Infoscience

Journal article

Low-Frequency Noise Measurements of Alxga1-Xas/Inyga1-Y as/Gaas High-Electron-Mobility Transistors

Low-frequency noise measurements have been performed in the linear range of the I-V characteristics of pseudomorphic Al0.3Ga0.7As/In0.25Ga0.75As/GaAs high electron mobility transistors (HEMTs) grown by molecular beam epitaxy with different channel thicknesses. The results obtained show that the 1/f noise in such devices depends greatly on channel thickness. It is controlled by the penetration of the electron wavefunction into the barrier as well as by Coulombic effects for thin channels and by the increase in dislocation concentration for thick ones. Generation-recombination (G-R) noise is also present. It is mainly due to real-space transfer of electrons between the two-dimensional electron gas in the channel and the conduction band minimum in the AlxGa1-xAs barrier. Similar results were obtained for the G-R noise of Al0.22Ga0.78As/In0.20Ga0.8As/GaAs, Al0.3Ga0.7As/GaAs, and Al0.48In0.52As/In0.47Ga0.53As/lnP HEMTs. (C) 1995 American Institute of Physics.

    Keywords: MODULATION-DOPED FETS ; DX CENTERS ; 1/F NOISE ; HETEROSTRUCTURES ; MODFETS ; HEMTS ; GAAS ; GAS

    Note:

    Haddab, y, ecole polytech fed lausanne,inst micro & optoelectr,ch-1015 lausanne,switzerland.

    ISI Document Delivery No.: RP718

    Times Cited: 10

    Cited Reference Count: 37

    Cited References:

    ABE M, 1989, IEEE T ELECTRON DEV, V36, P2021

    CHADI DJ, 1988, PHYS REV B, V39, P10063

    CHADI DJ, 1988, PHYS REV LETT, V61, P873

    CHAN YJ, 1994, IEEE T ELECTRON DEV, V41, P637

    DICKMANN J, 1989, IEEE T ELECTRON DEV, V36, P2315

    DUH KH, 1985, IEEE T ELECTRON DEV, V32, P662

    DUH KHG, 1988, IEEE T ELECTRON DEV, V35, P249

    FISCHER R, 1984, IEEE T ELECTRON DEV, V31, P1028

    HADDAB Y, 1994, J ELECTRON MATER, V23, P1343

    HOFMAN F, 1990, J APPL PHYS, V67, P2482

    HOOGE FN, 1981, REP PROG PHYS, V44, P479

    HSIANG CSA, 1988, SOLID STATE ELECTRON, V31, P959

    KETTERSON AA, 1986, IEEE T ELECTRON DEV, V36, P2021

    KIRTLEY JR, 1988, J APPL PHYS, V63, P1541

    KUGLER S, 1988, IEEE T ELECTRON DEV, V35, P623

    KUGLER S, 1989, J APPL PHYS, V66, P219

    LIN SY, 1989, APPL PHYS LETT, V55, P2211

    LIU SMJ, 1986, IEEE T ELECTRON DEV, V33, P576

    LORECK L, 1984, IEEE ELECTR DEVICE L, V5, P9

    MACHLUP S, 1954, J APPL PHYS, V25, P341

    MISHRA UK, 1985, IEEE ELECTR DEVICE L, V6, P142

    MOREIRA MVB, 1992, J VAC SCI TECHNOL B, V10, P103

    PERANSIN JM, 1990, IEEE T ELECTRON DEV, V37, P2250

    PLANA R, 1993, IEEE T ELECTRON DEV, V40, P852

    PY MA, 1991, NOISE PHYSICAL SYSTE, P285

    REN L, 1993, PHYSICA B, V192, P303

    SHI ZM, 1992, THESIS SWISS FEDERAL

    SHI ZM, 1993, EUROPEAN SOLID STATE, P447

    SHI ZM, 1994, IEEE T ELECTRON DEV, V41, P1161

    STORMER HL, 1979, SOLID STATE COMMUN, V29, P705

    TACANO M, 1991, SOLID STATE ELECTRON, V34, P1049

    TAN IH, 1990, J APPL PHYS, V68, P4071

    TEHRANI S, 1992, IEEE T ELECTRON DEV, V39, P1070

    VALOIS AJ, 1983, J VAC SCI TECHNOL B, V1, P190

    VONDIE A, 1993, J APPL PHYS, V74, P1143

    VONVLIET CM, 1991, SOLID STATE ELECTRON, V34, P1

    ZIMMERMANN J, 1992, SEMICOND SCI TECHN B, V7, P468

    Reference

    Record created on 2007-08-31, modified on 2016-08-08

Fulltext

Related material