Implementing Joins using Extensible Pattern Matching

Philipp Haller!, Tom Van Cutsem?*

! LAMP-REPORT-2007-004
EPFL, 1015 Lausanne, Switzerland
firstname.lastname@epfl.ch
+41 21 693 6483, +41 21 693 6660
2 Programming Technology Lab, Vrije Universiteit Brussel, Belgium

Abstract. Join patterns are an attractive declarative way to synchronize both threads
and asynchronous distributed computations. We explore joins in the context of ex-
tensible pattern matching that recently appeared in languages such as F# and Scala.
Our implementation supports Ada-style rendezvous, and constraints. Furthermore,
we integrated joins into an existing actor-based concurrency framework. It enables
join patterns to be used in the context of more advanced synchronization modes,
such as future-type message sending and token-passing continuations.

Keywords: Concurrent Programming, Join Patterns, Actors

1 Introduction

Recently, the pattern matching facilities of languages such as Scala and F# have been gen-
eralized to allow representation independence for objects used in pattern matching [4115]].
Extensible patterns open up new possibilities of implementing abstractions in libraries
which were previously only accessible as language features. More specifically, we claim
that extensible pattern matching eases the construction of declarative approaches to syn-
chronization in libraries rather than languages. To support this claim, we show how a con-
crete declarative synchronization construct, join patterns, can be implemented in Scala, a
language with extensible pattern matching. Join patterns [[6/7] offer a declarative way of
synchronizing both threads and asynchronous distributed computations that is simple and
powerful at the same time. They form part of functional languages such as JoCaml [3]]
and Funnel [[10]. Join patterns have also been implemented as extensions to existing lan-
guages [2017].

Recently, Russo [13]] and Singh [14]] have already shown that advanced programming
language features, such as generics or software transactional memory, make it feasible
to provide join patterns as libraries rather than language extensions. As we will argue in
section 2] an implementation using extensible pattern matching improves upon these pre-
vious approaches by providing a better integration between library and language. More
concretely, we make the following contributions:

* supported by a Ph.D. fellowship of the Research Foundation Flanders (FWO).



— Our implementation technique overcomes several limitations of previous library-
based designs and language extensions. In all library-based implementations that
we know of, pattern variables are represented implicitly as parameters of join con-
tinuations. Mixing up parameters of the same type inside the join body may lead to
obscure errors that are hard to detect. Our design avoids these errors by using the
underlying pattern matcher to bind variables that are explicit in join patterns. The
programmer may use a rich pattern syntax to express constraints using nested pat-
terns and guards. However, efficiently supporting general guards in join patterns is
currently an open problem, and we do not attempt to solve it.

— We present a complete implementation of our design as a Scala libraryE] that supports
Ada-style rendezvous and constraints. Moreover, we integrate our library into an
existing event-based, non-blocking concurrency framework. This enables expressive
join patterns to be used in the context of more advanced synchronization modes, such
as future-type message sending and token-passing continuations. Our integration is
unique in the sense that the new library provides a conservative syntax extension.
That is, existing programs continue to run without change when compiled or linked
against the extended framework.

The rest of this paper is structured as follows. In the following section we briefly
highlight join patterns as a declarative synchronization abstraction, how they have been
integrated in other languages before, and how combining them with pattern matching
can improve this integration. Section [3.1] shows how to synchronize threads using join
patterns written using our library. Section[3.2] shows how to use join patterns with actors.
In sectiond] we discuss the concrete Scala implementation of Joins for threads and actors.
Section 3] discusses related work, and section [6] concludes.

2 Motivation

Background: Join Patterns A join pattern consists of a body guarded by a linear set of
events. The body is executed only when all of the events in the set have been signaled
to an object. Threads may signal synchronous or asynchronous events to objects. By
signaling a synchronous event to an object, threads may implicitly suspend. The simplest
illustrative example of a join pattern is that of an unbounded FIFO buffer. In Cw, it is
expressed as follows [2]:

public class Buffer {

public async Put(int x);

public int Get() & Put(int x) { retum x; }
}

A detailed explanation of join patterns is outside the scope of this paper. For the purposes
of this paper, it suffices to understand the operational effect of a join pattern. Threads
may put values into a buffer b by invoking b.Put(v). They may also read values from
the buffer by invoking b.Get (). The join pattern Get() & Put(int x) (called a chord in

3 Available at http://lamp.epfl.ch/"phaller/joins/.



Cw) specifies that a call to Get may only proceed if a Put event has previously been sig-
naled. Hence, if there are no pending Put events, a thread invoking Get is automatically
suspended until such an event is signaled.

The advantage of join patterns is that they allow a declarative specification of the
synchronization between different threads. Often, the join patterns correspond closely to
a finite state machine that specifies the valid states of the object [2]. Section [3.1] provides
a more illustrative example of the declarativeness of join patterns.

Limitations of library-based designs In Cw, join patterns are supported as a language
extension through a dedicated compiler. This ensures that join patterns are perfectly in-
tegrated in the language. With the introduction of generics in C#, Russo has made join
patterns available as a regular C# library called Joins [13]]. In that library, the Buffer
example is encoded as follows:

public class Buffer {
// Declare (a)synchronous channels
public readonly Asynchronous.Channel<int> Put;
public readonly Synchronous<int>.Channel Get;
public Buffer() {
Join join = Join.Create();
join.Initialize(out Put); join.Initialize(out Get); // initialize channels
join.When(Get) .And(Put) .Do(delegate(int x) { return x; });
}
}

In C# Joins, join patterns consist of linear combinations of channels and a delegate (a
function object) which encapsulates the body. Join patterns are triggered by invoking
channels, which are special delegates.

Even though the synchronization between Get and Put is still readily apparent in the
above example, the Joins library design has some drawbacks. First and foremost, the
way in which arguments are passed between the channels and the body is very implicit:
the delegate is implicitly invoked with the value passed via the Put channel. Contrast
this with the Cw example in which the variable x is explicitly tied to the Put message.
Furthermore, because Joins are defined by means of an ad hoc combination mechanism,
it is impossible to declaratively specify additional pattern matches or even guards. For
example, it is not possible to add a join pattern triggering only on calls to Put where x
is 0 or x > 100. Instead, one would have to add an if-test to the body of the join which
partially defeats the declarative nature of the synchronization. In section[3} we show how
these drawbacks can be eliminated by integrating join patterns with a host language’s
standard support for pattern matching.

Joins for Actors While join patterns have been successfully used to synchronize threads,
to the best of our knowledge, they have not yet been applied in the context of an actor-
based concurrency model. In Scala, actor-based concurrency is supported by means of
a library [8]. Because we provide join patterns as a library extension as well, we have
created the opportunity to combine join patterns with the event-driven concurrency model



offered by actors. We give a detailed explanation of this combination in section
However, in order to understand this integration, we first briefly highlight how to write
concurrent programs using Scala’s actor library.

Scala’s actor library is largely inspired by Erlang’s model of concurrent processes
communicating by message-passing [1]. New actors are defined as classes inheriting the
Actor class. The actor’s life cycle is described by its act method. The following code
shows how to implement the unbounded buffer as an actor:

class Buffer extends Actor {
override def act() { loop(Nil) }
def loop(buf: List[Int]) {
receive {
case Put(x) = loop(buf ::: List(x)) // append x to buf
case Get() if !'buf.isEmpty => reply(buf.head); loop(buf.tail) }
}
}

The receive method allows an actor to selectively wait for certain messages to arrive in
its mailbox. Interacting with a buffer actor occurs as follows:

val buffer = new Buffer; buffer.start()
buffer ! Put(42) // asynchronous send, returns nothing
printIn(buffer !'? Get()) // synchronous send, waits for reply

Synchronous message sends make the sending process wait for the actor to reply to the
message (by means of the reply(value) method). Scala actors also offer more advanced
synchronization patterns such as futures [919]. actor !! msg denotes an asynchronous
send that immediately returns a future object. In Scala, a future is a nullary function that,
when applied, returns the future’s computed result value. If the future is applied before
the value is computed, the caller is blocked.

In the above example, the required synchronization between Put and Get is achieved
by means of a guard. The guard in the Get case disallows the processing of any Get
message while the buf queue is empty. In the implementation, all cases are sequentially
checked against the incoming message. If no case matches, or all of the guards for match-
ing cases evaluate to false, the actor keeps the message stored in its mailbox and awaits
other messages.

Even though the above example remains simple enough to implement, the synchro-
nization between Put and Get remains very implicit. The actual intention of the program-
mer, i.e. the fact that an item can only be produced when the actor received both a Get
and a Put message, remains implicit in the code. Hence, even actors can benefit from the
added declarative synchronization of join patterns, as we will illustrate in section[3.2]

3 A Scala Joins Library

We now discuss a Scala library (henceforth called Scala Joins) providing join patterns
implemented via extensible pattern matching. First, we explain how Scala Joins enables
the declarative synchronization of threads, postponing joins for actors until section



3.1 Joining Threads

Scala Joins draws on Scala’s extensible pattern matching facility [4]. This has several ad-
vantages: first of all, the programmer may use Scala’s rich pattern syntax to express con-
straints using nested patterns and guards. Moreover, reusing the existing variable binding
mechanism avoids typical problems of other library-based approaches where the order
in which arguments are passed to the function implementing the join body are merely
conventional, as explained in section @ Similar to C# Joins’s channels, joins in Scala
Joins are composed of synchronous and asynchronous events. Events are strongly typed
and can be invoked using standard method invocation syntax. The FIFO buffer example
is written in Scala Joins as follows:

class Buffer extends Joins {

val Put = new AsyncEvent[Int]

val Get = new SyncEvent[Int]

join { case Get() & Put(x) => Get reply x }
}

To enable join patterns, a class inherits the Joins class. Events are declared as regular
fields. They are distinguished based on their (a)synchrony and the number of arguments
they take. For example, Put is an asynchronous event that takes a single argument of type
Int. Since it is asynchronous, no return type is specified (it immediately returns unit
when invoked). In the case of a synchronous event such as Get, the first type parameter
specifies the return type. Therefore, Get is a synchronous event that takes no arguments
and returns values of type Int.

Joins are declared using the join { ... } construct. This construct enables pattern
matching via a list of case declarations that each consist of a left-hand side and a right-
hand side, separated by =>. The left-hand side defines a join pattern through the juxtapo-
sition of a linear combination of asynchronous and synchronous events. As is common
in the joins literature, we use & as the juxtaposition operator. Arguments of events are
usually specified as variable patterns. For example, the variable pattern x in the Put event
can bind to any value (of type Int). This means that on the right-hand side, x is bound to
the argument of the Put event when the join pattern matches. Standard pattern matching
can be used to constrain the match even further (an example of this is given below).

The right-hand side of a join pattern defines the join body (an ordinary block of code)
that is executed when the join pattern matches. Like JoCaml, but unlike Cw and C# Joins,
Scala Joins allows any number of synchronous events to appear in a join pattern. Because
of this, it is impossible to use the return value of the body to implicitly reply to the single
synchronous event in the join pattern. Instead, the body of a join pattern explicitly replies
to all of the synchronous events that are part of the join pattern on the left-hand side.
Synchronous events are replied to by invoking their reply method. This wakes up the
thread that originally signalled that event.

To demonstrate how join patterns can be combined with ordinary pattern matching,
consider the traditional problem of synchronizing multiple concurrent readers with one
or more writers who need exclusive access to a resource. A multiple reader/one writer
lock can be implemented in our library as follows'}

* This implementation is based on that of Cw [2l] and Russo’s Joins library for C# [13].



class ReadeririterLock extends Joins {
private val Idle = new NullaryAsyncEvent
private val Sharing = new AsyncEvent[Int]
val Exclusive, ReleaseExclusive = new NullarySyncEvent
val Shared, ReleaseShared = new NullarySyncEvent
join {
case Exclusive() & Idle() => Exclusive reply
case ReleaseExclusive() => { Idle(); ReleaseExclusive reply }
case Shared() & Idle() => { Sharing(1); Shared reply }
case Shared() & Sharing(n) => { Sharing(n+1); Shared reply }
case ReleaseShared() & Sharing(1) => { Idle(); ReleaseShared reply }
case ReleaseShared() & Sharing(n) => { Sharing(n-1); ReleaseShared reply }
}
Idle() }

In the above example, events are used to encode the state of the reader-writer lock. The
last statement ensures that the lock starts off in an Idle state (no active threads). A writer
can signal a synchronous Exclusive event to acquire the lock. Concurrent readers are
represented by means of a Sharing(n) event which encodes the number of currently
active readers.

In the join pattern ReleaseShared() & Sharing(1), regular pattern matching is used
to constrain the pattern only to Sharing events whose argument equals 1, thus ensuring
that this pattern only triggers when the /ast reader releases the lock. If join patterns would
not be integrated with pattern matching, code like this would require additional tests in
the body of more general join patterns.

3.2 Joining Actors

We now describe an integration of our Joins library with Scala’s actor library [8]]. The fol-
lowing example shows how to re-implement the unbounded buffer example using Joins:

val Put = new Joinl[Int]
val Get = new Join
class Buffer extends JoinActor {
def act() {
receive { case Get() & Put(x) => Get reply x }
13

It differs from the thread-based bounded buffer using joins in the following ways:

— The Buffer class inherits the JoinActor class to declare itself to be an actor capable
of processing join patterns.

— Rather than defining Put and Get as synchronous or asynchronous events, they are
all defined as join messages which may support both kinds of synchrony (this is
explained in more detail below).

— The Buffer actor overrides act and awaits incoming messages by means of receive.
Note that it is still possible for the actor to serve regular messages within the receive
block. In fact, regular actor messages can be regarded as unary join patterns.



We illustrate below how the buffer actor can be used as a coordinator between a
consumer and a producer actor. The producer sends an asynchronous Put message while
the consumer awaits the reply to a Get message by invoking it synchronously (using ! ?ﬂ

val buffer = new Buffer; buffer.start()
val prod = actor { buffer ! Put(42) }
val cons = actor { (buffer !? Get()) match { case x:Int = /* process x #/ } }

By applying joins to actors, the synchronization dependencies between Get and Put can
be specified declaratively by the buffer actor. The actor will receive Get and Put messages
by queuing them in its mailbox. Only when all of the messages specified in the join
pattern have been received is the body executed by the actor. Before processing the body,
the actor atomically removes all of the participating messages from its mailbox. Replies
may be sent to any or all of the messages participating in the join pattern. This is similar
to the way replies are sent to events in the thread-based Joins library described previously.

Contrary to the way events are defined in the thread-based joins library, an actor
does not explicitly define a join message to be synchronous or asynchronous. We say
that join messages are “synchronization-agnostic” because they can be used in different
synchronization modes between the sender and receiver actors. However, when they are
used in a particular join-pattern, the sender and receiver actors have to agree upon a
valid synchronization mode. In the previous example, the Put join message was sent
asynchronously, while the Get join message was sent synchronously. In the body of a
join pattern, the receiver actor replied to Get, but not to Put.

The advantage of making join messages synchronization agnostic is that they can
be used in arbitrary synchronization modes, including more advanced synchronization
modes such as ABCL’s future-type message sending [19] or Salsa’s token-passing con-
tinuations [16]]. Every join message instance has an associated reply destination, which
is an output channel on which processes may listen for possible replies to the message.
How the reply to a message is processed is determined by the way the message was sent.
For example, if the message was sent purely asynchronously, the reply is discarded; if it
was sent synchronously, the reply awakes the sender. If it was sent using a future-type
message send, the reply resolves the future.

4 Integrating Joins and Extensible Pattern Matching

Our implementation technique for joins is unique in the way events interact with an ex-
tensible pattern matching mechanism. We explain the technique using a concrete imple-
mentation in Scala. However, we expect that implementations based on, e.g., the active
patterns of F# [15] would not be much different. In the following we first talk about
pattern matching in Scala. After that we dive into the implementation of events which
crucially depends on properties of Scala’s extensible pattern matching. Finally, we high-
light how joins have been integrated into Scala’s actor framework.

3 Note that the Get message has return type Any. The type of the argument values is recovered by
pattern matching on the result, as shown in the example.



Partial Functions In the previous section we used the join { ... } constructto declare
a set of join patterns. It has the following form:
join {
case pat; = body;

case pat, = body,

}

The patterns pat; consist of a linear combination of events evt; & ... & evt,,. Threads
synchronize over a join pattern by invoking one or several of the events listed in a pattern
pat;. When all events occurring in pat; have been invoked, the join pattern matches, and
its corresponding join body; is executed.

In Scala, the pattern matching expression inside braces is treated as a first-class value
that is passed as an argument to the join function. The argument’s type is an instance of
PartialFunction, which is a subclass of Functionl, the class of unary functions. The
two classes are defined as follows.

abstract class Functionl[A, B] {
def apply(x: A): B }

abstract class PartialFunction[A, B] extends Functionl[A, B] {
def isDefinedAt(x: A): Boolean }

Functions are objects which have an apply method. Partial functions are objects which
have in addition a method isDefinedAt which tests whether a function is defined for a
given argument. Both classes are parameterized; the first type parameter A indicates the
function’s argument type and the second type parameter B indicates its result type.

A pattern matching expression { case p; => ej; ...; case p, => e, }isthena
partial function whose methods are defined as follows.

— The isDefinedAt method returns true if one of the patterns p; matches the argu-
ment, false otherwise.

— The apply method returns the value e; for the first pattern p; that matches its argu-
ment. If none of the patterns match, a MatchError exception is thrown.

Join patterns as partial functions. Whenever a thread invokes an event e, each join pat-
tern in which e occurs has to be checked for a potential match. Therefore, events have to
be associated with the set of join patterns in which they participate. As shown before, this
set of join patterns is represented as a partial function. Invoking join(pats) associates
each event occurring in the set pats of join patterns with pats.

When a thread invokes an event, the isDefinedAt method of pats is used to check
whether any of the associated join patterns match. If yes, the corresponding join body
is executed by invoking the apply method of pats. A question remains: what argument
is passed to isDefinedAt and apply, respectively? To answer this question, consider the
simple buffer example from the previous section. It declares the following join pattern:

join { case Get() & Put(x) => Get reply x }

Assume that no events have been invoked before, and a thread ¢ invokes the Get event
to remove an element from the buffer. Clearly, the join pattern does not match, which



causes ¢ to block since Get is a synchronous event (more on synchronous events later).
Assume that after thread ¢ has gone to sleep, another thread s adds an element to the
buffer by invoking the Put event. Now, we want the join pattern to match since both
events have been invoked. However, the result of the matching does not only depend on
the event that was last invoked but also on the fact that other events have been invoked
previously. Therefore, it is not sufficient to simply pass a Put message to the isDefinedAt
method of the partial function the represents the join patterns. Instead, when the Put
event is invoked, the Get event has to somehow “pretend” to also match, even though
it has nothing to do with the current event. While previous invocations can simply be
buffered inside the events, it is non-trivial to make the pattern matcher actually consult
this information during the matching, and “customize” the matching results based on this
information. To achieve this customization we use extensible pattern matching.

Extensible Pattern Matching Emir et al. [4] recently introduced extractors for Scala
that provide representation independence for objects used in patterns. Extractors play
a role similar to views in functional programming languages [18l12] in that they allow
conversions from one data type to another to be applied implicitly during pattern match-
ing. As a simple example, consider the following object that can be used to match even
numbers:

object Twice {
def apply(x: Int) = x=2
def unapply(z: Int) = if (262 == 0) Some(z/2) else None }

Objects with apply methods are uniformly treated as functions in Scala. When the func-
tion invocation syntax Twice(x) is used, Scala implicitly calls Twice.apply(x). The
unapply method in Twice reverses the construction in a pattern match. It tests its integer
argument z. If z is even, it returns Some(z/2). If it is odd, it returns None. The Twice
object can be used in a pattern match as follows:

val x = Twice(21)

x match {
case Twice(y) = println(x+" is two times "+y)
case _ = printIn("x is odd") }

To see where the unapply method comes into play, consider the match against Twice(y).
First, the value to be matched (x in the above example) is passed as argument to the
unapply method of Twice. This results in an optional value which is matched subse-
quentlyﬂ The preceding example is expanded as follows:

val x = Twice.apply(21)

Twice.unapply(x) match {
case Some(y) = println(x+" is two times "+y)
case None => println("x is odd") }

® The optional value is of parameterized type Option[T] that has the two subclasses
Some[T](x: T) and None.



Extractor patterns with more than one argument correspond to unapply methods return-
ing an optional tuple. Nullary extractor patterns correspond to unapply methods returning
a boolean.

In the following we show how extractors can be used to implement the matching
semantics of join patterns. In essence, we define appropriate unapply methods for events
which get implicitly called during the matching.

Matching Join Patterns As shown previously, a set of join patterns is represented as a
partial function. Its isDefinedAt method is used to find out whether one of the join pat-
terns matches. In the following we are going to explain the code that the Scala compiler
produces for the body of this method. Let us revisit the join pattern that we have seen in
the previous section:

Get() & Put(x)

In our library, the & operator is an extractor (see previous section) that defines an unapply
method; therefore, the Scala compiler produces the following matching code:

&.unapply(m) match {
case Some((u, v)) =
u match {
case Get() => v match {
case Put(x) => true
case _ = false }
case _ = false }
case None => false }

We defer a discussion of the argument m that is passed to the & operator. For now, it is
important to understand the general scheme of the matching process. Basically, calling
the unapply method of the & operator produces a pair of intermediate results wrapped in
Some. Standard pattern matching decomposes this pair into the variables u and v. These
variables, in turn, are matched against the events Get and Put. Only if both of them match,
the overall pattern matches.

Since the & operator is left-associative, matching more than two events proceeds by
first calling the unapply methods of all the & operators from right to left, and then match-
ing the intermediate results with the corresponding events from left to right.

Since events are objects that have an unapply method, we can expand the code fur-
ther:

&.unapply(m) match {
case Some((u, v)) =>
Get.unapply(u) match {
case true = Put.unapply(v) match {
case Some(x) => true
case None => false }
case false => false }
case None => false }

10



As we can see, the intermediate results produced by the unapply method of the & opera-
tor are passed as arguments to the unapply methods of the corresponding events. Since
the Get event is parameterless, its unapply method returns a Boolean, telling whether it
matches or not. The Put event, on the other hand, takes a parameter; when the pattern
matches, this parameter gets bound to a concrete value that is produced by the unapply
method.

The unapply method of a parameterless event such as Get essentially checks whether
it has been invoked previously. The unapply method of an event that takes parameters
such as Put returns the argument of a previous invocation (wrapped in Some), or signals
failure if there is no previous invocation. In both cases, previous invocations have to be
buffered inside the event.

Firing join patterns. As mentioned before, executing the right-hand side of a pattern that
is part of a partial function amounts to invoking the apply method of that partial function.
Basically, this repeats the matching process, thereby binding any pattern variables to con-
crete values in the pattern body. When firing a join pattern, the events’ unapply methods
have to dequeue the corresponding invocations from their buffers. In contrast, invoking
isDefinedAt does not have any effect on the state of the invocation buffers. To signal to
the events in which context their unapply methods are invoked, we therefore need some
way to propagate out-of-band information through the matching. For this, we use the
argument that is passed to the isDefinedAt and apply methods of the partial function.
The & operator propagates this information verbatim to its two children. Eventually, this
information is passed to the events’ unapply methods.

4.1 Implementation Details

Events. Events are represented as classes that contain queues to buffer invocations. The
Event class is the super class of all synchronous and asynchronous eventﬂ

abstract class Event[R, Arg](owner: Joins) {
val argQ = new Queue[Arg]
def test(): R
def apply(arg: Arg): R = synchronized { argQ += arg; test() }
def unapply(isDryRun: Boolean): Option[Arg] =
if (isDryRun && !argQ.isEmpty)
Some(argQ.front)
else if (!isDryRun &% owner.takes(tag))
Some(argQ.dequeue())
else None

}

Events have a unique owner which is an instance of the Joins class. This class provides
the join method that we used in the buffer example to declare a set of join patterns.
An event can appear in several join patterns declared by its owner. The test method is

7 In our actual implementation the fact whether an event is parameterless is factored out for effi-
ciency. Due to lack of space, we show a simplified class hierarchy.

11



used to run synchronization-specific code when the event is invoked. The Event class

has two type parameters R and Arg that indicate the result type and parameter type of

event invocations, respectively. Whenever the event is invoked via its apply method,

we append the provided argument to the argQ. In the unapply method we test whether

matching occurs during a dry run. If it does not, we ask the owner whether the event

belongs to a matching join pattern in which case an event invocation is dequeued.
Synchronous events are implemented as follows:

abstract class SyncEvent[R, Arg] extends Event[R, Arg] {
val waitQ = new Queue[SyncVar[R]]
def test(): R = { val res = new SyncVar[R]
waitQ += res; owner.test(); res.get }
def reply(res: R) { waitQ.dequeue().set(res) }
b

Synchronous events contain a logical queue of waiting threads, waitQ, which is imple-
mented using the implicit wait set of synchronous Variableﬂ The test method is run
whenever the event is invoked. It creates a new SyncVar and appends it to the waitQ.
Then, the owner’s test method is invoked to check whether the event invocation triggers
a complete join pattern. After that, the current thread waits for the SyncVar to become
initialized by accessing it. If the owner detects (during owner.test()) that a join pattern
triggers, it will apply the join, thereby re-executing the pattern match (binding variables
etc.) and running the join body. Inside the body, synchronous events are replied to by
invoking their reply method. Replying means dequeuing a SyncVar and setting its value
to the supplied argument.

4.2 TImplementation of Actor-based Joins

Actor-based joins integrate with Scala’s pattern matching in essentially the same way
as the thread-based joins, making both implementations very similar. We highlight how
joins are integrated into the actor library, and how reply destinations are supported.

In the Scala actors library, receive is a method that takes a PartialFunction as a
sole argument, similar to the join method defined previously. To make receive aware of
join patterns, the abstract JoinActor class overrides these methods by wrapping the par-
tial function into a specialized partial function that understands join messages. JoinActor
also overrides send to set the reply destination of a join message. Message sends such as
a!msg are interpreted as calls to a’s send method.

abstract class JoinActor extends Actor {
override def receive[R](f: PartialFunction[Any, R]): R =
super.receive(new JoinPatterns(f))
override def send(msg: Any, replyTo: OutputChannel[Any]) {
setReplyDest(msg, replyTo)
super.send(msg, replyTo) }
def setReplyDest(msg: Any, replyTo: OutputChannel[Any]) {...} }

8 A SyncVar is an atomically updatable reference cell; it blocks threads trying to access an unini-
tialized cell.

12



JoinPatterns is a special partial function that detects whether its argument message
is a join message. If it is, then the argument message is transformed to include out-of-
band information that will be passed to the pattern matcher, as is the case for events in
the thread-based joins library. The boolean argument passed to the checkJoinMessage
method indicates to the pattern matcher whether or not join message arguments should
be dequeued upon successful pattern matching. If the msg argument is not a join mes-
sage, checkJoinMessage passes the original message to the pattern matcher unchanged,
enabling regular actor messages to be processed as normal.

class JoinPatterns[R] (f: PartialFunction[Any, R])
extends PartialFunction[Any, R] {
def asJoinMessage(msg: Any, isDryRun: Boolean): Any =

override def isDefinedAt(msg: Any) =
f.isDefinedAt(checkJoinMessage(msg, true))
override def apply(msg: Any) =
f(checkJoinMessage(msg, false))
b

Recall from the implementation of synchronous events that thread-based joins used con-
structs such as SyncVars to synchronize the sender of an event with the receiver. Actor-
based joins do not use such constructs. In order to synchronize sender and receiver, every
join message has a reply destination (which is an OutputChannel, set when the message
is sent in the actor’s send method) on which a sender may listen for replies. The reply
method of a JoinMessage simply forwards its argument value to this encapsulated reply
destination. This wakes up an actor that performed a synchronous send (a! ?msg) or that
was waiting on a future (a! !msg).

5 Discussion and Related Work

Benton et al. [2] note that supporting general guards in join patterns is difficult to im-
plement efficiently as it requires testing all possible combinations of queued messages
to find a match. Side effects pose another problem. Benton et al. suggest a restricted
language for guards to overcome these issues. However, to the best of our knowledge,
there is currently no joins framework that supports a sufficiently restrictive yet expressive
guard language to implement efficient guarded joins. Our current implementation does
not handle general guards, although they are permitted in Scala’s pattern syntax [L1]. We
find that guards often help at the interface to a component that uses private messages to
represent values satisfying a guard, as in the following example:

join { case Put(x) if (x > 0) => this.PositivePut(x)
case PositivePut(x) & Get() => Get reply x }

Cw [2] is a language extension of C# supporting chords, linear combinations of meth-
ods. In contrast to Scala Joins, Cw allows at most one synchronous method in a chord.
The thread invoking this method is the thread that eventually executes the chord’s body.
The benefits of Cw as a language extension over Scala Joins are that chords can be en-
forced to be well-formed and that their matching code can be optimized ahead of time.

13



In Scala Joins, the joins are only analyzed at pattern-matching time. The benefit of Scala
Joins as a library extension is that it provides more flexibility, such as experimenting
with multiple synchronous events. Russo’s Joins library [[13] exploits the expressiveness
of C# 2.0’s generics to implement Cw’s synchronization constructs. Piggy-backing on
an existing variable binding mechanism allows us to avoid problems with Joins’ del-
egates where the order in which arguments are passed is merely conventional. Scala’s
implicit (constructor) arguments also help to alleviate some of the initialization boiler-
plate. CCR [3] is a C# library for asynchronous concurrency that supports join patterns
without synchronous components. Join bodies are scheduled for execution in a thread
pool. Our library integrates with JVM threads using synchronous variables, and supports
event-based programming through its integration with Scala Actors. Singh [14] shows
how a small set of higher-order combinators based on Haskell’s software transactional
memory (STM) can encode expressive join patterns. Salsa [[16] is a language extension
of Java supporting actors. In Salsa, actors may synchronize in an event-driven way upon
the arrival of multiple messages by means of a join continuation. However, join continua-
tions only allow an actor to synchronize on gathering replies to previously sent messages.
Using joins, Scala actors may synchronize on any incoming message.

6 Conclusion

We presented a novel implementation of join patterns based on extensible pattern match-
ing constructs of languages such as Scala and F#. The embedding into general pattern
matching provides expressive features such as nested patterns and guards for free. The
resulting programs are often as concise as if written in more specialized language ex-
tensions. We implemented our approach as a Scala library that supports Ada-style ren-
dezvous and constraints and furthermore integrated it with the Scala Actors event-based
concurrency framework without changing the syntax and semantics of existing programs.

References

1. Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. Concurrent Program-
ming in Erlang, Second Edition. Prentice-Hall, 1996.

2. Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstractions for C#.
ACM Trans. Program. Lang. Syst, 26(5):769-804, 2004.

3. Georgio Chrysanthakopoulos and Satnam Singh. An asynchronous messaging library for C#.
In Proc. SCOOL Workshop, OOPSLA, 2005.

4. Burak Emir, Martin Odersky, and John Williams. Matching objects with patterns. In Erik
Ernst, editor, Proc. ECOOP, volume 4609 of LNCS, pages 273-298. Springer, 2007.

5. Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. JoCaml: A language
for concurrent distributed and mobile programming. In Advanced Functional Programming,
volume 2638 of LNCS, pages 129-158. Springer, 2002.

6. Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the join-
calculus. In Proc. POPL, pages 372-385. ACM, January 1996.

7. Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
Calculus of Mobile Agents. In CONCUR, pages 406—421. Springer-Verlag, August 1996.

14



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Philipp Haller and Martin Odersky. Actors that Unify Threads and Events. In International

Conference on Coordination Models and Languages, LNCS, 2007.

. Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic computation. ACM

Trans. Program. Lang. Syst., 7(4):501-538, 1985.

Martin Odersky. Functional Nets. In European Symposium on Programming 2000, Lecture
Notes in Computer Science. Springer Verlag, 2000. Invited paper.

Martin Odersky and al. An Overview of the Scala Programming Language. Technical Report
1C/2004/64, EPFL, Lausanne, Switzerland, 2004.

C. Okasaki. Views for Standard ML, 1998.

Claudio V. Russo. The Joins concurrency library. In PADL, pages 260-274, 2007.

Satnam Singh. Higher-order combinators for join patterns using STM. In Proc. TRANSACT
Workshop, OOPSLA, 2006.

Don Syme, Gregory Neverov, and James Margetson. Extensible Pattern Matching via a
Lightweight Language Extension. In Proc. ICFP, 2007.

Carlos Varela and Gul Agha. Programming dynamically reconfigurable open systems with
SALSA. ACM SIGPLAN Notices, 36(12):20-34, 2001.

G.S. von Itzstein and David Kearney. Join Java: An alternative concurrency semantic for Java.
Technical Report ACRC-01-001, University of South Australia, 2001.

Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction. In POPL,
pages 307-313, 1987.

Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented concurrent pro-
gramming in ABCL/1. In Proc. OOPSLA, pages 258-268, 1986.

15



	Implementing Joins using Extensible Pattern Matching
	Philipp Haller, Tom Van Cutsem

