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Abstract

Designs for transmit alphabet constrained space-timescodgurally lead to questions about the
design of rank distance codes. Recently, diversity emlubdddti-level space-time codes for flat fad-
ing channels have been designed from sets of binary matsitegank distance guarantees over the
binary field by mapping them onto QAM and PSK constellatiomsthis paper we demonstrate that
diversity embedded space-time codes for fading Inter-yririierference (ISI) channels can be de-
signed with provable rank distance guarantees. As a coyalla obtain an asymptotic characterization
of the fixed transmit alphabet rate-diversity trade-offrfmultiple antenna fading ISI channels. The key
idea is to construct and analyze properties of binary medgnith a particular structure induced by ISI
channels.

1 Introduction

Over the past decade significant progress has been madestruximg space-time codes that achieve
the optimal rate-diversity trade-off fdfat-fadingchannels when there are transmit alphabet constraints
[18, 15]. Far less attention has been given to space-time @esign and analysis for fading channels with
memory,i.e., Inter-Symbol Interference (ISI) channels which are enterad in broadband multiple an-
tenna communications. There have been several constmsafspace-time codes for fading I1SI channels
using multi-carrier techniques (see for example [17] aridrences therein). However, since these inher-
ently increase the transmit alphabet size, and the rightdmork to study such constructions is through
thediversity-multiplexingrade-off [19]. We examined diversity embedded codes foctannels in [7],

by considering the diversity-multiplexing trade-off.

As in space-time code design for flat-fading channels, iaisiral to ask for a characterization of the
rate-diversity trade-off for ISI channels with transmiphabet constraints The problem of constructing
space-time codes with fixed transmit alphabet constramfsartially motivated by the need to control
the transmit spectrum as well as the peak-to-average (P&tR)af the transmitted signal. For example,
if we restrict transmission to PSK alphabet, it is clear twathave a unit peak-to-average ratio (PAR)
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1Throughout this paper we restrict our attention to a transiphabet constraint,e., the transmit alphabet is restricted to
be from the setd. Therefore this imposes a maximal rateldf log |.4| bits and we normalize the rate kyg |.4| and state the
rate in terms of a number i, M;] symbols per transmission.
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making it possible to use efficient non-linear amplifiergy(neing small PAR), which are more efficient
and hence suitable for mobile devices. Anotherimportaadoa to consider this problem is a fundamental
theoretical question, which is motivated by the originspce-time codes for flat-fading channels in [18]
where the constructions were for fixed transmit alphabetr tRis constraint, there exists a trade-off
between rate and diversity, for the flat-fading case. In plaiger we ask the corresponding question for
fading ISI channels. Since space-time code design withrgliyeorder guarantees requires control over
the rank distance of the codewords [18], the main topic & plaiper is to design codes with rank distance
guarantees for ISI channels.

Diversity embedded codes were introduced in [2] which adldwdifferent parts of a message to have
different diversity order guarantees. These codes allodveelsity to be viewed as a systems resource
that can be allocated judiciously to achieve a target ratersity trade-off in wireless communications.
A class of such multi-level diversity embedded codes sletédy flat-fading channels was constructed in
[5, 1, 6]. In this paper we extend these constructions to &haels.

The corresponding question, of what is studied in this pagaar be also be posed in the context of
the trade-off between diversity and multiplexing rate. I5an information-theoretic question, for the flat-
fading case, has been posed and partially answered in [Bp#kcalar ISI channels, we have studied code
designs for rate-growth (multiplexing rate) codes and tlerdity embedding properties in [7]. There we
have shown that the diversity multiplexing trade-off foethcalar ISI channel is actually successively
refinable. However, the code designs and criteria for thegabwth codes are quite different from those
needed for the fixed rate, transmit alphabet constraineds;aghich are the focus of this paper.

For the case of a scalar ISI channel with- 1 taps and a single transmit antenna, it can be shown by a
simple argument (see for example [19]) that an uncodedrreasson scheme can achieve a diversity order
of (v + 1). The best case scenario for the rate-diversity trade-offSbchannels with multiple transmit
antennas would be similar to the flat-fading case, but with & 1)—fold increase in the diversity order.
However, in the multiple transmit antenna case, it is noi@lsthat a space-time code designed for a flat-
fading channel can achieve suchva-1)—fold increase in the diversity order. All that can be guagatis
that a space-time code that achieves diversity oddrrer a flat-fading channel will still achieve diversity
orderd over a fading ISI channel [18]. In particular in Example 1 et8on 7 we provide an example of a
code which achieves patrticular points on rate-diversageroff for flat-fading channels and fails to do so
in the case of ISI channels. Therefore, the design of coddading ISI channels cannot be immediately
done by using the codes for flat-fading channels. Howevehigpaper we see that codes designed for
the fading ISI channel can be used successfully to achieveatie-diversity trade-off for the flat-fading
case as well.

Afinite alphabet construction to exploit the potential dsigy gain from ISI channels with/; multiple
transmit antennas was proposed in [9] for the maximal dityecase. But the rate of the code for this
construction wad /M, as opposed to the maximal potential ratelof In this paper we show that as
the transmission block size increases we can construcsdba@e have raté and achieve the maximal
diversity order of(v + 1) M;. We characterize the rate diversity tradeoff for the ISIrafels and construct
codes which achieve this tradeoff (asymptotically in blsde). We build on the construction technique
introduced in [6] to design diversity embedded codes ford&innels that guarantee multiple reliability
(diversity) levels. Given that we can achievga-1)—fold increase in the diversity order for ISI channels,
this flexibility could be quite important.

The main contributions of this paper are as follows. We extdie rate-diversity trade-off bound from
[18] and develop the diversity embedded code design aiferi fading ISI channels in Section 2. The
basic multi-level construction of diversity-embeddedagpéime code for fading I1SI channels is given in



Section 3. We also show that this construction can be spssibdo asymptotically achieve the diversity-
rate trade-off for ISI channels. The key ingredient is thestauction of binary codes for ISI channels with
rank-distance guarantees, and this is done in Section 5ectth8 6. This is perhaps the most important
technical contribution of this paper. We also constructafvolutional codes suitable for transmission
over the ISI channel in Section 4. In Section 7 we give exampfecodes constructed by the method
given in the paper along with their numerical performance.

2 Problem Statement and code design criteria

In Section 2.1, we define the ISI channel model . Section Zallsethe code design criteria for diversity
embedded codes for flat-fading channels given in [6] andneled to the fading ISI case. These criteria
give the connection between embedded rank-distance codiedieersity-embedded space-time codes.
The rate-diversity trade-off for flat-fading channels igiesved in Section 2.3, and a simple upper bound
for the corresponding trade-off for the fading ISI case talbbshed. The subsections 2.4 and 2.5 are based
on [6] and reproduced here for completeness. In Sectiorm®&4gview the principle of set-partitioning
and give algebraic properties of such partitions in Sec®@n These properties would be usefulifting

rank properties of binary matrices over binary fields to thenplex domain, thereby giving provable
diversity embedded code constructions.

2.1 Channel Model

Our focus in this paper is on the quasi-static frequencyctigke(ISI) channel with{v + 1) taps where we
transmit information coded ovél, transmit antennas and havé. antennas at the receiver. Furthermore,
we make the standard assumption that the transmitter hakarmel state information, whereas the re-
ceiver is able to perfectly track the channel. The code igydesl over a large enough block size> T;;,,
transmission symbols, whele,,. is specified in the constructions given in Section 3. Theiveckvector

at timen after demodulation and sampling can be written as,

y[n] = Hox[n] + Hix[n — 1]+ ... + H,x[n — v] + z[n] (1)

where,y € €', H, ¢ CM>M: represents the matrix ISI channeln] € C*! is the space-time
coded transmission sequence at timwith transmit power constrain® andz € €***! is assumed to
be additive white (temporally and spatially) Gaussian @e¥ith variancer?. The matrixH, consists of

fading coefficients:;; which are i.i.d.CN (0, 1) and fixed for the duration of the block length)

Consider a transmission scheme in which we transmit overiagpé — v and send (fixed) known
symbol¢ for the lasty transmissions. For the period of communication we can edgmtly write the
received data as,

x[0] x[1] ... x[T—-v-1] 0 .. 0
0 x[0] x[1] x[T—v—1 0 0
[y0] ... y[T -1 ]=[Hy ... H, | : . : +7Z
Y H 0 0 X[0] x[1] L X[T—v—1]

2Taken without loss of generality to Ifie



Y = HX + Z 3)

whereY € CM-xT H ¢ CM-xv+D)Me X ¢ CH+DMexT 7.« CM<T Notice that the structure in (2) is
different from the flat-fading case, since the channel ineg@s Toeplitz structure on the equivalent space-
time codewordsX given in (2)-(3). This structure makes the design of spaoe-todes different than in
the flat-fading case. For reference, the space-time codkis@mompletely determined by the mat"
given by,

X(l):[x[(]] x[1] ... x[T—=v—-1] 0 ... 0] 4)

2.2 Diversity-embedded code design criteria

A scheme with diversity ordef has an error probability at high SNR behaving/agSNR) ~ SNR™
[18]. More formally,

Definition 1 A coding scheme which has an average error probabfit§SNR as a function of SNR that

behaves as loo( P
SNR-« log(SNR

is said to have a diversity order df

= —d (5)

The fact that the diversity order of a space-time code isrdeted by the rank of the codeword
difference matrix is well known [18, 10]. Therefore, for f@ding channels, it has been shown that the
diversity order achieved by a space-time code is given by [18

d= M, min rankC; —C,), 6
e, KCi — Cy) (6)

whereC,,C, € C"*T are the space-time codewords. Clearly the analysis in [0Bcdn be easily
extended to fading ISI channels, and we can write

d= M, min rankX; —X,), @)
X #X,

whereX,, X, € C»+UMexT gre matrices with structure given in (2).
It is easy to see from the structure Xfin (2) that the rank of the matriX is at most(v + 1) times
the rank of the matrixX (") (see (4))j.e.,

rank(X) < (v + 1)rank(X®) 8)

The codebook structure proposed in [6] takes two infornrmaityeams and outputs the transmitted
sequencegx(k)}. The objective is to ensure that each information strears tiet designed rate and
diversity levels. Let denote the message set from the first information streamFaddnote that from
the second information stream. Then analogous to Definitjome can write the diversity order for the
messages as, B

D, = lim oelel®)

D, — log Pe(f)
SNR_ log(SNR)” 7"

= lim ——e/ 9
SNR- 10g(SNR) ®)



Design criteria for fading ISI channels: The space-time codeword for fading ISI channels have the
structure givenin (2). To translate this to the diversitybeided case, we annotate it with given messages
acé&belF, aSXa,b- Clearly we can then translate the code design criteriom (@) to diversity
embedded codes for ISI channels as,

o i i
R (10

In an identical manner, we can show for the messag# sete need the following to hold.

I in rank(X -X > D,/ M,. 11
blin];rgle]-'alrgig a k( a,,b; 32,b2))— b/ T (11)

As one can easily see, these are simple generalization® afiviersity-embedded code design criteria
developed in [2] to the fading ISI case.

2.3 Rate-Diversity Trade-off for Flat Fading Channels

For a given diversity order, it is natural to ask for upper bds on achievable rate. For a flat Rayleigh
fading channel, this has been examined in [18] where theviatlg result was obtained.

Theorem 2 ([18, 14]) Given a constellation of siZel| and a system with diversity orded/,, then the
rate R that can be achieved is given by

R<(My—q+1) (12)
in symbols per transmissione., the rate isR log, |.4]| bits per transmission.

Just as Theorem 2 shows the trade-off between achievingratgland high-diversity given a fixed trans-
mit alphabet constraint for a flat fading channel, there algets a trade-off between achievable rate and
diversity for frequency selective channels, and we aim taratterize this trade-oif A corollary will be

an upper bound on the performance of diversity embeddedscimddS| channels. This can be seen by
observing that we can easily extend the proof in [18, 14] &odhse where we have the Toeplitz structure
as givenin (2). Note that the diversity order of the codeddding ISI channel is given by the rank of the
corresponding (Toeplitz) codeword difference matrix.c®ithis rank is upper bounded as seen in (8), we
see that we immediately obtain a trivial upper bound for tite-diversity trade-off for th fading ISI case
as follows.

Lemma 3 If we use a constellation of sizel| and the diversity order of the systemyig + 1), then
the rateR in symbols per transmission that can be achieved is uppendedias

R< (M, —q+1). (13)

Note that in Theorem 8, we establish a corresponding lowentidhat asymptotically (in block size)
matches this upper bound. Note that due to the zero paddingfte for ISI channels, the effective rate
R¢/1 is going to be smaller than the rate of space-time code. Simcdo not utilizer transmissions
over a block ofl" transmissions for each of the antennas we can only hope &ie&rasymptotically in
transmission block sizé.

%It is tempting to guess that the trade-off for the fading I1&seis just v + 1)—fold increase in the diversity order.
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Dy (10)
.. 2% (10) { 27+ (1,0)+(1,1)

o,/ \: /
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. D+ (1,0) . D, )+(1,0) [ D, +(1,1)+( DZ11)+10

Figure 1. A binary partition of a QAM constellation

2.4 Set Partitioning of QAM and QPSK Constellations

LetI'y,...,I'; be aL-level partition wherd"; is a refinement of partitiof;_;. We view this as a rooted
tree, where the root is the entire signal constellation ardsertices at levelare the subsets that constitute
the partitionl’;. In this paper we consider only binary partitions, and tf@eesubsets of partitioh; can
be labeled by binary strings, . . ., a;, which specify the path from the root to the specified vertex.

Signal points in QAM constellations are drawn from someiradion of the integer lattic&>. We fo-

cus on the particular realization shown in Figure 1, wheediiteger lattice has been scaled[b% 1

to give the latticeD, = {(a,b)|a,b € Z,a + b = 0(mod2)}, and then translated byl,0). The con-
stellation is formed by taking all the points frotn that fall within a bounding regiofR. The size of
the constellation is proportional to the area of the bougdegion, and in Figure 1, the bounding region
enclosed 6 points.

Binary partitions of QAM constellations are typically bdsen the following chain of lattices

Dy D272 2Dy DAZ2 D .27 Dy D272 D 2'Dy D ...

In Figure 1, the subsets at level 1 are, to within translatawsets oRZ? in D, and the subsets at
level 2 are cosets ofD,. In general the subsets at lew&lare pairs of cosets af D, where the union
is a coset oR‘Z?, and the subsets at levl + 1 are pairs of cosets &f+'Z? where the union is a coset
of 2D,. Note that implicit in Figure 1 is a binary partition of QPSWhere the pointd, —1,7, —i are
labeled00, 01, 11, 10 respectively. Binary partitions of PSK constellations described in Section 2.5.

2.5 Algebraic properties of binary partitions
The QAM constellations can be represented through a lattieén A|[A;|As|. .., whereA = Z? is the

integer lattice. The lattices in the chain are produced thighgenerator matri&* whereG = { i _11 } .

Given this, we can represent thB&QAM constellation as\|A;, i.e.,the coset representativesdin Ay.
The latticeA can also be written as the set of Gaussian integé@is= {a + bi : a,b € Z}. Similarly we
can write the lattice\, as{(a + bi)(1 —4)* : a,b € Z}. This decomposition of the QAM constellation
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is illustrated in Figure 2. Therefore, using this we can esent any point in a 2X-QAM constellation
using alL-length bit string as

L-1

s—c(L)=) b(l—i) mod(l—i)" (14)

=0

where we defing = g mod(1 — )" if there existc, d € Z such thatf = (¢ + di)(1 —i)* + g. Also in
(14) the constant(L) = 1 for odd L and(1 + i) for evenL.

Figure 2: Decomposition for QAM constellations

Binary partitions of PSK constellations are based on a abfesnbfields of the cyclotomic fiel@(&,z )
obtained by adjoining,. = exp(27i/2") to the rational fieldQ. Analogous to (14), points in tH&-PSK

constellation can be represented as
L—-1

s =[], (15)
=0
where¢ = &1 = exp(2mi/2F) and¢£?” is a primitive element fofQ(&,.-1). Note thatl — ¢ is prime in
Z[¢] and the quotienZ[¢]/(1 — &) is the fieldZ,.

The fieldQ(&,:) is a degree2”~! extension ofQ. Every rational number is a quotienfb, where
a,b € Z, and every complex number i@(:) is a quotienta/b, wherea, b are Gaussian integers. In
general every complex number@(&,-) is a quotient: /b, wherea, b are integer linear combinations of
1,6z, ... 755571_1 andb # 0. For more details about cyclotomic fields see [20]. Note g§at’ = —1,
sothatg!, = —¢ 7, forj =0,1,...,25"1 — 1.

We have a chain of fields

Q=Q(&) C Qi) = Q&) C Q&) - .. € Q(&er).

These observations can be used to establish the performétize multi-level diversity embedded codes
[5, 6].

3 Diversity embedded codes for ISI channels

In this section we will first recall the construction of mdkivel (non-linear) space-time codes for trans-
mission ovefflat fadingchannels that are matched to a binary partition of a QAM or B8HKstellation
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(see [6]). We will give the construction and refer the readdi6] for proofs of code performance for the
flat-fading case. Following this we will use the structurgposed by the ISI on the space time code as in
(2) to construct multilevel codesuitable for ISI channelgsing binary matrices which are constructed in
Section 6.

3.1 Multi-Level Constructions for Flat Fading Channels

Given an L-level binary partition of a QAM or PSK signal caogldtion, a space-time codeword is an
arrayK = {K;, Ko, ..., K} determined by a sequence of binary matrices, where marpspecifies
the space-time array at level A multi-level space-time cods defined by the choice of the constituent
sets of binary matricek’;, ICo, . .., K. These sets of binary matrices provide rank guaranteessace
to achieve the diversity orders required for each messagdsei = 1,..., L the binary matrixK; is
required to be in the ség,.

Given message sef€; } - |, they are mapped to the space-time codeviXras shown below.

K(1,1) ... KO.T) 11 ... 21,7
ey, k= : : : Lox = : : : (16)
K(M1) ... K(M,T) s(M, 1) ... 2(M,T)

where the matriXK is specified byK (m,n) € {0,1}'°¢(4D j.e., binary string andr(m,n) € A. This
construction is illustrated in Figure 3 for a constellatgire of L bits.

In summary, given the message set, we first choose the nsKice. . . K;. The first mappingd; is
obtained by taking matrices and constructing the matrix C***7 each of whose entries is constructed
by concatenating the bits from the corresponding entrighéenmatricesk,, .... K into L-length bit-
string. This matrix is then mapped to the space-time codeéwmough a constellation mappég, for
example the set-partition mapping given in Section 2.4ng#his sequence df matrices, we obtain the
space-time codeword as seen in Figure 3.

Ko

Figure 3: Schematic representation of the multi-level conlestruction.

For flat fading channels the séfs,/ = 1, ..., L are binaryM,; x T matrices such that for any distinct
pair of matricesA, B € K the rank ofA — B is at least\/, — d. The size ofC is at mos2(¢*)7 since the
firstd + 1 rows of A andB must be distinct, and there is a classical example [8] thaeaes the bound
(this construction was also given in [14, 15]).



With the rate achieved on ttié layer defined a%, = 1 log |, | it can be shown [6] that this construc-
tion for QAM constellations achieves the rate-diversitgleu Ry, M, d,(v + 1), ..., Ry, M,d(v + 1)),
with the overall equivalent single layer code achieving+diversity point,(> ", R;, M,d;(v + 1)). Op-
timal decoding employs a maximume-likelihood decoder whaihtly decodes the message sets. This is
the decoder for which the performance is summarized in Téraat.

Theorem 4 [6] Let C be a multi-level space-time code for a QAM bf-PSK constellation of size"
with M, transmit antennas that is determined by constituent sdighafy matricesC;, [ = 1, ..., L with
binary rank guaranteed; > d,... > d;. For joint maximum-likelihood decoding, the input bits tha
select the codeword from thith matrix /C; are guaranteed diversity; M,. in the complex domain when
transmitted over a flat fading channel.

3.2 Multi-Level Construction for ISI Channels

In this section we use the idea of multi-level diversity exdbed codes for flat fading channels as in
Section 3.1 and the structure imposed by the ISI on the sjpaeecbde as in (2) to motivate construction
and analysis of a class of binary matrices as follows.

We apply the idea suggested by the constructions of mwéteodes for flat-fading channels to the
fading ISI case. We do this by applying a zero padding as seé#)ialong with mappings of binary
matrices to the transmit signal alphabet. That is, we usentyeping given in (16) for a block size @f
with the constraint that the lastentries of the mapping lead tpvenalphabets (taken to be zero without
loss of generality). This is combined with binary s&ts,, which we specify in definition 5. This means
that over a time period’, we transmit a sequeneg0], x[1], ..., x[7"— v — 1] which are mapped from the
inputs bits using a structure given in (16). Therefore, gitleat we transmit the sequence shown in (17),

XM =[x[0] x[1] ... xT—v—-1] 0 ... 0], (17)

we need a mapping from a binary matrix as in (16). For a colasi@h of size2”, we do this by taking
message sets; } -, and mapping them to a codeword with the structure given i §s7ollows,

K(1,1) ... K(1,T)
ICAVIEIN YO : : : LLxO = [ x[0] x[1] ... x[T—v—1] 0 ... 0](18)
K(M1) ... K(M,T)

where the(m, n)™ entry of K" is given byK (m, n) € {0, 1}°e(4) j e, binary string. Since the mapping
f» is just the set-partitioning mapping specified in Sectioh %e need the last columns ofK™") to be
given constantor all choices of the message sé€t$}~ ,. That is, we need the following structure for
the matrixK ",

KW =[k[0] k[1] ... kK[T—v—1] 0 ... 0], (19)

where, as befordk[i|} are columns of binary strings of length and with no loss of generality, we have
specified the last columns ofK") to be the zero strings.

Given that we have an ISI channel, the transmitted codewadtid tiwe structure given in (17) gives
an equivalent codeword matrix with a Toeplitz structurespscified in (2). This Toeplitz structure is



equivalent to mapping a Toeplitz matik of binary strings with the structure

k0] K1] ... K[T—v—1] 0 . 0
0 k0] k1] .. KT-v—1 0 0

K= : . | | 5 B
0 ... o0 K[0] K1 ... KT—v—1]

to X using the constellation mapping. Therefore, as in the flat fading case, given the message set,
we first choose the binary matricééﬁl), e .K(Ll), each of which have the structure specified below in
(21). These put together give us the matrix of binary striKg8. This in turn, due to the ISI channel, is
relates toK, the Toeplitz matrix of binary strings, given above in (20herefore, the choice of matrices
Kgl), o .K(Ll), for the ISI case, naturally is equivalent to a choice of Tdzpinary matricesK, ... . K,
as specified in (22) below.

Therefore, for the multi-level coding structure we havedjsmalogous to the flat fading case studied
in [6], we need to study the rank properties of sets of binagplitz matrices as specified below. Consider
the matrixB € Fy"*", with the following structure,

B=[c[0] c[1] ... ¢[T—v—-1] 0 ... 0], (21)
wherec[n] € FM>' n=0,...,T — v — 1. We define a mapping : FM<T — Fy+DMT py
0] ef] ... oT—v—1] 0 N 0
0 c[0] c[l] cl'—v—-1] 0 0
©(B) = : N : (22)
0 ... 0 c[0] ] ... T—v—1]

Definition 5 Definek, , C {B : B € F}**} to be the set of binary matrices of the form given in (21) if
for some fixed},,,. they satisfy the following properties fér > T}, .

e For any distinct pair of matriced\, B € I, ; the rank o ©(A) — O(B)] is at leastd(v + 1).

PS |’Cl/7d| Z 2T(Mt—d+1)—l/Mt.

Note that in Section 3.1 the first step in code constructios @mnstructing the sefs;,/ =1, ..., L from
which the matrice¥, . .. . K; were chosen. In the case of flat fading channels there aréraotisns by
[8] but these do not satisfy the rank guarantee propertiBeimition 5. We will postpone the construction
of such sets of binary matricddC, ,} to Section 6, where we show that we can’Bgt = Rv + (M, —
1)(v + 1)(2% — 1). More formally, in Section 6, we show that,

Lemma 6 For block sizel” > Ty, = Rv + (M; — 1)(v + 1)(2F — 1), there exist sets of binary matrices
K., which satisfy the requirements of Definition 5.

Adapted easily from [6] we can state the formal construcioarantee for the diversity embedded
code for transmission over the ISI channel as follows.

Theorem 7 LetC be a multi-level space-time code for a QAM or PSK constelfatif size2” with M,
transmit antennas that is determined by constituent sdigvafy matricesC, = K, 4.l = 1,..., L, such
thatd, > ds... > d;. For joint maximum-likelihood decoding, the input bitstisalect the codeword
from thelth setkC; are guaranteed diversity, (v + 1) M, in the complex domain when transmitted over an
ISI channel withv + 1 taps.
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The proof of the Theorem 7 follows from the same techniques g by mapping binary matrices with
desired rank guarantees to rank guarantees in complex dontaiparticular, given sets of (Toeplitz)
binary matricesC, = K, 4.0 = 1,..., L, which have rank guarantees ff; }, given the set-partitioning
mappingf., we can lift the binary rank properties to the complex domaimerefore, the main challenge,
addressed in this paper, is the construction of such setmafjbmatrices with rank guarantees.

Therefore the codewords frofth layer achieve a rat&, = %log |K,.q,| and diversity orderl;(v +
1)M,. From Definition 5 it follows that the size df, ;, can be made at least as large2d§":—di+1)-vM:,
Similar to [6] this construction for QAM constellations aetes the rate-diversity tuple?,, M,.d;(v +
1),..., Ry, M,dr(v + 1)), with the overall equivalent single layer code achievingg+diversity point,
(3, Ru, Mydy, (v + 1)).

In particular, we can construct a space-time code by chgadentical diversity requirements for all
the layersj.e, d; = dy = ... = d;. From this we conclude that the rate diversity tradeoff fu tSI
channel can be characterized as follows:

Theorem 8 (Rate Diversity Tradeoff for ISI Channels)Consider transmission over:atap ISI channel
with M, transmit antennas from a QAM or PSK signal constellatibwith |.A| = 2% and communication
over atime period’ such thatl’ > T;,,.. For diversity orderd,;; = d(v+ 1) M,, the rate diversity tradeoff
is given by,

(Mt—d+1)—%MtSReffg(Mt—dH).

The lower bound follows directly from Theorem 7 and the uppaund follows from lemma 3. Note that
the bounds in the above theorem are tighf'as: oc.

4 Diversity Embedded Trellis Codes

The construction of diversity embedded trellis codes fdrdi&nnels is quite similar to the construction
of block codes. Again the idea is to construct binary contiohal codes with the following properties.

Definition 9 DefineP, , C {B : B € F)"*"} to be the set of binary matrices of the form given in (21) if
for some fixed},,. they satisfy the following properties fér > T},

e For any distinct pair of matriced\, B € P, ; the rank of['(A) — I'(B) is at leastd(v + 1).
e log|P,al > R(T —v— (v+1)(M; —1)(2% — 1)(2%71)), whereR = M, — d + 1.

Using these sets of matrices obtained by appropriatelysihgahe underlying convolutional codes the
diversity embedding properties are ensured.

We will postpone the construction of such sets of binary roasrto Section 4.1 where using Lemma
6 along with particular choices of convolutional codes wevglthe following result.

Lemma 10 For block sizel” > Ty, = (2% — 1)v + (2% = 1)(v + 1) (M; — 2)(2% — 1) + R), where
R = M, — d + 1, there exist sets of binary matric®s ;, which satisfy the requirements of Definition 9.

As in the case of block codes in Section 3, giverLdevel binary partition of a QAM or PSK
signal constellation, a diversity embedded convolutisdce-time codeword is defined by an array
P = {PY P?® PW) determined by a sequence of binary matrices, where maix,specifies
the space-time array at levelAdapted easily from [6] we can state the formal constructjoarantee for
the diversity embedded trellis code for ISI channels a®vadl.
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Incoming bit | Input Stream Generator
e oM D Matrix Q
Streamu; polynomials u3,1(D) G(D)
at rateR; u; 2(D) ‘ _ it o . (T—1)
¢ u;(D) = ' pi(D) = Gj(D)u;(D) Pi 1 Pia
: pi,1(D) P; = : . :
us, r; (D) pi,2(D) (0) (T—1)
= . Dinvy i, My
pi, (D)

Figure 4: Binary matrices for each layer

Theorem 11 LetC be a multi-level space-time code for a QAM or PSK consteltatif size2” with M,
transmit antennas that is determined by constituent sédgvafy matricesP?, = P, 4,0 =1,..., L, such
thatd, > dy... > d;. For joint maximum-likelihood decoding, the input bitstisalect the codeword
from thelth setP, are guaranteed diversity;(v + 1) M, in the complex domain.

The proof of the Theorem 11 follows from the same techniqeas §] by mapping binary matrices
with desired rank guarantees to rank guarantees in comlaraoh. As in the proof of Theorem 7, the
main difficulty is in constructing these sets of binary mzds with thee given rank guarantees, using
convolutional codes. We give such a construction in Sectidn Therefore the codewords frofth layer
achieve a rata?;, = %log |P..q,| and diversity orde,(v + 1)M,. From Definition 9 it follows that
the size ofP,, can be made at least as large2&§’ —~(+D(M:=D)E"-D"N) "which in the limit as
T — oo tends to2”. Similar to [6] this construction for QAM constellationshaeves the rate-diversity
tuple (Ry, M,d,(v + 1),..., Ry, M,.d.(v + 1)), with the overall equivalent single layer code achieving
rate-diversity point() ", R, M, d (v + 1)).

We illustrate the idea by examining the construction forheaicthe layers. The construction is shown
in Figure 4. Given the input stream for each laygethe first block in the figure maps these inputs to
the coefficients ofR; polynomialsu; ;(D),j = 1,..., R; in Fy[D]. The second block multiplies the
input vector{ui,j(D)}f;’1 by the generator matri&; (D), with special structure which we define in the
following subsection, and generates a veaigiD) of polynomials. The final block2 then maps this
vectorp;(D) to a binary matrixP; € Fy'*7,

We define the se&P;, = P,,; to be the set of all output matric&y for all possible inputs on the stream
i. Note that these sets satisfy the properties in Definition 9.

4.1 Binary Convolutional Codes

Explicit construction of full diversity maximum rate binaconvolutional codes was first shown in [11].
This was extended for general points on the rate diverateoff for flat fading channels in [15]. We will
give constructions for such sets of binary matrices for I&rmnels in this section.

Consider the construction for a particular layer above. Wesee the construction of rate symbols
per transmission, and rank distance(of+ 1)(M; — R + 1) binary codes for transmission over the ISI
channel. Represent the generator matrix or transfer fonctiatrixG for this code by ark x M, generator

12



matrix given by,

o)D) d(D) - (D)
D D (D
G— 95 (D) gzl( ) > (D) (23)
97/ (D) g (D) - g§"(D)
Denoting¢ = D®+Y2"~1) we choose
6" (D) = g, (24)
The input message polynomial is represented by the vectoiestage polynomial
u(D) = [ wi(D) us(D) --- ur(D) ]’ (25)
whereu;(D) € Fo[D]. The code polynomial vector is given by
p(D) = G'(D)u(D)
= [m(D) po(D) --- pu(D)]". (26)
The M, x T code matrix which is actually transmitted on the antennavisrgby
A
P=1 : - (27)
My o P

wherep{ is the ;' coefficient of the polynomiap; in (26). We make a distinction betwegiD) which
is a vector of polynomials irD and P which is a binary matrix. This mapping is denoted Qyi.e.
Qp(D)) =P

Note that in order that the matriR satisfies the structure in (21) we require thiargest coefficients
of eachp;(D) in (26) to be zeroi.e.,

pl=0 Vie{l,...,M;}andVjec{T —v—1,....T -1} (28)
With this constraint we get that,
deg(ui(D)) < T — 1 — v — maxdeg(gy”)
=T —-1-v— (1/7—1- (M, — 1)(2F —1)(2%7h)

where the last equality follows from our particular choicfejﬁ) givenin (24). Note that this convolutional
code corresponds to a effective rate of

log <2T—1—zx—(u+1)(Mt—1)(2R—1)(2R*1)+1 ) 2R>
RefT =

T
_R@-v-le 1)% —HEt-peTh) bits/Tx (29)
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which asymptotically tends t& as7T — oo.
Also, observe that,

From this we can conclude that,

whereG € FY*“ DM is given by,
O I e Bl o Sl
o | %D D) 9s""(D) Dgs" (D) Dg{™) (D) Dg$" (D)
g2 (D) (D) g3 (D) Dl (D) Dy (D) D"gy) (D)

With our particular choice o&l(q)(D), given in (24), we can write this as,

1 o 1 1
: 5 e
& (&)? ()"
6(1\4.7:—1) (g(Mt—l))2 o (S(Mt_l))2R71
G! = D D D
Dg(Mt—l) D(é"([\.ﬁ—l))2 D(S(Mt'_l))zl?—l
Dug(Mt—l) Du(g(J.VIt—l)>2 D”(g(Mt'—l))zRJ

Define the polynomial

f@) =3 w(Dy?,
=0

where{u,(D)}E! € Fy[D]. Then from (32) witht = DD~ we have,

(30)

D”g%t)(D)
D¥ g™ (D)

D*g5" (D)
(31)

(32)

(33)



The proof now that the left null space @f( G*(D)u(D) ) overF, is of dimension at most( + 1) is the
same as the proof of Theorem 21 by choosihguch that,

T>02F 1w+ - +1)((M,—2)(2% - 1)+ R).

Therefore, given the result of Theorem 21, which is prove8eation 6.3, we can prove the rank guaran-
tees of the convolutional codes.

5 Rate Guarantees

In this section we will give background needed for constarcof binary codesC, ; with properties given

in Definition 5. We start in Section 5.1 with a representadriC, ; in terms of polynomials ovelFyr
which will be useful in proving the construction of binarydesC, ;. In Section 5.2 we will list some
definitions which we will use in proving rank guarantees ict®e 6. Note that these definitions are not
required for constructingC, »,, i.e., maximal rank sets, for which the proof is much simpler as saen
Section 6.1. Finally in Section 5.3 we will show that, 4| > 287—M: 'whereR = M, — d + 1. The rank
properties ofiC, ; are given in Section 6.

5.1 Polynomial representation

Given a rateR, we define the linearized polynomial
R—-1

flo)=>_ fi®, (34)
=0

where{ f;};,' € Fyr. To develop the binary matrices with structure given in (219 definec; € F};*

cr=[f1) F& ... feM)]"
where¢ = o@D+ anda is a primitive element of,r. Letf(© (¢7) andf®) (¢7) be the representations
of £(&%) anda® f(£7) inthe basiga’, o', ..., o’} respectively.e., 0 (&), £*)(¢7) € F3*T . We obtain
a matrix representatio@; € F,"*" of c; as,

(35)

Cp=[£OH(1) £Or(g) ... £Or(OR-D) ], (36)

Now, in order to get the structure required in (21), we needttmly the requirements gf so that the
last v elements inC; are 0 for all the M, rows. Note that thg’ row of C; is given by the binary
expansion off (¢771) € Fyr in terms of the basi§a’, «, ..., a7 =1}, wherea is a primitive element of
F,r. The coefficients in this basis expansion can be obtainedise trace operator described below for
completeneds

Consider an extension fielfl,» of the base field,. If a« € Fyr is a primitive element ofyr then
(a® al, ... aT~t) form a basis off,r overF, and any element € F,r can be uniquely represented in
the form,

ﬁ = ﬁQOzO + 610(1 + .. .ﬁT_laT_l with ﬁz € FQ, for 0 S 1 S (T — 1)

4More background can be found in standard textbooks on firte<i[13, 16].
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To solve for the coefficients; we will use the trace function and trace dual bases. Noteftnany
elements € F,r the trace of the elementrelative to the base field, is defined as,

Tryrjp (B) = B+ B+ 57 +...+ 5> .
Given that3, 3 € F,r the trace function satisfies the following properties,

[} TI'QT/Q(B) c ]FQ.

o Tror)5(3 + B) = Tror/o(8) + TT2T/2(5~)-
[ ] TI'ZT/Q()\ﬁ) = )\TI'QT/Q(ﬁ), if A e FQ.

Also given the basién?, o!, ..., o) the corresponding trace dual ba§lg, 01, . . . , 0r_1) is defined
to be the unique set of elements which satisfy the followglgtion for0 < ¢, j < (7' — 1),

0 fori=#j
1 fori=j

TI'QT/2 <GZOCJ) = {

The fact that the trace dual basis exists and is unique caounelfin standard references such as [13, 16].
Therefore giverg € F,r, we can find3; by using the properties of the trace function and noting, that

T-1 T-1 T—1
Tror g (0:3) = Tror /g <9z Zﬁjaj> - ZTrsz (0:8;07) = Zﬁijﬂ/z (6:07) = 3;
i=0 =0

Jj=0

where the last equality follows from the definition of thecigalual basis. Therefore binary matixgiven
in (21) can be represented in terms of theSekefined as

S={f:f e Trorsy (0:f(&)) =0Vie{T —v,....,T— 1} and Vj € {1,...,M;}}  (37)

Associate tof € S the codeword vectan; € FJ,™"*! given by,

up=[ch ach ... ac} ]t (38)
Associate with every such codewoig the codeword matrifJ; € Fy M7
tion of each element af; in the basig{a’, o', ..., o'},
Sincef € S we know that the last elements irC; are0 for all the A/, rows. Therefore we can see
thatf(®)(¢%) is a cyclic shift byk positions off (¢7). Hence, fori € {0, 1, ..., v} we can write,

given by the representa-

C = [ £0(1) £00(g) ... 00Dy ], (39)

Wherecgf) represents the matrix obtained by a cyclic shift of all thesof the matrixC; by i positions.
For transmission over an ISI channel, as seen in Sectiont®&n be shown from equation (2) that
the effective binary transmitted codeword matrix for a jzautar f is of the form

t
U;=|c, ¢ ... e (40)

Clearly we see that’,;, = {C;: f € S,rankU) > d(v + 1)}. We will show in 6.3 that indeed for
R=M,—d+1thatlC,, = {Cy: f € S}, i.e,rankU;) > d(v +1),Vf € S.
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5.2 Notation and Definitions
We will need the following definitions in the constructiontb® basis vectors of the null spaceldf.

1. We define a sdt C F,r which will be used extensively in the proof in Section 6 as,

P={y€Fyu:y=)Y da' s cF}. (41)
t=0

2. Given a binary vectab € FY ™! definew : FY ™M x! _, T1xM: g,

‘I’(b) = [ Z;’:o bthHo/ E?:o bz'Mt+MtOéi } (42)

~~

g

Note that the mapping is a one-to-one mapping betwebrandg, due to the linear independence
of {a’ a,...,a"}.

3. Foragiven fixed, € F);**' defineG; C I''**: such that,

Gr={gel™M:gc; =0} (43)

4. Motivated by the mapping in (42), for eagh’ € G, we will use the following representation:

g’ = [a . g ] (44)
g,ii) = Z(S,Ef;;ozj where 5,(3 e,
=0

5. For an element € I" given by~ = Z]V-:o d;a07, define
deg(vy) = max {j:0; #0} (45)
6. For eaclg € Gy define,
deg(g) = max {j : d,; 7 0} (46)
7. For eaclg® € G define a functiord : T'*M: — F1*Me py,
o) = [ o8 60 . 00 1, | (47)
8. Given a set of elemengg?), g®, ... g(@ e I''*M: define,
D (g, g?,...,g?) = {g g =20, vg®, whereforalli,y; €T, g® € FlXMt} (48)

Note that it then directly follows that,

D (gW,g?,...,gP)| <2d0+D, (49)
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5.3 Set cardinality

Using the polynomial representation given in Section 5.&, aan give a lower bound on the rate as
follows.

Theorem 12 ConsiderT” > (v + 1)M, then a lower bound to the cardinality of the setis given by

|S| > 2RT=vM: or lower bound to effective ratB.;; = 1 log S| is, Repy = R — 4.

Proof. Let )\, 5, be the mapping,

N, | frer o i fo }t = Tror o (05 f(55)),

for someps; € For,j = 1,...,M,. This is homomorphism of th&,-vector spacd?fT into F,. The
cardinality of the sef is given by,

|S| = ie{lT —v,.... T—1}y & je{l,...,M;}

m ker()\giﬁj)
i.J

Note that the range spaceXf s, is the range of the trace functiae., {0, 1}. Noting that sincd” > (v+
1)M; and the rank of the equivalent matrix transformationiof. , s,,. .., Ao,_, s,,]" at mostvAf; and
therefore the null space is of dimension at le@%t— v M,. Therefore, we conclude thag| > 287 —vM:,
i

The Theorem 12 implies that we do not lose too much, in terrmatef by the zero padding at the end of
the transmission block. In particular it is a constant fagthich does not depend dh and therefore can
be made small by taking large enoughNote that this lower bound could be loose, and we may not lose
as much rate ag"

We still need to show that this set satisfies the rank guagantehich we will do next in Section 6.

6 Rank Guarantees

In Section 5, see (37), we have already constructed codeargbsets)S which satisfy the structure in
(21) and thalS| > 27(Me—d+D)-vM: — Therefore, this sef is a good candidate for the construction of
K..4, needed for the multilevel construction of Section 3.2. His section we will prove that the sét

in (37) also satisfies the rank guarantees given in DefinBiand hence proving Lemma 6. To illustrate
the proof techniques, we will first prove the rank guaranfeethe maximal rank binary code., IC,, 5,

in Section 6.1. However, the argument for arbitrary rankdse@ more sophisticated argument. We will
explore the structure of the null spaceléf and find a basis for it in 6.2. Using the structure of the basis
we will finally bound the cardinality and dimension of the Insppace giving the required rank guarantees
for IC,. 4 with Ty, = Rv + (M; — 1)(v + 1)(2% — 1).

6.1 Maximal rank distance codes

In this section we will show that that ® = 1 then for allf € S,rankUy) > M, (v + 1). In fact for this
cas€ly,, = My(v + 1) is enough.
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Theorem 13 ((Maximal rank distance codes))Let f(x) = fox, asin (34) withR = 1 andT > M,(v +
1). Then forS defined in (37)1 log |S| > 1 — 2 andVf € S,rank(U;) > M,(v + 1) over the binary
field.

Proof. The rate lower bound is directly from Theorem 12. We proverésellt by contradiction. Suppose
thatO = {U; : f € S} has rank distance less than+ 1) M,, then there exists a vectar # 0 for some
f € S such that the corresponding binary mafti)x has binary rank less thaw + 1), (as the code is
linear). So there exists a non-trivial binary vector sp&cg F such that for everp € B3,

(l/—‘rl)Mt
bU; = 0 <= > bUs(i,j)=0, j=1,....T, (50)
=1
whereUy(7, j) is the(s, j)'h entry of U, and we have use()’ to denote vector transpose. Since each
row of U, is an expansion of the rows af; in the basis{a’, a, ..., a” "'}, we can write as operations
overFyr,

(I/—‘rl J\/[t (I/—‘rl)]\/[t

T T
b'u; = Z biuy (i) Z bZZUJw]a] ! Zaj_l Z b;Us(i,5)|, (51)
; =

where we have used the basis expansion. Due to the linegréndence ofa’, o, ..., o1}, itis clear
from (50) and (51)that,

bth =0 «— bth =0. (52)
Now, we suppose that fdr # 0,
v Mi— v Mi—1
uf - Z Z bz+k v+1) « f V+1 = Z i+k(v+1) « ank(V+1)
i=0 k=0 =0 k=0
v Mi—1
= Jo (Z > bi+k(u+1)a2+k(y+l)> =0 (53)
=0 k=0

Thus, for evenb € Bthe elemen(zl 0 ZMt Z+k(y+1)ai+k(lf+1)> is a zero off (z). But we know that

{a"++D1 are linearly independent fare {0,1,..., M, — 1} andi € {0,1,...,v}asT > (v + 1)M,.
Therefore there is only one trivial solution to the equat(d8)i.e., b, .11y = 0fori = {0,..., v}, k=
{1,...,v}. This contradicts the fact that the null space is non-trigsiace we cannot have # 0 and
b € B. Hence all matrices i@ have rank equal ta/;(v + 1). [

6.2 Minimal Basis Vectors

To prove the rank distance properties in this subsection viestiow the existence of elements which
satisfy the following properties.

Definition 14 (Properties of Minimal Basis Vectors)Given a fixed nonzero vecter & F%’f“ define
the associated; as in equation (43). Then the elemegts, g® . ... g@ € G, are called the minimal
basis vectors if they satisfy the following properties:
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(). Foreachg®, 3k such that}’) = 1,i.e, ®(g?) # 0.
(ii). ®(gM),..., ®(g?) are linearly independent ové,.

(iii). For all subsetsS C {1,...,d} there do not exis{~, : i € 5,7, € ' and ~,g € M}, such

that,
deg(_ezs 7g") < maxdeg(g")
(iv). We have,
gf = D (g(1)7 g(2)7 ot g(d)) ) (54)
whereD(-,...,-) is defined as in (48) as,

D(g",g?,...g?) = {g g =>",vg"®, whereforalli,y;, €T, g € FlXMt} (55)

To prove the existence of such minimal basis vectors, we tleedollowing lemmas. We state the
lemma 15 required in the proofs and then prove it in the append

Lemma 15 Assume there exigtelementgs™V). ... g® € G, which do not satisfy property (iiije., for
some subsef C {1,...,p} there exist{~; : i € S,7; € I' and ;8" € I''*M*} such that,

o) o)
deg(d> vig?) < max deg(7:8")-
1€S
Then there exists asdt C S andk € S, k ¢ S’ such that,
deg (g(’“) + Z%g(“> < deg (g)
ics’

and

deg (1ig"”) < deg (g®) Vie S

where by definition we have thatg® ¢ I'"*M: forall i € S'.

Lemma 16 If there exisp elementg), ... g® € G, satisfying (i), (i) and (iii) in Definition 14 but not
satisfying (iv) then it is possible to forgi?, ..., g® g®+Y satisfying (i), (ii) and,

D(g",....g”) cDEY,....g», grth) (56)

Proof. Since we havg(V, ... g satisfying (i), (i) and (iii) but not satisfying (iv) therexistsg**? ¢
G; such thag®t!) ¢ D(gV), ... g®). If ®(gt)) = 0, then clearly we can writg®+!) = o/g®™),
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whered(g*™)) £ 0, since we are only taking out the commef factor out ofg»*!). Note that clearly
g™ ¢ G; and sinceg'V, ..., g satisfy (iii), we can show that'*™ ¢ D(g), ... g®))5

If ®(g®+)) is linearly independent ob(g), ..., ®(g®) then(g®, ..., g?*™V) satisfy (i) and (ii)
and (56) follows directly by choosing(? =g i =1,...p+ 1.

If &(g)), ..., ®(gP*)) are not linearly independent then,

wi®(g") + wP(g?) + ... w1 P(g"V) = 0 (57)
forwi, ..., w,y; € Fy and not all equal to zero. Lef® be such thaty, # 0 and
deg(g™) > deg(g®) Vi, such that w; = 1 (58)

Sincewy, . .., w1 € Fy, we see thatw; ®(g™M) + we®(g?) + ... w, 1 ®(g?PtY) = d(wig® + ... +
w,1gPV) = 0. Therefore, there is a commait) factor inw,g™® + ... + w,,,g?*Y i.e., there isg®
andt such that,

(wlg(l) +...+ wkg(k) +...+ wp+1g(l>+1)) = oztg(k),

wheret is chosen to be the minimum value such t#ég*)) # 0. Using this we can define,

g = a Tt (wigM+... +g™ + ..+ wg®) (59)
g¥ = g Vi#h

where we have used the fact that = 1. Note that
deg(g®W) < deg(g®) —t (60)

Clearly (i) is satisfied fog™, ..., g*V). Moreover,g®, ..., g"*) € G, sinceg®, ... gl € gG;.
We will now show that,

D(g(1)7 R ] g(p+1)) C D(g(1)7 MR | g(p—‘rl)) (61)
Letg € D(gW, ..., g™V, ie,
g="yg"+. . +7g? (62)

such thaty;g® € I''™*M:_ Note the important fact that singeg® € I'"'*: we have that

deg(vi) + deg(g") < v, (63)
where we have used the definitions given in (45) and (46). Nawsicler,
Yo = e’ (64)

5Assume thag Pt e D(g), ..., g®) butg®t)) ¢ D(gM) ... g®). Sinceg®™) e G; we haveg(P+l) ¢ [1xM:,
The setD(g(V, ..., g®) contains all combinations of;g”) such thaty;g(¥ € T''*M:, The only way this is possible is if for
some set ofy;}, 3 ot (vig?) € THMe butaly,g®) ¢ T1*M: for somek. This implies that,

deg (at%g(“ +> o (%g“))) < deg (at%g“)) :

Sinceg(®, ..., g® satisfy (jii) this is not possible. Therefore, we can alwaymoseg”+!) € G; such thatg®+1) ¢
D(gW,...,g®) such tha>(gPV)) £ 0.
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Then,

18 4+ 4+ 8 = et [a M (wig® + 4+ g® + Lt wpg® )] ) (i + )8

itk
=18+ (wmg?) + Y (v + wing?)

i+k i+k
=g + .+ pag?tY

where the last step follows as the field has characteristithe only thing to verify is thaf; € I" and
7:g® € T*M: Trivially, %; € T andy;g® € T'"*M: for all i # k. Also note that since,

- - (a) -
deg(Fx) + deg(g™)) = deg(yx) + t + deg(g™)

®)
< deg () + deg(g®) < v,

—
~

where(a) follows due to (64),b) follows from (60) and(c) follows from (63). Thereforey, € I'" and
g™ e T*M: Hencevg € D(gV, ..., g?tV), g € D(gW, ..., g?*tY). Therefore,

D(gW, ..., gP))y c D, . . . grtD) (65)
Also, sincet > 1,
deg(g™®)) < deg(g™) (66)

anddeg(g) = deg(g") Vi # k. Therefore for the new sdég?}”*], the degree is smaller than or equal
to that of the previous se{tg(i)}fjll. Therefore, since we are reducing the degree of atleastleneeat
and the maximal degree of the set is bounded above Ibyve iterate this step, the process will terminate.
We utilize this idea in the following. Now we checkdf(g")), ..., ®(g"+") are linearly independent. If
not, we continue the process defined in (59) till we obggin . .., g»+1 such thatb(g®), ..., &(gr+h)
are linearly independent aleg(g™)) = ... = deg(g®+") = 0. If the former occurs, we have obtained
the required sefg}. If the latter occurs, and ib(g®), ..., ®(g®*+V) are linearly independent, again
we are done. Now, if the latter occuis.,deg(g!)) = ... = deg(g®™V) = 0 and®(gV)), ..., d(grV)
are linearly dependent, then since the degrees are equaidone just take the set of independgfit.
We know that using these sets of vectors we can satisfy (i{igndNote thatD(gV, ..., g**1) cannot
be equal to the sef; without the elementsg™, ... g®*1) satisfying properties (i), (is Therefore,
using this iterative process we can construct the requieéfigs’) } since in (65) we have already shown
that the nesting property needed in (56) is satisfied. [ |

Note that in lemma 1@®(g", ..., g) is a proper subset @(g", ..., g") as the elemerg®*"
is not contained iD(g®, ... g®).

8If property (ii) is not satisfied®(g(!), ..., ®(g»*Y) are not linearly independene.,

wi®(gM) + wad(g®) + .. wp1 (g V) =0 (67)
for wy,...,w,11 € F2 and not all equal to zero. Singe, w; ®(gV) = @ (3°, wi(g”)) = 0, there is a common!") factor
inwig® + ... + w18V and the elemeng = 3", o w; g is contained inG; but notinD(g®, ..., gP+1)), since

~——

Vi
Vi ¢ TI.
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Lemma 17 If there existgV, ..., gP*Y € G, satisfying (i) and (i) but not satisfying (iii) in Definitio
14 it is possible to construgV), . . ., g+ satisfying (i), (i) and (iii) in Definition 14 and

D", ....g") c DY, ...,g") (68)
Proof. Giveng®, ... gtV e G, satisfying (i) and (i) but not satisfying (iii) in Definitio 14. From

lemma 15 we conclude that there exists aset {1, ...,d} andk ¢ S and{v;}).cs Wherey; € I';i € S,
such that,

deg <§(’“’ + Z%g(“> < deg(g™) (69)
€S
andwe also have
deg(vig”) < deg(g®) Vies. (70)

Therefore we havdeg(g®)) > deg(g'”) for all i € S. Define,
gh = g +> g0 (71)
€S
g = g0 v £k

First we show that property (i) is satisfied g§), . .., g»*. This can be easily seen from the following.
We already know tha®(g) # 0 sinceg® = gl). Moreover,{®(g")}i. are Imearly mdependent

since we know thafg ()} satisfy (i) and (ii) of Definition 14. Now, let; = 3°/_, 6\"a’ wheres!” € F,.
Then we have,

a(g") = "+ Y 5 )a'g") (72)

1€S b=0

= o(g") *Z(‘S(l ) ZZ 5D (abg)

€S 1€S b=1

= (™) +> oo

€S

Note that sincel, € F, and®(g),..., ®(g?*V) were independent to begin with, and singe®}
satisfy (i), we see that the above implies tldg(*)) # 0 and hencegV, . .., g»*+! satisfy property (i)
of Definition 14.

Now suppose thab(g*) is linearly dependent of®(g?)},..4, sinceg® = g® i £ k we can write,

= _6:2(8") =) _6:0(8"),
i#k i#k

for 6; € 5, where sinceb(g®)) £ 0 we have tha{d;} is not all zero. Due to (72) this implies that,

2(g") + 5 2@") =) 6oE"

icS ik
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which means that

=Y aeE") + > 00"

ieS i#k
which contradicts the linear independenceddg("), ..., ®(g®+Y) sincek ¢ S. This implies that
®(g®) is linearly independent ob(g®) = ®(g®) for all i # k. Thereforeg™, ... g+ satisfy (i)
and (ii) of Definition 14.
To show (68) leg € D(gV,...,gP™Y), i.e,

g=7g" +... +5ng". (73)

Choosey; = 4;. i ¢ S, andy; = 7; + v, for all i € S. Note that{~;}cs is defined in (69). Therefore,
sincek ¢ S, we have

HEW .+ g < 4y gl >+Z Fi+77) 89 + > 7ig®

1€S €S 1¢S5 i#k

gt (Zwmg >+<Z%g“>>+<2mg(“>+ S g

(S} €S €S 1¢ S, i#k
= g (Z 5i! )

where the last step follows as the characteristic of the feefd We still need to show that, € I" and
4,81 e I'*M: Note that due to (70), we have

deg(g") + deg(7;) < deg(g™) Vie S (74)

Also, since we have (73), we know thate I, Vi and¥;g® € I''*M: i, hence
deg(g") + deg(7:) < v, Vi. (75)
Since we havé; = 7;. i ¢ S, and from (71), we know that”) = g i ¢ S i # k, we see that; € I’

and¥;g®" € I™>Me foralli ¢ S,i # k.
Now, fori € S, we have thaf; = 7; + 5, and¥;g® = 4,g%. Therefore, for € S we have,

deg(¥;) = max{deg(%;), deg(v;) + deg(x) } (76)
We know from (73) thatleg(;) < v. Also, from (75) and (74), we see that foe S,
deg(v;) + deg(%) + deg(§7) < v, (77)

which implies thatieg(~;) + deg(7;) < v and hence from (76Jeg(7y;) < v,i.e.,5; € I';i € S. Also,
deg(%:89) < deg(4;) + deg(g™), i € S. Therefore, using (76), we see that,

deg(7:8") < max{deg(7:8"), deg(v) + deg(Fx) + deg(g")} (78)
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We know from (73) thatleg(7;£") < v. Now, with this and from (77), we see thatg(5;,¢") < v and
hencey;g® € I'"*M:, Hence fori € S as well we haveleg(4;) < v and¥,g® € ['*M:,
Now fori = k, it is clear thaty, = 7, € I'. Now we need to show that.g*) € I''"*M:, Therefore,

Note thatdeg(7,g*)) < v follows directly from (75). Also, from (70) we have that,

deg(yi) + deg(g"”) < deg(g™)

Therefore,

deg(wvig"™) < deg() + deg(v;) + deg(g”) < deg(8™) + deg(9) < v

From (78) we see thateg(9,&") < v and hencé g ¢ I'*M:,
Therefore,

D(g(1)7 et g(p—‘rl)) C D(g(1)7 ttt g(p+1))

Note that the degree of one of the elements of thgSet. . ., gt (specificallyg®) is strictly less than
the degree og*) and the degree of all other elements is the samglf. .., g+ satisfy (iii) then we
terminate otherwise we repeat the process. Note that atieaekion we decrease the degree of one of
the elements by at least Since we started off with a finite degree we continue thixess either until
the property (iii) is satisfied or all the elements have dedreAt this point if property (iii) is not satisfied
from lemma 15 we have for sont# C {1,...,p+ 1} that

deg<(k+2g ><deg k) =0

€S’

This is possible only if,

~k)+2g(i):

€S’

But sinceg!’) = ®(g®),i € S’ ori = k and we know tha{g(®} satisfy property (ii) we get a con-
tradiction. Therefore property (iii) will be satisfied whéime degree of all the elements is 0. Note that
D(gW, ..., gP*) cannot be equal to the sg} without the elementgg, .. ., g(**+V) satisfying prop-
erty (iii) 8

Given these two lemmas we will show that given a fixed nonzgree F);**' and the associated;
defined as in equation (43), there exist minimal basis ve&atisfying the properties in Definition 14,
reproduced in the following theorem for completeness.

"Since from Lemma 15, if property (i) is not satisfied, théry (;g?) < deg (g'¥)) Vi € S’, and hence we see that
for this casey; = 1,1 € 9.
8 If property (iii) is not satisfied, we have that for some sut&e {1,..., p} there exisf{~;},. such that,

deg(y_7ig"”) < maxdeg(1ig®) (79)
€S

25



Theorem 18 (Existence of Minimal Basis Vectorsfsiven a fixed nonzere; IFQ?“ define the asso-
ciatedG; as in equation (43). Then there exist elemegits g, ... gl@ € G, such that they satisfy the
following properties:

(i). For eachg®, 3k such thav}’) = 1,i.e, ®(g?) # 0.
(ii). ®(gW),...,®(g?) are linearly independent ové,.

(iii). For all subsetsS C {1,...,d} there do not exis{v; : i € S,7; € I' and ;g € I'"*Mt}, such
that,

d o) d o(?)
69(%% ) < max deg (")

(iv). G =D (gV,g?,....g?)

Proof. Clearly let us assumé; is not empty. Thedd ag¥) € G; such thaﬂ,if()] = 1 for somek, since
otherwise in theg") picked we can take out” factor and still have it irG;. Clearly properties (ii) and
(iii) of Definition 14 are satisfied trivially. lfig(") satisfies property (iv) then we are done. If not, we
proceed to build the stV ... g@. If gV does not satisfy (iv) it means thatg® < G; such that
g? £ ~4,g foranyy, € I' andy,g) € I'*M:, From Lemma 16 we can construct eitigeP, g (or
justg™®) such that they satisfy (i) and (ii) and

D(g",g?) c D(g",g?). (80)

If (iii), (iv) are also satisfied, thed = 2.

If (iii) is not satisfied by these vectog", g® we can construcg®, g® from Lemma 17 which
satisfy (i), (ii) and (iii)°.

Now if g, g satisfy (iv) then we are done, otherwise we again use the dswithg®, ¢ as
the input vectors. Repeat this process ugfil, . .., g@ satisfy the properties (i), (ii), (i) and (iv). This
process has to terminate since we know tfat < [['1*M¢| < 20+DM: gand hence is finite.

[ |

Note that from property (i) the elements are such thggV)), ..., ®(g@) are linearly independent only
overlF,. The following lemma shows that as long’&s> (v + 1) M, this is sufficient to guarantee the
independence gV, g ... g(@ overFyr as well.

Lett = max;cg deg(v;g¥) and defing: = argmax; g deg(v;g”). Note then that the element,

g = qvttl <Z %g(i)>

ies
is contained irG; as the elementg (!, ..., g»+1) satisfy property (iii) for the{~,}. But,

g = O[l/ftJrl,yk g(’“) + Z O{uft+1%g(i)
Y i€S itk
is not contained iD(g(", ..., g®+1)) becausey ¢ I'.
9The reason we need the property (iii) is as follows. If we takg elemeng € G; thenifag € T1*M:, thenag is also in
G. This may not be captured in our definition Dfframework for the following reason. Heg [V +vg?] < deg(g")
anddeg(g™) > deg(g®), then for some, ot (g + vg?) € G butalg™ + atyg? ¢ D(g),g?) sinceatg™ or
Oét’}/g(Q) ¢ TixM:
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Lemma 19 Consider elementgt), g ... g@ € G, such thatb(gV), ..., &(g?) are linearly inde-
pendent ovelf,. If the size of the extension fidRy- is such thatl” > (v + 1) M, then these vectors are
linearly independent over,r as well.

Proof. Clearlyd < M, otherwise the property (ii) in the theorem 18 will be violdt®efine,

Q =[g" ... g®]
and
H =[ogh) .. o]
By the linear independence dfg)), ..., ®(g?) we conclude thaH has full rank oveif,. Therefore,

there existl linearly independent columns ovEs in H € F&**t Select thesd columns and form the
matrix H € F@*¢ which is of rankd. Thereforedet(H) = 1 asdet(H) € F,. Select these same columns
in the matrixQ and form the matrixQ € I'**?. Let us look at the determinant 6§ € F,r. Note that
sinceQ € x4,

det(Q) = 1, o,

SinceT' > (v + 1)M; > (v + 1)d we see the linear independencelof, ..., a"~'. Moreover, note
that since), = det(H) # 0 from above and therefore we conclude that(Q) # 0. Hence the vectors
g® .. g@ are linearly independent ovéy:. |

6.3 General Rank Distance Codes

In this section we will prove the required rank guaranteesSfaith 7}, = Rv+ (M; —1)(v+1)(28—1)
and therefore show thdt, ; is given by this set. We state the following lemma requirethia proof of
the rank guarantees and prove it in the appendix.

Lemma 20 Consider a matrixP € F12" defined as,

1 . 1 1
1) _
2(2) §2RR171 . & £
P=|", (£2)? L (&) &
(R) 5 5
g (€MDY (e )y2 (M)
where¢ = a@"-D+D and the vectorg®, ..., g® e I'M*1 are linearly independent ovét,:. If,

T>F -1+ 2= +1) (M, —2)(2" - 1)+ R).
thendet(P) # 0.

Theorem 21 Let f(z) = Y/5! fiz? asin (34) andl’ > Ty,,. Then forS defined in (37) log|S| >
R— 4 andVf € S,rank(Uy) > (M, — R+ 1)(v + 1) over the binary field.

27



Proof. The rate bound is directly from Theorem 12. & = {U; : f € S} has rank distancé +
1)M, — D then there exists a vectar; # 0 for somef € S such that the corresponding binary matrix
U, has binary rank equal ta + 1) M, — D (as the code is linear). Equivalently there exists s¢gh@eS
for which there exists a binary vector spage C Fg”“)Mt of dimensionD such that for everp € By,

just as we saw in (52), we have

bth =0 «— bth =0 (81)

Note that the size oB; is 2P. Rewriting the above we have théb € Fy M) andb e By,

[ bi by ... busim, } f(g(]\'/[t_l)) =0 (82)
af(1)

P
\

o4

| v ety |

Let the function¥ be as in (42) such that it magt to G;. Note that, sincel is a one-to-one mapping,
as seen in (42) in Section 5.2, we immediately see that

|Bs| = |Gyl

With the representatiog = ¥(b), (82) can be rewritten as,

f(1)
lgl g2 - gm l f(:f) =0
5 F(g)
- >
whereg; € I', or equivalently as

[ 1 1 1]
£2R*1 o 52 é& fR—l
2\2fi—1 212 2 fr—2

[gl go ... th} (&?) (&?) 3 : =0
I (g(Mt—:l))2R1 (g(M:—l)>2 g(Mt—l) | fo

WeFf

If the only element inG; is the all zero vector ther) = 0, U, has full binary rank, we have already
shown the result in Theorem 13. If not, by theorem 18 therstexa set of minimal vectors\i =

{gW,g® ... g} forG;.
If d < R — 1itimplies that|G,;| < 2=+ "and therefor® = dim(B;) < (R — 1)(v + 1) which

in turn would imply that all matrices i© have rank at least\; — R + 1)(v + 1). We will prove that
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d < R — 1 by contradiction. Let us assume that there are more fhan1 such minimal vectorse.,
d > R — 1. Taking anyR of the minimal vectors of the solution spa@e we conclude that,

g(l) 211?*1 o 12 ! fr-1
g(2) 19 o o 19 1S .
. (£2)? (S & b = 0p (83)

f
| g gy gy | LIS

g®)

P
whereP € F2**. This is possible iff,
det(P) = 0

As shown in lemma 20 by the linear independencéddf o, ... o1} it follows that the determinant
can never be zero. Therefore there can be at mostl basis vectors and from (49) and property (iii) of
theorem 18 since,

|By| =27
|gf| < 2(R—1)(1/+1)
|Bf| = |Gyl

we conclude thaD < (R—1)(v+1). Therefore all matrices i® have rank at leagt\/, — R+ 1)(v+1).
|

The consequence of Theorem 21 is that, = {C; : f € S} satisfies the requirements of definition
5 and therefore can be used to construct diversity embedo@escfor fading ISI channels as done in
Theorem 7.

7 Examples and Discussion

We will start off by giving an example of a code which has fulletsity equal tal/; when transmitted over
the flat fading channel but does not have the maximum possitéesity of (v + 1) M, when transmitted
over an ISI channel withr taps.

Example 1:Consider construction of a code fof, = 2, T = 5 with rate R = 1 and BPSK signaling
using code constructions given in [8, 14]. To design theskespuse the field extensidfys with the
primitive polynomial given by:® + 2 + 22 4+ x + 1 and the primitive element. Define,

f(z) = fox
wherefy € Fy,.0s depends on the input message. The space time codeword iisembées,
Cp=[ (1) ()] (84)

wheref(a?) is the representation ¢f(a?) as a binaryl x 5 row vector an€; € F3*°. As was shown in
[8, 14] this code achieves full diversity/, = 2 i.e.,, Cy, has rank2 for all nonzerof, € Fss.
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Now assume that we use this code for transmission over anmisinel withry = 1. Since this is a
linear code, the rank distance of the code is the minimum cdrk nonzero codeword. Therefore the
space time codeword correspondingfto= 1 is given by,

10000
Cl_{01000]' (85)

When transmitted over the ISI channel we see that the equitvapace time codeword is given by,

1 00 0 0
01000
001 00

Clearly since,
rank© (C,)) =3 < 4

we conclude that the space time codeword which achievesiudirsity M, = 2 over the flat fading
channel does not achieve the maximum possible diversity ef 1) M, = 4 over the ISI channel.

Example 2:Similarly this can be shown to hold true for any diversityqoiConsider for example the
case ofM, = 3, T = 7, R = 2 and BPSK signaling using code constructions given in [8, UHe the
field extensior¥,r with the primitive elementv. Define,

f(z) = fiz® + fox
where fy € Fyr depends on the input message as before. The space time ¢ddswbtained as,
Cp, = [1'(1) f'(a) f'(a?) ]’ (87)

wheref(a?) is the representation ¢f(a?) as a binaryl x 5 row vector an€; € F3*°. As was shown in
[8, 14] this code achieves diversity= 2 i.e., Cy, has rank for all nonzerof, € Fy7. But it can be seen
as before that the space time codeword correspondiffy i) = (0, 1) does not achieve the maximum
possible diversity ofv + 1) M; when transmitting over the I1SI channel withtaps.

Example 3:Consider construction of a BPSK code fof = 2, v = 1, T = 5 withrate R = 1 and
henceRr*// = 2. To design these codes, use the field extenBisrwith the primitive polynomial given
by 2° + 2* + 22 + 2 + 1 and the primitive element. The set of codeword polynomials which satisfy the
constraints in (37) are given by,

S — {07047 a17,a19,a21,a24,a26,a31}. (88)
This set is of cardinality
|S‘ _ 2RT—V]\/[75 _ 25—2 — 8
Corresponding to every elemefiin S consider the codeword vector,

ci=[f1) fl?) ] (89)
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wherec; € F2;''. LetC; € F3*° be the representation of each element,ah the basifa’, o', o2, o?, o'},
ie.,

C;=[f(1) f(a? ] (90)

wheref (') is the representation of(«‘) as a binaryl x 5 row vector. Then the x 5 space time code
has rate,

T 5 5
and gives diversityt when transmitted over the ISI channel with= 1. The corresponding codewords
X as given in (4) are,

000 0O0] [1 000 O0]
(0000070010 0]"
01 000] [1 100 0]
0001070011 0]
001 1 0] [10110]
11 100])7|11000]"
0011101 1 1110]
11 1101’1 1010

In figure 5 we give the performance of a full diversity code ghis designed foM, = 2, M, = 1,

v = 1 and 4-QAM signal constellation. We plot the logarithm of éneor probability as a function of SNR
(in dB). Note that the slope of the error probability curvepproximately equal ta which is expected
since we are using full diversity codes on both the layers.

From the construction of these codes, one might be temptedrtolude that the analysis for these
codes is quite similar to that of cyclic codes. But the penuditructure of the solution space. the
fact that given a vector in the solution spagenot all circular shifts of the vector remain i, makes
it difficult to analyze. The main contribution of this work tise construction of binary matrices with a
particular structure which consequently characterizeg#te diversity tradeoff for the 1SI channel. Note
that as seen in Example 1 and 2 codes which give guaranteedsityvorders for flat fading MIMO
channel, when used for transmission over ISI channel do ex¢ssarily give the multiplicative diversity
gain of (v + 1). The tools and techniques developed over here could als®ihdependent interest in
designing codes in various other wireless or distributetinges.
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8 Appendix

Proof. [of Lemma 15] We have that for some subseC {1,...,p} there exisf{;},., such that,

deg (D 7ig") < maxdeg(yig") (91)

€S
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Figure 5: Error Performance of full diversity codes with =2, v =1, Ry = Ry = % andd; = d, = 4.

Lett = max;cs deg(v:g") and definel” = {i : deg(7;g"”) = t}. Note that we have,
deg(y,g") = deg(a®0g®) (92)
This allows us to see that (91) implies that,
deg (Z adem)g(i)) <t (93)
i€T

Denotew = min,;e7(deg(;)) to be the minimum degree aof for i € 7 andk = argmin, ,(deg(v;)).
DefineS’ = 7\{k} where\ is the set difference operator.
If w = 0then we have,

deg(g™® + Z a®90) gDy < t = deg(g®)

ies’
and,
t =deg (a™0)g) < deg (g™) =t Vie s

which shows that ifv = 0, then the claim is true.
If w # 0 we can take out the commart factor of>°,_, a®0)g. Then we have,

deg(g® +) " a®000vgl) < (t —w) = deg(g™")

€S’
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and,
t —w = deg (adey(”’i)_wg(i)) < deg (g(k)) =t—w Vies
Hence the claim is proved. |

To prove the Lemma 20 we will make use of the Cauchy Binet féameproduced here for complete-
ness.

Definition 22 Cauchy Binet Formula[12] Let A be am x n matrix andB be an x m matrix. If S

is a subset of 1, ..., n} with m elements, lefA 5 represent then x m matrix whose columns are those
columns ofA that have indices frony. Similarly, letBgs represent then x m matrix whose rows are
those rows oB that have indices from§. The Cauchy-Binet formula then states that,

det(AB) =) det(Ag) det(Bg) (94)
S

where the sum extends over all possible subSet&{1, ..., n} with m elements.

Note that the Cauchy Binet formula holds for matrices witlries from any commutative rings. Given
this definition, the proof of lemma 20 proceeds as follows.

Proof. [of Lemma 20] The matriX¥P is given by,

1 R 1 1
(1) )
2(2) 523};1 . 52 ¢
P = . (52)2 .. (52)2 52
g(®) i 5 |
——— | (é‘(Mt—l))2 (g(Mt—l))z é‘(Mt—l) |
MEFRx My Weﬁ:gg —

Using Gaussian elimination (which can be applied over anefiield), we reduce the matrik1 to its
row echelon form,

where
deg(g™)) < 2Py,

Note that this pivoting and reduction to a row echelon forra fall rank operation and preserves the rank
of P. Therefore,

det(P) = Kdet (S‘?W)
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whereK € Fyr andK + 0. Let the columns containing the pivots ¥i be denoted bys. Therefore by
the Cauchy Binet formula, we have

K~ldet(P) = det (YS) det (W3) + Y det <Y5> det (W) (95)
S+S

Note that for allS such thatdet (Ms) # 0 the maximum coefficient of in det (Wg) is less than the
maximum coefficient of in det (W) by at leastl. Therefore,

deg(det (W3)) — deg(det (Wg)) > (2% — 1)(v + 1)
Also note that,
deg(det(Mg)) — deg(det(Mg)) < v+ 2w + 220 4 ... + 2871y
=v(2f —1)
Therefore,

deg(det (W3) det(Mg)) — deg(det (W) det(Mg)) > (2% —1)(v + 1) — v(2% — 1)
>0

Therefore by the linear independence{df «, ..., a” =1} we can conclude that there exists a term in
det (Wg) det(Mg) with a power ofa which in not canceled by any other term in the equation (95).
Therefore we conclude thaf ~'det(P) # 0 implying det(P) # 0. Hence proved. [ |
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