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Abstract

Designs for transmit alphabet constrained space-time codes naturally lead to questions about the
design of rank distance codes. Recently, diversity embedded multi-level space-time codes for flat fad-
ing channels have been designed from sets of binary matriceswith rank distance guarantees over the
binary field by mapping them onto QAM and PSK constellations.In this paper we demonstrate that
diversity embedded space-time codes for fading Inter-Symbol Interference (ISI) channels can be de-
signed with provable rank distance guarantees. As a corollary we obtain an asymptotic characterization
of the fixed transmit alphabet rate-diversity trade-off formultiple antenna fading ISI channels. The key
idea is to construct and analyze properties of binary matrices with a particular structure induced by ISI
channels.

1 Introduction

Over the past decade significant progress has been made in constructing space-time codes that achieve
the optimal rate-diversity trade-off forflat-fadingchannels when there are transmit alphabet constraints
[18, 15]. Far less attention has been given to space-time code design and analysis for fading channels with
memory,i.e., Inter-Symbol Interference (ISI) channels which are encountered in broadband multiple an-
tenna communications. There have been several constructions of space-time codes for fading ISI channels
using multi-carrier techniques (see for example [17] and references therein). However, since these inher-
ently increase the transmit alphabet size, and the right framework to study such constructions is through
thediversity-multiplexingtrade-off [19]. We examined diversity embedded codes for ISI channels in [7],
by considering the diversity-multiplexing trade-off.

As in space-time code design for flat-fading channels, it is natural to ask for a characterization of the
rate-diversity trade-off for ISI channels with transmit alphabet constraints1. The problem of constructing
space-time codes with fixed transmit alphabet constraints is partially motivated by the need to control
the transmit spectrum as well as the peak-to-average (PAR) ratio of the transmitted signal. For example,
if we restrict transmission to PSK alphabet, it is clear thatwe have a unit peak-to-average ratio (PAR)
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making it possible to use efficient non-linear amplifiers (requiring small PAR), which are more efficient
and hence suitable for mobile devices. Another important reason to consider this problem is a fundamental
theoretical question, which is motivated by the origins of space-time codes for flat-fading channels in [18]
where the constructions were for fixed transmit alphabet. For this constraint, there exists a trade-off
between rate and diversity, for the flat-fading case. In thispaper we ask the corresponding question for
fading ISI channels. Since space-time code design with diversity order guarantees requires control over
the rank distance of the codewords [18], the main topic of this paper is to design codes with rank distance
guarantees for ISI channels.

Diversity embedded codes were introduced in [2] which allowed different parts of a message to have
different diversity order guarantees. These codes alloweddiversity to be viewed as a systems resource
that can be allocated judiciously to achieve a target rate-diversity trade-off in wireless communications.
A class of such multi-level diversity embedded codes suitable for flat-fading channels was constructed in
[5, 1, 6]. In this paper we extend these constructions to ISI channels.

The corresponding question, of what is studied in this paper, can be also be posed in the context of
the trade-off between diversity and multiplexing rate. Such an information-theoretic question, for the flat-
fading case, has been posed and partially answered in [3, 4].For scalar ISI channels, we have studied code
designs for rate-growth (multiplexing rate) codes and the diversity embedding properties in [7]. There we
have shown that the diversity multiplexing trade-off for the scalar ISI channel is actually successively
refinable. However, the code designs and criteria for the rate-growth codes are quite different from those
needed for the fixed rate, transmit alphabet constrained codes, which are the focus of this paper.

For the case of a scalar ISI channel withν +1 taps and a single transmit antenna, it can be shown by a
simple argument (see for example [19]) that an uncoded transmission scheme can achieve a diversity order
of (ν + 1). The best case scenario for the rate-diversity trade-off for ISI channels with multiple transmit
antennas would be similar to the flat-fading case, but with a(ν + 1)−fold increase in the diversity order.
However, in the multiple transmit antenna case, it is not obvious that a space-time code designed for a flat-
fading channel can achieve such a(ν+1)−fold increase in the diversity order. All that can be guaranteed is
that a space-time code that achieves diversity orderd over a flat-fading channel will still achieve diversity
orderd over a fading ISI channel [18]. In particular in Example 1 of Section 7 we provide an example of a
code which achieves particular points on rate-diversity trade-off for flat-fading channels and fails to do so
in the case of ISI channels. Therefore, the design of codes for fading ISI channels cannot be immediately
done by using the codes for flat-fading channels. However, inthis paper we see that codes designed for
the fading ISI channel can be used successfully to achieve the rate-diversity trade-off for the flat-fading
case as well.

A finite alphabet construction to exploit the potential diversity gain from ISI channels withMt multiple
transmit antennas was proposed in [9] for the maximal diversity case. But the rate of the code for this
construction was1/Mt as opposed to the maximal potential rate of1. In this paper we show that as
the transmission block size increases we can construct codes that have rate1 and achieve the maximal
diversity order of(ν +1)Mt. We characterize the rate diversity tradeoff for the ISI channels and construct
codes which achieve this tradeoff (asymptotically in blocksize). We build on the construction technique
introduced in [6] to design diversity embedded codes for ISIchannels that guarantee multiple reliability
(diversity) levels. Given that we can achieve a(ν+1)−fold increase in the diversity order for ISI channels,
this flexibility could be quite important.

The main contributions of this paper are as follows. We extend the rate-diversity trade-off bound from
[18] and develop the diversity embedded code design criteria for fading ISI channels in Section 2. The
basic multi-level construction of diversity-embedded space-time code for fading ISI channels is given in
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Section 3. We also show that this construction can be specialized to asymptotically achieve the diversity-
rate trade-off for ISI channels. The key ingredient is the construction of binary codes for ISI channels with
rank-distance guarantees, and this is done in Section 5 and Section 6. This is perhaps the most important
technical contribution of this paper. We also construct of convolutional codes suitable for transmission
over the ISI channel in Section 4. In Section 7 we give examples of codes constructed by the method
given in the paper along with their numerical performance.

2 Problem Statement and code design criteria

In Section 2.1, we define the ISI channel model . Section 2.2 recalls the code design criteria for diversity
embedded codes for flat-fading channels given in [6] and extends it to the fading ISI case. These criteria
give the connection between embedded rank-distance codes and diversity-embedded space-time codes.
The rate-diversity trade-off for flat-fading channels is reviewed in Section 2.3, and a simple upper bound
for the corresponding trade-off for the fading ISI case is established. The subsections 2.4 and 2.5 are based
on [6] and reproduced here for completeness. In Section 2.4,we review the principle of set-partitioning
and give algebraic properties of such partitions in Section2.5. These properties would be useful inlifting
rank properties of binary matrices over binary fields to the complex domain, thereby giving provable
diversity embedded code constructions.

2.1 Channel Model

Our focus in this paper is on the quasi-static frequency selective (ISI) channel with(ν + 1) taps where we
transmit information coded overMt transmit antennas and haveMr antennas at the receiver. Furthermore,
we make the standard assumption that the transmitter has no channel state information, whereas the re-
ceiver is able to perfectly track the channel. The code is designed over a large enough block sizeT ≥ Tthr

transmission symbols, whereTthr is specified in the constructions given in Section 3. The received vector
at timen after demodulation and sampling can be written as,

y[n] = H0x[n] + H1x[n − 1] + . . . + Hνx[n − ν] + z[n] (1)

where,y ∈ CMr×1, Hl ∈ CMr×Mt represents the matrix ISI channel,x[n] ∈ CMt×1 is the space-time
coded transmission sequence at timen with transmit power constraintP andz ∈ CMt×1 is assumed to
be additive white (temporally and spatially) Gaussian noise with varianceσ2. The matrixHl consists of
fading coefficientshij which are i.i.d.CN (0, 1) and fixed for the duration of the block length (T ).

Consider a transmission scheme in which we transmit over a period T − ν and send (fixed) known
symbols2 for the lastν transmissions. For the period of communication we can equivalently write the
received data as,

[
y[0] . . . y[T − 1]

]

︸ ︷︷ ︸

Y

=
[

H0 . . . Hν

]

︸ ︷︷ ︸

H








x[0] x[1] . . . x[T − ν − 1] 0 . . . 0
0 x[0] x[1] . . . x[T − ν − 1] 0 0

. . .
...

. . . . .
...

0 . . . 0 x[0] x[1] . . . x[T − ν − 1]








︸ ︷︷ ︸

X

+Z

(2)

2Taken without loss of generality to be0.
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i.e.,

Y = HX + Z (3)

whereY ∈ CMr×T , H ∈ CMr×(ν+1)Mt, X ∈ C(ν+1)Mt×T , Z ∈ CMr×T . Notice that the structure in (2) is
different from the flat-fading case, since the channel imposes a Toeplitz structure on the equivalent space-
time codewordsX given in (2)-(3). This structure makes the design of space-time codes different than in
the flat-fading case. For reference, the space-time codeword is completely determined by the matrixX(1)

given by,

X(1) =
[

x[0] x[1] . . . x[T − ν − 1] 0 . . . 0
]

(4)

2.2 Diversity-embedded code design criteria

A scheme with diversity orderd has an error probability at high SNR behaving asP̄e(SNR) ≈ SNR−d

[18]. More formally,

Definition 1 A coding scheme which has an average error probabilityP̄e(SNR) as a function of SNR that
behaves as

lim
SNR→∞

log(P̄e(SNR))
log(SNR)

= −d (5)

is said to have a diversity order ofd.

The fact that the diversity order of a space-time code is determined by the rank of the codeword
difference matrix is well known [18, 10]. Therefore, for flat-fading channels, it has been shown that the
diversity order achieved by a space-time code is given by [18]

d = Mr min
C1 6=C2

rank(C1 −C2) , (6)

whereC1,C2 ∈ CMt×T are the space-time codewords. Clearly the analysis in [18, 10] can be easily
extended to fading ISI channels, and we can write

d = Mr min
X1 6=X2

rank(X1 − X2) , (7)

whereX1,X2 ∈ C(ν+1)Mt×T are matrices with structure given in (2).
It is easy to see from the structure ofX in (2) that the rank of the matrixX is at most(ν + 1) times

the rank of the matrixX(1) (see (4)),i.e.,

rank(X) ≤ (ν + 1)rank(X(1)) (8)

The codebook structure proposed in [6] takes two information streams and outputs the transmitted
sequence{x(k)}. The objective is to ensure that each information stream gets the designed rate and
diversity levels. LetE denote the message set from the first information stream andF denote that from
the second information stream. Then analogous to Definition1, we can write the diversity order for the
messages as,

Da = lim
SNR→∞

log P̄e(E)

log(SNR)
, Db = lim

SNR→∞

log P̄e(F)

log(SNR)
. (9)
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Design criteria for fading ISI channels: The space-time codeword for fading ISI channels have the
structure given in (2). To translate this to the diversity embedded case, we annotate it with given messages
a ∈ E ,b ∈ F , asXa,b. Clearly we can then translate the code design criterion from (7) to diversity
embedded codes for ISI channels as,

min
a1 6=a2∈E

min
b1,b2∈F

rank(Xa1,b1
−Xa2,b2

)) ≥ Da/Mr (10)

In an identical manner, we can show for the message setF , we need the following to hold.

min
b1 6=b2∈F

min
a1,a2∈E

rank(Xa1,b1
−Xa2,b2

)) ≥ Db/Mr. (11)

As one can easily see, these are simple generalizations of the diversity-embedded code design criteria
developed in [2] to the fading ISI case.

2.3 Rate-Diversity Trade-off for Flat Fading Channels

For a given diversity order, it is natural to ask for upper bounds on achievable rate. For a flat Rayleigh
fading channel, this has been examined in [18] where the following result was obtained.

Theorem 2 ( [18, 14]) Given a constellation of size|A| and a system with diversity orderqMr, then the
rateR that can be achieved is given by

R ≤ (Mt − q + 1) (12)

in symbols per transmission,i.e., the rate isR log2 |A| bits per transmission.

Just as Theorem 2 shows the trade-off between achieving high-rate and high-diversity given a fixed trans-
mit alphabet constraint for a flat fading channel, there alsoexists a trade-off between achievable rate and
diversity for frequency selective channels, and we aim to characterize this trade-off3. A corollary will be
an upper bound on the performance of diversity embedded codes for ISI channels. This can be seen by
observing that we can easily extend the proof in [18, 14] to the case where we have the Toeplitz structure
as given in (2). Note that the diversity order of the codes forfading ISI channel is given by the rank of the
corresponding (Toeplitz) codeword difference matrix. Since this rank is upper bounded as seen in (8), we
see that we immediately obtain a trivial upper bound for the rate-diversity trade-off for th fading ISI case
as follows.

Lemma 3 If we use a constellation of size|A| and the diversity order of the system isq(ν + 1)Mr, then
the rateR in symbols per transmission that can be achieved is upper bounded as

R ≤ (Mt − q + 1). (13)

Note that in Theorem 8, we establish a corresponding lower bound that asymptotically (in block size)
matches this upper bound. Note that due to the zero padding structure for ISI channels, the effective rate
Reff is going to be smaller than the rate of space-time code. Sincewe do not utilizeν transmissions
over a block ofT transmissions for each of the antennas we can only hope for a rateR asymptotically in
transmission block sizeT .

3It is tempting to guess that the trade-off for the fading ISI case is just a(ν + 1)−fold increase in the diversity order.
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0 1

0 01
1

2

Figure 1: A binary partition of a QAM constellation

2.4 Set Partitioning of QAM and QPSK Constellations

Let Γ1, . . . , ΓL be aL-level partition whereΓi is a refinement of partitionΓi−1. We view this as a rooted
tree, where the root is the entire signal constellation and the vertices at leveli are the subsets that constitute
the partitionΓi. In this paper we consider only binary partitions, and therefore subsets of partitionΓi can
be labeled by binary stringsa1, . . . , ai, which specify the path from the root to the specified vertex.

Signal points in QAM constellations are drawn from some realization of the integer latticeZ2. We fo-

cus on the particular realization shown in Figure 1, where the integer lattice has been scaled by
[

1 1
1 −1

]

to give the latticeD2 = {(a, b)|a, b ∈ Z, a + b ≡ 0(mod2)}, and then translated by(1, 0). The con-
stellation is formed by taking all the points fromΛ that fall within a bounding regionR. The size of
the constellation is proportional to the area of the bounding region, and in Figure 1, the bounding region
encloses16 points.

Binary partitions of QAM constellations are typically based on the following chain of lattices

D2 ⊃ 2Z2 ⊃ 2D2 ⊃ 4Z2 ⊃ . . . 2i−1D2 ⊃ 2iZ2 ⊃ 2iD2 ⊃ . . .

In Figure 1, the subsets at level 1 are, to within translation, cosets of2Z2 in D2 and the subsets at
level 2 are cosets of2D2. In general the subsets at level2i are pairs of cosets of2iD2 where the union
is a coset of2iZ2, and the subsets at level2i + 1 are pairs of cosets of2i+1Z2 where the union is a coset
of 2iD2. Note that implicit in Figure 1 is a binary partition of QPSK,where the points1,−1, i,−i are
labeled00, 01, 11, 10 respectively. Binary partitions of PSK constellations aredescribed in Section 2.5.

2.5 Algebraic properties of binary partitions

The QAM constellations can be represented through a latticechainΛ|Λ1|Λ2| . . ., whereΛ = Z2 is the

integer lattice. The lattices in the chain are produced withthe generator matrixGk whereG =

[
1 1
1 −1

]

.

Given this, we can represent the2k-QAM constellation asΛ|Λk, i.e., the coset representatives ofΛ in Λk.
The latticeΛ can also be written as the set of Gaussian integersZ[i] = {a + bi : a, b ∈ Z}. Similarly we
can write the latticeΛk as{(a + bi)(1 − i)k : a, b ∈ Z}. This decomposition of the QAM constellation
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is illustrated in Figure 2. Therefore, using this we can represent any points in a 2L-QAM constellation
using aL-length bit string as

s − c(L) ≡
L−1∑

l=0

bl(1 − i)l mod(1 − i)L, (14)

where we definef ≡ g mod(1− i)L if there existc, d ∈ Z such thatf = (c + di)(1− i)L + g. Also in
(14) the constantc(L) = 1

2
for oddL and 1

2
(1 + i) for evenL.

-4 -2 2 4

-4

-2

2

4

Figure 2: Decomposition for QAM constellations

Binary partitions of PSK constellations are based on a chainof subfields of the cyclotomic fieldQ(ξ2L)
obtained by adjoiningξ2L = exp(2πi/2L) to the rational fieldQ. Analogous to (14), points in the2L-PSK
constellation can be represented as

s =

L−1∏

l=0

(ξ2l

)bl , (15)

whereξ = ξ2L = exp(2πi/2L) andξ2L

is a primitive element forQ(ξ2L−l). Note that1 − ξ is prime in
Z[ξ] and the quotientZ[ξ]/(1 − ξ) is the fieldZ2.

The fieldQ(ξ2L) is a degree2L−1 extension ofQ. Every rational number is a quotienta/b, where
a, b ∈ Z, and every complex number inQ(i) is a quotienta/b, wherea, b are Gaussian integers. In
general every complex number inQ(ξ2L) is a quotienta/b, wherea, b are integer linear combinations of
1, ξ2L, . . . , ξ2L−1−1

2L andb 6= 0. For more details about cyclotomic fields see [20]. Note thatξ2L−1

2L = −1,

so thatξj
2L = −ξ2L−1+j

2L , for j = 0, 1, . . . , 2L−1 − 1.
We have a chain of fields

Q = Q(ξ2) ⊂ Q(i) = Q(ξ4) ⊂ Q(ξ8) . . . ⊂ Q(ξ2L).

These observations can be used to establish the performanceof the multi-level diversity embedded codes
[5, 6].

3 Diversity embedded codes for ISI channels

In this section we will first recall the construction of multi-level (non-linear) space-time codes for trans-
mission overflat fadingchannels that are matched to a binary partition of a QAM or PSKconstellation

7



(see [6]). We will give the construction and refer the readerto [6] for proofs of code performance for the
flat-fading case. Following this we will use the structure imposed by the ISI on the space time code as in
(2) to construct multilevel codessuitable for ISI channelsusing binary matrices which are constructed in
Section 6.

3.1 Multi-Level Constructions for Flat Fading Channels

Given an L-level binary partition of a QAM or PSK signal constellation, a space-time codeword is an
arrayK = {K1,K2, . . . ,KL} determined by a sequence of binary matrices, where matrix,Ki specifies
the space-time array at leveli. A multi-level space-time codeis defined by the choice of the constituent
sets of binary matricesK1,K2, . . . ,KL. These sets of binary matrices provide rank guarantees necessary
to achieve the diversity orders required for each message set. For i = 1, . . . , L the binary matrixKi is
required to be in the setKi.

Given message sets{Ei}L
i=1, they are mapped to the space-time codewordX as shown below.

{E}L
i=1

f1
−→ K =






K(1, 1) . . . K(1, T )
...

...
...

K(Mt, 1) . . . K(Mt, T )






f2
−→ X =






x(1, 1) . . . x(1, T )
...

...
...

x(Mt, 1) . . . x(Mt, T )




 (16)

where the matrixK is specified byK(m, n) ∈ {0, 1}log(|A|) i.e., binary string andx(m, n) ∈ A. This
construction is illustrated in Figure 3 for a constellationsize ofL bits.

In summary, given the message set, we first choose the matricesK1, . . . .KL. The first mappingf1 is
obtained by taking matrices and constructing the matrixK ∈ CMt×T each of whose entries is constructed
by concatenating the bits from the corresponding entries inthe matricesK1, . . . .KL into L-length bit-
string. This matrix is then mapped to the space-time codeword through a constellation mapperf2, for
example the set-partition mapping given in Section 2.4. Using this sequence ofL matrices, we obtain the
space-time codeword as seen in Figure 3.

1

1

0

1
0

1

1

1

0

0
0

1

11

1

01

0

10

1

T

(
)

1 ,1
x

(
)

1 ,T
x

(x
M ,T

)

t

,
(Mx

1)
t

T T

0

1

0

0
0

1

00

0

Mt

Mt

f1

K1
KL K

K2 X

Mt

f2

Figure 3: Schematic representation of the multi-level codeconstruction.

For flat fading channels the setsKl, l = 1, . . . , L are binaryMt × T matrices such that for any distinct
pair of matricesA,B ∈ K the rank ofA−B is at leastMt − d. The size ofK is at most2(d+1)T since the
first d + 1 rows ofA andB must be distinct, and there is a classical example [8] that achieves the bound
(this construction was also given in [14, 15]).
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With the rate achieved on thelth layer defined asRl = 1
T

log |Kl| it can be shown [6] that this construc-
tion for QAM constellations achieves the rate-diversity tuple (R1, Mrd1(ν + 1), . . . , RL, MrdL(ν + 1)),
with the overall equivalent single layer code achieving rate-diversity point,(

∑

l Rl, MrdL(ν + 1)). Op-
timal decoding employs a maximum-likelihood decoder whichjointly decodes the message sets. This is
the decoder for which the performance is summarized in Theorem 4.

Theorem 4 [6] Let C be a multi-level space-time code for a QAM orM-PSK constellation of size2L

with Mt transmit antennas that is determined by constituent sets ofbinary matricesKl, l = 1, . . . , L with
binary rank guaranteesd1 ≥ d2 . . . ≥ dL. For joint maximum-likelihood decoding, the input bits that
select the codeword from theith matrixKi are guaranteed diversitydiMr in the complex domain when
transmitted over a flat fading channel.

3.2 Multi-Level Construction for ISI Channels

In this section we use the idea of multi-level diversity embedded codes for flat fading channels as in
Section 3.1 and the structure imposed by the ISI on the space time code as in (2) to motivate construction
and analysis of a class of binary matrices as follows.

We apply the idea suggested by the constructions of multi-level codes for flat-fading channels to the
fading ISI case. We do this by applying a zero padding as seen in (4) along with mappings of binary
matrices to the transmit signal alphabet. That is, we use themapping given in (16) for a block size ofT
with the constraint that the lastν entries of the mapping lead togivenalphabets (taken to be zero without
loss of generality). This is combined with binary setsKν,d, which we specify in definition 5. This means
that over a time periodT , we transmit a sequencex[0],x[1], . . . ,x[T − ν − 1] which are mapped from the
inputs bits using a structure given in (16). Therefore, given that we transmit the sequence shown in (17),

X(1) =
[

x[0] x[1] . . . x[T − ν − 1] 0 . . . 0
]
, (17)

we need a mapping from a binary matrix as in (16). For a constellation of size2L, we do this by taking
message sets{Ei}L

i=1 and mapping them to a codeword with the structure given in (17) as follows,

{Ei}
L
i=1

f1
−→ K(1) =






K(1, 1) . . . K(1, T )
...

...
...

K(Mt, 1) . . . K(Mt, T )






f2
−→ X(1) =

[
x[0] x[1] . . . x[T − ν − 1] 0 . . . 0

]
(18)

where the(m, n)th entry ofK(1) is given byK(m, n) ∈ {0, 1}log(|A|) i.e.,binary string. Since the mapping
f2 is just the set-partitioning mapping specified in Section 2.4, we need the lastν columns ofK(1) to be
given constantsfor all choices of the message sets{Ei}

L
i=1. That is, we need the following structure for

the matrixK(1),

K(1) =
[

k[0] k[1] . . . k[T − ν − 1] 0 . . . 0
]
, (19)

where, as before,{k[i]} are columns of binary strings of lengthL, and with no loss of generality, we have
specified the lastν columns ofK(1) to be the zero strings.

Given that we have an ISI channel, the transmitted codeword with the structure given in (17) gives
an equivalent codeword matrix with a Toeplitz structure, asspecified in (2). This Toeplitz structure is
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equivalent to mapping a Toeplitz matrixK of binary strings with the structure

K =








k[0] k[1] . . . k[T − ν − 1] 0 . . . 0

0 k[0] k[1] . . . k[T − ν − 1] 0 0

. . .
...

. . . . .
...

0 . . . 0 k[0] k[1] . . . k[T − ν − 1]








, (20)

to X using the constellation mappingf2. Therefore, as in the flat fading case, given the message set,
we first choose the binary matricesK(1)

1 , . . . .K
(1)
L , each of which have the structure specified below in

(21). These put together give us the matrix of binary stringsK(1). This in turn, due to the ISI channel, is
relates toK, the Toeplitz matrix of binary strings, given above in (20).Therefore, the choice of matrices
K

(1)
1 , . . . .K

(1)
L , for the ISI case, naturally is equivalent to a choice of Toeplitz binary matrices,K1, . . . .KL,

as specified in (22) below.
Therefore, for the multi-level coding structure we have used, analogous to the flat fading case studied

in [6], we need to study the rank properties of sets of binary Toeplitz matrices as specified below. Consider
the matrixB ∈ FMt×T

2 , with the following structure,

B =
[

c[0] c[1] . . . c[T − ν − 1] 0 . . . 0
]
, (21)

wherec[n] ∈ FMt×1
2 , n = 0, . . . , T − ν − 1. We define a mappingΘ : FMt×T

2 → F
(ν+1)Mt×T
2 by,

Θ (B) =








c[0] c[1] . . . c[T − ν − 1] 0 . . . 0

0 c[0] c[1] . . . c[T − ν − 1] 0 0

. . .
...

. . . . .
...

0 . . . 0 c[0] c[1] . . . c[T − ν − 1]








(22)

Definition 5 DefineKν,d ⊂ {B : B ∈ FMt×T
2 } to be the set of binary matrices of the form given in (21) if

for some fixedTthr they satisfy the following properties forT ≥ Tthr.

• For any distinct pair of matricesA,B ∈ Kν,d the rank of[Θ(A) − Θ(B)] is at leastd(ν + 1).

• |Kν,d| ≥ 2T (Mt−d+1)−νMt .

Note that in Section 3.1 the first step in code construction was constructing the setsKl, l = 1, . . . , L from
which the matricesK1, . . . .KL were chosen. In the case of flat fading channels there are constructions by
[8] but these do not satisfy the rank guarantee properties inDefinition 5. We will postpone the construction
of such sets of binary matrices{Kν,d} to Section 6, where we show that we can setTthr = Rν + (Mt −
1)(ν + 1)(2R − 1). More formally, in Section 6, we show that,

Lemma 6 For block sizeT ≥ Tthr = Rν + (Mt − 1)(ν + 1)(2R − 1), there exist sets of binary matrices
Kν,d which satisfy the requirements of Definition 5.

Adapted easily from [6] we can state the formal constructionguarantee for the diversity embedded
code for transmission over the ISI channel as follows.

Theorem 7 Let C be a multi-level space-time code for a QAM or PSK constellation of size2L with Mt

transmit antennas that is determined by constituent sets ofbinary matricesKl = Kν,dl
, l = 1, . . . , L, such

that d1 ≥ d2 . . . ≥ dL. For joint maximum-likelihood decoding, the input bits that select the codeword
from thelth setKl are guaranteed diversitydl(ν +1)Mr in the complex domain when transmitted over an
ISI channel withν + 1 taps.
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The proof of the Theorem 7 follows from the same techniques asin [6] by mapping binary matrices with
desired rank guarantees to rank guarantees in complex domain. In particular, given sets of (Toeplitz)
binary matricesKl = Kν,dl

, l = 1, . . . , L, which have rank guarantees of{dl}, given the set-partitioning
mappingf2, we can lift the binary rank properties to the complex domain. Therefore, the main challenge,
addressed in this paper, is the construction of such sets of binary matrices with rank guarantees.

Therefore the codewords fromlth layer achieve a rateRl = 1
T

log |Kν,dl
| and diversity orderdl(ν +

1)Mr. From Definition 5 it follows that the size ofKν,dl
can be made at least as large as2T (Mt−dl+1)−νMt.

Similar to [6] this construction for QAM constellations achieves the rate-diversity tuple(R1, Mrd1(ν +
1), . . . , RL, MrdL(ν + 1)), with the overall equivalent single layer code achieving rate-diversity point,
(
∑

l Rl, MrdL(ν + 1)).
In particular, we can construct a space-time code by choosing identical diversity requirements for all

the layers,i.e., d1 = d2 = . . . = dL. From this we conclude that the rate diversity tradeoff for the ISI
channel can be characterized as follows:

Theorem 8 (Rate Diversity Tradeoff for ISI Channels)Consider transmission over aν tap ISI channel
with Mt transmit antennas from a QAM or PSK signal constellationA with |A| = 2L and communication
over a time periodT such thatT ≥ Tthr. For diversity orderdisi = d(ν +1)Mr, the rate diversity tradeoff
is given by,

(Mt − d + 1) −
ν

T
Mt ≤ Reff ≤ (Mt − d + 1) .

The lower bound follows directly from Theorem 7 and the upperbound follows from lemma 3. Note that
the bounds in the above theorem are tight asT → ∞.

4 Diversity Embedded Trellis Codes

The construction of diversity embedded trellis codes for ISI channels is quite similar to the construction
of block codes. Again the idea is to construct binary convolutional codes with the following properties.

Definition 9 DefinePν,d ⊂ {B : B ∈ FMt×T
2 } to be the set of binary matrices of the form given in (21) if

for some fixedTthr they satisfy the following properties forT ≥ Tthr

• For any distinct pair of matricesA,B ∈ Pν,d the rank ofΓ(A) − Γ(B) is at leastd(ν + 1).

• log |Pν,d| ≥ R(T − ν − (ν + 1)(Mt − 1)(2R − 1)(2R−1)), whereR = Mt − d + 1.

Using these sets of matrices obtained by appropriately choosing the underlying convolutional codes the
diversity embedding properties are ensured.

We will postpone the construction of such sets of binary matrices to Section 4.1 where using Lemma
6 along with particular choices of convolutional codes we show the following result.

Lemma 10 For block sizeT ≥ Tthr = (2R − 1)ν + (2R − 1)(ν + 1)
(
(Mt − 2)(2R − 1) + R

)
, where

R = Mt − d + 1, there exist sets of binary matricesPν,d which satisfy the requirements of Definition 9.

As in the case of block codes in Section 3, given aL-level binary partition of a QAM or PSK
signal constellation, a diversity embedded convolutionalspace-time codeword is defined by an array
P = {P(1),P(2), . . . ,P(L)} determined by a sequence of binary matrices, where matrix,P(i) specifies
the space-time array at leveli. Adapted easily from [6] we can state the formal construction guarantee for
the diversity embedded trellis code for ISI channels as follows.

11
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. . .
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Figure 4: Binary matrices for each layer

Theorem 11 Let C be a multi-level space-time code for a QAM or PSK constellation of size2L with Mt

transmit antennas that is determined by constituent sets ofbinary matricesPl = Pν,dl
, l = 1, . . . , L, such

that d1 ≥ d2 . . . ≥ dL. For joint maximum-likelihood decoding, the input bits that select the codeword
from thelth setPl are guaranteed diversitydl(ν + 1)Mr in the complex domain.

The proof of the Theorem 11 follows from the same techniques as in [6] by mapping binary matrices
with desired rank guarantees to rank guarantees in complex domain. As in the proof of Theorem 7, the
main difficulty is in constructing these sets of binary matrices with thee given rank guarantees, using
convolutional codes. We give such a construction in Section4.1. Therefore the codewords fromlth layer
achieve a rateRl = 1

T
log |Pν,dl

| and diversity orderdl(ν + 1)Mr. From Definition 9 it follows that
the size ofPν,dl

can be made at least as large as2R(T−ν−(ν+1)(Mt−1)(2R−1)(2R−1)), which in the limit as
T → ∞ tends to2R. Similar to [6] this construction for QAM constellations achieves the rate-diversity
tuple (R1, Mrd1(ν + 1), . . . , RL, MrdL(ν + 1)), with the overall equivalent single layer code achieving
rate-diversity point,(

∑

l Rl, MrdL(ν + 1)).
We illustrate the idea by examining the construction for each of the layers. The construction is shown

in Figure 4. Given the input stream for each layeri, the first block in the figure maps these inputs to
the coefficients ofRi polynomialsui,j(D), j = 1, . . . , Ri in F2[D]. The second block multiplies the
input vector{ui,j(D)}Ri

j=1 by the generator matrixGi(D), with special structure which we define in the
following subsection, and generates a vectorui(D) of polynomials. The final blockΩ then maps this
vectorpi(D) to a binary matrixPi ∈ FMt×T

2 .
We define the setPi = Pν,i to be the set of all output matricesPi for all possible inputs on the stream

i. Note that these sets satisfy the properties in Definition 9.

4.1 Binary Convolutional Codes

Explicit construction of full diversity maximum rate binary convolutional codes was first shown in [11].
This was extended for general points on the rate diversity tradeoff for flat fading channels in [15]. We will
give constructions for such sets of binary matrices for ISI channels in this section.

Consider the construction for a particular layer above. We will see the construction of rateR symbols
per transmission, and rank distance of(ν + 1)(Mt − R + 1) binary codes for transmission over the ISI
channel. Represent the generator matrix or transfer function matrixG for this code by anR×Mt generator

12



matrix given by,

G =








g
(1)
1 (D) g

(2)
1 (D) · · · g

(Mt)
1 (D)

g
(1)
2 (D) g

(2)
2 (D) · · · g

(Mt)
2 (D)

...
. . . . . .

...
g

(1)
R (D) g

(2)
R (D) · · · g

(Mt)
R (D)








(23)

Denotingξ = D(ν+1)(2R−1) we choose

g
(q)
l (D) = ξ(q−1)2(l−1)

. (24)

The input message polynomial is represented by the vector ofmessage polynomial

u(D) =
[

u1(D) u2(D) · · · uR(D)
]t

(25)

whereui(D) ∈ F2[D]. The code polynomial vector is given by

p(D) = Gt(D)u(D)

=
[

p1(D) p2(D) · · · pMt
(D)

]t
. (26)

TheMt × T code matrix which is actually transmitted on the antenna is given by

P =






p0
1 · · · pT−1

1
...

. . .
...

p0
Mt

· · · pT−1
Mt




 (27)

wherepj
i is thejth coefficient of the polynomialpi in (26). We make a distinction betweenp(D) which

is a vector of polynomials inD andP which is a binary matrix. This mapping is denoted byΩ i.e.
Ω(p(D)) = P

Note that in order that the matrixP satisfies the structure in (21) we require theν largest coefficients
of eachpi(D) in (26) to be zero,i.e.,

pj
i = 0 ∀ i ∈ {1, . . . , Mt} and ∀ j ∈ {T − ν − 1, . . . , T − 1}. (28)

With this constraint we get that,

deg(ui(D)) ≤ T − 1 − ν − max
u,v

deg(g(v)
u )

= T − 1 − ν − (ν + 1)(Mt − 1)(2R − 1)(2R−1)

where the last equality follows from our particular choice of g
(v)
u given in (24). Note that this convolutional

code corresponds to a effective rate of

Reff =
log
(

2T−1−ν−(ν+1)(Mt−1)(2R−1)(2R−1)+1 · 2R
)

T

=
R
(
T − ν − (ν + 1)(Mt − 1)(2R − 1)(2R−1)

)

T
bits/Tx (29)
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which asymptotically tends toR asT → ∞.
Also, observe that,

Θ(P) =








Ω(p(D))
Ω(Dp(D))

...
Ω(Dνp(D))








. (30)

From this we can conclude that,

Θ(P)) = Ω
(

G̃t(D)u(D)
)

whereG̃ ∈ F
R×(ν+1)Mt

2 is given by,

G̃ =









g
(1)
1 (D) g

(2)
1 (D) · · · g

(Mt)
1 (D) Dg

(1)
1 (D) · · · Dg

(Mt)
1 (D) · · · Dνg

(1)
1 (D) · · · Dνg

(Mt)
1 (D)

g
(1)
2 (D) g

(2)
2 (D) · · · g

(Mt)
2 (D) Dg

(1)
2 (D) · · · Dg

(Mt)
2 (D) · · · Dνg

(1)
2 (D) · · · Dνg

(Mt)
2 (D)

...
. . .

. . .
...

g
(1)
R (D) g

(2)
R (D) · · · g

(Mt)
R (D) Dg

(1)
R (D) · · · Dg

(Mt)
R (D) · · · Dνg

(1)
R (D) · · · Dνg

(Mt)
R (D)









(31)

With our particular choice ofg(q)
l (D), given in (24), we can write this as,

G̃t =

























1 . . . 1 1

ξ ξ2 . . . ξ2R−1

ξ2 (ξ2)2 . . . (ξ2)2R−1

...
...

ξ(Mt−1) (ξ(Mt−1))2 . . . (ξ(Mt−1))2R−1

D . . . D D
...

...
Dξ(Mt−1) D(ξ(Mt−1))2 . . . D(ξ(Mt−1))2R−1

...
...

...
...

Dνξ(Mt−1) Dν(ξ(Mt−1))2 . . . Dν(ξ(Mt−1))2R−1

























(32)

Define the polynomial

f(x) =

R−1∑

l=0

ul(D)x2l

, (33)

where{ul(D)}R−1
l=0 ∈ F2[D]. Then from (32) withξ = D(ν+1)(2R−1) we have,

G̃t(D)u(D) =














f(1)
f(ξ)

...
f(ξ(Mt−1))

Df(1)
...

Dνf(ξ(Mt−1))













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The proof now that the left null space ofΩ
(

G̃t(D)u(D)
)

overF2 is of dimension at mostd(ν +1) is the

same as the proof of Theorem 21 by choosingT such that,

T ≥ (2R − 1)ν + (2R − 1)(ν + 1)
(
(Mt − 2)(2R − 1) + R

)
.

Therefore, given the result of Theorem 21, which is proved inSection 6.3, we can prove the rank guaran-
tees of the convolutional codes.

5 Rate Guarantees

In this section we will give background needed for construction of binary codesKν,d with properties given
in Definition 5. We start in Section 5.1 with a representationof Kν,d in terms of polynomials overF2T

which will be useful in proving the construction of binary codesKν,d. In Section 5.2 we will list some
definitions which we will use in proving rank guarantees in Section 6. Note that these definitions are not
required for constructingKν,Mt

, i.e., maximal rank sets, for which the proof is much simpler as seenin
Section 6.1. Finally in Section 5.3 we will show that|Kν,d| ≥ 2RT−νMt, whereR = Mt − d + 1. The rank
properties ofKν,d are given in Section 6.

5.1 Polynomial representation

Given a rateR, we define the linearized polynomial

f(x) =
R−1∑

l=0

flx
2l

, (34)

where{fl}
R−1
l=0 ∈ F2T . To develop the binary matrices with structure given in (21), we definecf ∈ FMt

2T

cf =
[

f(1) f(ξ) . . . f(ξ(Mt−1))
]t

. (35)

whereξ = α(2R−1)(ν+1), andα is a primitive element ofF2T . Let f (0)(ξi) andf (k)(ξi) be the representations
of f(ξi) andαkf(ξi) in the basis{α0, α1, . . . , αT−1} respectivelyi.e., f (0)(ξi), f (k)(ξi) ∈ F1×T

2 . We obtain
a matrix representationCf ∈ FMt×T

2 of cf as,

Cf =
[

f (0)t(1) f (0)t(ξ) . . . f (0)t(ξ(Mt−1))
]t

. (36)

Now, in order to get the structure required in (21), we need tostudy the requirements off so that the
last ν elements inCf are 0 for all the Mt rows. Note that thejth row of Cf is given by the binary
expansion off(ξj−1) ∈ F2T in terms of the basis{α0, α, . . . , αT−1}, whereα is a primitive element of
F2T . The coefficients in this basis expansion can be obtained using the trace operator described below for
completeness4.

Consider an extension fieldF2T of the base fieldF2. If α ∈ F2T is a primitive element ofF2T then
(α0, α1, . . . , αT−1) form a basis ofF2T overF2 and any elementβ ∈ F2T can be uniquely represented in
the form,

β = β0α
0 + β1α

1 + . . . βT−1α
T−1 with βi ∈ F2, for 0 ≤ i ≤ (T − 1).

4More background can be found in standard textbooks on finite fields [13, 16].
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To solve for the coefficientsβi we will use the trace function and trace dual bases. Note thatfor any
elementβ ∈ F2T the trace of the elementβ relative to the base fieldF2 is defined as,

Tr2T /2 (β) = β + β2 + β22

+ . . . + β2T−1

.

Given thatβ, β̃ ∈ F2T the trace function satisfies the following properties,

• Tr2T /2(β) ∈ F2.

• Tr2T /2(β + β̃) = Tr2T /2(β) + Tr2T /2(β̃).

• Tr2T /2(λβ) = λTr2T /2(β), if λ ∈ F2.

Also given the basis(α0, α1, . . . , αT−1) the corresponding trace dual basis(θ0, θ1, . . . , θT−1) is defined
to be the unique set of elements which satisfy the following relation for0 ≤ i, j ≤ (T − 1),

Tr2T /2

(
θiα

j
)

=

{

0 for i 6= j

1 for i = j

The fact that the trace dual basis exists and is unique can be found in standard references such as [13, 16].
Therefore givenβ ∈ F2T , we can findβi by using the properties of the trace function and noting that,

Tr2T /2 (θiβ) = Tr2T /2

(

θi

T−1∑

j=0

βjα
j

)

=

T−1∑

j=0

Tr2T /2

(
θiβjα

j
)

=

T−1∑

j=0

βjTr2T /2

(
θiα

j
)

= βi

where the last equality follows from the definition of the trace dual basis. Therefore binary matrixB given
in (21) can be represented in terms of the setS defined as

S =
{
f : f ∈ FR

2T , Tr2T /2

(
θif(ξj)

)
= 0 ∀i ∈ {T − ν, . . . , T − 1} and ∀j ∈ {1, . . . , Mt}

}
(37)

Associate tof ∈ S the codeword vectoruf ∈ F
(ν+1)Mt×1

2T given by,

uf =
[

ct
f αct

f . . . ανct
f

]t
(38)

Associate with every such codeworduf the codeword matrixUf ∈ F
(ν+1)Mt×T
2 given by the representa-

tion of each element ofuf in the basis{α0, α1, . . . , αT−1}.
Sincef ∈ S we know that the lastν elements inCf are0 for all theMt rows. Therefore we can see

thatf (k)(ξi) is a cyclic shift byk positions off(ξi). Hence, fori ∈ {0, 1, . . . , ν} we can write,

C
(i)
f =

[
f (i)t(1) f (i)t(ξ) . . . f (i)t(ξ(Mt−1))

]t
, (39)

whereC(i)
f represents the matrix obtained by a cyclic shift of all the rows of the matrixCf by i positions.

For transmission over an ISI channel, as seen in Section 3.2,it can be shown from equation (2) that
the effective binary transmitted codeword matrix for a particularf is of the form

Uf =
[

Ct
f C

(1)t
f . . . C

(ν)t
f

]t

(40)

Clearly we see thatKν,d = {Cf : f ∈ S, rank(Uf ) ≥ d(ν + 1)}. We will show in 6.3 that indeed for
R = Mt − d + 1 thatKν,d = {Cf : f ∈ S}, i.e., rank(Uf ) ≥ d(ν + 1), ∀f ∈ S.
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5.2 Notation and Definitions

We will need the following definitions in the construction ofthe basis vectors of the null space ofUf .

1. We define a setΓ ⊆ F2T which will be used extensively in the proof in Section 6 as,

Γ = {γ ∈ F2T : γ =
ν∑

t=0

δtα
t, δt ∈ F2}. (41)

2. Given a binary vectorb ∈ F
(ν+1)Mt×1
2 defineΨ : F

(ν+1)Mt×1
2 → Γ1×Mt as,

Ψ(b) =
[ ∑ν

i=0 biMt+1α
i . . .

∑ν
i=0 biMt+Mt

αi
]

︸ ︷︷ ︸

g

(42)

Note that the mappingΨ is a one-to-one mapping betweenb andg, due to the linear independence
of {α0, α, . . . , αν}.

3. For a given fixedcf ∈ FMt×1
2T defineGf ⊆ Γ1×Mt such that,

Gf = {g ∈ Γ1×Mt : gcf = 0} (43)

4. Motivated by the mapping in (42), for eachg(i) ∈ Gf we will use the following representation:

g(i) =
[

g
(i)
0 . . . g

(i)
Mt−1

]

(44)

g
(i)
k =

ν∑

j=0

δ
(i)
k,jα

j where δ
(i)
k,j ∈ F2

5. For an elementγ ∈ Γ given byγ =
∑ν

j=0 δjα
j, define

deg(γ) = max
j

{j : δj 6= 0} (45)

6. For eachg ∈ Gf define,

deg(g) = max
k

{j : δk,j 6= 0} (46)

7. For eachg(i) ∈ G define a functionΦ : Γ1×Mt → F1×Mt

2 by,

Φ(g(i)) =
[

δ
(i)
0,0 δ

(i)
1,0 . . . δ

(i)
Mt−1,0

]

(47)

8. Given a set of elementsg(1), g(2), . . . , g(d) ∈ Γ1×Mt define,

D
(
g(1), g(2), . . . , g(d)

)
=
{

g : g =
∑d

i=1 γig
(i), where for alli, γi ∈ Γ, γig

(i) ∈ Γ1×Mt

}

(48)

Note that it then directly follows that,

|D
(
g(1), g(2), . . . , g(d)

)
| ≤ 2d(ν+1). (49)
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5.3 Set cardinality

Using the polynomial representation given in Section 5.1, we can give a lower bound on the rate as
follows.

Theorem 12 ConsiderT > (ν + 1)Mt then a lower bound to the cardinality of the setS is given by
|S| ≥ 2RT−νMt or lower bound to effective rateReff = 1

T
log |S| is, Reff = R − νMt

T
.

Proof. Let λθi,βj
be the mapping,

λθi,βj
:
[

fR−1 . . . f1 f0

]t
7→ Tr2T /2(θif(βj)),

for someβj ∈ F2T , j = 1, . . . , Mt. This is homomorphism of theF2-vector spaceFR
2T into F2. The

cardinality of the setS is given by,

|S| =

∣
∣
∣
∣
∣

⋂

i,j

ker(λθi,βj
)

∣
∣
∣
∣
∣

i ∈ {T − ν, . . . , T − 1} & j ∈ {1, . . . , Mt}

Note that the range space ofλθi,βj
is the range of the trace function,i.e.,{0, 1}. Noting that sinceT > (ν+

1)Mt and the rank of the equivalent matrix transformation of[λθT−ν ,β1, . . . , λθT−1,βMt
]t at mostνMt and

therefore the null space is of dimension at leastRT − νMt. Therefore, we conclude that,|S| ≥ 2RT−νMt.

The Theorem 12 implies that we do not lose too much, in terms ofrate, by the zero padding at the end of
the transmission block. In particular it is a constant factor which does not depend onT and therefore can
be made small by taking large enoughT . Note that this lower bound could be loose, and we may not lose
as much rate asνMt

T

We still need to show that this set satisfies the rank guarantees, which we will do next in Section 6.

6 Rank Guarantees

In Section 5, see (37), we have already constructed codes (binary sets)S which satisfy the structure in
(21) and that|S| ≥ 2T (Mt−d+1)−νMt. Therefore, this setS is a good candidate for the construction of
Kν,d, needed for the multilevel construction of Section 3.2. In this section we will prove that the setS
in (37) also satisfies the rank guarantees given in Definition5 and hence proving Lemma 6. To illustrate
the proof techniques, we will first prove the rank guaranteesfor the maximal rank binary codesi.e., Kν,Mt

in Section 6.1. However, the argument for arbitrary rank needs a more sophisticated argument. We will
explore the structure of the null space ofUf and find a basis for it in 6.2. Using the structure of the basis
we will finally bound the cardinality and dimension of the null space giving the required rank guarantees
for Kν,d with Tthr = Rν + (Mt − 1)(ν + 1)(2R − 1).

6.1 Maximal rank distance codes

In this section we will show that that ifR = 1 then for allf ∈ S, rank(Uf) ≥ Mt(ν + 1). In fact for this
caseTthr = Mt(ν + 1) is enough.
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Theorem 13 ((Maximal rank distance codes))Letf(x) = f0x, as in (34) withR = 1 andT ≥ Mt(ν +
1). Then forS defined in (37),1

T
log |S| ≥ 1 − νMt

T
and∀f ∈ S, rank(Uf ) ≥ Mt(ν + 1) over the binary

field.

Proof. The rate lower bound is directly from Theorem 12. We prove theresult by contradiction. Suppose
thatO = {Uf : f ∈ S} has rank distance less than(ν + 1)Mt, then there exists a vectoruf 6= 0 for some
f ∈ S such that the corresponding binary matrixUf has binary rank less than(ν + 1)Mt (as the code is
linear). So there exists a non-trivial binary vector spaceB ⊆ FT

2 such that for everyb ∈ B,

btUf = 0 ⇐⇒

(ν+1)Mt∑

i=1

biUf(i, j) = 0, j = 1, . . . , T, (50)

whereUf(i, j) is the(i, j)th entry ofUf and we have used(·)t to denote vector transpose. Since each
row of Uf is an expansion of the rows ofuf in the basis{α0, α, . . . , αT−1}, we can write as operations
overF2T ,

btuf =

(ν+1)Mt∑

i=1

biuf(i) =

(ν+1)Mt∑

i=1

bi

T∑

j=1

Uf(i, j)α
j−1 =

T∑

j=1

αj−1





(ν+1)Mt∑

i=1

biUf(i, j)



 , (51)

where we have used the basis expansion. Due to the linear independence of{α0, α, . . . , αT−1}, it is clear
from (50) and (51)that,

btUf = 0 ⇐⇒ btuf = 0. (52)

Now, we suppose that forb 6= 0,

btuf =
ν∑

i=0

Mt−1∑

k=0

bi+k(ν+1)α
if(αk(ν+1)) =

ν∑

i=0

Mt−1∑

k=0

bi+k(ν+1)α
if0α

k(ν+1)

= f0

(
ν∑

i=0

Mt−1∑

k=0

bi+k(ν+1)α
i+k(ν+1)

)

= 0 (53)

Thus, for everyb ∈ B the element
(
∑ν

i=0

∑Mt−1
k=0 bi+k(ν+1)α

i+k(ν+1)
)

is a zero off(x). But we know that

{αi+k(ν+1)} are linearly independent fork ∈ {0, 1, . . . , Mt − 1} andi ∈ {0, 1, . . . , ν} asT ≥ (ν + 1)Mt.
Therefore there is only one trivial solution to the equation(53) i.e., bi+k(ν+1) = 0 for i = {0, . . . , ν}, k =
{1, . . . , ν}. This contradicts the fact that the null space is non-trivial since we cannot haveb 6= 0 and
b ∈ B. Hence all matrices inO have rank equal toMt(ν + 1).

6.2 Minimal Basis Vectors

To prove the rank distance properties in this subsection we will show the existence of elements which
satisfy the following properties.

Definition 14 (Properties of Minimal Basis Vectors)Given a fixed nonzero vectorcf ∈ FMt×1
2T define

the associatedGf as in equation (43). Then the elementsg(1), g(2), . . . , g(d) ∈ Gf are called the minimal
basis vectors if they satisfy the following properties:
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(i). For eachg(i), ∃ k such thatδ(i)
k,0 = 1, i.e., Φ(g(i)) 6= 0.

(ii). Φ(g(1)), . . . , Φ(g(d)) are linearly independent overF2.

(iii). For all subsetsS ⊆ {1, . . . , d} there do not exist
{
γi : i ∈ S, γi ∈ Γ and γig

(i) ∈ Γ1×Mt
}

, such
that,

deg(
∑

i∈S

γig
(i)) < max

i∈S
deg(γig

(i))

(iv). We have,
Gf = D

(
g(1), g(2), . . . , g(d)

)
, (54)

whereD(·, . . . , ·) is defined as in (48) as,

D
(
g(1), g(2), . . . , g(d)

)
=
{

g : g =
∑d

i=1 γig
(i), where for alli, γi ∈ Γ, γig

(i) ∈ Γ1×Mt

}

(55)

To prove the existence of such minimal basis vectors, we needthe following lemmas. We state the
lemma 15 required in the proofs and then prove it in the appendix.

Lemma 15 Assume there existp elementsg(1), . . . , g(p) ∈ Gf which do not satisfy property (iii)i.e., for
some subsetS ⊆ {1, . . . , p} there exist

{
γi : i ∈ S, γi ∈ Γ and γig

(i) ∈ Γ1×Mt
}

such that,

deg(
∑

i∈S

γig
(i)) < max

i∈S
deg(γig

(i)).

Then there exists a setS ′ ⊆ S andk ∈ S, k /∈ S ′ such that,

deg

(

g(k) +
∑

i∈S′

γig
(i)

)

< deg
(
g(k)
)

and

deg
(
γig

(i)
)
≤ deg

(
g(k)
)

∀i ∈ S ′

where by definition we have thatγig
(i) ∈ Γ1×Mt for all i ∈ S ′.

Lemma 16 If there existp elementsg(1), . . . , g(p) ∈ Gf satisfying (i), (ii) and (iii) in Definition 14 but not
satisfying (iv) then it is possible to form̃g(1), . . . , g̃(p), g̃(p+1) satisfying (i), (ii) and,

D(g(1), . . . , g(p)) ⊂ D(g̃(1), . . . , g̃(p), g̃(p+1)) (56)

Proof. Since we haveg(1), . . . , g(p) satisfying (i), (ii) and (iii) but not satisfying (iv) thereexistsg(p+1) ∈
Gf such thatg(p+1) /∈ D(g(1), . . . , g(p)). If Φ(g(p+1)) = 0, then clearly we can writeg(p+1) = αtğ

(p+1),
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whereΦ(ğ(p+1)) 6= 0, since we are only taking out the commonα(·) factor out ofg(p+1). Note that clearly
ğ(p+1) ∈ Gf and sinceg(1), . . . , g(p) satisfy (iii), we can show that̆g(p+1) /∈ D(g(1), . . . , g(p)).5

If Φ(g(p+1)) is linearly independent ofΦ(g(1)), . . . , Φ(g(p)) then(g(1), . . . , g(p+1)) satisfy (i) and (ii)
and (56) follows directly by choosing̃g(i) = g(i), i = 1, . . . p + 1.

If Φ(g(1)), . . . , Φ(g(p+1)) are not linearly independent then,

w1Φ(g(1)) + w2Φ(g(2)) + . . . wp+1Φ(g(p+1)) = 0 (57)

for w1, . . . , wp+1 ∈ F2 and not all equal to zero. Letg(k) be such thatwk 6= 0 and

deg(g(k)) ≥ deg(g(i)) ∀i, such that wi = 1 (58)

Sincew1, . . . , wp+1 ∈ F2, we see that,w1Φ(g(1)) + w2Φ(g(2)) + . . . wp+1Φ(g(p+1)) = Φ(w1g
(1) + . . . +

wp+1g
(p+1)) = 0. Therefore, there is a commonα(·) factor inw1g

(1) + . . . + wp+1g
(p+1) i.e., there isg̃(k)

andt such that,
(
w1g

(1) + . . . + wkg
(k) + . . . + wp+1g

(p+1)
)

= αtg̃(k),

wheret is chosen to be the minimum value such thatΦ(g̃(k)) 6= 0. Using this we can define,

g̃(k) = α−t
(
w1g

(1) + . . . + g(k) + . . . + wp+1g
(p+1)

)
(59)

g̃(i) = g(i) ∀i 6= k,

where we have used the fact thatwk = 1. Note that

deg(g̃(k)) ≤ deg(g(k)) − t (60)

Clearly (i) is satisfied for̃g(1), . . . , g̃(p+1). Moreover,g̃(1), . . . , g̃(p+1) ∈ Gf sinceg(1), . . . , g(p+1) ∈ Gf .
We will now show that,

D(g(1), . . . , g(p+1)) ⊂ D(g̃(1), . . . , g̃(p+1)) (61)

Let g ∈ D(g(1), . . . , g(p+1)), i.e.,

g = γ1g
(1) + . . . + γp+1g

(p+1) (62)

such thatγig
(i) ∈ Γ1×Mt. Note the important fact that sinceγig

(i) ∈ Γ1×Mt we have that

deg(γi) + deg(g(i)) ≤ ν, (63)

where we have used the definitions given in (45) and (46). Now consider,

γ̃k = γkα
t (64)

γ̃i = wiγk + γi ∀i 6= k

5Assume that̆g(p+1) ∈ D(g(1), . . . ,g(p)) butg(p+1) /∈ D(g(1), . . . ,g(p)). Sinceg(p+1) ∈ Gf we haveg(p+1) ∈ Γ1×Mt .
The setD(g(1), . . . ,g(p)) contains all combinations ofγig

(i) such thatγig
(i) ∈ Γ1×Mt . The only way this is possible is if for

some set of{γi},
∑

αt(γig
(i)) ∈ Γ1×Mt butαtγkg

(k) /∈ Γ1×Mt for somek. This implies that,

deg
(

αtγkg
(k) +

∑

αt(γig
(i))
)

< deg
(

αtγkg
(k)
)

.

Sinceg(1), . . . ,g(p) satisfy (iii) this is not possible. Therefore, we can alwayschooseg(p+1) ∈ Gf such thatg(p+1) /∈
D(g(1), . . . ,g(p)) such thatΦ(g(p+1)) 6= 0.
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Then,

γ̃1g̃
(1) + . . . + γ̃p+1g̃

(p+1) = γkα
t
[
α−t(w1g

(1) + . . . + g(k) + . . . + wp+1g
(p+1))

]
+
∑

i6=k

(wiγk + γi)g
(i)

= γkg
(k) +

∑

i6=k

(
wiγkg

(i)
)

+
∑

i6=k

(
γig

(i) + wiγkg
(i)
)

= γ1g
(1) + . . . + γp+1g

(p+1)

where the last step follows as the field has characteristic2. The only thing to verify is that̃γi ∈ Γ and
γ̃ig̃

(i) ∈ Γ1×Mt. Trivially, γ̃i ∈ Γ andγ̃ig̃
(i) ∈ Γ1×Mt for all i 6= k. Also note that since,

deg(γ̃k) + deg(g̃(k))
(a)
= deg(γk) + t + deg(g̃(k))

(b)

≤ deg(γk) + deg(g(k))
(c)

≤ ν,

where(a) follows due to (64),(b) follows from (60) and(c) follows from (63). Therefore,̃γk ∈ Γ and
γ̃kg̃

(k) ∈ Γ1×Mt. Hence∀g ∈ D(g(1), . . . , g(p+1)), g ∈ D(g̃(1), . . . , g̃(p+1)). Therefore,

D(g(1), . . . , g(p+1)) ⊂ D(g̃(1), . . . , g̃(p+1)) (65)

Also, sincet ≥ 1,

deg(g̃(k)) < deg(g(k)) (66)

anddeg(g̃(i)) = deg(g(i)) ∀i 6= k. Therefore for the new set{g̃(i)}p+1
i=1 , the degree is smaller than or equal

to that of the previous set{g(i)}p+1
i=1 . Therefore, since we are reducing the degree of atleast one element

and the maximal degree of the set is bounded above byν, if we iterate this step, the process will terminate.
We utilize this idea in the following. Now we check ifΦ(g̃(1)), . . . , Φ(g̃(p+1)) are linearly independent. If
not, we continue the process defined in (59) till we obtaing̃(1), . . . , g̃(p+1) such thatΦ(g̃(p)), . . . , Φ(g̃(p+1))
are linearly independent ordeg(g̃(1)) = . . . = deg(g̃(p+1)) = 0. If the former occurs, we have obtained
the required set{g̃(i)}. If the latter occurs, and ifΦ(g̃(p)), . . . , Φ(g̃(p+1)) are linearly independent, again
we are done. Now, if the latter occurs,i.e.,deg(g̃(1)) = . . . = deg(g̃(p+1)) = 0 andΦ(g̃(1)), . . . , Φ(g̃(p+1))
are linearly dependent, then since the degrees are equal to zero we just take the set of independentg̃(i).
We know that using these sets of vectors we can satisfy (i) and(ii). Note thatD(g(1), . . . , g(p+1)) cannot
be equal to the setGf without the elements(g(1), . . . , g(p+1)) satisfying properties (i), (ii)6. Therefore,
using this iterative process we can construct the required set {g̃(i)} since in (65) we have already shown
that the nesting property needed in (56) is satisfied.

Note that in lemma 16D(g(1), . . . , g(p)) is a proper subset ofD(g̃(1), . . . , g̃(t)) as the elementg(p+1)

is not contained inD(g(1), . . . , g(p)).

6If property (ii) is not satisfied,Φ(g(1)), . . . , Φ(g(p+1)) are not linearly independenti.e.,

w1Φ(g(1)) + w2Φ(g(2)) + . . . wp+1Φ(g(p+1)) = 0 (67)

for w1, . . . , wp+1 ∈ F2 and not all equal to zero. Since
∑

i wiΦ(g(i)) = Φ
(∑

i wi(g
(i))
)

= 0, there is a commonα(·) factor
in w1g

(1) + . . . + wp+1g
(p+1) and the elementg =

∑

i α−1wi
︸ ︷︷ ︸

γi

g(i) is contained inGf but not inD(g(1), . . . ,g(p+1)), since

γi /∈ Γ.
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Lemma 17 If there exist̃g(1), . . . , g̃(p+1) ∈ Gf satisfying (i) and (ii) but not satisfying (iii) in Definition
14 it is possible to construct̂g(1), . . . , ĝ(p+1) satisfying (i), (ii) and (iii) in Definition 14 and

D(g̃(1), . . . , g̃(p+1)) ⊂ D(ĝ(1), . . . , ĝ(p+1)) (68)

Proof. Given g̃(1), . . . , g̃(p+1) ∈ Gf satisfying (i) and (ii) but not satisfying (iii) in Definition 14. From
lemma 15 we conclude that there exists a setS ⊂ {1, . . . , d} andk /∈ S and{γi})i∈S whereγi ∈ Γ, i ∈ S,
such that,

deg

(

g̃(k) +
∑

i∈S

γig̃
(i)

)

< deg(g̃(k)) (69)

andwe also have

deg(γig̃
(i)) ≤ deg(g̃(k)) ∀i ∈ S. (70)

Therefore we havedeg(g̃(k)) ≥ deg(g̃(i)) for all i ∈ S. Define,

ĝ(k) = g̃(k) +
∑

i∈S

γig̃
(i) (71)

ĝ(i) = g̃(i) ∀i 6= k

First we show that property (i) is satisfied byĝ(1), . . . , ĝ(p+1). This can be easily seen from the following.
We already know thatΦ(ĝ(i)) 6= 0 sinceĝ(i) = g̃(i). Moreover,{Φ(ĝ(i))}i6=k are linearly independent
since we know that{g̃(i)} satisfy (i) and (ii) of Definition 14. Now, letγi =

∑ν
b=0 δ

(i)
b αb whereδ

(i)
b ∈ F2.

Then we have,

Φ(ĝ(k)) = Φ(g̃(k) +
∑

i∈S

ν∑

b=0

δ
(i)
b αbg̃(i)) (72)

= Φ(g̃(k)) +
∑

i∈S

(

δ
(i)
0 Φ(g̃(i))

)

+
∑

i∈S

ν∑

b=1

δ
(i)
b Φ(αbg̃(i))

= Φ(g̃(k)) +
∑

i∈S

δ
(i)
0 Φ(g̃(i))

Note that sinceδ0 ∈ F2 andΦ(g̃(1)), . . . , Φ(g̃(p+1)) were independent to begin with, and since{g̃(i)}
satisfy (i), we see that the above implies thatΦ(ĝ(k)) 6= 0 and hencêg(1), . . . , ĝ(p+1) satisfy property (i)
of Definition 14.

Now suppose thatΦ(ĝ(k)) is linearly dependent on{Φ(ĝ(i))}i6=k, sinceĝ(i) = g̃(i), i 6= k we can write,

Φ(ĝ(k)) =
∑

i6=k

θiΦ(ĝ(i)) =
∑

i6=k

θiΦ(g̃(i)),

for θi ∈ F2, where sinceΦ(ĝ(k)) 6= 0 we have that{θi} is not all zero. Due to (72) this implies that,

Φ(g̃(k)) +
∑

i∈S

δ
(i)
0 Φ(g̃(i)) =

∑

i6=k

θiΦ(g̃(i)),
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which means that

Φ(g̃(k)) =
∑

i∈S

δ
(i)
0 Φ(g̃(i)) +

∑

i6=k

θiΦ(ĝ(i)),

which contradicts the linear independence ofΦ(g̃(1)), . . . , Φ(g̃(p+1)) sincek /∈ S. This implies that
Φ(ĝ(k)) is linearly independent ofΦ(ĝ(i)) = Φ(g̃(i)) for all i 6= k. Thereforeĝ(1), . . . , ĝ(p+1) satisfy (i)
and (ii) of Definition 14.

To show (68) let̃g ∈ D(g̃(1), . . . , g̃(p+1)), i.e.,

g̃ = γ̃1g̃
(1) + . . . + γ̃p+1g̃

(p+1). (73)

Choosêγi = γ̃i. i /∈ S, andγ̂i = γ̃i + γiγ̃k for all i ∈ S. Note that{γi}i∈S is defined in (69). Therefore,
sincek /∈ S, we have

γ̂1ĝ
(1) + . . . + γ̂p+1ĝ

(p+1) = γ̃k

(

g̃(k) +
∑

i∈S

γig̃
(i)

)

+
∑

i∈S

(γ̃i + γiγ̃k) g̃
(i) +

∑

i/∈S,i6=k

γ̃ig̃
(i)

= γ̃kg̃
(k) +

(
∑

i∈S

γ̃kγig̃
(i)

)

+

(
∑

i∈S

γ̃ig̃
(i)

)

+

(
∑

i∈S

γiγ̃kg̃
(i)

)

+




∑

i/∈S,i6=k

γ̃ig̃
(i)





= γ̃kg̃
(k) +

(
∑

i6=k

γ̃ig̃
(i)

)

where the last step follows as the characteristic of the fieldis 2. We still need to show that̂γi ∈ Γ and
γ̂iĝ

(i) ∈ Γ1×Mt. Note that due to (70), we have

deg(g̃(i)) + deg(γ̃i) ≤ deg(g̃(k)) ∀i ∈ S (74)

Also, since we have (73), we know thatγ̃i ∈ Γ, ∀i andγ̃ig̃
(i) ∈ Γ1×Mt , ∀i, hence

deg(g̃(i)) + deg(γ̃i) ≤ ν, ∀i. (75)

Since we havêγi = γ̃i. i /∈ S, and from (71), we know that̂g(i) = g̃(i), i /∈ S, i 6= k, we see that̂γi ∈ Γ
andγ̂iĝ

(i) ∈ Γ1×Mt, for all i /∈ S, i 6= k.
Now, for i ∈ S, we have that̂γi = γ̃i + γiγ̃k andγ̂iĝ

(i) = γ̂ig̃
(i). Therefore, fori ∈ S we have,

deg(γ̂i) = max{deg(γ̃i), deg(γi) + deg(γ̃k)}. (76)

We know from (73) thatdeg(γ̃i) ≤ ν. Also, from (75) and (74), we see that fori ∈ S,

deg(γi) + deg(γ̃k) + deg(g̃(i)) ≤ ν, (77)

which implies thatdeg(γi) + deg(γ̃k) ≤ ν and hence from (76)deg(γ̂i) ≤ ν, i.e., γ̂i ∈ Γ, i ∈ S. Also,
deg(γ̂iĝ

(i)) ≤ deg(γ̂i) + deg(g̃(i)), i ∈ S. Therefore, using (76), we see that,

deg(γ̂iĝ
(i)) ≤ max{deg(γ̃ig̃

(i)), deg(γi) + deg(γ̃k) + deg(g̃(i))} (78)
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We know from (73) thatdeg(γ̃ig̃
(i)) ≤ ν. Now, with this and from (77), we see thatdeg(γ̂iĝ

(i)) ≤ ν and
hencêγiĝ

(i) ∈ Γ1×Mt. Hence fori ∈ S as well we havedeg(γ̂i) ≤ ν andγ̂iĝ
(i) ∈ Γ1×Mt.

Now for i = k, it is clear that̂γk = γ̃k ∈ Γ. Now we need to show that̂γkĝ
(k) ∈ Γ1×Mt. Therefore,

we need to show that

deg

(

γ̃k

(

g̃(k) +
∑

i∈S

γig̃
(i)

))

≤ ν

Note thatdeg(γ̃kg̃
(k)) ≤ ν follows directly from (75). Also, from (70) we have that,

deg(γi) + deg(g̃(i)) ≤ deg(g̃(k))

Therefore,

deg(γ̃kγig̃
(i)) ≤ deg(γ̃k) + deg(γi) + deg(g̃(i)) ≤ deg(g̃(k)) + deg(γ̃k) ≤ ν

From (78) we see thatdeg(γ̂iĝ
(i)) ≤ ν and hencêγkĝ

(k) ∈ Γ1×Mt.
Therefore,

D(g̃(1), . . . , g̃(p+1)) ⊂ D(ĝ(1), . . . , ĝ(p+1))

Note that the degree of one of the elements of the setĝ(1), . . . , ĝ(p+1) (specificallyĝ(k)) is strictly less than
the degree of̃g(k) and the degree of all other elements is the same. Ifĝ(1), . . . , ĝ(p+1) satisfy (iii) then we
terminate otherwise we repeat the process. Note that at eachiteration we decrease the degree of one of
the elements by at least1. Since we started off with a finite degree we continue this process either until
the property (iii) is satisfied or all the elements have degree 0. At this point if property (iii) is not satisfied
from lemma 15 we have for someS ′ ⊂ {1, . . . , p + 1} that7

deg

(

g̃(k) +
∑

i∈S′

g̃(i)

)

< deg(g̃(k)) = 0

This is possible only if,

g̃(k) +
∑

i∈S′

g̃(i) = 0

But sinceg̃(i) = Φ(g̃(i)), i ∈ S ′ or i = k and we know that{g̃(i)} satisfy property (ii) we get a con-
tradiction. Therefore property (iii) will be satisfied whenthe degree of all the elements is 0. Note that
D(ĝ(1), . . . , ĝ(p+1)) cannot be equal to the setGf without the elements(ĝ(1), . . . , ĝ(p+1)) satisfying prop-
erty (iii) 8

Given these two lemmas we will show that given a fixed nonzerocf ∈ FMt×1
2T and the associatedGf

defined as in equation (43), there exist minimal basis vectors satisfying the properties in Definition 14,
reproduced in the following theorem for completeness.

7Since from Lemma 15, if property (iii) is not satisfied, thendeg
(
γig

(i)
)
≤ deg

(
g(k)

)
∀i ∈ S′, and hence we see that

for this case,γi = 1, i ∈ S′.
8 If property (iii) is not satisfied, we have that for some subset S ⊆ {1, . . . , p} there exist{γi}i∈S such that,

deg(
∑

i∈S

γiĝ
(i)) < max

i∈S
deg(γiĝ

(i)) (79)

25



Theorem 18 (Existence of Minimal Basis Vectors)Given a fixed nonzerocf ∈ FMt×1
2T define the asso-

ciatedGf as in equation (43). Then there exist elementsg(1), g(2), . . . , g(d) ∈ Gf such that they satisfy the
following properties:

(i). For eachg(i), ∃ k such thatδ(i)
k,0 = 1, i.e., Φ(g(i)) 6= 0.

(ii). Φ(g(1)), . . . , Φ(g(d)) are linearly independent overF2.

(iii). For all subsetsS ⊆ {1, . . . , d} there do not exist
{
γi : i ∈ S, γi ∈ Γ and γig

(i) ∈ Γ1×Mt
}

, such
that,

deg(
∑

i∈S

γig
(i)) < max

i∈S
deg(γig

(i))

(iv). Gf = D
(
g(1), g(2), . . . , g(d)

)

Proof. Clearly let us assumeGf is not empty. Then∃ a g(1) ∈ Gf such thatδ(1)
k,0 = 1 for somek, since

otherwise in theg(1) picked we can take outα(·) factor and still have it inGf . Clearly properties (ii) and
(iii) of Definition 14 are satisfied trivially. Ifg(1) satisfies property (iv) then we are done. If not, we
proceed to build the setg(1), . . . , g(d). If g(1) does not satisfy (iv) it means that∃ g(2) ∈ Gf such that
g(2) 6= γ1g

(1) for anyγ1 ∈ Γ andγ1g
(1) ∈ Γ1×Mt. From Lemma 16 we can construct eitherg̃(1), g̃(2) (or

just g̃(1)) such that they satisfy (i) and (ii) and

D(g(1), g(2)) ⊂ D(g̃(1), g̃(2)). (80)

If (iii), (iv) are also satisfied, thend = 2.
If (iii) is not satisfied by these vectors̃g(1), g̃(2) we can construct̂g(1), ĝ(2) from Lemma 17 which

satisfy (i), (ii) and (iii)9.
Now if ĝ(1), ĝ(2) satisfy (iv) then we are done, otherwise we again use the lemma 16 withĝ(1), ĝ(2) as

the input vectors. Repeat this process untilĝ(1), . . . , ĝ(d) satisfy the properties (i), (ii), (iii) and (iv). This
process has to terminate since we know that|Gf | ≤ |Γ1×Mt| ≤ 2(ν+1)Mt and hence is finite.

Note that from property (ii) the elements are such thatΦ(g(1)), . . . , Φ(g(d)) are linearly independent only
overF2. The following lemma shows that as long asT > (ν + 1)Mt this is sufficient to guarantee the
independence ofg(1), g(2), . . . , g(d) overF2T as well.

Let t = maxi∈S deg(γig
(i)) and definek = argmaxi∈S deg(γig

(i)). Note then that the element,

g = αν−t+1

(
∑

i∈S

γiĝ
(i)

)

is contained inGf as the elements(ĝ(1), . . . , ĝ(p+1)) satisfy property (iii) for the{γi}. But,

g = αν−t+1γk
︸ ︷︷ ︸

γ

ĝ(k) +
∑

i∈S,i6=k

αν−t+1γiĝ
(i)

is not contained inD(ĝ(1), . . . , ĝ(p+1)) becauseγ /∈ Γ.
9The reason we need the property (iii) is as follows. If we takeany elementg ∈ Gf then ifαg ∈ Γ1×Mt , thenαg is also in

Gf . This may not be captured in our definition ofD framework for the following reason. Ifdeg
[
g̃(1) + γg̃(2)

]
< deg(g̃(1))

anddeg(g̃(1)) ≥ deg(g̃(2)), then for somet, αt(g̃(1) + γg̃(2)) ∈ G but αtg̃(1) + αtγg̃(2) /∈ D(g̃(1), g̃(2)) sinceαtg̃(1) or
αtγg̃(2) /∈ Γ1×Mt .
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Lemma 19 Consider elementsg(1), g(2), . . . , g(d) ∈ Gf such thatΦ(g(1)), . . . , Φ(g(d)) are linearly inde-
pendent overF2. If the size of the extension fieldF2T is such thatT > (ν + 1)Mt then these vectors are
linearly independent overF2T as well.

Proof. Clearlyd ≤ Mt otherwise the property (ii) in the theorem 18 will be violated. Define,

Q =
[

g(1) . . . g(d)
]t

and

H =
[

Φ(g(1)) . . .Φ(g(d))
]t

By the linear independence ofΦ(g(1)), . . . , Φ(g(d)) we conclude thatH has full rank overF2. Therefore,
there existd linearly independent columns overF2 in H ∈ Fd×Mt

2 . Select thesed columns and form the
matrix Ĥ ∈ Fd×d

2 which is of rankd. Thereforedet(Ĥ) = 1 asdet(Ĥ) ∈ F2. Select these same columns
in the matrixQ and form the matrix̂Q ∈ Γd×d. Let us look at the determinant of̂Q ∈ F2T . Note that
sinceQ̂ ∈ Γd×d,

det(Q̂) =
∑dν

k=0 δkα
k.

SinceT > (ν + 1)Mt ≥ (ν + 1)d we see the linear independence of1, α, . . . , αT−1. Moreover, note
that sinceδ0 = det(Ĥ) 6= 0 from above and therefore we conclude thatdet(Q̂) 6= 0. Hence the vectors
g(1), . . . , g(d) are linearly independent overF2T .

6.3 General Rank Distance Codes

In this section we will prove the required rank guarantees for S with Tthr = Rν +(Mt−1)(ν +1)(2R−1)
and therefore show thatKν,d is given by this set. We state the following lemma required inthe proof of
the rank guarantees and prove it in the appendix.

Lemma 20 Consider a matrixP ∈ FR×R
2T defined as,

P =








g(1)

g(2)

...
g(R)

















1 . . . 1 1

ξ2R−1
. . . ξ2 ξ

(ξ2)2R−1
. . . (ξ2)2 ξ2

...
...

(ξ(Mt−1))2R−1
. . . (ξ(Mt−1))2 ξ(Mt−1)










whereξ = α(2R−1)(ν+1) and the vectorsg(1), . . . , g(R) ∈ ΓMt×1 are linearly independent overF2T . If,

T ≥ (2R − 1)ν + (2R − 1)(ν + 1)
(
(Mt − 2)(2R − 1) + R

)
.

thendet(P) 6= 0.

Theorem 21 Let f(x) =
∑R−1

l=0 flx
2l

as in (34) andT ≥ Tthr. Then forS defined in (37),1
T

log |S| ≥
R − νMt

T
and∀f ∈ S, rank(Uf) ≥ (Mt − R + 1)(ν + 1) over the binary field.
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Proof. The rate bound is directly from Theorem 12. IfO = {Uf : f ∈ S} has rank distance(ν +
1)Mt − D then there exists a vectoruf 6= 0 for somef ∈ S such that the corresponding binary matrix
Uf has binary rank equal to(ν + 1)Mt −D (as the code is linear). Equivalently there exists somef ∈ S

for which there exists a binary vector spaceBf ⊆ F
(ν+1)Mt

2 of dimensionD such that for everyb ∈ Bf ,
just as we saw in (52), we have

btUf = 0 ⇐⇒ btuf = 0 (81)

Note that the size ofBf is 2D. Rewriting the above we have that∀b ∈ F
1×Mt(ν+1)
2 andb ∈ Bf ,

[
b1 b2 . . . b(ν+1)Mt

]

︸ ︷︷ ︸

b














f(1)
f(ξ)

...
f(ξ(Mt−1))

αf(1)
...

ανf(ξ(Mt−1))














= 0 (82)

Let the functionΨ be as in (42) such that it mapsBf to Gf . Note that, sinceΨ is a one-to-one mapping,
as seen in (42) in Section 5.2, we immediately see that

|Bf | = |Gf |.

With the representationg = Ψ(b), (82) can be rewritten as,

[
g1 g2 . . . gMt

]

︸ ︷︷ ︸

g








f(1)
f(ξ)

...
f(ξ(Mt−1))








︸ ︷︷ ︸

cf

= 0

wheregi ∈ Γ, or equivalently as

[
g1 g2 . . . gMt

]










1 . . . 1 1

ξ2R−1
. . . ξ2 ξ

(ξ2)2R−1
. . . (ξ2)2 ξ2

...
...

(ξ(Mt−1))2R−1
. . . (ξ(Mt−1))2 ξ(Mt−1)










︸ ︷︷ ︸

W∈F
Mt×R

2T








fR−1

fR−2
...
f0








= 0

If the only element inGf is the all zero vector then,D = 0, Uf has full binary rank, we have already
shown the result in Theorem 13. If not, by theorem 18 there exists a set of minimal vectors,M =
{g(1), g(2), . . . , g(d)} for Gf .

If d ≤ R − 1 it implies that|Gf | ≤ 2(R−1)(ν+1), and thereforeD = dim(Bf ) ≤ (R − 1)(ν + 1) which
in turn would imply that all matrices inO have rank at least(Mt − R + 1)(ν + 1). We will prove that
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d ≤ R − 1 by contradiction. Let us assume that there are more thanR − 1 such minimal vectorsi.e.,
d > R − 1. Taking anyR of the minimal vectors of the solution spaceGf we conclude that,








g(1)

g(2)

...
g(R)

















1 . . . 1 1

ξ2R−1
. . . ξ2 ξ

(ξ2)2R−1
. . . (ξ2)2 ξ2

...
...

(ξ(Mt−1))2R−1
. . . (ξ(Mt−1))2 ξ(Mt−1)










︸ ︷︷ ︸

P








fR−1
...
f1

f0








= 0R×1 (83)

whereP ∈ FR×R
2T . This is possible iff,

det(P) = 0

As shown in lemma 20 by the linear independence of{α0, α1, . . . , αT−1} it follows that the determinant
can never be zero. Therefore there can be at mostR − 1 basis vectors and from (49) and property (iii) of
theorem 18 since,

|Bf | = 2D

|Gf | ≤ 2(R−1)(ν+1)

|Bf | = |Gf |.

we conclude thatD ≤ (R−1)(ν +1). Therefore all matrices inO have rank at least(Mt−R+1)(ν +1).

The consequence of Theorem 21 is thatKν,d = {Cf : f ∈ S} satisfies the requirements of definition
5 and therefore can be used to construct diversity embedded codes for fading ISI channels as done in
Theorem 7.

7 Examples and Discussion

We will start off by giving an example of a code which has full diversity equal toMt when transmitted over
the flat fading channel but does not have the maximum possiblediversity of(ν + 1)Mt when transmitted
over an ISI channel withν taps.

Example 1:Consider construction of a code forMt = 2, T = 5 with rateR = 1 and BPSK signaling
using code constructions given in [8, 14]. To design these codes, use the field extensionF25 with the
primitive polynomial given byx5 + x4 + x2 + x + 1 and the primitive elementα. Define,

f(x) = f0x

wheref0 ∈ Ffield5 depends on the input message. The space time codeword is obtained as,

Cf0 =
[

f t(1) f t(α)
]t

(84)

wheref(αi) is the representation off(αi) as a binary1 × 5 row vector andCf ∈ F2×5
2 . As was shown in

[8, 14] this code achieves full diversityMt = 2 i.e., Cf0 has rank2 for all nonzerof0 ∈ F25 .
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Now assume that we use this code for transmission over an ISI channel withν = 1. Since this is a
linear code, the rank distance of the code is the minimum rankof a nonzero codeword. Therefore the
space time codeword corresponding tof0 = 1 is given by,

C1 =

[
1 0 0 0 0
0 1 0 0 0

]

. (85)

When transmitted over the ISI channel we see that the equivalent space time codeword is given by,

Θ (C1) =







1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0







. (86)

Clearly since,

rank(Θ (C1)) = 3 < 4

we conclude that the space time codeword which achieves fulldiversity Mt = 2 over the flat fading
channel does not achieve the maximum possible diversity of(ν + 1)Mt = 4 over the ISI channel.

Example 2:Similarly this can be shown to hold true for any diversity point. Consider for example the
case ofMt = 3, T = 7, R = 2 and BPSK signaling using code constructions given in [8, 14]. Use the
field extensionF27 with the primitive elementα. Define,

f(x) = f1x
2 + f0x

wheref0 ∈ F27 depends on the input message as before. The space time codeword is obtained as,

Cf0 =
[

f t(1) f t(α) f t(α2)
]t

(87)

wheref(αi) is the representation off(αi) as a binary1 × 5 row vector andCf ∈ F2×5
2 . As was shown in

[8, 14] this code achieves diversityd = 2 i.e., Cf0 has rank2 for all nonzerof0 ∈ F27 . But it can be seen
as before that the space time codeword corresponding to(f1, f0) = (0, 1) does not achieve the maximum
possible diversity of(ν + 1)Mt when transmitting over the ISI channel withν taps.

Example 3:Consider construction of a BPSK code forMt = 2, ν = 1, T = 5 with rateR = 1 and
henceReff = 3

5
. To design these codes, use the field extensionF25 with the primitive polynomial given

by x5 + x4 + x2 + x + 1 and the primitive elementα. The set of codeword polynomials which satisfy the
constraints in (37) are given by,

S =
{
0, α, α17, α19, α21, α24, α26, α31

}
. (88)

This set is of cardinality

|S| = 2RT−νMt = 25−2 = 8.

Corresponding to every elementf in S consider the codeword vector,

cf =
[

f(1) f(α2)
]t

(89)
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wherecf ∈ F2×1
25 . LetCf ∈ F2×5

2 be the representation of each element ofcf in the basis{α0, α1, α2, α3, α4},
i.e.,

Cf =
[

f t(1) f t(α2)
]t

(90)

wheref(αi) is the representation off(αi) as a binary1 × 5 row vector. Then the2 × 5 space time code
has rate,

R = 1 −
νMt

T
= 1 −

2

5
=

3

5

and gives diversity4 when transmitted over the ISI channel withν = 1. The corresponding8 codewords
X(1) as given in (4) are,

[
0 0 0 0 0
0 0 0 0 0

]

,

[
1 0 0 0 0
0 0 1 0 0

]

,

[
0 1 0 0 0
0 0 0 1 0

]

,

[
1 1 0 0 0
0 0 1 1 0

]

[
0 0 1 1 0
1 1 1 0 0

]

,

[
1 0 1 1 0
1 1 0 0 0

]

,

[
0 1 1 1 0
1 1 1 1 0

]

,

[
1 1 1 1 0
1 1 0 1 0

]

.

In figure 5 we give the performance of a full diversity code which is designed forMt = 2, Mr = 1,
ν = 1 and 4-QAM signal constellation. We plot the logarithm of theerror probability as a function of SNR
(in dB). Note that the slope of the error probability curve isapproximately equal to4 which is expected
since we are using full diversity codes on both the layers.

From the construction of these codes, one might be tempted toconclude that the analysis for these
codes is quite similar to that of cyclic codes. But the peculiar structure of the solution spacei.e. the
fact that given a vector in the solution spaceB, not all circular shifts of the vector remain inB, makes
it difficult to analyze. The main contribution of this work isthe construction of binary matrices with a
particular structure which consequently characterizes the rate diversity tradeoff for the ISI channel. Note
that as seen in Example 1 and 2 codes which give guaranteed diversity orders for flat fading MIMO
channel, when used for transmission over ISI channel do not necessarily give the multiplicative diversity
gain of (ν + 1). The tools and techniques developed over here could also have independent interest in
designing codes in various other wireless or distributed settings.
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8 Appendix

Proof. [of Lemma 15] We have that for some subsetS ⊆ {1, . . . , p} there exist{γi}i∈S such that,

deg(
∑

i∈S

γig
(i)) < max

i∈S
deg(γig

(i)) (91)
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Figure 5: Error Performance of full diversity codes withMt = 2, ν = 1, R1 = R2 = 3
5

andd1 = d2 = 4.

Let t = maxi∈S deg(γig
(i)) and defineT =

{
i : deg(γig

(i)) = t
}

. Note that we have,

deg(γig
(i)) = deg(αdeg(γi)g(i)) (92)

This allows us to see that (91) implies that,

deg

(
∑

i∈T

αdeg(γi)g(i)

)

< t. (93)

Denotew = mini∈T (deg(γi)) to be the minimum degree ofγi for i ∈ T andk = argmini∈T (deg(γi)).
DefineS ′ = T \{k} where\ is the set difference operator.

If w = 0 then we have,

deg(g(k) +
∑

i∈S′

αdeg(γi)g(i)) < t = deg(g(k))

and,

t = deg
(
αdeg(γi)g(i)

)
≤ deg

(
g(k)
)

= t ∀i ∈ S ′

which shows that ifw = 0, then the claim is true.
If w 6= 0 we can take out the commonαw factor of

∑

i∈T αdeg(γi)g(i). Then we have,

deg(g(k) +
∑

i∈S′

αdeg(γi)−wg(i)) < (t − w) = deg(g(k))
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and,

t − w = deg
(
αdeg(γi)−wg(i)

)
≤ deg

(
g(k)
)

= t − w ∀i ∈ S ′

Hence the claim is proved.

To prove the Lemma 20 we will make use of the Cauchy Binet formula reproduced here for complete-
ness.

Definition 22 Cauchy Binet Formula [12] Let A be am × n matrix andB be an × m matrix. If S
is a subset of{1, . . . , n} with m elements, letAS represent them × m matrix whose columns are those
columns ofA that have indices fromS. Similarly, letBS represent them × m matrix whose rows are
those rows ofB that have indices fromS. The Cauchy-Binet formula then states that,

det(AB) =
∑

S

det(AS) det(BS) (94)

where the sum extends over all possible subsetsS of {1, . . . , n} with m elements.

Note that the Cauchy Binet formula holds for matrices with entries from any commutative rings. Given
this definition, the proof of lemma 20 proceeds as follows.

Proof. [of Lemma 20] The matrixP is given by,

P =








g(1)

g(2)

...
g(R)








︸ ︷︷ ︸

M∈ΓR×Mt










1 . . . 1 1

ξ2R−1
. . . ξ2 ξ

(ξ2)2R−1
. . . (ξ2)2 ξ2

...
...

(ξ(Mt−1))2R−1
. . . (ξ(Mt−1))2 ξ(Mt−1)










︸ ︷︷ ︸

W∈F
Mt×R

2T

Using Gaussian elimination (which can be applied over any finite field), we reduce the matrixM to its
row echelon form,

Y̆ =








ğ(1)

ğ(2)

...
ğ(R)








where

deg(ğ(k)) ≤ 2(R−k)ν.

Note that this pivoting and reduction to a row echelon form isa full rank operation and preserves the rank
of P. Therefore,

det(P) = Kdet
(

Y̆W
)
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whereK ∈ F2T andK 6= 0. Let the columns containing the pivots in̆Y be denoted bỹS. Therefore by
the Cauchy Binet formula, we have

K−1det(P) = det
(

Y̆S̃

)

det (WS̃) +
∑

S 6=S̃

det
(

Y̆S

)

det (WS) (95)

Note that for allS such thatdet (MS) 6= 0 the maximum coefficient ofξ in det (WS) is less than the
maximum coefficient ofξ in det (WS̃) by at least1. Therefore,

deg(det (WS̃)) − deg(det (WS)) ≥ (2R − 1)(ν + 1)

Also note that,

deg(det(MS)) − deg(det(MS̃)) ≤ ν + 2ν + 22ν + . . . + 2R−1ν

= ν(2R − 1)

Therefore,

deg(det (WS̃) det(MS̃)) − deg(det (WS) det(MS)) ≥ (2R − 1)(ν + 1) − ν(2R − 1)

> 0

Therefore by the linear independence of{1, α, . . . , αT−1} we can conclude that there exists a term in
det (WS̃) det(MS̃) with a power ofα which in not canceled by any other term in the equation (95).
Therefore we conclude thatK−1det(P) 6= 0 implying det(P) 6= 0. Hence proved.
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