Infoscience

Journal article

Strain and surface morphology in lattice-matched ZnSe/InxGa1-xAs heterostructures

Lattice-matched ZnSe/InxGa1-xAs heterostructures were fabricated by molecular beam epitaxy on GaAs(001)2x4 surfaces. We find that the partial character of the strain relaxation within the ternary layer can be compensated by a suitable excess in the In concentration to match the free-surface lattice parameter to ZnSe. The surface of the II-VI epilayer, however, exhibits a cross-hatched pattern of surface corrugations oriented along orthogonal [110] directions. This complex surface morphology reflects the formation of surface slip steps during the nucleation of dislocation half-loops at the surface and the establishment of the misfit dislocation network at the InxGa1-xAs/GaAs interface. (C) 1998 American Institute of Physics.

    Keywords: MOLECULAR-BEAM-EPITAXY ; MICROGUN-PUMPED BLUE ; MISFIT DISLOCATIONS ; CROSS-HATCH ; PLASTIC RELAXATION ; GAAS ; TEMPERATURE ; LASERS ; LAYERS ; TRANSISTORS ; LAYERS

    Note:

    INFM, Lab Nazl TASC, Area Ricerca, I-34012 Trieste, Italy. Ecole Polytech Fed Lausanne, Dept Phys, Inst Micro & Optoelect, CH-1015 Lausanne, Switzerland. Johannes Kepler Univ, Inst Halbleiterphys, A-4040 Linz, Austria. CNR, Ist ICMAT, I-00016 Rome, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Heun, S, INFM, Lab Nazl TASC, Area Ricerca, Padriciano 99, I-34012 Trieste, Italy.

    ISI Document Delivery No.: YZ942

    Times Cited: 5

    Cited Reference Count: 42

    Cited References:

    ABRAHAMS MS, 1972, APPL PHYS LETT, V21, P185

    ADACHI S, 1982, J APPL PHYS, V53, P8775

    BALLINGALL JM, 1993, THIN SOLID FILMS, V231, P95

    BATEMAN TB, 1959, J APPL PHYS, V30, P544

    BEANLAND R, 1995, J CRYST GROWTH, V149, P1

    BONANNI A, 1995, APPL PHYS LETT, V66, P1092

    BONARD JM, 1996, THESIS ECOLE POLYTEC

    BONARD JM, 1997, PHIL MAG LETT, V75, P219

    CHANG KH, 1990, J APPL PHYS, V67, P4093

    CHRISTIANSEN S, 1996, PHYS STATUS SOLIDI A, V156, P129

    DRIGO AV, 1989, J APPL PHYS, V66, P1975

    FITZGERALD EA, 1989, J APPL PHYS, V65, P2220

    GERLICH D, 1963, J APPL PHYS, V34, P2915

    GUHA S, 1992, APPL PHYS LETT, V60, P3220

    HAGEN W, 1978, APPL PHYS, V17, P85

    HERVE D, 1995, APPL PHYS LETT, V67, P2144

    HERVE D, 1995, ELECTRON LETT, V31, P459

    HEUN S, 1997, APPL PHYS LETT, V70, P237

    HEUN S, 1997, J VAC SCI TECHNOL B, V15, P1279

    HEUN S, 1998, SURF REV LETT, V5, P3

    HOWARD LK, 1992, J CRYST GROWTH, V125, P281

    HUANG KF, 1989, APPL PHYS LETT, V54, P2192

    JEON H, 1990, APPL PHYS LETT, V57, P2413

    KISHINO S, 1972, J ELECTROCHEM SOC, V119, P617

    KUO LH, 1993, APPL PHYS LETT, V63, P3197

    LANDAU LD, 1986, THEORY ELASTICITY

    MARTIN RM, 1972, PHYS REV B, V6, P4546

    MATTHEWS JW, 1974, J CRYST GROWTH, V27, P118

    NICOLINI R, 1994, PHYS REV LETT, V72, P294

    ODIN C, 1994, SURF SCI, V317, P321

    OLSEN GH, 1975, J CRYST GROWTH, V31, P223

    OSBURN GC, 1983, J VAC SCI TECHNOL B, V1, P379

    PAUL S, 1991, J APPL PHYS, V69, P827

    PEOPLE R, 1985, APPL PHYS LETT, V47, P322

    PETRUZZELLO J, 1988, J APPL PHYS, V63, P2299

    PINNINGTON T, 1997, J VAC SCI TECHNOL B, V15, P1265

    PINNINGTON T, 1997, PHYS REV LETT, V79, P1698

    SHIRYAEV SY, 1994, APPL PHYS LETT, V64, P3305

    SNYDER CW, 1991, PHYS REV LETT, V66, P3032

    WOODALL JM, 1987, P IEEE CORNELL C AUG

    YOON SF, 1993, J VAC SCI TECHNOL B, V11, P562

    ZIPPERIAN TE, 1988, APPL PHYS LETT, V52, P975

    Reference

    Record created on 2007-08-31, modified on 2016-08-08

Fulltext

Related material