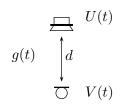
Spatio-Temporal Sampling and Distributed Compression of the Sound Field

Thibaut Ajdler*, Robert L. Konsbruck*, Olivier Roy*, Luciano Sbaiz*, Emre Telatar* and Martin Vetterli*

* School of Computer and Communication Sciences (I&C) Ecole Polytechnique Fédérale de Lausanne (EPFL)

Department of Electrical Engineering and Computer Sciences (EECS)
 University of California at Berkeley (UCB)



Outline

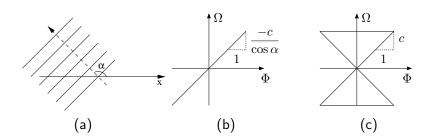
- 1 Problem Statement
 - Recording Setups
 - Properties of the Sound Field
 - Measurements
- 2 Spatio-Temporal Sampling
 - Generalities
 - Sampling Lattices
- 3 Distributed Compression
 - Generalities
 - Linear Array Setup
 - Hearing Aids Setup
- 4 Conclusions

Problem Statement: Recording Setups

At a given position:

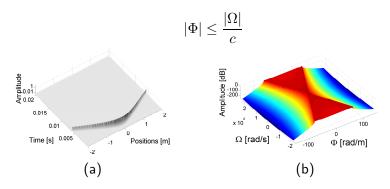
Along a line:

$$g(x,t) \xrightarrow{Q} U(t)$$

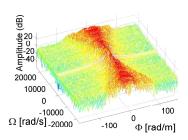

$$\downarrow d$$

$$V(x,t)$$

$$V(x,t)$$


Problem Statement: Far-Field Case

- Sources are modelled as plane waves [Figure (a)]
- When a plane wave arrives on a line of microphones, the 2D spectral support is a line [Figure (b)]
- When plane waves arrive from every possible angle, the 2D spectral support is a bow-tie [Figure (c)]

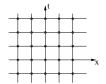

Problem Statement: Near-Field Case

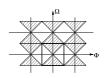
- Sources are no longer modelled as plane waves [Figure (a)]
- A near-field source is recorded along a line, the amplitude of its 2D spectrum is computed [Figure (b)]
- Most of the energy is in the 2D spectral region given by:

Problem Statement: Measurements

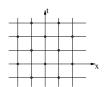
- 71 room impulse responses measured along a line in a room (2 cm spacing)
- Similar spectrum observed:

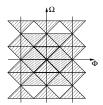
Spatio-Temporal Sampling: Generalities


■ From continuous space-time fields to samples:


$$V(x,t) \longrightarrow V[n,k] = V(x_n,t_k)$$

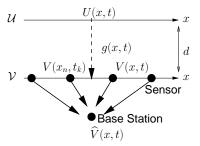
- A microphone array acts as a spatio-temporal sampling device for the sound field
- \blacksquare Goal: to faithfully represent the sound field V(x,t) with the samples V[n,k]


Spatio-Temporal Sampling: Sampling Lattices


■ Rectangular sampling lattice:

Quincunx sampling lattice:

Distributed Compression: Generalities

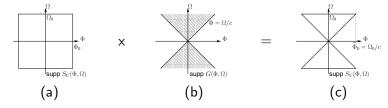

From samples to bits:

$$V[n,k] \longrightarrow 001001010010011110$$

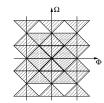
- The sensors transmit these bits over parallel rate-constrained channels to a base station which reconstructs the original sound field V(x,t) as $\hat{V}(x,t)$
- lacksquare Goal: to minimize the total bit rate R used by the sensors for a given average distortion D

Distributed Compression: Linear Array Setup

■ Linear array setup:

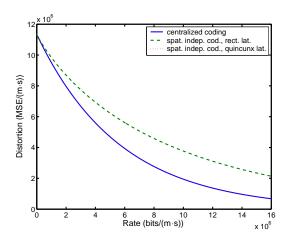

Distributed Compression: Linear Array Setup (cont'd)

■ Source coding schemes:

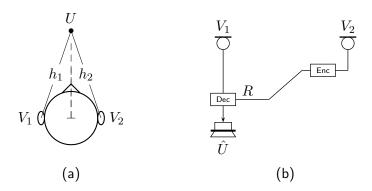

	inter-sensor communications	correlation taken into account	processing complexity
centralized	free	spatio-temporal	unbounded
spatially independent	none	temporal	unbounded
multiterminal	none	spatio-temporal	unbounded

Distributed Compression: Linear Array Setup (cont'd)

- Assumptions: far-field case, Gaussian processes, flat PSDs
- The 2D spectral support of (a) the source U(x,t), (b) the filter g(x,t) and (c) the observation V(x,t)



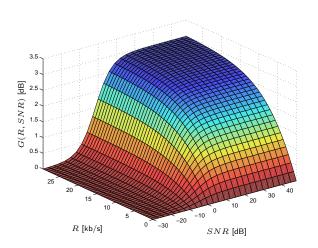
■ Appropriate quincunx sampling grid:


Distributed Compression: Linear Array Setup (cont'd)

■ Rate-distortion functions:

Distributed Compression: Hearing Aids Setup

- Hearing aids setup:
 - (a) Typical head-related configuration
 - (b) Collaboration using a wireless communication link


Distributed Compression: Hearing Aids Setup (cont'd)

- Assumptions: far-field case, Gaussian processes, flat PSDs, source and ambient noise
- Remote source coding problem with side information
- We define the gain-rate function as:

$$G(R) := \frac{D(0)}{D(R)}$$

Distributed Compression: Hearing Aids Setup (cont'd)

Gain-rate function:

Conclusions

- Spatio-temporal characteristics of the sound field
- Sampling results for different sampling lattices
- Distributed compression:
 - Linear array setup: optimal rate-distortion tradeoff by judicious (and simple) signal processing at the sensors
 - Hearing aids setup: optimal gain-rate tradeoff for collaborative beamforming

Conclusions

- Spatio-temporal characteristics of the sound field
- Sampling results for different sampling lattices
- Distributed compression:
 - Linear array setup: optimal rate-distortion tradeoff by judicious (and simple) signal processing at the sensors
 - Hearing aids setup: optimal gain-rate tradeoff for collaborative beamforming

Take-home message: tailor your communication scheme to physical™ reality

References

- T. Ajdler, L. Sbaiz, and M. Vetterli, "The plenacoustic function and its sampling," to appear in IEEE Transactions on Signal Processing, October 2006.
- R. L. Konsbruck, E. Telatar, and M. Vetterli, "On the multiterminal rate-distortion function for acoustic sensing," *IEEE International Conference on Acoustics, Speech, and Signal Processing*, vol. 4, pp. 701–704, May 2006.
- O. Roy and M. Vetterli, "Rate-constrained beamforming for collaborating hearing aids," *IEEE International Symposium on Information Theory*, pp. 2809–2813, July 2006.