Infoscience

Journal article

Hot phonons and Auger related carrier heating in semiconductor optical amplifiers

We have directly measured the carrier temperature in semiconductor optical amplifiers (SOAs) via spontaneous emission and we demonstrate an unexpectedly high carrier temperature. The direct correlation of the temperature increase with the carrier density suggests Auger recombination as the main heating mechanism. We have developed a model based on rate equations for the total energy density of electrons, holes, and longitudinal-optical phonons. This model allows us to explain the thermal behavior of carrier and phonon populations. The strong heating observed is shown to be due to the combined effects of hot phonon and Auger recombination in the valence band. We also observe an evolution of the Auger process, as the density is increased, from cubic to square dependence with coefficients C-3 = 0.9 10(-28) cm(6) s(-1) and C-2 = 2.4 10(-10) cm(3) s(-1). This change is explained by the hole quasi-Fermi level entering the valence band.

    Keywords: hot carriers ; phonons ; photoluminescence ; semiconductor optical ; amplifier ; spontaneous emission ; QUANTUM WELL LASERS ; SPONTANEOUS EMISSION ; TEMPERATURE-DEPENDENCE ; NONLINEAR GAIN ; LO PHONONS ; DYNAMICS ; INGAASP ; GAAS ; SPONTANEOUS EMISSION

    Note:

    Swiss Fed Inst Technol Lausanne, Inst Quantum Elect & Photon, CH-1015 Lausanne, Switzerland. Alcatel Res & Innovat, F-91461 Marcoussis, France. Fehr, JN, Swiss Fed Inst Technol Lausanne, Inst Quantum Elect & Photon, CH-1015 Lausanne, Switzerland.

    ISI Document Delivery No.: 557VU

    Times Cited: 6

    Cited Reference Count: 28

    Cited References:

    AGRAWAL GP, 1986, LONG WAVELENGTH SEMI

    ALGARTE ACS, 1996, PHYS REV B, V54, P11311

    ASHCROFT NW, 1976, SOLID STATE PHYS, P458

    BLOOD P, 1988, APPL PHYS LETT, V52, P599

    BLOOD P, 1989, APPL PHYS LETT, V55, P1167

    DAI Z, 1997, IEEE J QUANTUM ELECT, V33, P2240

    EMERY JY, 1997, ELECTRON LETT, V33, P1083

    FANG WCW, 1995, IEEE J SEL TOP QUANT, V1, P117

    FEHR JN, 2001, APPL PHYS LETT, V78, P4079

    GIRARDIN F, 1997, IEEE J SEL TOP QUANT, V3, P461

    HALL KL, 1992, APPL PHYS LETT, V61, P2512

    HALL KL, 1994, OPT COMMUN, V111, P589

    KASH JA, 1985, PHYS REV LETT, V54, P2151

    MORK J, 1996, J OPT SOC AM B, V13, P1803

    NIDO M, 1994, APPL PHYS LETT, V64, P681

    PLEUMEEKERS JL, 1998, IEEE J QUANTUM ELECT, V34, P879

    POTZ W, 1983, PHYS REV B, V28, P7040

    SELBMANN PE, 1999, P 24 INT C PHYS SEM

    SERMAGE B, 1986, IEEE J QUANTUM ELECT, V22, P774

    SHAH J, 1996, SER SPRINGER SOLID S, V115

    SUGIMURA A, 1983, IEEE J QUANTUM ELECT, V19, P930

    SWEENEY SJ, 2000, C LAS EL OPT OSA OPT, P391

    TITKOV AN, 1981, J LUMIN, V24, P697

    TSAI CY, 1996, IEEE J QUANTUM ELECT, V32, P201

    VONDERLINDE D, 1980, PHYS REV LETT, V44, P1505

    WANG G, 1993, IEEE PHOTONIC TECH L, V5, P642

    WANG J, 1997, IEEE J QUANTUM ELECT, V33, P1350

    WINTNER E, 1984, APPL PHYS LETT, V44, P999

    Reference

    Record created on 2007-08-31, modified on 2016-08-08

Fulltext

Related material