Infoscience

Journal article

Site- and energy-controlled pyramidal quantum dot heterostructures

The formation mechanisms, structure and optoelectronic properties of Ga(In)As/(Al)GaAs quantum dot (QD) heterostructures grown by organometallic chemical vapor deposition on patterned (111)B GaAs substrates are reviewed. With this approach, it is possible to prepare high-quality semiconductor QDs whose position on a substrate is precisely controlled via a pre-growth photolithography step. The dots are formed at the center of an inverted, tetrahedral pyramid and are surrounded by distinct, low-dimensional barriers (quantum wires and quantum wells). Reproducible neutral and charged exciton states are observed in the QDs and are probed using microphotoluminescence and photon correlation spectroscopy. Single- and correlated-photon emissions are systematically detected from specific single and biexciton states. The emission spectra of light emitting diodes incorporating single pyramidal dots indicate the possibility of preferential injection of charge carriers via self-ordered wires connected to the dots. Finally, photonic crystal structures incorporating pyramidal QDs with controlled energy states are demonstrated. (C) 2004 Elsevier B.V. All rights reserved.

    Keywords: organometallic chemical vapor deposition (OMCVD) ; pyramidal quantum ; dots ; self-ordering ; photoluminescence ; cathodoluminescence ; excitons ; photon correlation ; photonic crystals ; SINGLE-PHOTON EMISSION ; INVERTED PYRAMIDS ; NANOSTRUCTURES

    Note:

    Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol, Lab Phys Nanostruct, CH-1015 Lausanne, Switzerland. Kapon, E, Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol, Lab Phys Nanostruct, CH-1015 Lausanne, Switzerland. eli.kapon@epfl.ch

    ISI Document Delivery No.: 873LT

    Times Cited: 1

    Cited Reference Count: 27

    Cited References:

    BAIER MH, 2004, APPL PHYS LETT, V84, P1943

    BAIER MH, 2004, APPL PHYS LETT, V84, P648

    BIASIOL G, 1998, PHYS REV LETT, V81, P2962

    FATTAL D, 2004, PHYS REV LETT, V92

    GISIN N, 2002, REV MOD PHYS, V74, P145

    HAPP TD, 2002, PHYS REV B, V66

    HARTMANN A, 1997, APPL PHYS LETT, V71, P1314

    HARTMANN A, 1999, J PHYS-CONDENS MAT, V11, P5901

    HARTMANN A, 2000, PHYS REV LETT, V84, P5648

    HEIDEMEYER H, 2003, PHYS REV LETT, V91

    KNILL E, 2001, NATURE, V46, P409

    KOHMOTO S, 1999, APPL PHYS LETT, V75, P3488

    LEIFER K, 2000, APPL PHYS LETT, V77, P3923

    MICHELINI F, 2004, APPL PHYS LETT, V84, P4086

    MICHELINI F, 2004, EPFL SUPERCOMPUT REV, V14, P18

    MICHLER P, 2000, NATURE, V406, P968

    MOREAU E, 2001, PHYS REV LETT, V87

    PELUCCHI E, 2003, PHYS STATUS SOLIDI B, V238, P223

    PELUCCHI E, 2004, PHYSICA E, V23, P476

    REESE C, 2001, APPL PHYS LETT, V78, P2279

    REINHARDT F, 1996, APPL SURF SCI, V104, P529

    SANTORI C, 2001, PHYS REV LETT, V86, P1502

    SEBALD K, 2002, APPL PHYS LETT, V81, P2920

    WARBURTON RJ, 2000, NATURE, V405, P926

    WATANABE S, 2004, APPL PHYS LETT, V84, P2907

    YANG T, 2003, J APPL PHYS, V93, P1190

    YUAN ZL, 2002, SCIENCE, V295, P102

    Reference

    Record created on 2007-08-31, modified on 2016-08-08

Fulltext

Related material