
1

Efficient and Robust Secure Aggregation
for Sensor Networks

Parisa Haghani, Panos Papadimitratos, Marcin Poturalski, Karl Aberer, Jean-Pierre Hubaux
Email: {firstname.lastname@epfl.ch}

Abstract— Wireless Sensor Networks (WSNs) rely on in-
network aggregation for efficiency, however, this comes at a
price: A single adversary can severely influence the outcome
by contributing an arbitrary partial aggregate value. Secure
in-network aggregation can detect such manipulation [2]. But
as long as such faults persist, no aggregation result can be
obtained. In contrast, the collection of individual sensor node
values is robust and solves the problem of availability, yet in
an inefficient way. Our work seeks to bridge this gap in secure
data collection: We propose a system that enhances availability
with an efficiency close to that of in-network aggregation. To
achieve this, our scheme relies on costly operations to localize and
exclude nodes that manipulate the aggregation, but only when a
failure is detected. The detection of aggregation disruptions and
the removal of faulty nodes provides robustness. At the same
time, after removing faulty nodes, the WSN can enjoy low cost
(secure) aggregation. Thus, the high exclusion cost is amortized,
and efficiency increases.

I. INTRODUCTION

Wireless sensor networks (WSNs) have evolved to a valu-
able tool for numerous applications. The rationale of current
and future WSNs is to deploy a multi-hop wireless network of
low-complexity and low-cost sensor nodes, with each of them
able to operate for a long period of time with a single energy
source. Depending on the application, sensors either report
each and every measurement to a Base Station (BS) or sink,
or they perform in-network aggregation: En route to the sink,
nodes combine their own measurement with the ones of other
nodes in proximity, e.g., their children on an aggregation tree
rooted at the sink and spanning all sensors. A large fraction
of WSNs requires only a periodic collection of an aggregate
value (e.g., count, sum, average), and can do so with low
network overhead. With in-network aggregation, rather than
relaying individual measurements across multiple hops, each
node transmits a single packet, “summarizing” the data from
an entire area of the WSN, e.g., the node’s aggregation sub-
tree.

However, in-network aggregation is a two-edged sword,
making compromise of the collected data much easier. Clearly,
a faulty or adversarial node can always inject erroneously its
own sensory data, which, if treated properly, may have little
effect on the network-wide data [11]. But by forwarding a
false aggregate value, an adversarial node can severely affect
the overall data aggregate. Consider, for example, aggregation
over a tree and an adversarial node x being a neighbor of
the sink. x can control the data contributions of a significant
fraction of the network.

It is thus critical to safeguard the WSN operation against
such attacks. To secure data collection, the simplest approach
would be for each node to authenticate its measurements
to the sink in an end-to-end manner. But in that way, all
measurements would need to be transmitted individually:
This elementary approach abolishes the reduction of network
overhead, the advantage of in-network aggregation.

The benefit and vulnerability, as well as the need to secure
in-network aggregation, have been identified by a number of
schemes in the literature. One approach relies on the placement
of adversarial nodes and correct nodes monitoring their parents
[13]. This implies that a few compromised neighboring nodes
could still abuse the system. Another approach proposes a
probabilistic check of parts of the aggregation and use of a
presumed data structure to detect outliers [14]. Nonetheless,
attacks could be undetected with some probability, or be
non-detectable altogether, if a data model is not available or
applicable. This is why in this work we are after a system that
is generally applicable and robust to any configuration of the
adversary.

In this direction, the Secure Hierarchical In-network Ag-
gregation (SHIA) scheme [2] achieves detection of any ma-
nipulation of the in-network aggregation, without assuming
a particular data structure (e.g. correlation). In short, SHIA
guarantees optimal security [2], which means that the adver-
sary is allowed to modify values (sensor data) of the nodes
it controls, with the sink accepting an aggregation result if
and only if the values of all non-faulty nodes were properly
aggregated. The efficiency of SHIA stems from the fact that
nodes themselves verify and acknowledge the correctness of
the aggregation. The acknowledgements are then delivered
to the BS in such a way, that it is possible to detect if all
nodes acknowledged: So manipulations of the aggregation are
always detected, yet SHIA cannot but reject the result of a
manipulated aggregation. In other words, it suffices to have
a single adversary present, disturbing each aggregation, thus
denying access to any measurement from the sensor field.

One solution to this problem, stated by the Chan, Perrig
and Song [2], is to use the elementary scheme as a fall-back
solution in case SHIA fails. This would ensure availability
but at a high cost. In fact, such a solution implies that, in
the presence of faulty nodes, the efficiency of in-network
aggregation is not utilized. This is exactly the problem we
solve in this paper: How to achieve both efficiency and
availability for data collection in sensor networks.

We propose a system that relies on SHIA for efficient in-
network aggregation and detection of any manipulation. Upon

2

detection, we invoke more expensive protocols that localize
and exclude nodes deemed faulty. Our protocols deliver the
SHIA acknowledgments to the BS using “onion” authenti-
cation, enabling identification of non-acknowledging nodes
and successively localizing those misbehaving with only low
uncertainty. This way, and without relying on any assumptions
on the data model or the faulty nodes configuration, our
system can revert to efficient in-network aggregation after the
exclusion of faulty nodes, and thus perform numerous cost-
effective data extractions, rather than a series of expensive
elementary data collections. To the best of our knowledge, this
is the first work to provide this generalization on secure in-
network aggregation, that is, state the requirement for robust,
highly available and at the same time efficient data collection.
Our solution to this problem, specified in Sec. II, is presented
in Sec. III and analyzed in Sec. IV, before a discussion on
related and future work and conclusions.

II. ASSUMPTIONS, MODEL, AND SPECIFICATION

A. System Model

We consider a WSN comprising n sensor nodes, each with
a unique identifier s, and a single base station (BS). We
assume that the network is well connected, i.e. every node
has a considerable number of neighbors, at most dmax. Each
node s shares a symmetric key Ks with the BS, and one
symmetric key Ks,t with each neighbor t. These keys are
either preloaded or established at deployment time using one
of the methods in the literature, e.g., [3]. Communication
between neighbors s and t is always authenticated using Ks,t.
A data link broadcast/multicast from s can be authenticated
using the Ks,v1 , . . . ,Ks,vk

keys shared with the vi neighbors.
Unless noted otherwise, such a local authenticated broadcast
is used. In addition, the BS can perform a symmetric-key based
network-wide authenticated broadcast using a protocol such as
µTESLA [8].

The goal of the WSN is to calculate an aggregate agr
(e.g. sum, mean) of node measurements, in a process we call
an aggregation session or, for simplicity, aggregation. Each
aggregation A is identified by a unique session identifier NA,
selected by the BS. An aggregation is terminated by the BS,
which declares it either successful, with an aggregation value
valA returned, or failed and no value returned.

The node measurements lie in a range M ; we refer to each
valA(s) ∈ M as the node’s value and consider valA(s), in
general, independent of any valA(t) for any t 6= s during
the same aggregation A. Data extraction is performed across
the aggregation tree (TA) rooted at the BS; for simplicity, the
BS has a single child. It also knows the whole TA, whereas
nodes know their parent and children in TA. In Sec. III-D we
propose a tree construction protocol with the robustness sought
for our scheme. We can schedule the node actions during
aggregation according to the method in [4], with children of
a node responding before it does. This method is used both
by SHIA and our protocols. For compliance with other works,
we assume that an aggregation tree TA is in place for the first
aggregation. If A is deemed failed, a new aggregation tree
T ′A is constructed, to be used in the subsequent aggregation

session, which does not include the nodes deemed faulty.
The cost of an aggregation is defined as the maximum edge
congestion, that is, the number of bytes transmitted over a link
due to the protocol activity.

B. Adversary Model

We assume that the adversary can compromise sensor
nodes, obtaining their cryptographic keys and controlling their
functionality; it can thus induce arbitrary deviations from the
protocol, even in a coordinated manner among compromised
nodes. We refer to nodes that deviate from the protocol
(including benign failures) as faulty nodes, and nodes that
do not as correct. However, the contribution of an arbitrary
own value valA(s) different than its actual measurement is
not considered as a deviation: Without any assumptions on
data correlations, s is the only node responsible and able to
perform this measurement. We assume that faulty nodes are
aware of the tree TA, and that the BS is always correct (i.e.,
cannot be compromised by the adversary).

We are not concerned with jamming and denial of ser-
vice (DoS) in various protocol layers [5], [12], Sybil/Node
replication attacks [6], [7] or “wormhole” formation [1],
[10]; these attacks are beyond the scope of this work, and
countermeasures against them can coexist with our protocols.
However, notification of the BS upon detection of a jamming
attack by correct nodes is needed; otherwise, a jammed node
could be unnecessarily excluded by the BS.

C. Specification

We are interested in protocols that can perform a sequence
of aggregations {A1, A2, . . . , Aj} in a WSN with na faulty
nodes, and satisfy the following properties:

Security:
– At most na aggregations fail.
– For every successful aggregation A ∈
{A1, A2, . . . Aj}, with VA being a multi-set
of values contributed by correct nodes in the
aggregation tree TA, and V ′

A a multi-set of arbitrary
values in range M equal in size to the number of
faulty nodes in TA, it holds that

valA = agr(VA + V ′
A)

Efficiency:
– At most na aggregations have communication com-

plexity of O(n).
– For any other aggregation A, the cost is O(hA∆A),

with hA the height and ∆A is the maximum node
degree for TA.

This specification allows the adversary to disrupt at most
na aggregation sessions, which is at most one per faulty
node. A disrupted aggregation is allowed to be relatively
expensive and not produce an aggregation value – intuitively,
it is sacrificed to cope with the faulty nodes that caused the
disturbance. A successful aggregation, however, should output
a result complying with optimal security [2] and should also
be relatively inexpensive.

3

SHIA ALS.I ALS.II
failure

misbehaving
nodes not found

ATR

misbehaving nodes foundsuccess

next aggregation

Fig. 1. Scheme overview

III. PROPOSED SCHEME

In this section, we present our solution, illustrated in Fig. 1.
The system operates in three stages. First, data aggregation
and manipulation detection are performed by SHIA [2], due
to its efficiency and effectiveness. If successful, the system
proceeds to the next aggregation. Otherwise, at a second
stage, the Adversary Localizer Scheme (ALS) is launched:
the ALS.I phase localizes, i.e., marks, nodes that disrupted
the aggregation value, and ALS.II marks nodes that disrupted
the acknowledgement collection during stage one (SHIA). At
the third stage, the Aggregation Tree Reconstruction (ATR)
protocol is invoked, which constructs a new aggregation tree
excluding the marked nodes. Gradually, after a series of
failed aggregations, all the faulty nodes will be excluded,
allowing undisrupted in-network aggregation and thus efficient
operation.

Below, we use the following cryptographic primitives: H ,
a collision-resistant hash function, and MAC , a Message
Authentication Code. AuthK(m) denotes message m authen-
ticated using the symmetric key K, e.g. <m,MAC (m)K>.

A. Stage One: SHIA

We present the naive version of SHIA in detail, as our ALS
protocol relies on its functionality rather than using it simply as
a “black-box”. ALS can be also adapted to the improved SHIA
version. The SHIA algorithm focuses on the sum aggregate
and consists of three phases: query dissemination, aggregate-
commit and result checking. The base station (BS) initiates
the aggregation, generating a nonce N that identifies the
aggregation session and broadcasting it to the network, as
part of a query (along with other possibly useful data) in an
authenticated manner.

Then, in the aggregate-commit phase, every node calculates
a label, based on the labels of its children and its own value,
and sends it to its parent node. The label is a <count,
value, commitment> tuple, with count the number of
nodes in the subtree rooted at the node, value the sum of
all the nodes values in the subtree, and commitment the
cryptographic commitment tree over the data values and the
aggregation process in the subtree.1 For a leaf node s, the
label has the format: <1, val(s), s>. For an internal node t,
suppose its children have the following labels, l1, l2, ..., lq ,
where li = <ci, vi, hi>; among these is also t’s value,
formatted as a leaf node’s label: <1, val(t), t>. Then, the
label of t is <c, v, h>, with c =

∑
ci, v =

∑
vi, and

1For brevity, we omit the complement field, for details see [2].

h = H[N‖c‖v‖l1‖l2‖...‖lq]. Nodes store the labels of their
children, as they will be used later on. This phase ends with
the BS receiving the label <c, v, h> of its single child b. The
aggregate v will be declared as the aggregation value if the
result-checking phase, described next, is successful.

In the result-checking phase, the BS disseminates, using an
authenticated broadcast, N and the <c, v, h> label. Every
node uses this label to verify if its value was aggregated
correctly. To do this, each node s is provided with the labels
of its off-path nodes, that is, the set of all the siblings of
the nodes on the path from s to the root of the tree. These
are forwarded across the aggregation tree: a parent t provides
every child s with the labels of s’s siblings (which it stored
during the previous phase), along with every off-path label
received from its parent.

With all off-path labels at hand, s recomputes the labels of
all its ancestors in the aggregation tree all the way to the root,
and compares the result to <c, v, h> provided by the BS. As
proved in [2], they match only if all the nodes on the path
from s to the root aggregated s’s value correctly (although
this does not guarantee that the values of other nodes were
not mistreated). If so, s acknowledges the result. We observe
here the following simple fact:

Fact 1: If a node and its child both follow the SHIA
protocol, either they both acknowledge or neither do.

A node s acknowledges by releasing an authentication code
(ack): MACKs(N‖OK), where OK is a unique message
identifier and Ks is the key shared between node s and the
BS. Leaf nodes send their ack while intermediate nodes wait
for acks from all their children, compute the XOR of those
acks with their own ack, and forward the resultant aggregated
ack to their parent.

Once the BS has received the aggregated ack message Ab

from b, it can verify whether all nodes acknowledged the
aggregation value: It calculates the ack of every sensor (using
the key shared with the node), XOR’es them and compares
the result to Ab. In case of equality, all nodes acknowledged,
and the BS declares the aggregation successful. Otherwise, our
ALS protocol is triggered.

B. Stage Two: Adversary Localizer Scheme, Part I

ALS.I marks nodes that misbehaved in the aggregate-
commit phase of SHIA or the dissemination of off-path values.
ALS.I consists of two phases:

1) Hierarchical Collection of Confirmations: The BS initi-
ates this phase by sending an authenticated broadcast contain-
ing N and informing all nodes that ALS.I is taking place.
If a node had not acknowledged the result (as determined
by SHIA), it does not respond. Otherwise, a leaf node s
sends a confirmation Ms = AuthKs(N) to its parent. An
internal node t waits for its children, u1, u2, ..., uk (the
order is based on their identifiers) to send their confirma-
tions. Then, t sends up the following confirmation: Mt =
AuthKt(N, Mu1 ,Mu2 , ...,Muk

). If t does not receive any
messages from its rth child, Mur is replaced with a predefined
message Mnr, indicating “no message received from this
child”. See Fig. 2 for illustration.

4

s1 s2 s3

t

Ms1
= AuthKs1

(N) Ms3
= AuthKs3

(N)

b

BS

Mt= AuthKt(N, Ms1
, Mnr, M')

Mc1
Mc2

Mb= AuthKb(N, Mc1
, Mc2

)

Fig. 2. ALS.I: Hierarchical Collection of Confirmations. Nodes s1 and s3

acknowledge, node s2 does not. Note t is faulty: it encapsulates Ms1 , and
Mnr correctly, but modifies the message of s3. The collection continues,
until node b provides the final confirmation to the BS.

2) Recursive Processing of Confirmations: The above pro-
cedure results in message Mb reaching the BS. If no message
is received, then b, the single child of the BS, is marked.
Otherwise, the message is processed in a recursive manner.
As the aggregation tree is known to the BS, it knows that Mb

should be authenticated using Kb. If it is, and the message
begins with N , and the proper number of child messages
(equal to the number of b’s children) can be extracted from
it, the message is regarded as legitimate, and the recursive
procedure is applied to each child message. Otherwise the
message is regarded as illegitimate. Note that the special Mnr

message is also regarded as illegitimate. In that case, the BS
marks the node to which this message corresponds to and its
parent (in the farther recursive executions, when the BS is
not the parent); the recursive execution stops. The recursive
procedure also stops when it reaches a leaf node. See Fig. 3
for an illustration.

C. Stage Two: Adversary Localizer Scheme, Part II

It is possible that ALS.I does not localize any faulty nodes,
even though SHIA declared a failed aggregation. This can
happen when all correct nodes acknowledge, which implies
a correctly done aggregation but a faulty node disrupting the
aggregation of acks. On the positive side, in such a situation
the BS can be sure of a correct aggregation result. However,
the not removed faulty node could disrupt a subsequent
aggregation, something unacceptable according to our problem
statement.

The ALS.II scheme addresses this problem. To implement
ALS.II, we need to slightly modify SHIA, making every node
store the ack messages it received from its children. ALS.II
delivers them to the BS, using the same mechanism as the
Hierarchical Collection of Confirmations in ALS.I. Then, the
BS identifies inconsistencies, through an algorithm based on
Recursive Processing of Confirmations.

Mt = AuthKt
(N, Ms1

, Mnr, Ms3
, M')

1. verify auth. 2. verify nonce 3. verify count

Ms1
= AuthKs1

(N, Mu1
, Mu2

) Ms3
= AuthKs3

(N)

illegitimate

mark t, s2

4. process child messages recursively

continue recursive processing illegitimate

mark t, s4

Fig. 3. ALS.I: Recursive Processing of Confirmations: recursive procedure
steps, explained in the box, and unfolding of the recursion.

As we show in Lemma 1 of Sec. IV, if ALS.II is triggered,
all (correct) nodes acknowledge the aggregation result. Under
this assumption, the topology-aware BS can calculate for every
node s what the ack message sent by this node should be: We
denote this value As.

1) Hierarchical Collection of acks: The BS initiates
this phase by broadcasting an authenticated message con-
taining N , informing the nodes that ALS.II is taking
place. A leaf node s does not send anything. An inter-
nal node t, with non-leaf children u1, u2, ..., uq , sends up
Mt = AuthKu(N, Mu1 ,Mu2 , ..., Muq , Au1 , ..., Auq), where
Mu1 , Mu2 , ...,Muq are the messages t received from its chil-
dren in this phase, and Au1 , Au2 , ..., Auq are ack messages
that it received from them in the SHIA result-check phase.

2) Recursive Processing and Ack Analysis: Upon receiving
Mb from its child b, the BS recursively processes it to find
the source(s) of discrepancy. As in ALS.I, if the message of
node t illegitimate, meaning that it is not authenticated with
Kb, it does not begin with N , or the proper number (of non-
leaf children). of child messages and ack messages cannot be
extracted from it, both t and its parent are marked. There are
only two significant differences from ALS.I. First, if for some
node u the ack message Au equals Au, then the corresponding
child message Mu is not further processed. Second, the BS is
looking for ack inconsistencies, which have two variations: (i)
for node t which has a leaf node s as a child, As is different
from MACKs(N‖OK), the ack of node s (Fig. 4a); (ii) for
node t which has a child s, which has the children u1, ..., uq ,
the value As is not equal to MACKs(N‖OK) ⊗ (

⊗
Aui)

(Fig. 4b). If an ack inconsistency is detected, both t and s are
marked, but the recursive procedure is continued (if possible).

D. Stage Three: Aggregation Tree Reconstruction

The Aggregation Tree (Re)Construction (ATR) protocol, in
addition to the tree construction, allows the BS to exclude
nodes in BL, a black list, from the new tree T ′A and provides
the BS with the knowledge of T ′A. The primary requirement
for ATR is that its output, T ′A, is identical to the parts of the
tree nodes know. This way, a faulty node is not be able to
mislead the ALS protocols marking a correct node.

Due to space limitations, we do not describe ATR in full
detail here. We present ATR in a basic form that achieves

5

t

s

Mt= AuthKt
(...As...)

(a) type (i) inconsistency
As 6= MACKs (N‖OK)

u1 u2

t

s

Mt= AuthKt
(...As...)

Ms= AuthKs
(...Au1

, Au2
)

(b) type (ii) inconsistency
As 6= MACKs (N‖OK)⊗Au1 ⊗Au2

Fig. 4. ALS.II: ack inconsistencies

our system objectives. More advanced and efficient vari-
ants are left for future work. The BS initiates ATR, via a
neighboring node b, by sending a tree establishment (TE)
message <N,BL, n>, protected by a network-wide broadcast
authenticator AuthBcast [8].

As the TE message is flooded, it is authenticated in a hop
by hop manner by data-link broadcast authentication. Each
v maintains s from which it first receives a fresh TE as its
parent, and confirms to s that it is its child. After s hears
from its k children, namely v1, . . . , vk, it sends its response
to the BS: AuthKs(N, s, (v1, . . . , vk)), or AuthKs(N, s), if it
is a leaf. The responses are propagated upwards to the BS.
After sending its own response, the node acts as a relay for
the responses of its children and up to n responses or until the
response collection concludes; these constraints are added to
keep the cost bounded, but might result in loss of legitimate
responses. A faulty node cannot create any inconsistency
between the tree at BS and the nodes if responses are lost or
dropped. Even if the faulty node eliminated a subtree, it would
at most prevent aggregation from a part of the network, but
no correct node would be blacklisted and thus permanently
excluded.

1) Highly Resilient ATR: To ensure that the new tree ATR
covers all nodes, we sketch here a different protocol, whose
initial phase must run before any aggregation takes place.
After each node s ran a secure neighbor discovery, it floods
its neighbor list (NLs) across the network; a fresh NLs is
relayed by each node only once. Upon receipt of the neighbor
lists from all nodes, the BS constructs the network connectivity
graph, rejecting links not announced by both neighbors. The
BS then calculates locally TA. At the end of this initial
phase, as well as after any subsequent reconstruction, the BS
simply distributes the newly calculated aggregation tree across
the network. It suffices that each node relays the message
containing TA once at most.

We emphasize that the costly NL collection is performed
in general only once, at the initial phase of ATR. To ensure
resilience to DoS attacks, nodes need to authenticate each
NL they relay. Otherwise, faulty nodes could flood the net-
work with bogus neighbor lists. To achieve this, public key
cryptography is needed; recent implementations, e.g., see [9]
and references within, attest to its feasibility for WSNs. Each
responding s signs its NLs. The scheme cannot be exploited
by clogging/energy consumption DoS attacks: Correct nodes
immediately ignore messages coming from a neighbor that

forwarded one invalid-signed NL, as the forwarder should have
checked its validity already.

IV. ANALYSIS

In this section, we show that the proposed scheme satisfies
the specification. We will use the following notions: a node
misbehaves in an aggregation session if it does not follow the
protocol. Otherwise, it behaves correctly in an aggregation
session. A correct node by definition behaves correctly all the
time, where as a faulty node does not always misbehave.

Lemma 1: If some correct node does not acknowledge in
the SHIA result-checking phase, then ALS.I marks at least one
misbehaving node.

Proof: First, we show that some node will be marked.
As some correct node s does not send a confirmation message,
if the recursive procedure reaches the point of evaluating the
legitimateness of Ms, both s and its parent will be marked,
because it is not possible for the adversary to forge Ms. On
the other hand, if the BS stops the recursive procedure at some
ancestor of s, then this ancestor is marked.

Next, recall that nodes are always marked in pairs: child s
and parent t.2 This happens if Ms, the confirmation message
of s as extracted from Mt, is illegitimate. We show that at
least one of these nodes is misbehaving. Note first, that as Ms

is extracted from Mt, node t has acknowledged. Consider two
cases:
(i) Node s is behaving correctly. Either s sent up a legitimate

confirmation and t has modified it in Mt (misbehavior).
Or, s did not send a confirmation message, which means
it is not acknowledging. As t is acknowledging, we can
conclude from Fact 1 that t is misbehaving.

(ii) Node t is behaving correctly. Then either s sent to t an
illegitimate confirmation message (misbehavior), or t did
not receive a confirmation from s, which means s is not
acknowledging. We use Fact 1 again to conclude that s
is misbehaving.

Note: Due to adversarial behavior, the aggregation, at stage
1 (SHIA), may take place over a tree different from TA, the
one the BS is aware of and utilizes for ALS. However, as all
neighbor communications are authenticated, and a correct node
is aware of its parent and children in TA, the only difference
between these trees can be a faulty node changing its parent
to some other faulty node. This allows us to apply Fact 1.

Lemma 2: If ALS.I is executed and it does not mark any
nodes, then ALS.II marks at least one misbehaving node.

Proof: Based on Lemma 1, we can assume that all
correct nodes acknowledge the SHIA result.

First, if a node t and its child s are marked because of an
illegitimate message of s, then one of them is misbehaving.
Indeed, if s is behaving correctly it must have sent a legitimate
message to t, and t had to misbehave by modifying it. If t is
behaving correctly, then the message it received from s must
be illegitimate, which is only possible if s is misbehaving.

2The only exception is when t is the BS and only case (ii) of the proof
needs to be considered.

6

Second, if an ack inconsistency is found, then one of the
marked nodes s or t has to misbehave. Indeed, if the inconsis-
tency is of type (i), either the leaf s has “acknowledged” with
an incorrect ack or not at all, which is misbehaving because
all nodes should acknowledge, or t is reporting As different
from what it actually received from s. If the inconsistency is
of type (ii), then either s did not send to t the aggregated ack
it should have calculated (based on what it received form its
children and its own ack), or t is reporting As different from
what it received from s.

If all the messages are legitimate, and no ack inconsistencies
are found, a simple induction on the structure of the aggrega-
tion tree shows that, for b, the single child of the BS, Ab, the
aggregated ack that the BS received in SHIA, is equal to Ab,
which is a contradiction with the fact that SHIA failed and
ALS.I is executed.

Theorem 1: Our scheme satisfies the specification.
Proof: First we prove that at most na aggregations fail. If

an aggregation fails, ALS is executed, and by Lemmas 1 and
2, at least one misbehaving and thus faulty node is marked and
removed from the aggregation tree in the ATR phase. Thus,
after at most na failures, only correct nodes remain in the
aggregation tree, and all subsequent aggregation sessions will
be successful.

Security. If an aggregation is successful, then SHIA has not
detected any misbehavior. We can thus refer to theorem 13 of
[2] to obtain the desired condition on valA.

Efficiency. In successful aggregations, only SHIA is exe-
cuted, and we can refer to the naive counterpart of theorem 15
from [2] to get the desired cost O(hA∆A). In a failed aggre-
gation session, ALS is executed and the tree is reconstructed.
A simple inductive argument shows that the cost of ALS is
O(n). Indeed, in both ALS.I and ALS.II, each node u sends
up to its parent a message that has size O(|Tu|), where Tu is
subtree rooted at u. The cost of ATR comprises the request, of
size O(dmax) and the forwarding of at most n responses each
of size O(dmax); thus O(n). The cost for the highly resilient
ATR is the forwarding of at most n NLs each of size O(dmax).
Thus, NL collection cost O(n). The TA message size is O(n),
forwarded once; thus, O(n) overall.

V. DISCUSSION AND CONCLUSION

Our scheme builds on the Secure Hierarchical In-Network
Aggregation [2], in order to achieve not only secure but also
efficient WSN data collection over a series of aggregations.
We have described a basic version of our scheme, sufficient to
satisfy the stated specification. However, there are a number
of enhancements and extensions that could be integrated in
the proposed system. For example, our scheme could interop-
erate the improved SHIA approach, yielding a more efficient,
O(log2 n), successful aggregation.

Moreover, improvement can be achieved by changing the
aggregation result from failure to success if ALS.II is executed.
Or, including node values in the ALS.I confirmation message
would allow the BS to obtain a partial view of the sensor
field state. Moreover, ALS.I and ALS.II could be combined
into a single phase, with benefits dependent on the nature of

failures. Furthermore, the ATR protocol could be refined to
improve its efficiency. To analyze such improvements (e.g., in
the constants of the cost bounds), as well as factors such as
cryptographic cost, simulations and experiments, will be part
of our future work.

Finally, we discuss the exclusion of correct nodes. Thanks
to the “onion” authentication of ALS.I, unlike the elementary
approach, faulty nodes can at most modify confirmation mes-
sages of their children, but not those of other nodes in their
subtree. However, the BS cannot distinguish between a child
that provides an illegitimate message/inconsistent ack and a
parent that modifies it. As a result, our scheme marks and then
excludes both. In the worst case, (∆−1)na correct nodes could
be excluded. This bound could be improved to na, by allowing
at most one child removal per parent and aggregation. This
however would not necessarily guarantee a better performance
on the average. Overall, the removal of correct nodes might
eventually lead to a disconnected network: As they are in
the proximity of faulty nodes, this could occur even if the
adversary compromises only partially a node cut set. A less
aggressive node exclusion could partially alleviate this: The
BS maintains a “reputation” for all nodes, with marked nodes
having their rating decreased and being excluded once they
drop below a threshold. Moreover, ATR could be modified, so
that marked and not yet excluded nodes are not neighbors in
the new tree. The additional cost would be that the adversary
disrupts more than na sessions; evaluating this trade-off is also
part of our future work.

REFERENCES

[1] S. Brands and D. Chaum, “Distance-Bounding Protocols,” Springer
LNCS 839, pp. 344–359, 1994.

[2] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network
aggregation in sensor networks.” in ACM Conference on Computer and
Communications Security, 2006, pp. 278–287.

[3] L. Eschenauer and V. Gligor, “A Key-Management Scheme for Dis-
tributed Sensor Networks,” in Proc. of the 9th ACM CCS, 2002.

[4] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: A
tiny aggregation service for ad-hoc sensor networks.” in OSDI, 2002.

[5] J. McCune, E. Shi, A. Perrig, and M. Reiter, “Detection of Denial-
Of-Message Attacks on Sensor Network Broadcasts,” in Proc. of IEEE
Symposium on Security and Privacy, 2005.

[6] J. Newsome, E. Shi, D. Song, and A. Perrig, “The Sybil Attack in Sensor
Networks: Analysis and Defenses,” in Proc. of the 3rd IPSN, 2004.

[7] B. Parno, A. Perrig, and V. Gligor, “Distributed Detection of Node
Replication Attacks in Sensor Networks,” in Proc. of IEEE Symposium
on Security and Privacy, 2005.

[8] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “Spins:
Security protocols for sensor networks.” Wireless Networks, vol. 8, no. 5,
pp. 521–534, 2002.

[9] K. Piotrowski, P. Langendoerfer, and S. Peter, “How Public Key Cryp-
tography Influences Wireless Sensor Node Lifetime,” in Proc. of the 4th
ACM SASN, 2006.

[10] R. Poovendran and L. Lazos, “A Graph Theoretic Framework for
Preventing the Wormhole Attack in Wireless Ad Hoc Networks,”
ACM/Kluwer Wireless Networks, vol. 13, no. 1, pp. 27–59, 2005.

[11] D. Wagner, “Resilient aggregation in sensor networks.” in SASN, 2004,
pp. 78–87.

[12] A. Wood and J. Stankovic, “Denial of Service in Sensor Networks,”
IEEE Computer, vol. 35, no. 10, pp. 54–62, 2003.

[13] K. Wu, D. Dreef, B. Sun, and Y. Xiao, “Secure data aggregation without
persistent cryptographic operations in wireless sensor networks.” Ad Hoc
Networks, vol. 5, no. 1, pp. 100–111, 2007.

[14] Y. Yang, X. Wang, S. Zhu, and G. Cao, “Sdap: : a secure hop-by-hop
data aggregation protocol for sensor networks.” in MobiHoc, 2006, pp.
356–367.

