On the Asymptotic Distortion Behavior of the Distributed Karhunen-Loève Transform

by Olivier Roy

Joint work with Martin Vetterli

LCAV Meeting - May 19, 2005

Outline

- The distributed Karhunen-Loève transform (dKLT)
- Theory of large Toeplitz matrices
- Distortion in the approximation framework
- Distortion in the compression framework
- Conclusions

- Gaussian random source $X = (X_1, X_2, \dots, X_{2n})$ to be encoded, covariance matrix Σ_X
- Centralized scenario:

- Central encoder provides a *k*-dimensional approximation vector $Y = (Y_1, Y_2, \dots, Y_k)$
- Mean squared reconstruction error (distortion) $E[||X \hat{X}||^2]$ depends on the eigenvalues of Σ_X

Distributed scenario:

where

$$X = (X_S, X_{S^c})$$

$$X_S = (X_1, X_2, \dots, X_n)$$

$$X_{S^c} = (X_{n+1}, X_{n+2}, \dots, X_{2n})$$

What are the optimal transforms at Encoder 1 and 2?

- Expected distortion behavior
 - Lower bound: joint KLT (jKLT)
 - Upper bound: marginal KLT (mKLT)
- General solution
 - Unknown
 - Distributed algorithm to find locally optimal solutions
- Particular cases
 - Conditional KLT (cKLT): $k_1 = n$ or $k_2 = n$ (side information)
 - Partial KLT (pKLT): $k_1 = 0$ or $k_2 = 0$ (hidden part)
- Questions
 - What is the gain/loss in having side information/hidden part?
 - How do these scenarios relate to the general distortion problem?

- Expected distortion behavior
 - Lower bound: joint KLT (jKLT)
 - Upper bound: marginal KLT (mKLT)
- General solution
 - Unknown
 - Distributed algorithm to find locally optimal solutions
- Particular cases
 - Conditional KLT (cKLT): $k_1 = n$ or $k_2 = n$ (side information)
 - Partial KLT (pKLT): $k_1 = 0$ or $k_2 = 0$ (hidden part)
- Questions
 - What is the gain/loss in having side information/hidden part?
 - How do these scenarios relate to the general distortion problem?

Need for a better understanding of the distortion behavior

Large Toeplitz matrices

Stationary processes have Toeplitz covariance matrices

$$T = \begin{pmatrix} t_0 & t_{-1} & 0 & 0 & 0\\ t_1 & t_0 & t_{-1} & 0 & 0\\ 0 & t_1 & t_0 & t_{-1} & 0\\ 0 & 0 & t_1 & t_0 & t_{-1}\\ 0 & 0 & 0 & t_1 & t_0 \end{pmatrix}$$

Circulant matrices have known eigenvalues

$$C = \begin{pmatrix} t_0 & t_{-1} & 0 & 0 & t_1 \\ t_1 & t_0 & t_{-1} & 0 & 0 \\ 0 & t_1 & t_0 & t_{-1} & 0 \\ 0 & 0 & t_1 & t_0 & t_{-1} \\ t_{-1} & 0 & 0 & t_1 & t_0 \end{pmatrix}$$

Large Toeplitz matrices

Fundamental eigenvalue distribution theorem of Szegö:

As the size of the matrix becomes large, the eigenvalues of T and C behave the same (provided that the sequence t_k decreases fast enough)

■ Goals:

- Use the above result to provide closed-form formulas of the distortion in the approximation setup
- Relate this approach to the compression (rate-distortion) framework and derive the corresponding D(R) curves

■ Case at hand: first-order Gauss-Markov process

 $X_n = \rho X_{n-1} + Z_n$

where $\rho \in [0, 1]$ and Z_n are i.i.d. Gaussian random variables with mean 0 and variance $1 - \rho^2$

- Setup under consideration
 - Encoder 1: odd coefficients, sends a fraction $\alpha_1 \sim k_1/n \in [0, 1]$ of transformed coefficients
 - Encoder 2: even coefficients, sends a fraction $\alpha_2 \sim k_2/n \in [0,1]$ of transformed coefficients
 - We compute the asymptotic normalized mean squared distortion $D(\alpha_1, \alpha_2)$

$$D(\alpha_1, \alpha_2) = \lim_{n \to \infty} \frac{\mathrm{E}[\|X - \hat{X}(\alpha_1, \alpha_2)\|^2]}{2n}$$

■ Joint KLT: central encoding ($\alpha = (\alpha_1 + \alpha_2)/2$)

$$D(\alpha) = 1 - \frac{2}{\pi} \arctan\left(\frac{1+\rho}{1-\rho}\tan\left(\frac{\pi\alpha}{2}\right)\right)$$

for $\rho = 0.1, 0.2, \ldots, 0.9$ (from top to bottom)

Conditional KLT: encoding with side information ($\alpha_1 = \alpha, \alpha_2 = 1$)

$$D(\alpha, 1) = \frac{1 - \rho^2}{1 + \rho^2} (1 - \alpha)$$

for $\rho = 0.1, 0.2, \dots, 0.9$ (from top to bottom)

• Partial KLT: encoding with hidden part ($\alpha_1 = \alpha, \alpha_2 = 0$)

$$D(\alpha, 0) = 1 + \frac{\alpha(1 - \rho^2)}{2(1 + \rho^2)} - \frac{2}{\pi} \arctan\left(\frac{1 + \rho^2}{1 - \rho^2} \tan\left(\frac{\pi\alpha}{2}\right)\right)$$

for $\rho = 0.1, 0.2, \dots, 0.9$ (from top to bottom)

■ Gain due to side information

$$D(\alpha) - D(\alpha, 1) = 1 - \frac{(1 - \rho^2)}{(1 + \rho^2)} (1 - \alpha) - \frac{2}{\pi} \arctan\left(\frac{1 + \rho^2}{1 - \rho^2} \tan\left(\frac{\pi\alpha}{2}\right)\right)$$

for
$$\rho = 0.6$$

Loss due to hidden part

$$D(\alpha, 0) - D(\alpha) = \frac{1}{2} + \frac{\alpha(1 - \rho^2)}{2(1 + \rho^2)} - \frac{1}{\pi} \arctan\left(\frac{1 + \rho^2}{1 - \rho^2} \tan\left(\frac{\pi\alpha}{2}\right)\right)$$

for
$$\rho = 0.6$$

General two-encoder setup

for $\rho = 0.6$

Here the dKLT algorithm is conjectured to converge to the global minimum

- Approximation framework
 - Convenient representation over finite intervals
 - Easier to derive closed-form fomulas (no parametric representation)
 - More relevant from a signal processing point of view
- Compression framework
 - Parametric representation in general
 - Closed-form formulas at high rates
 - For jointly Gaussian sources, approximation followed by compression is optimal (transform coding)

- Approximation framework
 - Convenient representation over finite intervals
 - Easier to derive closed-form fomulas (no parametric representation)
 - More relevant from a signal processing point of view
- Compression framework
 - Parametric representation in general
 - Closed-form formulas at high rates
 - For jointly Gaussian sources, approximation followed by compression is optimal (transform coding)

Let's go back to the rate-distortion framework!!

■ Joint KLT: central encoding ($R = R_1 + R_2$)

$$D(R) = (1 - \rho^2)2^{-2R}$$

for $R \geq \log_2(1+\rho)$ [bits/source coefficient]

Corresponds to D(R) of a Gaussian random variable with mean 0 and variance $1-\rho^2$

for $\rho = 0.1, 0.2, \ldots, 0.9$ (from top to bottom)

Conditional KLT: encoding with side information $(R_1 = R, R_2 \rightarrow \infty)$

$$D(R,\infty) = \frac{1-\rho^2}{1+\rho^2} 2^{-2R}$$

for $R \ge 0$ [bits/source coefficient]

Corresponds to D(R) of a Gaussian random variable with mean 0 and variance $(1-\rho^2)/(1+\rho^2)$

• Partial KLT: encoding with hidden part ($R_1 = R, R_2 = 0$)

$$D(R,0) = \frac{1}{2} \left(\frac{1-\rho^2}{1+\rho^2} \right)$$
$$\cdot \left(\frac{(1+\rho^2)^2 + 2\rho^2 + (1+\rho^2)\sqrt{1+6\rho^2+\rho^4}}{2} 2^{-2R} + 1 \right)$$

for
$$R \ge \frac{1}{2}\log_2\left((1+\rho^2)^2 + 2\rho^2 + (1+\rho^2)\sqrt{1+6\rho^2+\rho^4}\right) - \frac{1}{2}$$

■ Gain due to side information

$$\frac{D(R)}{D(R,\infty)} = (1+\rho^2)^2$$

for $R \geq \log_2(1+\rho^2)$ [bits/source coefficient]

Loss due to hidden part: we do not display the formula here for the sake of esthetism

■ General two-encoder setup

for $\rho = 0.6$

Global optimum only corresponds to best-known achievable rate-distortion region

Conclusions

- Analysis of the asymptotic distortion behavior of the dKLT for stationnary sources (e.g. first-order Gauss-Markov process)
- Distortion analysis from a pure approximation point of view
- Closed-form formulas for the boundaries of the general distortion surface
- Extension to the rate-distortion framework and similar interpretation of the distortion surface boundaries

Thanks for your attention

Questions?