Infoscience

Journal article

A Model for the Zn Diffusion in Gaas by a Photoluminescence Study

To study the mechanism of zinc diffusion in GaAs, we diffused zinc from a ZnAs2 source into Si-doped GaAs samples (n almost-equal-to 1.3 X 10(18) cm-3) at different temperatures (from 575-degrees-C up to 700-degrees-C) in sealed evacuated quartz tubes. The samples are characterized by the depth profile of the photoluminescence at different temperatures. The photoluminescence spectra show characteristic emission associated to deep levels of gallium and arsenic vacancies. A detailed analysis of the spectra demonstrates the role played by vacancies in the Zn diffusion process. The spatial correlation between the luminescence spectra and the Zn concentration obtained from secondary ion mass spectroscopy measurements has been demonstrated.

    Keywords: BAND-GAP SHIFTS ; ELECTRONIC-STRUCTURE ; PHOTO-LUMINESCENCE ; ZINC ; GA1-XALXAS ; VACANCIES ; SEMICONDUCTORS ; DEPENDENCE ; DISORDER ; CRYSTALS

    Note:

    Ky, nh, swiss fed inst technol,inst micro & optoelectr,ch-1015 lausanne,switzerland.

    ISI Document Delivery No.: FP401

    Times Cited: 36

    Cited Reference Count: 41

    Cited References:

    AGENO SK, 1985, APPL PHYS LETT, V47, P1193

    ANDO H, 1981, JPN J APPL PHYS, V20, L197

    ARAUJO D, IN PRESS

    BARAFF GA, 1985, PHYS REV LETT, V55, P1327

    BLANC J, 1974, J APPL PHYS, V45, P1948

    BORGHS G, 1989, J APPL PHYS, V66, P4381

    BRIDGES F, 1990, J PHYS C SOLID STATE, V2, P2975

    CAPASSO F, 1987, SCIENCE, V235, P172

    CHIANG SY, 1975, J APPL PHYS, V46, P2986

    CHIANG SY, 1975, J LUMIN, V10, P313

    COHEN RM, 1990, J APPL PHYS, V67, P7268

    DEAN PJ, 1982, PROG CRYST GROWTH CH, V5, P89

    DEPPE DG, 1988, J APPL PHYS, V64, R93

    GOSELE U, 1981, J APPL PHYS, V52, P4617

    HARRISON I, 1989, SEMICOND SCI TECH, V4, P841

    HAUFE A, 1988, J PHYS C SOLID STATE, V21, P2951

    HWANG CJ, 1969, J APPL PHYS, V40, P4584

    HWANG CJ, 1969, J APPL PHYS, V40, P4591

    HWANG CJ, 1969, PHYS REV, V180, P827

    KADHIM MAH, 1972, J MATER SCI, V7, P68

    KAHEN KB, 1989, APPL PHYS LETT, V55, P651

    LAIDIG WD, 1981, APPL PHYS LETT, V38, P776

    LEE CP, 1978, SOLID STATE ELECTRON, V21, P905

    LONGINI RL, 1962, SOLID STATE ELECTRON, V5, P127

    MAHAN GD, 1967, PHYS REV, V153, P882

    MATSUMOTO Y, 1983, JPN J APPL PHYS PT 1, V22, P829

    OLEGO D, 1980, PHYS REV B, V22, P886

    PANKOVE JI, 1975, OPTICAL PROCESSES SE, CH6

    PAVESI L, 1991, IN PRESS OPTICAL QUA

    QUINTANA V, 1988, J APPL PHYS, V63, P2454

    SERNELIUS BE, 1986, PHYS REV B, V33, P8582

    SERNELIUS BE, 1986, PHYS REV B, V34, P5610

    SHIH KK, 1976, J ELECTROCHEM SOC, V123, P1737

    STOLWIJK NA, 1988, DEFECT DIFFUS FORUM, V59, P79

    SWAMINATHAN V, 1988, J APPL PHYS, V63, P2164

    TUCK B, 1978, J PHYS D, V11, P2541

    TUCK B, 1988, ATOMIC DIFFUSION 3 5

    VANOMMEN AH, 1983, J APPL PHYS, V54, P5055

    WILLIAMS EW, 1972, SEMICONDUCTORS SEMIM, V8

    XU HQ, 1990, PHYS REV B, V41, P5979

    YAMAMOTO Y, 1980, JPN J APPL PHYS, V19, P121

    Reference

    Record created on 2007-08-31, modified on 2016-08-08

Fulltext

Related material