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Abstract. Digital signatures are often proven to be secure in the ran-
dom oracle model while hash functions deviate more and more from
this idealization. Liskov proposed to model a weak hash function by a
random oracle together with another oracle allowing to break some prop-
erties of the hash function, e.g. a preimage oracle. To avoid the need for
collision-resistance, Bellare and Rogaway proposed to use target collision
resistant (TCR) randomized pre-hashing. Later, Halevi and Krawczyk
suggested to use enhanced TCR (eTCR) hashing to avoid signing the
random seed. To avoid the increase in signature length in the TCR con-
struction, Mironov suggested to recycle some signing coins in the message
preprocessing. In this paper, we develop and apply all those techniques.
In particular, we obtain a generic preprocessing which allows to build
strongly secure signature schemes when hashing is weak and the inter-
nal (textbook) signature is weakly secure. We model weak hashing by a
preimage-tractable random oracle.

1 Introduction

A textbook signature scheme usually does a poor job because it restricts to input
messages of fixed length and is often weakly secure. In order to sign messages
of arbitrary length, hash functions [17,15,19,20] and the so-called hash-and-sign
paradigm appeared. Clearly, the hash function must be collision resistant but
they are threaten species these days [23,22,24]. In this paper we wonder how to
recycle signature schemes that are currently implemented and based on (now)
weak hash functions. To do so, we consider generic transform using preprocessing
based on [4,9,13].

One crucial task is to find a model which fits to the current security of hash
functions. A solution is to use the Liskov [12] idea. It consists of a random
oracle that are provided together with another oracle that “breaks” the hash
function, e.g. a first preimage oracle. We apply the preimage-tractable random
oracle model (PT-ROM) to model weak hashing in digital signatures.

A natural solution to avoid the collision-resistance assumption is to add ran-
domness in hashing. Bellare and Rogaway [4] proposed to sign (K,HK(m)) with
a random salt K where H is a Target Collision Resistant (TCR) hash func-
tion (also known as universal one-way hash function). More recently, Halevi and
Krawczyk [9] proposed the concept of enhanced TCR (eTCR) hash function,
some eTCR construction techniques, and the RMX construction based on cur-
rent hash functions. This latter scheme only adds a randomized preprocessing on
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the input message and thus standard implementations can be used as-is. As an
application to their eTCR constructions, they suggest to use it as preprocessing
for signatures and thus the salt K needs not to be signed. Here, we prove in
our PT-ROM that this construction is strongly secure based on any textbook
signature scheme which is weakly secure.

The disadvantage of the methods using a random seed K is that K must be
appended to the signature. To avoid the increase in signature length, Mironov [13]
proposed for DSA [7,6], RSA-PSS [3], and the Cramer-Shoup [5] schemes to re-
use the randomness from the signature scheme instead of adding a new one.
Finally, we generalize this construction and propose a generic transform that
applies to special signature schemes. Indeed, we define special signature scheme
for which we can split the sign algorithm in two parts: first, there is a random-
ized algorithm independent from the input message, then there is a deterministic
algorithm which outputs the signature. We call these schemes Signatures with
Randomized Precomputation (SRP). This makes the preprocessing transform
less generic because we must assume that the signature generates some ran-
dom coins which are available before the message is processed and which are
extractable from the signature.

In this paper, we start with some preliminaries and then we present the
hash-and-sign paradigm with many existing hashing methods. In particular, we
present the TCR-based from Bellare-Rogaway [4] and eTCR-based signature
from Halevi-Krawczyk [9] constructions. In Section 4, we give a formal proof of
the Halevi-Krawczyk construction using weak hashing. In the subsequent section,
we generalize the technique by Mironov [13] and we give a formal security proof.
Finally, we present a direct application to DSA and validate the Halevi-Krawczyk
construction with RMX preprocessing.

2 Preliminaries

Given a security parameter λ, we say that f(λ) is polynomially bounded and we
write f(λ) = poly(λ) if there exists n such that f(λ) = O(λn) when λ → +∞.
We say that f(λ) is negligible and we write f(λ) = negl(λ) if there exists x > 0
such that f(λ) = O(x−λ) when λ → +∞. For the sake of readability, our
theorems are stated in terms of asymptotic complexity although they are proven
by using exact complexities in some real-life computational model. The security
parameter λ is almost always hidden in notations.

2.1 Digital Signature Schemes

Let M be the set of possible input messages, i.e. the domain. We define fixed
message-length digital signature schemes (FML-DS) any signature scheme which
applies only to a restricted message spaceM = {0, 1}r(λ) and arbitrary message-
length digital signature (AML-DS) schemes the schemes when M = {0, 1}∗.

We formalize a digital signature scheme S by three algorithms: The setup

algorithm (Kp,Ks)← S.setup(1λ) generates a key pair depending on a security
parameter λ. The sign algorithm σ ← S.sign(Ks,m) outputs a signature σ ∈ S
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of a message m ∈ M. The verify algorithm b ← S.verify(Kp,m, σ) tells whether
the pair (m,σ) is valid or not. It returns 1 if and only if the signature is valid
and 0 otherwise.

An FML-DS can be transformed into AML-DS following the hash-and-sign
paradigm. Here, hashing is used as a domain extender. For instance, DSA [7,6]
is based on SHA-1 [20] while RSA [16] uses MD5 [15] in the standard PKCS #1
v1.5 that is used in X.509 [11].

Consider an adversary A against S. A plays a game against a challenger C
who can sign messages. The goal of A is to yield a valid pair (m̂, σ̂) which was
not produced by C. Textbook signature schemes such as ElGamal [8] or plain
RSA [16] signatures are often existentially forgeable. We consider the strong
security model EF-CMA and the weak security model UF-KMA.

UF-KMA and EF-CMA Games. The signature scheme is said (T, ℓ, ε)-UF-KMA
(resp. EF-CMA) resistant if any adversary A bounded by a complexity T and ℓ
valid signatures on known (resp. chosen) messages cannot win the game of Fig. 1
(resp. Fig. 2) with probability higher than ε1. The scheme is said UF-KMA secure
(resp. EF-CMA-secure) if for any T = poly and ℓ = poly there exists ε = negl

such that the scheme is (T, ℓ, ε)-UF-KMA (resp. EF-CMA) resistant.

A C
Kp
←−−−− (Kp, Ks)← S.setup(1λ)

bm
←−−−− pick bm ∈u M

∀i ∈ 1..ℓ : mi ∈u M
mi||σi
←−−−− σi ← S.sign(Ks, mi)

select bσ
bσ

−−−−→ b← S.verify(Kp, bm, bσ)
A win if b = 1, bm 6= mi

Fig. 1. UF-KMA game.

A C
Kp
←−−−− (Kp, Ks)← S.setup(1λ)

∀i ∈ 1..ℓ :

select mi
mi−−−−→
σi←−−−− σi ← S.sign(Ks, mi)

select bm, bσ
bm||bσ
−−−−→ b← S.verify(Kp, bm, bσ)

A win if b = 1, bm 6= mi

Fig. 2. EF-CMA game.

2.2 Hash Functions

Collision Resistant Hash Functions (CRHF) are hash functions in which we
cannot construct two inputs x and y such that H(x) = H(y) and x 6= y2.
We say H depending on a security parameter λ is CRHF if any polynomially
bounded adversary finds collisions with negligible probability.

Target Collision Resistant (TCR) Hash Functions was introduced by Naor and
Yung [14] and then renammed in [4]. A (T, ε)-TCR is a keyed function H :
{0, 1}k × {0, 1}∗ 7→ {0, 1}n such that any adversary bounded by a complexity
T cannot win the game of Fig. 3 with probability higher than ε. For Hλ :
{0, 1}k(λ) ×{0, 1}∗ 7→ {0, 1}n(λ), we say H is TCR if any polynomially bounded
adversary wins with negligible probability.

1 Our results holds even if the winning conditions are replaced by ( bm, bσ) 6= (mi, σi).
2 Note that this definition is not so formal as discussed in Rogaway [18].
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Enhanced Target Collision Resistant (eTCR) hash function was introduced by
Halevi and Krawczyk [9]. A (T, ε)-eTCR is a stronger TCR function such that
any adversary bounded by a complexity T cannot win the game of Fig. 4 with
probability higher than ε. We say H is eTCR if any polynomially bounded
adversary wins with negligible probability. A OW-eTCR hash function is an
eTCR hash function for which (κ,m) 7→ Hκ(m) is also OW.

A C
m

−−−−−−−→
K

←−−−−−−− pick K ∈U {0, 1}k

bm
−−−−−−−→

A win if HK( bm) = HK(m), bm 6= m

Fig. 3. TCR game.

A C
m

−−−−−−−→
K

←−−−−−−− pick K ∈U {0, 1}k

bm‖ bK
−−−−−−−→

A win if H bK
( bm) = HK(m), (m, K) 6= ( bm, bK)

Fig. 4. eTCR game.

Random Oracle Hashing. A Random Oracle R : {0, 1}∗ 7→ {0, 1}n often repre-
sents a uniformly distributed random hash function [2]. It is simulated by an
oracle managing a table that is initially empty. When R receives a query with
input m and there is an (m, r) entry in the table, it simply returns r. Otherwise,
it picks a random value r ∈ {0, 1}n, returns it, and inserts a new entry (m, r) in
the table.

Preimage-Tractable Random Oracle Hashing. Preimage-Tractable Random Ora-
cles were introduced by Liskov [12]. It is used to idealize some weak hash function
for which preimages are computable, i.e. the one-wayness is not guaranteed. It
consists of two oracles:

– the first oracle G can be used to compute images like a random oracle, i.e.
r = G(m),

– the second oracle preimageG can be used to find a preimage of a hashed value.
When preimageG is queried with input r, it picks uniformly at random an
element within the set of all its preimages, i.e. it outputs m ∈u G−1(r).

The simulation of G is done as for random oracle hashing with a table T. To
simulate preimageG, upon a new query r we first compute the probability q to
answer an m that is not new, i.e. q = Pr

[
(G−1(r), r) ∈ T|!(m′,r′)∈T G(m′) = r′

]
.

Then flip a biased coin b with Pr[b = 0] = q and if b = 0 we pick uniformly one
(m, r) in T otherwise we pick uniformly one m such that (m, r) /∈ T, insert (m, r)
in T. Finally, answer by m. Note that this oracle can be used to find collisions
as well.

From a theoretical viewpoint, the preimage-tractable random oracle is as
powerful as the random oracle since preimageG(0‖α)⊕preimageG(1‖α) is indiffer-
entiable from a random oracle even when (G, preimageG) is a preimage-tractable
random oracle. Our motivation is to model weak hash functions which are in
place without changing the algorithm implementations.
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3 Domain Extension

3.1 Deterministic Hash-and-Sign

Given a hash function H : {0, 1}∗ → {0, 1}k and an FML-DS S0 on domain
{0, 1}k, we construct S′ on domain {0, 1}∗ by S′.sign(Ks,m) = S0.sign (Ks,H(m)).

Theorem 1. If H is a collision resistant hash function and S0 is EF-CMA-
secure, then S′ is EF-CMA-secure.

This folklore result is nicely treated in [18].

Theorem 2. If H is a random oracle and S0 is UF-KMA-secure, then S′ is
EF-CMA-secure.

The proof of this folklore result is rather straightforward. Indeed, H brings
collision resistance in domain extension as well as unpredictability.

3.2 Randomized Hash-and-Sign

The idea of using a TCR comes from Bellare and Rogaway [4] and was also
reused recently by Mironov [13]. The constructed signature consists of the pair
(κ, S.sign(Ks, κ‖Hκ(M))) where Hκ(·) is a TCR hash function. The following
result is a straightforward generalization of Mironov [13].

Theorem 3. Consider an FML-DS S0 with domain {0, 1}r and a function G0 :
{0, 1}∗ 7→ {0, 1}r. We assume that G0(X) is indistinguishable from Y ∈u {0, 1}r
when X ∈u {0, 1}2r. Let H : {0, 1}k ×{0, 1}∗ 7→ {0, 1}n be a TCR hash function
and R : {0, 1}k+n 7→ {0, 1}r be a random oracle. We construct two AML-DS S
and S′ by

S.sign(Ks,m) = S0.sign (Ks, G0(m))

S′.sign(Ks,m) = (κ ‖ S0.sign (Ks,R (κ‖Hκ(m)))) with κ ∈u {0, 1}k

Assuming that S is EF-CMA-secure, then S′ is also EF-CMA-secure.

This means that if there exists a domain extender G0 that makes S secure, then
S′ is secure.

Proof. Consider H : {0, 1}k × {0, 1}∗ 7→ {0, 1}n is a (T + µH , εH)-TCR hash
function for µH to be defined later, R : {0, 1}k+n 7→ {0, 1}r is a random oracle
bounded to q queries, and S0 an FML-DS scheme with r-bit input messages. We
assume that the construction S is (T + µS , ℓ, εS)-EF-CMA secure for µS to be
defined later. We assume that G0 is (T +µG, q+ℓ+1, εd)-PRG when restricted to
(2r)-bit inputs. We will prove that the construction S′ is (T, ℓ, εS +ℓεH +εc+εd)-
EF-CMA secure where εc represents a probability of collision on the outputs of
the random oracle.

We consider an adversary A playing the EF-CMA game against S′. We as-
sume without loss of generality that A queries R with Hbκ(m̂) before releasing
the final forgery (m̂, κ̂, σ̂) (so we have up to q + 1 queries to R). By using an
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A B C Di

Kp
←−−−−

Kp
←−−−− (Kp, Ks)← S0.setup(1λ)

xi−−−−→
gi←−−−− simR
mj
−−−−→

κj‖σj
←−−−−

simSign

mj
−−−−−−−−−−−−−−−−−−−−−−−−→

κj
←−−−−−−−−−−−−−−−−−−−−−−−−

m̄j
−−−−→

σj
←−−−− σj ← S0.sign(Ks, G0(m̄j))

κj ∈u {0, 1}k

bm‖bκ‖bσ
−−−−→ bh← Hbκ( bm)

bx← bκ‖bh
find m̄:

G0(m̄) = simR(bx)

bm
−−−−−−−−−−−−−−−−−−−−−−−−→

m̄‖bσ
−−−−→ bS ← S0.verify(Kp, G0(m̄), bσ)

check ∀j :
Hκj

( bm) 6= Hκj
(mj)

Fig. 5. Reduction to EF-CMA or TCR games (from EF-CMA).

algorithm B, we prove that we can reduce A to an adversary against either the
signature construction S or the TCR hash function H.

The reduction is depicted on Fig. 5. Clearly, B has to simulate the random
oracle R and the signing oracle that we refer to simR and simSign respectively.
The simulations work as follows:

simR: B manages a table T initially empty. For each R-query with input x:
– if simR(x) is not defined in T, B picks a random m̄ uniformly in {0, 1}2r

and answers g ← G0(m̄). Hence, a new entry (x, g, m̄) is inserted in T,
meaning simR(x) = g = G0(m̄). Note that the third entry m̄ will be used
by simSign only.

– otherwise, B answers simR(x) as defined in T.
simSign: For each sign-query with input m:

1. B computes h ← Hκ(m), x ← κ‖h where κ is returned by Di on query
m,

2. B queries simR(x). Let m̄ be such that simR(x) = G0(m̄) from T,
3. B queries C with m̄ to obtain its signature σ,
4. finally, B returns κ‖σ to A.

B is allowed to ℓ queries to the S0.sign oracle, so A is also allowed to ℓ queries
to simSign. Note that the simSign simulation is perfect but the simR simulation
is not. At the end, if A succeeds, he returns a forged pair (m̂, κ̂, σ̂) to B. We use
the proof methodology of Shoup [21]:

– Let game0 be the EF-CMA game against S′ depicted on Fig. 2.
– Let E1 be the event that there were no collision on the output of R. Let

game1 be game0 in which E1 occurred.
Clearly, when E1 does not occur, there is a collision on the R outputs. Since
there is at most q + ℓ + 1 elements in the simR table, this probability is

bounded by εc ≤ (q+ℓ+1)2

2 2−r. So, Pr[A wins game0]−Pr[A wins game1] ≤ εc.
– Let game2 be game1 where the R oracle was replaced by the simR simulator.

Let A′ simulate A and simR in which picking a random m̄, computing
g ← G0(m̄), and inserting (x, g, m̄) in the table is replaced by getting a
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random g∗ from a source Σ and storing (x, g∗) in the table. We consider
the two following sources: Σ0 picks g∗ with uniform distribution and Σ1

picks m̄ and output g∗ ← G0(m̄). Note that using Σ0 perfectly simulates
game1 while using Σ1 perfectly simulates game2. At the end, A′ checks
whether the EF-CMA game succeeded. Clearly, this is a distinguisher of
some complexity T + µG between Σ0 and Σ1 by using q + ℓ + 1 samples. So,
|Pr[A wins game1]− Pr[A wins game2]| ≤ εd.

– Let game3 be the simulated EF-CMA game of Fig. 5. Since the simula-
tion simSign of the signing oracle is perfect, we have Pr[A wins game3] =
Pr[A wins game2].

– Let E4 be the event that the final m̄ was not queried to C. Let game4 be the
game3 in which E4 occurred. In that case, A can be perfectly reduced to an
EF-CMA adversary of complexity T +µs against C. So, Pr[A wins game4] ≤
εS .

Clearly, if E4 did not occur, m̄ was previously queried to C. Let m̄ = m̄j , i.e.
m̄ was queried by B to C at the jth sign-query. Thus, B queried simR with
an input xj and obtained (xj , G0(m̄j), m̄j). Since there were no collision on

simR, m̄ = m̄j implies that x̂ = xj thus κ̂ = κj and ĥ = hj . We have
Hbκ(m̂) = Hbκ(mj). m̂ is different from all mi since A won his attack against
S′. Hence, A can be perfectly reduced to a TCR adversary against Dj and
Pr[A wins game3]− Pr[A wins game4] ≤ ℓεH .

We conclude by considering the above reductions that µH and µS are within the
order of magnitude of the simulation cost which is polynomial. ⊓⊔

The problems of such constructions are that (1.) we do not have a full reduc-
tion to the weak security of S0; (2.) the signature enlarges; (3.) κ must be signed;
(4.) we still need a random oracle R (implicitly meaning collision-resistant hash-
ing) so the role of R is to concentrate on unpredictability and nevertheless, R is
now restricted to {0, 1}k+m.

Halevi and Krawczyk [9] also use a randomized hashing but avoid signing
the κ salt. Indeed, they use an eTCR hash function. In [9], they proposed a
construction technique for eTCR based on weak hashing and suggested to use it
as preprocessing for signature schemes. The signature consists of the pair (κ, σ)
where σ is S.sign(Ks,Hκ(m)). One problem is that they do no provide any proof
of security for the signature so far. Indeed, they only focus on the problem for
constructing an eTCR hash function based on weak hashing.

4 Strong Signature Schemes With Weak Hashing

We consider a deterministic hash-and-sign signature S put together with the
Halevi and Krawczyk [9] message processing. Namely, given a weakly-secure
FML-DS S0 we construct a strongly-secure AML-DS S′ as follows:
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σ′ ← S′.sign(Ks,m):

• pick κ ∈u {0, 1}k
• s← Hκ(m)
• h← G(s)
• σ′ ← (κ‖S0.sign(Ks, h))

b← S′.verify(Kp,m, σ′): (σ′ = κ‖σ)

• s← Hκ(m)
• h← G(s)
• b← S0.verify(Kp, h, σ)

where H : {0, 1}k × {0, 1}∗ to {0, 1}n is an eTCR hash function family, G :
{0, 1}n → {0, 1}r a (weak) hash function, and S0 is an UF-KMA secure FML-DS
on domain {0, 1}r. Clearly, for S defined by S.sign(Ks,m) = S0.sign(Ks, G(m)),
our construction can be seen as a regular AML-DS based on hash-and-sign with
an extra randomized preprocessing Hκ(·).

Theorem 4. Consider H is an OW-eTCR hash function family, and G is a
preimage-tractable random oracle. If S0 is an UF-KMA-secure FML-DS, then
S′ in the above AML-DS construction is EF-CMA-secure.

Clearly, we can build strong signature schemes for arbitrary messages based on
any weak signature scheme restricted to fixed-length input messages without
collision-resistance and without a full random oracle. The remaining drawback
is that the signature enlarges.

Note that the OW assumption on H is necessary since G is assumed to
be preimage-tractable (otherwise, existential forgeries on S0 would translate in
existential forgeries on S′). and eTCR hash functions may be not OW. Indeed,
if H is eTCR, then H ′ defined by

H ′
κ(m) =

{
0‖m if κ = 0 . . . 0 and |m| = n− 1,
1‖Hκ(m) otherwise.

is eTCR as well but not OW. However, when there exists a set of messages
M such that H is a PRG when restricted to {0, 1}k×M, then eTCR implies
OW-eTCR.

Proof. Let us assume that S0 is (T +µ, ℓ, εS)-UF-KMA-secure, H is (T +µ, εH)-
eTCR and (T + µ, εw)-OW, and G is a random oracle limited to q < ℓ queries
where µ is some polynomially bounded complexity (namely, the overhead of some
simulations). We will show that S′ is (T, ℓ−q, εf +qp ·εw +(ℓ−q)·εH +q ·εS)-EF-
CMA-secure where εf represents a probability of failure during the reduction.

We start by considering an EF-CMA adversary A against our constructed
scheme S′. We assume thatA is bounded by complexity T . By using an algorithm
B, we transform A into either an UF-KMA adversary against S0 or into an eTCR
adversary against H as depicted on Fig. 6. Here, C plays the role of the challenger
in the UF-KMA game of Fig. 1 while each Di′′ plays the role of the i′′th challenger
in the eTCR game of Fig. 4.

Clearly, algorithm B has to simulates for A the signing oracle and the two
oracles that model the preimage-tractable hash function that we refer by simSign,
simG, and preimageG respectively. To simulate G and preimageG, we use another
existing preimage-tractable random oracle G0 and preimageG0 and we construct
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A B C Di′′

Kp
←−−−−−−−

Kp
←−−−−− (Kp, Ks)← S0.setup(1λ)

h∗

←−−−−− h∗ ∈u {0, 1}r

∀i ∈ 1..ℓ : h̄i ∈u {0, 1}r
h̄i‖σ̄i
←−−−−− σ̄i ← S0.sign(Ks, h̄i)si−−−−−−−→

hi←−−−−−−− simG
hi′−−−−−−−→
si′←−−−−−−−

preimageG

mi′′−−−−−−−→
κi′′‖σi′′←−−−−−−−

simSign

mi′′−−−−−−−−−−−−−−−−−−−−−−−−→
κi′′←−−−−−−−−−−−−−−−−−−−−−−−−

κi′′ ∈u {0, 1}k

bm‖bκ‖bσ
−−−−−−−→ bs← Hbκ( bm)

bm‖bκ
−−−−−−−−−−−−−−−−−−−−−−−−→ check Hbκ( bm) = Hκi′′

(mi′′)

bh← simG(bs)
bσ

−−−−−→ bS ← S0.verify(Kp, h∗, bσ)

Fig. 6. Reduction to the UF-KMA or eTCR games (from EF-CMA).

a random permutation ϕ such that G = ϕ ◦ G0. We consider a growing pool of
values of s. The pool is initially empty. A new s is put in the pool if it is queried
to simG or returned by preimageG. Without loss of generality, we assume that
A makes no trivial queries to simG. Namely, he does not query simG with an s
already in the pool. Similarly, we assume that if ŝ = Hbκ(m̂) is not in the pool,
A queries simG(ŝ) before releasing m̂‖κ̂‖σ̂ to make sure that ŝ is in the pool. (So
we may have q + 1 queries to simG.) The simulations work as follows:

simG: At the beginning of the game, B picks a random t ∈u {1..q}. When A
submits a G-query with input s:
– if ϕ(G0(s)) is undefined, it answers the next h̄i in the sequence ex-

cept that for the tth query it answers h∗. Hence, there is a new entry
ϕ(G0(s)) = h in the ϕ table.

– If ϕ(G0(s)) is already defined, B aborts.
preimageG: When A submits a preimageG query with input h, if x = ϕ−1(h) is

not defined, it picks a random x on which ϕ(x) is not defined and define
ϕ(x) = h. Then, it queries preimageG0(x) and answers s.

simSign: When A submits a sign-query with input m, B queries a new Di′′ with
input m, gets κ, and computes s = Hκ(m). If s is in the pool, B abort.
Otherwise, B runs h← simG(s) without counting this query (that is, use the
next h̄i in the sequence and not h∗). Thus, simG(s) is equal to one of the h̄i

and B uses the corresponding signature σ̄i to answer κ‖σ̄i.

Note that B has ℓ signed samples from C, thus A is limited to ℓ queries to simG

and simSign. So, q + qs ≤ ℓ. At the end, if A succeeds his EF-CMA game, he
will send a tuple (m̂, κ̂, σ̂) to B.

We use the proof methodology of Shoup [21]:

– Let game0 be the EF-CMA game against S′ of Fig. 2.
– Let game1 be the simulated EF-CMA game against S′ depicted on Fig. 6.

Clearly, the simulations fails when a ϕ(G0(s)) is already defined while query-
ing simG with s or when s = Hκ(m) was already in the pool while querying
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simSign. Let εf the bound on this failure probability. By using the difference
lemma [21] we obtain Pr[A wins game0]−Pr[A wins game1] ≤ εf . Note that
εf ≤ Pr[B fails on a simG query] + Pr[B fails on a simSign query]. We con-
sider A is bounded by q, qp and qs queries to simG, preimageG, and simSign

respectively, and a space of 2r elements. First, we compute the probability
that B fails on a simG query, i.e. there were a collision of G0(s) for one s
queried to simG with one G0(s

′) for s′ in the pool. By considering the queries
from A and from simSign, there are at most q + qs + 1 queries to simG and
at most q + qs + qp + 1 elements still defined in the pool. Since they are
uniformly distributed, the probability that two elements collide is 2−r. So,
Pr[B fails on a simG query] ≤ (q + qs + 1)(q + qs + qp + 1) · 2−r.
Now, we compute the probability that B fails on a simSign query, i.e. s was
already in the pool. There are at most qs queries to simSign and at most
q + qs + qp + 1 elements s in the pool. For each query-s pair, we have the
following scenario: A queries simSign with m, B queries D with m, gets κ,
computes Hκ(m), and looks if it is s. Clearly, this scenario can be described
as game (a) of Fig.7. Let p the maximal success probability among all random
coins of the adversary A in the game (a).

A C

select s, m
s‖m

−−−−−−−→
κ

←−−−−−−− pick κ ∈U {0, 1}k

Success if: s = Hκ(m)

game (a)

A′ C

select m0

m0−−−−−−−→
κ

←−−−−−−− pick κ ∈U {0, 1}k

pick κ′ ∈U {0, 1}k
m0‖κ′

−−−−−−−→
Success if: Hκ(m0) = Hκ′(m0), κ′ 6= κ

game (b)

Fig. 7. Reduction to the eTCR Game

Now, consider game (b) depicted on Fig.7. Clearly, this game is harder than
the eTCR game since A′ has no control on the second message returned to
C, i.e. it is m0. We know that εH is a bound on the success probability of A′

in the eTCR game. Thus, we have:

εH ≥ Pr[s0 = Hκ(m0) = Hκ′(m0) and κ′ 6= κ]

≥ Pr[s0 = Hκ(m0) = Hκ′(m0)]− Pr[κ′ = κ]

= p2 − 2−k.

We conclude that p ≤
√

εH + 2−k and so, εf ≤ (q + qs +1)(q + qs + qp +1) ·
2−r + qs(q + qs + qp + 1) ·

√
εH + 2−k is negligible.

– Let E2 be the event that the forgery m̂‖κ̂‖σ̂ is such that ŝ ← Hbκ(m̂) was
queried to simG. Let game2 be game1 in which E2 occurred.
Since we made sure that ŝ is in the pool, if E2 does not occur, the ŝ was
returned by some preimageG(h) for the first time once. Note that when
preimageG returns an unused value, it is uniformly distributed among all un-
used values. Clearly,A has to find a pair (m̂, κ̂) with Hbκ(m̂) = ŝ which breaks
the one-wayness of H. So, Pr[A wins game1]− Pr[A wins game2] ≤ qp · εw.
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– Let E3 be the event that ŝ is different from all si′′ ← Hκi′′
(mi′′). Let game3

be game2 in which E3 occurred.
Clearly, if E3 did not occur, ŝ is equal to si′′ for a certain i′′. Recall that
since A won his game m̂ is different from all mi′′ . So, A found m̂ and κ̂
such that Hbκ(m̂) = Hκi′′

(mi′′). Here, A can perfectly be reduced to an
eTCR adversary against all Di′′ . So, Pr[A wins game2]−Pr[A wins game3] ≤
qs · εH ≤ (ℓ− q) · εH .

– Let E4 be the event that ĥ = h∗. In other words the forged value ĥ is equal
to the expected value h∗. Let game4 be game3 in which E4 occurred. Here,
A can perfectly be reduced to an UF-KMA adversary against S0. Clearly,
Pr[A wins game4] ≤ εS .
Finally Pr[A wins game3] ≤ q ·εS since E4 occurred with probability 1/q and
so Pr[A wins game4]/Pr[A wins game3] = 1/q.

⊓⊔

5 The Entropy Recycling Technique

To keep the same signature length, we have to avoid to append κ in the signature.
The idea from [13] is to use the randomness computed in the signature scheme
instead of introducing a new random parameter. Mironov [13] present specific
modifications for the DSA [7,6], RSA-PSS [3], and Cramer-Shoup [5] signature
schemes. In this section, we generalize the construction from Mironov. For that,
we introduce a special sort of signature schemes: Signature with Randomized
Precomputation.

A Signature with Randomized Precomputation (SRP) is any signature scheme
for which the signature algorithm can be separated in two parts:

– first, a probabilistic precomputation algorithm generates the randomness
without the message to be signed,

– then, a signature algorithm signs the message using the previous randomness.

Note that the randomness must be recoverable from the signature itself, which
requires another algorithm extract. We can formalize any SRP scheme by the
following five algorithms:

(Kp,Ks)← S.setup(1λ)
(ξ, r)← S.presign(Ks) r ← S.extract(Kp, σ)
σ ← S.postsign(Ks,m, ξ) b← S.verify(Kp,m, σ)

Actually, all digital signature schemes can be written this way (e.g. with r void),
but we need r to have a large enough entropy. We provide the necessary quan-
titative definitions for that in Appendix. When talking about the entropy of a
SRP scheme, we implicitly mean the entropy of r generated by S.presign(Ks)
given a key Ks.

Theorem 5. Consider H is an eTCR hash function with t-bit keys and S0 is a
FML-SRP. We assume that the signature construction S based on S0 defined by



12 Sylvain Pasini and Serge Vaudenay

σ′ ← S.sign(Ks,m):

• pick κ ∈u {0, 1}t
• (ξ, r)← S0.presign(Ks)
• σ ← S0.postsign(Ks,Hκ(m), ξ)
• output κ‖σ

b← S.verify(Kp,m, κ‖σ):

• b← S0.verify (Kp,Hκ(m), σ)
• output b

is an EF-CMA secure AML-SRP requiring an additional randomness κ.We as-
sume that the SRP produces t-bit strings that are indistinguishable from uni-
formly distributed ones.

Consider R is a random oracle with k-bit output strings limited to q queries.
The signature construction S′ defined by

σ′ ← S′.sign(Ks,m):

• (ξ, r)← S0.presign(Ks)
• σ ← S0.postsign(Ks,HR(r)(m), ξ)
• output σ

b← S′.verify(Kp,m, σ′): (σ′ = σ)

• r ← S0.extract(Kp, σ)
• b← S0.verify

(
Kp,HR(r)(m), σ

)

• output b

is also EF-CMA-secure even by re-using the randomness from the SRP.

Proof. Assume that the AML-SRP construction S is (T + µ, ℓ, εS)-EF-CMA
secure and that r is (T + µ, ℓ, εd)-PR where µ is some polynomially bounded
complexity due to the game reduction. In the following, we prove that the con-
struction S′ is (T, ℓ, εS +εc)-EF-CMA secure where εc represents the probability
of collision on the R outputs as defined in Lemma 3. We consider any EF-CMA
adversary A against S′. As depicted on Fig. 8, we transform A into an EF-CMA
adversary against the eTCR-based scheme S by using an algorithm B which
simulates the random oracle R, the transform of S′.sign to S.sign, and replaces
the final (m̂, σ̂) by (m̂, κ̂, σ̂).

A B C
Kp

←−−−−−−−−−−
Kp

←−−−−−−−−−− (Kp, Ks)← S.setup(1λ)
select mi

mi−−−−−−−−−−→
σi←−−−−−−−−−−

simSign
mi−−−−−−−−−−→

κi‖σi
←−−−−−−−−−−

pick κi, si ← Hκi
(mi)

σi ← S.sign(Ks, si)

select ri

rj
−−−−−−−−−−→

hj
←−−−−−−−−−− simR

select bm, bσ
bm‖bσ

−−−−−−−−−−→ br ← S.extract(Kp, bσ)

bκ← R(br)
bm‖bκ‖bσ

−−−−−−−−−−→ b← S.verify(Kp, Hbκ( bm), bσ)
Winning condition: b = 1 and bm /∈ {m1, . . . mℓ}

Fig. 8. Reduction to the EF-CMA game against the eTCR-based scheme S.

The simulations works as follows:

simR works as defined in Section 2.2.
simSign WhenA submits a sign-query with input m, B obtains (κ, σ) by querying
C and deduces r ← S.extract(Kp, σ). If r is free in the simG table, it lets
κ = R(r) and returns σ to A, otherwise B fails.
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B is allowed to ℓ queries to the S0.sign oracle, so A is also allowed to ℓ queries
to simSign. At the end, if A succeeds his EF-CMA game, he will send a tuple
(m̂, κ̂, σ̂) to B. We use one more time the proof methodology of Shoup [21]:

– Let game0 be the EF-CMA game against S′ of Fig. 2.
– Let game1 be the simulated EF-CMA game against S′ depicted on Fig. 6.

Clearly, the simulation fails if simSign fails, i.e. if an rj in simSign is not free
in the simR table. Let εc the bound on this probability of collision.
Let E1 the event that all rj are free in the simR table. So, game1 is game0

in which E1 occurred. Here, A can perfectly be reduced to an EF-CMA
adversary against S. So Pr[A wins game2] ≤ εS .
We obtain Pr[A wins game0]−Pr[A wins game1] ≤ εc by using the difference
lemma [21]. A detailed expression of εc is given on Lemma 3. It is clearly
negligible.

⊓⊔

6 Application to DSA

We apply Theorem 4 and Theorem 5 to offer a quick fix to DSA in the case that
SHA-1 [20] became subject to preimage attacks. Here, standard implementations
of DSA could still be used: only a “message preprocessing” would be added.
First, note that DSA without hashing can be described using our SRP formalism
of Section 5. We denote by m the messages of arbitrary length (input of the
sign algorithm) and by h the digest in DSA, i.e. the 160-bit sting. The public
parameters are q a 160-bit prime, p = a · q + 1 a 1024-bit prime, and g ∈ Zp a
generator of order q.

The DSA construction is depicted on Fig. 9 where f(m) describes some func-
tion mapping the arbitrary message length to a fixed length strings which rep-
resents the “message preprocessing”.

(Ks, Kp)← S.setup(1λ): pick Ks ∈u Zq

Kp ← gKs mod p

σ ← S.sign(Ks, m, k, r): pick k ∈u Z
∗
q

r ← (gk mod p) mod q
h← f(m)

s← h+Ks·r
k

mod p
σ ← (r, s)

b← S.verify(Kp, m, σ): h← f(m)

check r = (g
h
s

mod qy
r
s

mod q mod p) mod q

Fig. 9. The DSA Construction

DSA uses the (original) hash-and-sign paradigm. f(m) is simply

h← H∗(m)
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where H∗ is a collision resistant hash function.
Consider textbook DSA is an UF-∅MA-secure FML-DS. Note that it is exis-

tentially forgeable. Theorem 4 says that the scheme of Fig. 9 where f(m) is

h← G(Hκ(m)) where κ ∈u {0, 1}k,

is EF-CMA-secure when G is a preimage-tractable random oracle (say SHA-
1 in practice) and H is a one-way eTCR hash function. Thus, we build an
EF-CMA-secure AML-DS based on DSA without collision-resistance. Assuming
that G(Hκ(m)) can be instantiated by SHA1(RMX(κ,m)) where RMX denotes
the implementation from Halevi-Krawczyk [10] of the message randomization,
the Halevi-Krawczyk construction is secure. The drawback is that the signature
enlarges sending κ.

Instead of picking some new randomness κ we re-use randomness from the
presign algorithm if the implementation of DSA allows it, i.e. we use R(r) where
R is a random oracle. Theorem 5 says that the scheme of Fig. 9 where f(m) is

h← G(HR(r)(m))

is EF-CMA-secure as well.

From Theorem 4 and Theorem 5, we deduce that our construction is (T,Q, ε′s)-
EF-CMA-secure where ε′s ≤ εf + qp · εw + (ℓ − q) · εH + q · εS + εc. Assuming
an adversary bounded by a time complexity T and an online complexity Q ≤ T ,
considering that εH , εs and εw are all equals to T ·2−160, k is 160-bit long, q, qs,
and ℓ are bounded by Q, and qp is bounded by T , we obtain εf ≤ 9 ·Q ·T ·2−160,
εc ≤ Q2 · 2−160 and so

ε′s ≤
(
12 ·Q · T + Q2

)
· 2−160.

Clearly, Q · T must be bounded by 2160. Since Q is often near 230, we deduce
that T can be close to 2130 which is much better than actual implementations
requiring a complexity T bounded by 280 to avoid collision attacks.

In summary, by using Theorem 4 and Theorem 5, we build a DSA-based EF-
CMA-secure scheme for input messages of arbitrary length and with signatures
as long as the original DSA scheme.

7 Conclusion

Consider any signature implementation S based on a textbook signature scheme
S0 and using the original hash-and-sign paradigm with a hash function G, i.e.
S.sign(Ks,m) = S0.sign(Ks, G(m)). Assume that S0 is weakly secure and that
some weakness on G was reported.
By using Theorem 4, we can build a strongly secure implementation by adding a
preprocessing Hκ(m) where H is an OW-eTCR hash function. Our new construc-
tion S′ defined by S′.sign(Ks,m) = S.sign(Ks,Hκ(m)) = S0.sign(Ks, G(Hκ(m)))
is strongly secure and actual implementations can still be used, it simply needs
to “preprocess” the input message. This assumes that G can be modeled as a
preimage-tractable random oracle.
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A Probability of Collisions

We provide the necessary quantitative definitions of the entropy of a random
variable.

Definition 1. Let X a random variable in a set X with distribution D. We
define:
the min-entropy of X by: H∞(D) = − log maxx∈DX Pr[X = x]
the Renyi entropy (of order 2) of X by: H2(D) = − log

∑
x∈DX

Pr[X = x]2

Mironov [13] computed the probability of collision on the outputs of a random
oracle R.

Lemma 1 ([13]). Let R denotes a set of possible rj values with cardinality q.
We consider ℓ i.i.d. trials ri with distribution D. Let εc be the probability that at
least one of the trials is in R or at least two of the trials are equal. We have

εc ≤ 2−2·H∞(D) · ℓ2 · q + 2−H∞(D) · ℓ2 (1)

Note that we can use another bound for εc in terms of Renyi entropy as described
in Lemma 2 or as pseudo-randomness as described in Lemma 3.

Lemma 2. Let R denotes a set of possible rj values with cardinality q. We
consider ℓ i.i.d. trials ri with distribution D. Let εc be the probability that at
least one of the trials is in R or at least two of the trials are equal. We have

εc ≤
ℓ2

2
· 2−H2(D) + ℓ · √q · 2−

H2(D)
2 (2)

Proof. Let px = Pr[r = x]. We have

εc = Pr[∃i, j : i 6= j, ri = rj or ri ∈ R]

≤ ℓ2

2

∑

x

p2
x + ℓ

∑

x∈R

px ≤
ℓ2

2

∑

x

p2
x + ℓ

√
q

√∑

x

p2
x

⊓⊔

Lemma 3. Let R denotes a set of possible rj values with cardinality q. We
consider ℓ i.i.d. trials ri with distribution D. Let εc be the probability that at
least one of the trials is in R or at least two of the trials are equal. Assuming
that D is (ℓ, ε)-PR in {0, 1}ρ, we have

εc ≤ q · 2−ρ +
ℓ2

2
· 2−ρ + ε (3)


