
Implementing Joins using Extensible Pattern Matching

Philipp Haller1, Tom Van Cutsem2?

1 École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

firstname.lastname@epfl.ch

+41 21 693 6483, +41 21 693 6660
2 Programming Technology Lab, Vrije Universiteit Brussel, Belgium

Abstract. Join patterns are an attractive declarative way to synchronize both threads
and asynchronous distributed computations. We explore joins in the context of
extensible pattern matching that recently appeared in languages such as F# and
Scala. Our implementation supports dynamic joins, Ada-style rendezvous, and
constraints. Furthermore, we integrated joins into an existing actor-based concur-
rency framework. It enables join patterns to be used in the context of more ad-
vanced synchronization modes, such as future-type message sending and token-
passing continuations.

Keywords: Concurrent Programming, Join Patterns, Actors

1 Introduction

Join patterns [6,7] offer a declarative way of synchronizing both threads and asyn-
chronous distributed computations that is simple and powerful at the same time. They
form part of functional languages such as JoCaml [5] and Funnel [12]. Join patterns have
also been implemented as extensions to existing languages [2,18]. Recently, Russo [14]
and Singh [15] have shown that advanced programming language features, such as gener-
ics or software transactional memory, make it feasible to provide join patterns as libraries
rather than language extensions. A library-based approach has several advantages over
a language extension, such as support for dynamic joins, cross-language portability, and
ease of experimentation.

Recently, the pattern matching facilities of languages such as Scala and F# have
been generalized to allow representation independence for objects used in pattern match-
ing [4,16]. Extensible patterns open up new possibilities of experimenting with declar-
ative approaches to synchronization in libraries rather than languages. In this paper we
present a novel implementation of join patterns that exploits Scala’s extensible pattern
matching. More concretely, we make the following contributions:

1. Our implementation technique overcomes several limitations of previous library-
based designs and language extensions. In all library-based implementations that
we know of, pattern variables are represented implicitly as parameters of join con-
tinuations. Mixing up parameters of the same type inside the join body may lead to

? supported by a Ph.D. fellowship of the Research Foundation Flanders (FWO).



obscure errors that are hard to detect. Our design avoids these errors by using the
underlying pattern matcher to bind variables that are explicit in join patterns. The
programmer may use a rich pattern syntax to express constraints using nested pat-
terns and guards. However, efficiently supporting general guards in join patterns is
currently an open problem, and we do not attempt to solve it. Moreover, the integra-
tion with a powerful pattern matcher brings compile-time exhaustivity checking of
join patterns closer to library-based implementations than ever (our implementation
does not currently support it, but we don’t see fundamental problems).

2. We present a complete implementation of our design as a Scala library3 that sup-
ports dynamic joins, Ada-style rendezvous, and constraints. Moreover, we integrate
our library into an existing event-based, non-blocking concurrency framework. This
enables expressive join patterns to be used in the context of more advanced synchro-
nization modes, such as future-type message sending and token-passing continua-
tions. Our integration is unique in the sense that the new library provides a conser-
vative syntax extension. That is, existing programs continue to run without change
when compiled or linked against the extended framework.

The rest of this paper is structured as follows. In the following section we review
join patterns written using our library. In section 3 we discuss a concrete Scala imple-
mentation of our techniques. Section 4 presents an integration of our joins library into an
existing event-based concurrency framework. Its implementation is outlined in section 5.
Section 6 discusses related work, and section 7 concludes.

2 A Scala Joins Library

Our joins library draws on Scala’s extensible pattern matching facility [4]. This has sev-
eral advantages: first of all, the programmer may use Scala’s rich pattern syntax to express
constraints using nested patterns and guards. Moreover, reusing the existing variable
binding mechanism avoids typical problems of other library-based approaches where
the order in which arguments are passed to the function implementing the join body are
merely conventional. Instead of (a)synchronous methods, as in Cω, joins in our library
are composed of synchronous and asynchronous events. Events are strongly typed and
are invoked just like normal methods. Join patterns define linear combinations of events
which guard the execution of a join body. The join body typically operates on the argu-
ments of the corresponding event invocations and replies to the synchronous events.

Using our library, we can implement the unbounded buffer example as follows:

class Buffer extends Joins {
val Put = new AsyncEvent[Int]
val Get = new SyncEvent[Int]
join {
case Get() & Put(x) =>
Get reply x

} }

3 Available at http://lamp.epfl.ch/˜phaller/joins/.

2



First of all, the Buffer class inherits the Joins trait to enable join patterns. Furthermore,
it declares two events. Put is an asynchronous event that takes a single argument of type
Int. Since it is asynchronous, no return type is specified (it immediately returns unit
when invoked). When declaring synchronous events, such as Get, the first type parameter
specifies the return type. Therefore, Get is a synchronous event that takes no arguments
and returns values of type Int.

Joins are declared using the join { ... } construct. It contains a list of case decla-
rations that each consist of a left-hand side and a right-hand side, separated by =>. The
left-hand side defines a join pattern through the juxtaposition of a linear combination of
asynchronous and synchronous events. As is common in the joins literature, we use & as
the juxtaposition operator. We allow any number of synchronous events to appear in a
join pattern. Arguments of events are usually specified as variable patterns. In the above
example, the argument of the Put event is specified as the variable pattern x that matches
any value. This means that on the right-hand side, x is bound to the argument of the Put
event when the join pattern matches.

The right-hand side of a join pattern defines the action (an ordinary block of code)
that is executed when the join pattern matches. An important thing to do inside actions is
replying to all of the synchronous events that are part of the join pattern on the left-hand
side. Synchronous events are replied to by invoking their reply method. In the example,
we reply to the synchronous Get event with the value that was passed as argument to the
Put event.

3 Implementation

Our implementation technique for joins is unique in the way events interact with an ex-
tensible pattern matching mechanism. We explain the technique using a concrete imple-
mentation in Scala. However, we expect that implementations based on, e.g., the active
patterns of F# [16] would not be much different. In the following we first talk about
pattern matching in Scala. After that we dive into the implementation of events which
crucially depends on properties of Scala’s extensible pattern matching.

In the previous section we used the join { ... } construct to declare joins. In Scala,
the pattern matching expression inside braces is treated as a first-class object that is
passed as an argument to the join method (which is inherited from the Joins class). The
argument is an instance of the PartialFunction class, which is a subclass of Function1,
the class of unary functions. The two classes are defined as follows.

abstract class Function1[A, B] {
def apply(x: A): B }

abstract class PartialFunction[A, B] extends Function1[A, B] {
def isDefinedAt(x: A): Boolean }

Functions are objects which have an apply method. Partial functions are objects which
have in addition a method isDefinedAt which tests whether a function is defined for a
given argument. Both classes are parameterized; the first type parameter A indicates the
function’s argument type and the second type parameter B indicates its result type.

A pattern matching expression { case p1 => e1; ...; case pn => en } is then a
partial function whose methods are defined as follows.

3



– The isDefinedAt method returns true if one of the patterns pi matches the argu-
ment, false otherwise.

– The apply method returns the value ei for the first pattern pi that matches its argu-
ment. If none of the patterns matches, a MatchError exception is thrown.

3.1 Extractors

Emir et al. [4] recently introduced extractors for Scala that provide representation inde-
pendence for objects used in patterns. As a simple example, consider the following object
that can be used to match even numbers:

object Twice {
def apply(x: Int) = x*2
def unapply(z: Int) = if (z%2 == 0) Some(z/2) else None }

As mentioned before, objects with apply methods are uniformly treated as functions
in Scala. When the function invocation syntax Twice(x) is used, Scala implicitly calls
Twice.apply(x). The unapply method in Twice reverses the construction in a pattern
match. It tests its integer argument z. If z is even, it returns Some(z/2). If it is odd, it
returns None. The Twice object can be used in a pattern match as follows:

val x = Twice(21)
x match {
case Twice(y) => println(x+" is two times "+y)
case _ => println("x is odd") }

To see where the unapply method comes into play, consider the match against Twice(y).
First, the value to be matched (x in the above example) is passed as argument to the
unapply method of Twice. This results in an optional value which is matched subse-
quently4. The preceding example is expanded as follows:

val x = Twice.apply(21)
Twice.unapply(x) match {
case Some(y) => println(x+" is two times "+y)
case None => println("x is odd") }

Extractor patterns with more than one argument correspond to unapply methods return-
ing an optional tuple. Nullary extractor patterns correspond to unapply methods returning
a boolean.

3.2 Events

Events are represented as classes that contain queues to buffer invocations. Thanks to
their apply methods, they can be invoked just like normal methods. The Event class is
the super class of all synchronous and asynchronous events:

4 The optional value is of parameterized type Option[T] that has the two subclasses
Some[T](x: T) and None.

4



trait SyncEventBase[R] extends Event[R] {

val waitQ = new Queue[SyncVar[R]]

def test(): R = {

val res = new SyncVar[R]

waitQ += res

owner.test()

res.get }

def reply(res: R): Unit =

waitQ.dequeue().set(res) }

class NullarySyncEvent[R](implicit joins: Joins) extends SyncEventBase[R] {

val owner = joins

def apply(): R = synchronized { test() }

def unapply(isDryRun: Boolean): Boolean = {

owner.notify(tag, isDryRun)

!waitQ.isEmpty } }

Fig. 1. Synchronous events.

abstract class Event[R] {
val owner: Joins
val tag = owner.freshTag
def test(): R }

Events have a unique owner which is a subclass of the Joins trait5. This trait provides the
join method that we used in the buffer example (see section 2) to declare (and activate)
a set of join patterns. Note that join calls may be nested to dynamically change the
set of active join patterns. An event can appear in several join patterns declared by its
owner. The tag field holds an integer constant that is unique for the events declared by
owner. The test method is used to run synchronization-specific code when the event is
invoked. Note that Event has a type parameter R that designates the result type of event
invocations. Asynchronous events instantiate R with Unit.

Figure 1 shows the class hierarchy of nullary synchronous events. The
SyncEventBase trait contains the scheduling logic essential to synchronous events. Syn-
chronous events contain a logical queue of waiting threads, waitQ, which is implemented
using the implicit wait set of synchronous variables (objects of type SyncVar[R]6). The
test method is run whenever the event is invoked. It creates a new SyncVar and ap-
pends it to the waitQ. Then, the owner’s test method is invoked to check whether the
event invocation triggers a complete join pattern. After that, the current thread waits
for the SyncVar to become initialized by accessing it. If the owner detects (during
owner.test()) that a join pattern triggers, it will apply the join, thereby executing the
pattern match (binding variables etc.) and running the join body. Inside the body, syn-
chronous events are replied to by invoking their reply method. As shown in figure 1,

5 A trait in Scala is an abstract class that can be mixin-composed with other traits.
6 A SyncVar is an atomically updatable reference cell; it blocks threads trying to access an unini-

tialized cell.

5



replying means dequeuing a SyncVar and setting its value to the supplied argument. Note
that the SyncEventBase trait cannot be instantiated since the owner field inherited from
Event is still abstract.

Figure 1 also shows the concrete NullarySyncEvent class that extends the
SyncEventBase trait. Our design requires that concrete classes are passed a Joins in-
stance as a constructor argument. In Scala, constructor arguments are passed in paren-
theses following the class name (with optional type parameters). The body of a class
declaration is the primary constructor7. The single joins constructor argument carries
the implicit modifier. This means that the compiler implicitly passes an appropriate
value (declared implicit) which is in scope at the point where the class is instantiated.
We use implicit parameters to avoid some initialization boilerplate which has to be done
explicitly by the user in other library-based designs [14].

Events have an apply method which is run when it is invoked, and an unapply method
which is run during pattern matching. When a nullary synchronous event is invoked we
simply call the test method of its super class that we discussed before. The unapply
method is more interesting. As discussed in the previous section, matching on a nullary
object (e.g. Get() in the buffer example) invokes its boolean-returning unapply method
that tells whether the argument value matches or not. Essentially, the unapply method of
NullarySyncEvent should return true whenever there is a thread waiting in the waitQ.

Since the scrutinee has no influence on the matching outcome, we use it to carry out-
of-band information about the ongoing match. Note that the events’ unapply methods are
called in two different contexts, namely when the owner merely tests whether a join pat-
tern matches (dry run), and when the owner triggers the execution of a join body, respec-
tively. In the latter case, the matching is necessary to bind event arguments to variables (if
any). In the former case, the owner has to collect the tags of all events participating in a
matching join pattern (see below for an explanation of owner.notify(tag, isDryRun)).

Events that carry arguments extend the abstract NonNullaryEvent class which is
shown in figure 2. The class has two type parameters R and Arg which model the result
type and argument type of event invocations respectively. Whenever the event is invoked
via its apply method, we append the provided argument to the argQ. By invoking the
inherited test method we execute further synchronization code. A synchronous event
inherits the test method from the SyncEventBase trait that we have already discussed.
Note that this implementation requires multiple arguments to be wrapped in tuples, that
is, the type parameter Arg has to be instantiated with a type Tuple_n[P_1, ..., P_n]
where the P_i are the types of the individual arguments. Convenience classes, such as the
following one, wrap multiple arguments in tuples.

class Async2[A1, A2](implicit joins: Joins) extends AsyncEvent[(A1, A2)] {
def apply(a1: A1, a2: A2) = super.apply((a1, a2)) }

Matching against a non-nullary event works by implementing the unapply method as
follows. First, unapply returns an option type which models success and failure, as well
as the variable binding in case of success. For example, assume we are matching against
an event Put(x) inside a (larger) join pattern. Moreover, assume the first thread that
invoked Put passed the value 42 as argument. Then, matching against Put(x) should

7 Additional constructors are defined as methods with name this and an inferred return type.

6



abstract class NonNullaryEvent[R, Arg] extends Event[R] {

val argQ = new Queue[Arg]

def apply(arg: Arg): R = synchronized {

argQ += arg

test() }

def unapply(isDryRun: Boolean): Option[Arg] = {

...

if (isDryRun && !argQ.isEmpty)

Some(argQ.front)

else if (!isDryRun && owner.takes(tag)) {

Some(argQ.dequeue())

} else None } }

class AsyncEvent[Arg](implicit joins: Joins) extends NonNullaryEvent[Unit, Arg] {

val owner = joins

def test(): Unit = owner.test() }

Fig. 2. Non-nullary asynchronous events.

result in x being bound to 42 inside the join body in case of a successful match of the join
pattern. We implement this behavior by returning the first queued argument value in the
case of a previous invocation. If there has been no previous invocation, the join pattern
cannot possibly match and we signal failure. As before, we test whether matching occurs
during a dry run. If it does not, we ask the owner whether the event belongs to a matching
join pattern in which case an event invocation is dequeued.

Using the NonNullaryEvent class, it is now easy to define non-nullary asynchronous
events. Figure 2 shows the AsyncEvent class which is the super class of all non-nullary
asynchronous events. We have already explained the implicit constructor argument when
we discussed the NullarySyncEvent class. It only remains to provide an implementation
of the test method. Here, we simply invoke the test method of owner which we are
going to discuss shortly.

A class that wants to define joins has to inherit from the Joins trait. The essential
parts of its implementation are as follows:

trait Joins {
implicit val joinsOwner = this
var count = 0
val tags: Set[Int] = new BitSet(8)
def freshTag = synchronized { count += 1; count }
var joinSet: PartialFunction[Any, Any] = _
...
def test(): Unit = synchronized {
...
if (joinSet.isDefinedAt(true))
joinSet(false)

} }

7



The trait defines an implicit field pointing to this. It is implicitly passed to the construc-
tors of all events instantiated in the body of a subclass (see above). The count field holds
an integer indicating the current number of registered events. Events call the freshTag
method to obtain a tag that is unique for all events of this owner. The private joinSet
field holds the current enabled set of joins. As discussed before, joins are represented as
partial functions where each of the cases represents a single join.

We have only shown parts of the join synchronization code when discussing the im-
plementation of events. Now, we are going to fill in the missing parts. Consider the in-
vocation of a (non-nullary) asynchronous event, such as Put(42) in the buffer example.
First, the argument is put into an event-local queue. After that, the owner Joins instance
is called to check whether this event invocation triggers a join pattern. The Joins object
does essentially two things. First, it checks whether any of the registered join patterns
match, given the new state of the event invocation buffers. Second, it triggers the execu-
tion of a join body in the case of a match.

Collecting tags of events participating in a matching join is not trivial. Consider the
following example:

join { case Grow(x) & Size(n) if n < MAX => ...
case Put(x) & Get() => ... }

Assume we have observed the following event invocations:
{Grow(10), Put(42), Get(), Size(MAX)} Then, clearly, Grow(10) does not belong
to a matching join, although it matches individually. On the other hand, the tags of Put
and Get belong to a matching join. To filter out tags that match but do not belong to a
matching join, we have to find out when the matcher starts matching a new case (i.e.
a new join). When this happens, the tags collected so far are apparently not part of a
matching join (matching stops when the first match has been found). For this, we have
to consider the order in which unapply methods are called. In join patterns the unapply
methods of all & operators are called first, followed by the unapply methods of all events
that form part of a join. Exploiting this property, we detect the start of a new case when
the unapply method of & is called after the unapply method of some event. During the
application of the partial function, each event asks the owner whether it should remove
an element from its buffer (owner.takes(tag)). Since patterns are linear, it suffices to let
each event in the matching set remove an element only once from its buffer. The purpose
of the & operator is to notify the Joins object and to forward out-of-band information to
the connected events.

3.3 Dynamic Joins

Similar to Russo’s library-based design [14], our implementation supports dynamically-
sized join patterns. Apart from a radically different implementation, a notable differ-
ence concerns addressing of individual parts of a join pattern. In Russo’s design, the
dynamically-sized portions of a join pattern are packed into arrays, whereas in our case
sequence matching allows addressing individual components of a join pattern. For ex-

8



ample, the JoinMany[Arg] class below can be used to create a compound event that is
composed of n asynchronous events of argument type Arg8.

class JoinMany[Arg](evts: AsyncEvent[Arg]*) {
def unapplySeq(scrut: Any): Option[Seq[Arg]] = {
val matched = evts.map(x => x.unapply(scrut))
if (matched.exists(x => x.isEmpty)) None
else Some(matched map { case Some(arg) => arg })

} }

A JoinMany instance is created by passing a variable number of events to its constructor,
indicated by the star following the argument type. Unlike primitive events, a JoinMany
compound event defines an unapplySeq method which allows to match a sequence of
arguments in a pattern match. In the following join pattern, the arguments passed to the
Put1 and Put2 events are accessible individually as a and b, respectively.

val Put1 = new AsyncEvent[Int]; val Put2 = new AsyncEvent[Int]
val ManyPuts = new JoinMany(Put1, Put2)
join { case ManyPuts(a, b) & GetSum() =>

GetSum reply a+b }

4 Joins for Actors

In the previous section, we described the Scala Joins library for a traditional multi-
threaded concurrency framework. We will now describe an integration of this Joins li-
brary with Scala’s actor library [9].

4.1 Concurrent Programming with Scala Actors

Scala’s actor library is largely inspired by Erlang’s model of concurrent processes com-
municating by message-passing [1]. New actors are defined as classes inheriting the
Actor trait. The actor’s life cycle is described by its act method. The following code
snippet shows a counter actor that encapsulates an integer value which can be incre-
mented and read by other processes in a thread-safe manner.

class Counter extends Actor {
override def act() { loop(0) }
def loop(value: Int) {
receive {
case Incr() => loop(value + 1)
case Value() => reply(value); loop(value) }

} }

8 The isEmpty method of the Option type returns true when invoked on None, and false other-
wise.

9



The receive method allows an actor to selectively wait for certain messages to arrive in
its mailbox (messages can be any objects). It is defined by means of a partial function, in
the same vein as the join construct described previously. The following code illustrates
a typical interaction with the above counter actor:

val counter = new Counter; counter.start()
counter ! Incr()
println(counter !? Value())

Messages may be sent to an actor by means of the actor ! msg syntax. Synchronous
message sends are also supported by the !? syntax, which make the sending process wait
for the actor to reply to the message (by means of the reply(val) method). Scala actors
also offer more advanced synchronization patterns such as futures [10,19]. actor !! msg
denotes an asynchronous send that immediately returns a future object. In Scala, a future
is a nullary function that, when applied, returns the future’s computed result value. If the
future is applied before the value is computed, the caller is blocked.

Finally, next to the receive construct, the Scala actors library also provides the react
construct. Unlike receive, react allows an actor to wait for an incoming message with-
out suspending its underlying worker thread. In other words: react allows the creation
of purely event-based actors, which have the advantage of being extremely lightweight,
as they require fewer worker threads to execute [8].

4.2 Example: Unbounded Buffer Revisited

In order to illustrate the added expressive power that Joins can bring to actors, let us
reconsider the buffer example, but this time in the context of Scala’s actor library. In
what follows, we describe two implementation techniques to implement a buffer in an
actor-oriented way, without Joins. We describe the limitations of these implementation
techniques and subsequently introduce an adaptation of the Scala Joins library for actors.

Using Guards The following example shows how to implement a buffer actor by means
of an auxiliary list data structure, encapsulated within the actor:

case class Put(value: Int)
case class Get()
class Buffer extends Actor {
override def act() { loop(Nil) }
def loop(buf: List[Int]) {
react {
case Put(x) => loop(buf ::: List(x)) // append x to buf
case Get() if !buf.isEmpty => reply(buf.head); loop(buf.tail) }

} }

In this example, the required synchronization between Put and Get is achieved by means
of a guard. The guard in the Get case disallows the processing of any Get message while
the buf queue is empty. In the implementation, all cases are sequentially checked against
the incoming message. If no case matches, or all of the guards for matching cases evaluate
to false, the actor keeps the message stored in its mailbox and awaits other messages.

10



Even though the above example remains simple enough to implement, the synchro-
nization between Put and Get remains very implicit. The actual intention of the program-
mer, i.e. the fact that an item can only be produced when the actor received both a Get
and a Put message, remains implicit in the code.

Using Nested Message Reception The following example shows how to implement a
buffer actor by using the actor’s mailbox itself as the buffer.

class Buffer extends Actor {
override def act() { loop() }
def loop() {
react { case Put(x) =>
react { case Get() => reply(x); loop() } }

} }

The above implementation makes use of the fact that when a message is received that
does not match any case, it is kept in the actor’s mailbox. The actor declares that it
initially only accepts Put messages. Once it has accepted at least one Put message, it
specifies–by means of a nested react block–that it can now also accept a Get message.
Unacceptable Get or Put messages queue up in the actor’s mailbox. This approach of
synchronizing messages based on a set of acceptable messages is reminiscent of the
Act++ language’s behavior sets abstraction [11].

The advantage of using nested react blocks over the use of guards as shown previ-
ously is that the relation between Put and Get is more explicit. However, this approach
of nesting does not scale in the context of multiple joins and especially in the context of
joins consisting of more than two messages. In essence, every call to react represents
a state in a finite state machine that encodes the join pattern’s availability. However, the
number of states quickly explodes as the number of joins and join patterns increases.

4.3 Applying Actor-based Joins

The following example illustrates the use of Joins in Scala’s actors library.

val Put = new Join1[Int]
val Get = new Join
class Buffer extends JoinActor {
def act() {
react { case Get() & Put(x) => Get reply x }

} }

It differs from the thread-based bounded buffer using joins in the following ways:

– The Buffer class uses the JoinActor trait to declare itself to be an actor capable of
processing join patterns.

– Rather than defining Put and Get as synchronous or asynchronous events, they are
all defined as join messages which may support both kinds of synchrony (this is
explained in more detail below).

11



– The Buffer actor overrides act and awaits incoming messages by means of react.
Note that it is still possible for the actor to serve regular messages within the react
block. In fact, regular actor messages can be regarded as unary join patterns.

The following example illustrates how the buffer actor is used as a coordinator be-
tween a consumer and a producer actor. The producer sends an asynchronous Put mes-
sage while the consumer awaits the reply to a Get message by invoking it synchronously
(using !?)9.

val buffer = new Buffer; buffer.start()
val prod = actor { buffer ! Put(42) }
val cons = actor { (buffer !? Get()) match { case x:Int => /* process x */ } }

By applying joins to actors, the synchronization dependencies between Get and Put can
be specified declaratively by the buffer actor. The actor will receive Get and Put messages
by queuing them in its mailbox. Only when all of the messages specified in the join
pattern have been received is the body executed by the actor. Before processing the body,
the actor atomically removes all of the participating messages from its mailbox. Replies
may be sent to any or all of the messages participating in the join pattern. This is similar
to the way replies are sent to events in the thread-based Joins library described previously.

Contrary to the way events are defined in the thread-based joins library, an actor
does not explicitly define a join message to be synchronous or asynchronous. We say
that join messages are “synchronization-agnostic” because they can be used in different
synchronization modes between the sender and receiver actors. However, when they are
used in a particular join-pattern, the sender and receiver actors have to agree upon a
valid synchronization mode. In the previous example, the Put join message was sent
asynchronously, while the Get join message was sent synchronously. In the body of a
join pattern, the receiver actor replied to Get, but not to Put.

The synchronization between sender and receiver can only be derived implicitly from
the code. This has one important drawback: if the sender actor sends a join message syn-
chronously and the receiver actor forgets to reply to that message, the sender is blocked
indefinitely. Even though we consider this to be a limitation of our current design, this
problem could already arise without the introduction of join patterns. Scala actors always
have to explicitly reply to a message, so there is always the possibility that the reply is
erroneously forgotten. The chords design of Cω avoids these issues by restricting join
patterns to include at most one synchronous method invocation. That way, the return
value of the body can be used automatically to “reply to” the synchronous invocation [2].

The advantage of making join messages synchronization agnostic is that they can
be used in arbitrary synchronization modes, including more advanced synchronization
modes such as ABCL’s future-type message sending [19] or Salsa’s token-passing con-
tinuations [17]. Every join message instance has an associated reply destination, which
is an output channel on which processes may listen for possible replies to the message.
How the reply to a message is processed is determined by the way the message was sent.
For example, if the message was sent purely asynchronously, the reply is discarded; if it

9 Note that the Get message has return type Any. The type of the argument values is often recov-
ered by pattern matching on the result, as shown in the example.

12



was sent synchronously, the reply awakes the sender. If it was sent using a future-type
message send, the reply resolves the future.

5 Implementation of Actor-based Joins

Actor-based joins integrate with Scala’s pattern matching in essentially the same way
as the thread-based joins, making both implementations very similar. We highlight how
joins are integrated into the actor library, and how reply destinations are supported.

In the Scala actors library, receive and react are methods that take a
PartialFunction as a sole argument, similar to the join method defined previously.
To make receive and react aware of join patterns, the JoinActor trait overrides these
methods by wrapping the partial function into a specialized partial function that under-
stands join messages. JoinActor also overrides send to set the reply destination of a join
message. Message sends such as a!msg are interpreted as calls to a’s send method.

trait JoinActor extends Actor {
override def receive[R](f: PartialFunction[Any, R]): R =
super.receive(new JoinPatterns(f))

override def send(msg: Any, replyTo: OutputChannel[Any]) {
enqueueReplyDestination(msg, replyTo)
super.send(msg, replyTo) }

def enqueueReplyDestination(msg: Any, replyTo: OutputChannel[Any]) {
... } }

JoinPatterns is a special partial function that detects whether its argument message
is a join message. If it is, then the argument message is transformed to include out-of-
band information that will be passed to the pattern matcher, as is the case for events in
the thread-based joins library. The boolean argument passed to the checkJoinMessage
method indicates to the pattern matcher whether or not join message arguments should
be dequeued upon successful pattern matching. If the msg argument is not a join mes-
sage, checkJoinMessage passes the original message to the pattern matcher unchanged,
enabling regular actor messages to be processed as normal.

class JoinPatterns[R](f: PartialFunction[Any, R])
extends PartialFunction[Any, R] {
def asJoinMessage(msg: Any, isDryRun: Boolean): Any =
...

override def isDefinedAt(msg: Any) =
f.isDefinedAt(checkJoinMessage(msg, true))

override def apply(msg: Any) =
f(checkJoinMessage(msg, false)) }

Recall from figure 1 that thread-based joins used constructs such as SyncVars to synchro-
nize the sender of an event with the receiver. Actor-based joins do not use such constructs.
In order to synchronize sender and receiver, every join message has a reply destination
(which is an OutputChannel, set when the message is sent in the actor’s send method) on

13



which a sender may listen for replies. The reply method of a JoinMessage simply for-
wards its argument value to this encapsulated reply destination. This wakes up an actor
that performed a synchronous send (a!?msg) or that was waiting on a future (a!!msg).

6 Discussion and Related Work

Benton et al. [2] note that supporting general guards in join patterns is difficult to im-
plement efficiently as it requires testing all possible combinations of queued messages
to find a match. Side effects pose another problem. Benton et al. suggest a restricted
language for guards to overcome these issues. However, to the best of our knowledge,
there is currently no joins framework that supports a sufficiently restrictive yet expressive
guard language to implement efficient guarded joins. Our current implementation does
not handle general guards, although they are permitted in Scala’s pattern syntax [13]. We
find that guards often help at the interface to a component that uses private messages to
represent values satisfying a guard, as in the following example:

join { case Put(x) if (x > 0) => this.PositivePut(x)
case PositivePut(x) & Get() => Get reply x }

Cω [2] is a language extension of C# supporting chords, linear combinations of meth-
ods. In contrast to Scala Joins, Cω allows at most one synchronous method in a chord.
The thread invoking this method is the thread that eventually executes the chord’s body.
The benefits of Cω as a language extension over Scala Joins are that chords can be en-
forced to be well-formed and that their matching code can be optimized ahead of time.
In Scala Joins, the joins are only analyzed at pattern-matching time. The benefit of Scala
Joins as a library extension is that it provides more flexibility, such as dynamic joins
and multiple synchronous events. Russo’s Joins library [14] exploits the expressiveness
of C# 2.0’s generics to implement Cω’s synchronization constructs. Piggy-backing on
an existing variable binding mechanism allows us to avoid problems with Joins’ del-
egates where the order in which arguments are passed is merely conventional. Scala’s
implicit (constructor) arguments also help to alleviate some of the initialization boiler-
plate. CCR [3] is a C# library for asynchronous concurrency that supports join patterns
without synchronous components. Join bodies are scheduled for execution in a thread
pool. Our library integrates with JVM threads using synchronous variables, and supports
event-based programming through its integration with Scala Actors. Singh [15] shows
how a small set of higher-order combinators based on Haskell’s software transactional
memory (STM) can encode expressive join patterns. Salsa [17] is a language extension
of Java supporting actors. In Salsa, actors may synchronize in an event-driven way upon
the arrival of multiple messages by means of a join continuation. However, join continua-
tions only allow an actor to synchronize on gathering replies to previously sent messages.
Using joins, Scala actors may synchronize on any incoming message.

7 Conclusion

We presented a novel implementation of join patterns based on extensible pattern match-
ing constructs of languages such as Scala and F#. The embedding into general pattern

14



matching provides expressive features such as nested patterns and guards for free. The
resulting programs are often as concise as if written in more specialized language ex-
tensions. We implemented our approach as a Scala library that supports dynamic joins,
Ada-style rendezvous, and constraints. Furthermore, we integrated our library into the
Scala Actors event-based concurrency framework without changing the syntax and se-
mantics of existing programs.

References

1. Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent Program-
ming in Erlang, Second Edition. Prentice-Hall, 1996.

2. Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstractions for C#.
ACM Trans. Program. Lang. Syst, 26(5):769–804, 2004.

3. Georgio Chrysanthakopoulos and Satnam Singh. An asynchronous messaging library for C#.
In Proc. SCOOL Workshop, OOPSLA, 2005.

4. Burak Emir, Martin Odersky, and John Williams. Matching Objects with Patterns. LAMP-
Report 2006-006, EPFL, Lausanne, Switzerland, December 2006.

5. Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. JoCaml: A language
for concurrent distributed and mobile programming. In Advanced Functional Programming,
volume 2638 of LNCS, pages 129–158. Springer, 2002.

6. Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the join-
calculus. In Proc. POPL, pages 372–385. ACM, January 1996.

7. Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
Calculus of Mobile Agents. In CONCUR, pages 406–421. Springer-Verlag, August 1996.

8. Philipp Haller and Martin Odersky. Event-based programming without inversion of control.
In Proc. JMLC 2006, volume 4228 of LNCS, pages 4–22. Springer, 2006.

9. Philipp Haller and Martin Odersky. Actors that Unify Threads and Events. In International
Conference on Coordination Models and Languages, LNCS, 2007.

10. Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538, 1985.

11. Dennis Kafura. Act++: building a concurrent C++ with actors. Journal of Object-Oriented
Programming, 3(1):25–37, 1990.

12. Martin Odersky. Functional Nets. In European Symposium on Programming 2000, Lecture
Notes in Computer Science. Springer Verlag, 2000. Invited paper.

13. Martin Odersky and al. An Overview of the Scala Programming Language. Technical Report
IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

14. Claudio V. Russo. The Joins concurrency library. In PADL, pages 260–274, 2007.
15. Satnam Singh. Higher-order combinators for join patterns using STM. In Proc. TRANSACT

Workshop, OOPSLA, 2006.
16. Don Syme, Gregory Neverov, and James Margetson. Extensible Pattern Matching via a

Lightweight Language Extension. In Proc. ICFP, 2007.
17. Carlos Varela and Gul Agha. Programming dynamically reconfigurable open systems with

SALSA. ACM SIGPLAN Notices, 36(12):20–34, 2001.
18. G.S. von Itzstein and David Kearney. Join Java: An alternative concurrency semantic for Java.

Technical Report ACRC-01-001, University of South Australia, 2001.
19. Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented concurrent pro-

gramming in ABCL/1. In Proc. OOPSLA, pages 258–268, 1986.

15


	Implementing Joins using Extensible Pattern Matching
	Philipp Haller, Tom Van Cutsem

