (Figure 7.11b).

The aim of this section was to show that the model is compatible with experimental
data showing that rats are able to use local properties of the environment in order
to direct their goal search Pearce et al. (2004). We note that in this case by local
properties we mean geometric arrangement of walls near the target location.
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Figure 7.12: Sensory-motor loop implemented in the model. HF – hippocampal

formation, BG – basal ganglia, S-S – stimulus-stimulus associations, S-R – stimulus-

response associations.

Comparison with the simulation results of the previous section suggests that the
model is consistent with data showing that rats can use global cues as well as local
cues to drive their goal oriented behavior. The reason is that although visual fea-
tures processed in the model are inherently local (since they belong to the snapshots
taken at particular locations in the environment), reorientation on the basis of many
snapshots produce behavior that may appear as driven by global cues (Section 7.2).

7.4 General discussion

In this thesis we proposed a model that implements the full sensory-motor loop (Fig-
ure 7.12). The simulated rat moves through a virtual environment, constantly re-
ceiving sensory inputs. The visual input is processed in the model by two parallel
pathways: (I) the fast direct pathway from the visual filters to the action cells in the
CP (that represents anatomical connections between cortex and the dorsal striatum)
and (II) the slow indirect pathway from the visual filters to the action cells in NA,
passing via grid cells and place cells (this pathway represents connections from cortex
to the hippocampal formation and then to the ventral striatum). The readout of the
action-cell activity and its conversion to the movement of the simulated rat represents
output of the basal ganglia to cortical/subcortical motor structures.

If the environment produces rewards, the reward information is associated with
movements through reward-based learning. In the model this is done in the synapses
from visual filters and place cells to the action cells by means of reinforcement (TD)
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learning, and reward information is assumed to be available in the form of phasic
dopamine input from neuronal populations of the basal ganglia (i.e. SNc and VTA,
(Schultz et al., 1997)).

Whereas actions cells perform reward-based stimulus-response (S-R) learning in
the model, the cell populations in the modeled hippocampal formation learn stimulus-
stimulus (S-S) associations in agreement with the role of hippocampus in latent learn-
ing (White and McDonald, 2002; Packard and McGaugh, 1992a, 1992b).

The model was tested in a set of computer simulations, that were designed anal-
ogously to the experiments performed on behaving rats. These tests demonstrated
that (i) grid cells and place cells in modeled hippocampal formation have biologically
plausible firing fields, with dynamical properties qualitatively similar to those of bio-
logical cells; (ii) the behavior of the model in navigation tasks is consistent with that
observed in several animal studies, including basic lesion effects.

The present study focused on the importance of distal extra-maze cues for nav-
igation (both locale and taxon). Modelling this type of navigation separately from
object approaching behavior is appropriate, since several studies suggested that en-
coding and use of distal vs proximal cues for navigation might be distinct processes
(see Poucet et al. (2003) for review); in addition, data from Cressant et al. (1997,
1999) suggest that place fields are controlled by distal, but not proximal cues, in
agreement with our model (see Section 6.4).

One of the major goals of this study was to examine the effects of environmental
geometry on the activity of spatially selective cells and goal-oriented behavior. Since
our model is a neural network model which is largely built in agreement with anatom-
ical and neurophysiological data, we expected that it might provide some insights into
a possible implementation of abstract psychological theories of geometric processing,
e.g. the theory of geometric module for spatial orientation.

In agreement with our expectations, the results presented in the study suggest
that the influence of geometry of space observed in behavioral data can be a byprod-
uct of visual information processing. The geometry of space is implicitly present in
the visual input and hence influences cell activities as well as behavior. Hence our
claim is that it is not necessary to invoke the geometric module concept to explain
Cheng’s data. In particular, (i) if the geometric module is viewed as a separate brain
structure responsible for geometry-related calculations, then there is no need in such
a structure, since our model can reproduce Cheng’s results without it (ii) if the geo-
metric module is meant to be a theoretical abstraction, then we question the utility
of this abstraction. Our simulations suggest that rotational errors can be explained
by the structure of visual inputs, rather than by room geometry.

We believe that our model offers a new approach to several issues in animal behav-
ior, related to the processing of different types of visual cues. Experimental studies
suggest that different visual cues exert different level of control over spatial behav-
ior. In particular, configural cues seem to be used preferably to individual landmarks
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(Poucet, 1993; Benhamou and Poucet, 1998; Poucet et al., 2003); similarly, environ-
mental geometry (i.e. a global cue) has been suggested to override non-geometric (or
local) cues (Gallistel, 1990; Benhamou and Poucet, 1998; Pearce et al., 2004; Cheng,
2005). As discussed previously (Sections 7.2.3, 7.3.1), from the point of view of our
model these types of stimuli exert their control implicitly through their different ap-
pearance in the local views, so that an a priori separation of these cues into different
types is misleading. In addition, the way the visual features are processed depends
on the task that an animal is currently performing. Whereas during an unrewarded
cognitive mapping of the environment a detailed information about small-scale visual
features is not encoded (i.e. coarse, low-frequency coding is preferred in this case
(O’Keefe and Nadel, 1978)), learning the details of a specific visual cue associated
with food reward is important for a hungry animal.

Additional types of visual input, not implemented in the present model, e.g. en-
coding of the optic flow (Wylie et al., 1999) or direct distance estimation (Gallistel,
1990), are likely to to be involved in the visual information processing. However,
these types of cues are unlikely to provide more detailed information about visual
stimuli than local views, and so they will not influence our principal results.



Chapter 8

Conclusions

As stated at the beginning of this document, the work here presented is aimed to ad-
dress two fundamental questions: (i) How might different strategies be implemented
in the brain? and (ii) What is the role of sensory stimuli during goal-oriented be-
havior? In this chapter we summarize the achievements of this work; we also analyze
limitations of the current model, and suggest directions of future research.

8.1 Contributions

In this work we presented a system-level neural model of goal-oriented behavior in
the rat. The model implements two navigational strategies: the first, taxon, strategy
associates visual stimuli directly with motor actions; the second, locale, strategy uses
a distributed representation of location encoded by grid- and place-cell activities. The
representation of location is built incrementally through unrewarded exploration of
environment, i.e. during a latent learning phase. During this phase internal estima-
tion of position, encoded by the network of grid cells, is associated with visual input
by means of Hebbian learning. Readout of position information is performed by the
population of place cells. Activity of place cells can be then associated with motor
actions using reward-based learning. Both the taxon and locale strategies are learned
by linking reward information with pairs of stimuli and actions (in the taxon case) or
place-cell activities and action (in the taxon case) by means of reinforcement learning.

An important property of the model is that it processes visual information by a
large set of orientation-sensitive filters, akin to primary visual areas in the brain.

The model was tested in a large array of tasks that were designed by analogy
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to real-world behavioral experiments. In particular, firing fields of location sensitive
neurons were analyzed during exploration of the environment and compared with
those of biological cells. In addition, dynamics of place-cell firing fields were examined
during shrinking or stretching of experimental chamber. In both cases the results
were in agreement with experimental data on place and grid cells. From this we may
conclude that by employing a simple, but biologically plausible, visual system we were
able to explain experimentally observed cell activities without a priori definition of
such notions like ‘landmark’ or ‘wall’.

In a different set of computer experiments we examined the ability of the model to
perform goal navigation in circular enclosures and rectangular boxes. In the circular
environment with multiple visual cues the model was able to learn the location of
a hidden goal. Moreover, it could use different navigational strategies depending on
task conditions, similarly to real animals. Results of simulated lesion studies were
consistent with those of real studies.

The computer experiments in rectangular boxes were aimed at reproducing results
of (Cheng, 1986) who suggested that geometry of space plays a major role for spatial
orientation. Although our model was able to reproduce the results, our conclusions
concerning the influence of environmental geometry on behavior are different. In our
model the geometry of space is represented implicitly in the visual features analyzed
by the visual processing pathway in the model. In certain impoverished environ-
ments, like the ones used during Cheng’s experiments, the overall symmetry of the
environment produces an effect that can be interpreted as geometric influence, due
to ambiguity of visual information. This effect is eliminated once the ambiguity in
visual input is removed. Hence we suggest that it would be misleading to emphasize
the importance of geometry on the basis of these experiments, since a simpler, more
general and more biologically explanation of these effects is possible, as demonstrated
in this thesis.

8.2 Limitations and perspectives

Without doubt, the model uses many simplifications and assumptions. In particular,
the following issues has to be addressed in future research:

Role of other hippocampal structures. The feed-forward architecture of the model
is proposed to correspond to the entorhinal-CA1 pathway in the rodent hippocampus.
While this pathway has been shown to be sufficient to maintain a stable place code
(Brun et al., 2002; Fyhn et al., 2004), the question remains about the role of the
other hippocampal structures for spatial navigation.

It has been suggested that dentate gyrus and CA3 might be responsible for the
processes of orthogonalization and completion of incoming sensory patterns. Recur-
rent connectivity in the CA3 area of the hippocampus and neurogenesis in the den-
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tate gyrus are consistent with these suggestions. Spatial information resulting from
feed-forward projections from the entorhinal cortex to CA1 on one hand, and pat-
tern completion/orthogonalization performed by the CA3 area on the other, might
complement each other in a single comparison process. Such a comparison maybe
important for deciding whether the environment is novel or not.

Relation to general memory functions of the hippocampus. A parallel has been
drawn between the classification of locale and taxon strategies and the division be-
tween episodic (or declarative) and procedural memory (Redish, 2001). Both locale
strategies and episodic memories are hippocampal-dependent and imply the flexible
use of complex sensory stimuli. Taxon strategies and procedural memory, in contrast,
depend on the dorsal striatum, are less flexible and require time to be developed. This
analogy highlights the potential importance of studying navigation strategies in ro-
dents as a model of multiple memory systems in mammals and their interactions.

The acquisition of stimulus-response strategies (similar to procedural memories)
can be related to the development of habits. In navigational tasks, animals gradu-
ally shift from place-response (hippocampal dependent) to stimulus-response (stria-
tum dependent) strategies when trained extensively training (Packard and McGaugh,
1996b; Chang and Gold, 2003). Such a transition has been interpreted as the basis
for habit formation (Packard and McGaugh, 1996b; Packard and Knowlton, 2002).

Role of other brain areas. In this work we have only referred to the putative
roles of the the hippocampal formation and the basal ganglia during goal-oriented
behaviors. However, other brain areas are likely to be involved in these behaviors as
well. In particular, the prefrontal cortex has been associated to the development of
habits (Killcross and Coutureau, 2003), the execution of taxon strategies (Bruin et
al., 2001), and learning and retrieval of goal information (Hasselmo, 2005). Its role
in spatial navigation is a potential extension of the present model.

Robotic implementation. The model in its present form is in principal suitable
for implementation on a robotic platform. In fact, it has been implemented in robot
simulator software. Although the robotic implementation was not a goal of this
study, such implementation will be advantageous for the model, since the use of real
embodiment and agent-environment interactions constitutes a powerful test-bed for
the robustness of the model.
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Strösslin, T., Sheynikhovich, D., Chavarriaga, R., and Gerstner, W. (2005). Ro-
bust self-localisation and navigation based on hippocampal place cells. Neural
Networks, 8 (19), 1125-1140. 59

Suri, R. E., and Schultz, W. (1998, August). Learning of sequential movements by
neural network model with dopamine-like reinforcement signal. Exp Brain Res,
121 (3), 350-4. 20

Suri, R. E., and Schultz, W. (1999). A neural network model with dopamine-like
reinforcement signal that learns a spatial delayed response task. Neuroscience,
91 (3), 871-90. 20

Suri, R. E., and Schultz, W. (2001, April). Temporal difference model reproduces
anticipatory neural activity. Neural Comput, 13 (4), 841-62. 20

Sutherland, R. J., Chew, G. L., Baker, J. C., and Linggard, R. C. (1987). Some
limitations on the use of distal cues in place navigation by rats. Psychobiology,
15 (1), 48-57. 97

Sutherland, R. J., and Rodriguez, A. J. (1990). The role of the fornix/fimbria and
some related subcortical structures in place learning and memory. Behavioral
and Brain Research, 32, 265–277. 18, 23, 25, 91

Sutherland, R. J., Whishaw, I. Q., and Kolb, B. (1983, Feb). behavioural analysis of
spatial localization following electrolytic, kainate- or colchicine-induced damage
to the hippocampal formation in the rat. Behav Brain Res., 7 (2), 133-53. 16,
96

Sutton, R., and Barto, A. G. (1998). Reinforcement learning - an introduction.
Cambridge, MA: MIT Press. 6, 27

Sutton, R., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient
methods for reinforcement learning with function approximation. In Advances
in neural information processing systems 12 (pp. 1057–1063). MIT Press. 9

Suzuki, S., Augerinos, G., and Black, A. (1980). Stimulus control of spatial behavior
on the eight-arm maze in rats. Learning and motivation, 11, 1–18. 17, 21, 105

Suzuki, W. A., and Amaral, D. G. (1994, March). Topographic organization of the
reciprocal connections between the monkey entorhinal cortex and the perirhinal
and parahippocampal cortices. J Neurosci, 14 (3 Pt 2), 1856-77. 36
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