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Abstract. This paper presents our integration of efficient resolubiesed theo-
rem provers into the Jahob data structure verification sys@ur experimental
results show that this approach enables Jahob to autohatiegfy the correct-
ness of a range of complex dynamically instantiable datzcstres, including
data structures such as hash tables and search trees, wftbmeed for interac-
tive theorem proving or techniques tailored to individualadstructures.

Our primary technical results include: (1) a translatianirhigher-order logic to
first-order logic that enables the application of resohHiimsed theorem provers
and (2) a proof that eliminating type (sort) information amrhulas is both sound
and complete, even in the presence of a generic equalitatgpe®ur experimen-
tal results show that the elimination of type informatiomamatically decreases
the time required to prove the resulting formulas.

These techniques enabled us to verify complex correctmepgmies of Java pro-
grams such as a mutable set implemented as an imperatiee lisk, a finite map
implemented as a functional ordered tree, a hash table withtable array, and
a simple library system example that uses these containarstiactures. Our
system verifies (in a matter of minutes) that data structperations correctly
update the finite map, that they preserve data structureiémia (such as order-
ing of elements, membership in appropriate hash table ibsic&erelationships
between sets and relations), and that there are no run-tiraesesuch as null
dereferences or array out of bounds accesses.

1 Introduction

One of the main challenges in the verification of softwargeys is the analysis of
unbounded data structures with dynamically allocatecklihttata structures and arrays.
Examples of such data structures are linked lists, treashash tables. The goal of
these data structures is to efficiently implement sets aatioas, with operations such
as lookup, insert, and removal. This paper explores thdication of programs with
such data structures using resolution-based theorem ngrésefirst-order logic with
equality.

Initial goal and the effectiveness of the approach.The initial motivation for using
first-order provers is the observation that quantifier-iteastraints on sets and rela-
tions that represent data structures can be translategtofater logic or even its frag-
ments [23]. This approach is suitable for verifying clienfsdata structures, because



such verification need not deal with transitive closure @nég the implementation of
data structures. The context of this work is the Jahob sy&emwerifying data struc-
ture consistency properties [20]. Our initial goal was tooirporate first-order theorem
provers into Jahob to verify data structure clients. Whikelvave indeed successfully
verified data structure clients, we also discovered thatdabproach has a wider range
of applicability than we had initially anticipated.

— We were able to apply this technique not only to data streotlients, but also to
data structure implementations, using recursion and glas&bles and, in some
cases, confining data structure mutation to newly allocabgects only.

— We found that there is no need in practice to restrict prageetd decidable frag-
ments of first-order logic as suggested in [23], because fanyulas that are not
easily categorized into known decidable fragments have gioofs, and theorem
provers can find these proofs effectively.

— Theorem provers were effective at dealing with quantifiediiants that often arise
when reasoning about unbounded numbers of objects.

— Using a simple partial axiomatization of linear arithmetie were able to verify
not only linking properties traditionally addressed byshanalyses, but also or-
dering properties in a binary search tree, hash table iawts, and bounds for all
array accesses.

The context of our results.We find our current results encouraging and attribute them
to several factors. Our use of ghost variables eliminatedhtred for transitive closure

in our specifications. Our use of recursion in combinatiaindahob’s approach to han-
dling procedure calls resulted in more tractable verifaratonditions. The semantics
of procedure calls that we used in our examples is based opleterhiding of modifi-
cations to encapsulated objects. This semantics avoidsets@mistic assumption that
every object is modified unless semantically proven othegwbut currently prevents
external references to encapsulated objects using simptactic checks. Finally, for
those of our procedures that were written using loops idsbéeecursion, we manually
supplied loop invariants.

Key ideas. The complexity of the properties we are checking made vatifia non-
trivial even under these assumptions, and we found it necgssintroduce the follow-
ing techniques for proving the generated verification cooials.

1. We introduce a translation to first-order logic with edfyahat avoids the potential
inefficiencies of a general encoding of higher-order logio ifirst-order logic by
handling the common cases and soundly approximating thainémg cases.

2. We use a translation to first-order logic that ignoresrnmiation about sorts that
would distinguish integers from objects. The results aralnproof obligations
and substantially better performance of provers. Moreaverprove a somewhat
surprising result: omitting such sort information is alwaspund and complete for
disjoint sorts of the same cardinality. This avoids the neeskparately check the
generated proofs for soundness. Omitting sorts was eakémtiobtaining our re-
sults. Without it, difficult proof obligations are imposklto prove or take a sub-
stantially larger amount of time.

3. We use heuristics for filtering assumptions from firstesrtbrmulas that reduce
the input problem size, speed up the theorem proving proe@ssimprove the
automation of the verification process.



The first two techniques are the main contribution of thisgraphe use of the third
technique confirms previous observations about the usesalof assumption filtering
in automatically generated first-order formulas [32].

Verified data structures and properties. Together, these techniques enabled us to
verify, for example, that binary search trees and hash sadmerectly implement their
relational interfaces, including an accurate specificatibremoval operations. Such
postconditions of operations in turn required verifyingnesentation invariants: in bi-
nary search tree, they require proving sortedness of teeitrdash table, they require
proving that keys belong to the buckets given by their hastecdo summarize, our
technique verifies that

1. representation invariants hold in the initial state;
2. each data structure operation
— establishes the postcondition specifying the change oéaspecified abstract
variable such as a set or relation; for example, an oper#imupdates a key
is given by the postcondition

content = (old content \ {(z,y) | z = key}) U {(key, value)}

— does not modify unintended parts of the state, for exampiejtable operation
on an instantiable data structure preserves the valuekin$@nces in the heap
other than the receiver parameter;

— preserves the representation invariants;

— never causes run-time errors such as null dereferenceayrtaounds violation.

We were able to prove such properties for an implementatientash table, a muta-

ble list, a functional implementation of an ordered binaggreh tree, and a functional
association list. All these data structures are instaletigds opposed to global), which
means that data structure clients can create an unboundelenwf their instances.

Jahob verifies that changes to one instance do not causeeshtmgther instances.
In addition, we verified a simple client, a library systemattinstantiates several set
and relation data structures and maintains object-mddetlonstraints on them in the
presence of changes to sets and relations.

What is remarkable is that we were able to establish thesdtsassing a general-
purpose technique and standard logical formalisms, witspecializing our system
for particular classes of properties. The fact that we canammtinuously improving
resolution-based theorem provers with standardizedfattes suggests that this tech-
nigue is likely to remain competitive in the future. We exptat the techniques we
identify in this paper will help make future theorem proveven more useful for pro-
gram verification tasks.

2 Binary Tree Example

We illustrate our technique using an example of a binaryceatee implementing a
finite map. Our implementation is written in Java and is [stesit, which means that the
data structure operations do not mutate existing objeaty,reewly allocated objects.
This makes the verification easier and provides a data steiethich is useful in, for
example, backtracking algorithms.



public ghost specvar content :: "(int * obj) set" = "{}

public static FuncTree empty_set()
ensures “result..content = {}"

public static FuncTree add(int k, Object v, FuncTree t)
requires "v "= null & (ALL y. (k)y) " t..content)"
ensures “result..content = t..content + {(k,v)}"

public static FuncTree update(int k, Object v, FuncTree t)
requires "v "= null"
ensures “result..content = t..content - {(x,y). x=k} + {(k, v)}"

public static Object lookup(int k, FuncTree t)
ensures “(result "= null & (k, result) : t..content)
| (result = null & (ALL v. (k) ™ t..content))"

public static FuncTree remove(int k, FuncTree t)
ensures “result..content = t..content - {(x,y). x=k}"

Fig. 1. Method contracts for a tree implementation of a map

Figure 1 shows the public interface of our tree data strectlihe interface in-
troduces an abstract specification variatbatent as a set of (key,value)-pairs and
specifies the contract of each procedure using a precondgieen by theequires
keyword) and postcondition (given by teasures keyword). The methods have no
modifies  clauses, indicating that they only mutate newly allocatgécts. In Jahob,
the developer specifies annotations such as procedureactsin special comments
= .. */ that begin with a colon. The formulas in annotations belangrt ex-
pressive subset of the language used by the Isabelle preisfad [36]. This language
supports set comprehensions and tuples, which makes thdicp#on of procedure
contracts in this example very natural. Single danformally means “such that”, both
for quantifiers and set comprehensions. The notdtian denotes functio applied
to argumentk. Jahob models instance fields as functions from objectsltesgob-
jects, integers, or booleans). The operatoris a variant of function application given
byx..f = f x . Operator. denotes set membership, denotes disequalityyn (or,
overloadedy+) denotes union angksetminus>  (or, overloaded;-) denotes set dif-
ference.

public static Object lookup(int k, FuncTree t)
/*: ensures "(result "= null & (k, result) : t..content)

| (result = null & (ALL v. (k,v) ™: t..content))" */
{
if (t == null) return null;
else
if (k == t.key) return t.data;
else if (k < tkey) return lookup(k, t.left);
else return lookup(k, t.right);
}

Fig. 2. Lookup operation for retrieving the element associatet wigiven key



Figure 2 presents the tree lookup operation. The operakammes the tree and
returns the appropriate element. Note that, to proveltudup is correct, one needs
to know the relationship between the abstract variablgent and the data structure
fieldsleft ,right ,key, anddata . In particular, it is necessary to conclude that if
an element is not found, then it is not in the data structubehSonditions refer to
private fields, so they cannot be captured by the public préition; they are instead
given byrepresentation invariantdrigure 3 presents the representation invariants for
our tree data structure. Using these representation anaréand the precondition, Jahob
proves (in 4 seconds) that the postcondition ofldakup method holds and that the
method never performs null dereferences. For example, \&halyzing tree traversal
in lookup , Jahob uses the sortedness invarialemaller , rightBigger )
and the definition of tree contenbntentDefinition to narrow down the search
to one of the subtrees.

class FuncTree {
private int key;
private Object data;
private FuncTree left, right;
[ *:
public ghost specvar content :: "(int * obj) set" = "{}

invariant nullEmpty: "this = null --> content = {}"

invariant contentDefinition: "this "= null -->
content = {(key, data)} + left..content + right..content"

invariant noNullData: "this "= null --> data "= null"

invariant leftSmaller: "ALL k v. (k,v) : left..content --> k < key"
invariant rightBigger: "ALL k v. (k,v) : right..content --> k > key" =/

Fig. 3. Fields and representation invariants for the tree impleatem

Jahob also ensures that the operations preserve the nefatéseinvariants. Jahob
reduces the invariants in Figure 3 to global invariants bplicitly quantifying them
over all allocated objects dfuncTree type. This approach yields simple semantics
to constraints that involve multiple objects in the heap éWh method allocates a new
object, the set of all allocated objects is extended, so efiaigation will require that
these newly allocated objects also satisfy their representinvariants at the end of
the method.

Figure 4 shows the map update operation in our implememntaifibe postcondi-
tion of update states that all previous bindings for the given key are abisetne
resulting tree. Note that proving this postcondition regsliithe sortedness invariants
leftSmaller ,rightBigger . Moreover, it is necessary to establish all representa-
tion invariants for the newly allocatdelincTree object.

The specification fieldontent  is aghostfield, which means that its value changes
only in response to specification assignment statemeral,agithe one in the penulti-
mate line of Figure 4. The use of ghost variables is sound ande explained using
simulation relations [11]. For example, if the developerarrectly specifies specifica-



public static FuncTree update(int k, Object v, FuncTree t)
/= requires "v "= null"

ensures "result..content = t..content - {(x,y). x=k} + {(k, v)}' */
{
FuncTree new_left, new_right;
Object new_data;
int new_key;
if (t==null) {
new_data = v; new_key = k;
new_left = null; new_right = null;
} else {
if (k < tkey) {
new_left = update(k, v, t.left);
new_right = t.right;
new_key = tkey; new_data = t.data;
} else if (tkey < k) {
new_left = t.left;
new_right = update(k, v, t.right);
new_key = tkey; new_data = t.data;
} else {
new_data = v; new_key = k;
new_left = tleft; new_right = t.right;
}
}
FuncTree r = new FuncTree();
rleft = new_left; r.right = new_right;
r.data = new_data; r.key = new_key;
/I: "r..content" := "t..content - {(x,y). x=k} + {(k,v)}";
return r;
}

Fig. 4. Map update implementation for functional tree

tion assignments, Jahob will detect the violation of the@spntation invariants such
ascontentDefinition . If the developer specifies incorrect representation invar
ants, Jahob will fail to prove postconditions of observesrggpions such asokup in
Figure 2.

Jahob verifies (in 10 seconds) that the update operatiohlis$tas the postcondi-
tion, correctly maintains all invariants, and performs ndl dereferences. Jahob estab-
lishes such conditions by first converting the Java prograim & loop-free guarded-
command language using user-provided or automaticakytietl loop invariants. (The
examples in this paper mostly use recursion instead of Ipépegerification condition
generator then computes a formula whose validity entagisthrectness of the program
with respect to its explicitly supplied specifications (sws invariants and procedure
contracts) as well as the absence of run-time exceptiom$ @s null pointer derefer-
ences, failing type casts, and array out of bounds accessd®g)b then splits the veri-
fication condition into a number of smaller formulas, eaclwbfch can be potentially
proved using a different theorem prover or a decision proedrhe specification lan-
guage and the generated verification conditions in Jahobxgmessed in higher-order
logic [36]. In the rest of this paper we show how we translatehsverification condi-
tions to first-order logic and prove them using theorem pre®sach as SPASS [43] and
E [41].



3 Translation to First-Order Logic

This section presents our translation from an expressiveetwf Isabelle formulas (the
input language) to first-order unsorted logic with equafttye language accepted by
first-order resolution-based theorem provers). The soesslof the translation is given
by the condition that, if the output formula is valid, so ig ihput formula.

Input language. The input language allows constructs such as lambda expnsss
function update, sets, tuples, quantifiers, cardinaligrapors, and set comprehensions.
The translation first performs type reconstruction. It ubestype information to dis-
ambiguate operations such as equality, whose translagperais on the type of the
operands.

Splitting into sequents. Generated proof obligations can be represented as conjunc-
tions of multiple statements, because they represent aliple paths in the verified
procedure, the validity of multiple invariants and postdibion conjuncts, and the ab-
sence of run-time errors at multiple program points. The ftsp in the translation
splits formulas into these individual conjuncts to provereaf them independently.
This process does not lose completeness, yet it improvestiibetiveness of the the-
orem proving process because the resulting formulas arbesrtiaan the starting for-
mula. Moreover, splitting enables Jahob to prove diffei@rijuncts using different
techniques, allowing the translation described in thisgpap be combined with other
translations [22,44,45]. After splitting, the resultirggiulas have the form of implica-
tionsA; A...A A, = G, which we callsequentsWe call A4, ..., A, theassumptions
andG thegoalof the sequent. The assumptions typically encode a patleipribicedure
being verified, the precondition, class invariants thatlfatlprocedure entry, as well as
properties of our semantic model of memory and the relatipssbetween sets repre-
senting Java types. During splitting, Jahob also perfoym&stic checks that eliminate
some simple valid sequents such as the ones where th&gafathe sequent is equal
to one of the assumptions,.

Definition substitution and function unfolding. When one of the assumptions is a
variable definition, the translation substitutes its cahie the rest of the formula (using
rulesin Figure 7). This approach supports definitions ofldes that have complex and
higher-order types, but are used simply as shorthands\ardsathe full encoding of
lambda abstraction in first-order logic. When the defingiarf variables are lambda
abstractions, the substitution enables beta reductioichnib done subsequently. In
addition to beta reduction, this phase also expands thdigdoetween functions using
the extensionality rulef(= g become&'z.f x = g x).

Cardinality constraints. Constant cardinality constraints express natural geizaeral
tions of quantifiers. For example, the statement “theret@dsmost one element sat-
isfying P" is given bycard {z. Pz} < 1. Our translation reduces constant cardinality
constraints to first-order logic with equality (using ruieg-igure 8).

Set expressionsOur translation uses universal quantification to expandgetations
into their set-theoretic definitions in terms of the set mership operator. This process
also eliminates set comprehensions by replaaing {y | ¢} with [y — z|. (Figure

9 shows the details.) These transformations ensure thainilyeset expressions in for-
mulas are either set variables or set-valued fields ocauorirthe right-hand side of the
membership operator.



Our translation maps set variables to unary predicatessS becomesS(x), where
S is a predicate in first-order logic. This translation is apgdble whensS is universally
quantified at the top level of the sequent (so it can be skaked)j which is indeed
the case for the proof obligations in this paper. Fields p&tgbject or integer become
uninterpreted function symbolyg: = x.f translates ag = f(x). Set-valued fields
become binary predicates: € y.f becomed’(y,z) whereF is a binary predicate.

Function update. Function update expressions (encoded as funcfiel\/rite and
arrayWrite in our input language) translate using case analysis (EigQy. If applied
to arbitrary expressions, such case analysis would dupliegpressions, potentially
leading to exponentially large expressions. To avoid thabfem, the translation first
flattens expressions by introducing fresh variables and theplicates only variables
and not expressions, keeping the translated formula paiyelo

Flattening. Flattening introduces fresh quantified variables, whichldan princi-
ple create additional quantifier alternations, making tr@opprocess more difficult.
However, each variable can be introduced using eitheraaist or universal quantifier
becausélr.x=a A ¢ is equivalent to7z.x=a = ¢. Our translation therefore chooses
the quantifier kind that corresponds to the most recentiyptdeariable in a given scope
(taking into account the polarity), preserving the numbeqnantifier alternations. The
starting quantifier kind at the top level of the formulavisensuring that freshly intro-
duced variables for quantifier-free expressions becomleskoonstants.

Arithmetic. Resolution-based first-order provers do not have builtrithiaetic op-
erations. Our translation therefore introduces axiomguié 12) that provide a partial
axiomatization of integer operations <, <. In addition, the translation supplies ax-
ioms for the ordering relation between all numeric constagpearing in the input
formula. Although incomplete, these axioms are sufficienterify our list, tree, and
hash table data structures.

Tuples. Tuples in the input language are useful, for example, aseaitsrof sets rep-
resenting relations, such as tbentent ghost field in Figure 3. Our translation elim-
inates tuples by transforming them into individual compuseFigure 11 illustrates
some relevant rewrite rules for this transformation. Tlaastation maps a variable
denoting am-tuple inton individual variables:, . . ., x,, bound in the same way as

A tuple equality becomes a conjunction of equalities of congnts. The arity of func-
tions changes to accommodate all components, so a funefkamgtann-tuple and an
m-tuple becomes a function symbol of arity-m. The translation handles sets as func-
tions from elements to booleans. For example, a relatidmeddieldcontent  of type
obj => (int * obj) set isviewed as afunctioobj => int => obj => bool

and therefore becomes a ternary predicate symbol.

Approximation.  Our translation maps higher-order formulas into first-ordgic
without encoding lambda calculus or set theory, so thereanstructs that it cannot
translate exactly. Examples include transitive closurbi¢tv can often be translated
into monadic second-order logic [44,45]) and symbolic gaality constraints (as in
BAPA [21]). Our first-order translation approximates suagbfermulas in a sound way,
by replacing them witfTrue or False depending on the polarity of the subformula
occurrence. The result of the approximation is a strongentita whose validity implies
the validity of the original formula.



Simplifications and further splitting. In the final stage, the translation performs a
quick simplification pass that reduces the size of formudgsfor example, eliminating
most occurrences dirue andFalse . Next, because constructs such as equality of
sets and functions introduce conjunctions, the transigtierforms further splitting of
the formula to improve the success of the proving process.

4 From Multisorted to Unsorted Logic

This section discusses our approach for handling type améh$ormation in the trans-
lation to first-order logic with equality. This approach ped essential for making ver-
ification of our examples feasible. The key insight is thaittng sort information 1)
improves the performance of the theorem proving effort, 2n@és guaranteed to be
sound in our context.

To understand our setup, note that the verification condgenerator in Jahob pro-
duces proof obligations in higher-order logic notation wdype system essentially
corresponds to simply typed lambda calculus [5] (we allomsgimple forms of para-
metric polymorphism but expect each occurrence of a syntbbhve a ground type).
The type system in our proof obligations therefore has ntygiihg, so all Java objects
have typeobj. The verification-condition generator encodes Java ctaasémmutable
sets of typeobj set. It encodes primitive Java integers as mathematical insegfetype
int (which is disjoint fromobj). The result of the translation in Section 3 is a formula
in multisorted first-order logic with equality and two digjbsorts,obj andint.> On the
other side, the standardized input language for first-otfteorem provers is untyped
first-order logic with equality. The key question is the éoling: How should we encode
multisorted first-order logic into untyped first-order |@gi

The standard approach [28, Chapter 6, Section 8] is to intea@ unary predicate
P, for each sort and replacéz::s. F'(x) with 3z. Py (x) AF'(z) and replac®z::s.F'(x)
with Va.Ps () = F(z) (wherex :: s in multisorted logic denotes that the variable
has the sort). In addition, for each function symbglof sorts; x. .. s, — s, introduce
aHornclaus&/zy,...,xn. Ps,(z1) A... A Ps (xn) = Ps(f(z1,...,2,)).

The standard approach is sound and complete. However, gsrfakmulas larger,
often substantially slowing down the automated theorenvgrdNhat if we omit-
ted the sort information given by unary sort predicaigs representing, for exam-
ple, Va::s.F(x) simply asVa.F(xz)? For potentially overlapping sorts, this approach
is unsound. As an example, take the conjunction of two foasidt::Node. F'(z:) and
Jx::Object.—F(x) for distinct sortsObject and Node where Node is a subsort of
Object. These assumptions are consistent in multisorted logiwerder, their unsorted
versionvz. F'(x) A 3z.—F(x) is contradictory, and would allow a verification system to
unsoundly prove arbitrary claims.

In our case, however, the two sorts consideieddndobj) are disjoint. Moreover,
there is no overloading of predicate or function symbolsvéfconsider a standard res-
olution proof procedure for first-order logic [3] (withouammodulation) under these
conditions, we can observe the following.

4 We encountered an example of a formuyla A @2 where a theorem prover proves eachgf and oo
independently in a few seconds, but requires more than 20tesro provep; A 2.

5 The resulting multisorted logic has no sort correspondim@pdoleans (as in [28, Chapter 6]). Instead,
propositional operations are part of the logic itself.



Observation 1 Performing an unsorted resolution step on well-sorted s&au(while
ignoring sorts in unification) generates well-sorted clesis

As a consequence, there is a bijection between resolutioofpin multisorted and
unsorted logic. By completeness of resolution, omittingssand using unsorted reso-
lution is a sound and complete technique for proving muftesbfirst-order formulas.

Observation 1 only applies if each symbol has a unique sgpeftsignature (i.e.,
there is no overloading of symbols), which is true for all foisexcept for equalityTo
make it true for equality, a multi-sorted language with @iisj sorts would need to have
one equality predicate for each sort. Unfortunately, theoprovers we consider have
a built-in support only for one privileged equality symbblsing user-defined predi-
cates and supplying congruence axioms would fail to takeuatége of the support for
paramodulation rules [35] in these provers. What if, caritig our brave attempt at
omitting sorts, we merge translation of all equalitiesngsithe special equality sym-
bol regardless of the sorts to which it applies? The resulni®rtunately unsound in
general. As an example, take the conjunction of formutasobj.vy::obj.z = y and
Jz:int.y:int.o(z = y). These formulas state that thej sort collapses to a single
element but thént sort does not. Omitting sort information yields a contréidic and
is therefore unsound. Similar examples exists for statésntiat impose other finite
bounds on distinct sorts.

In our case, however, we can assume that bhatfandobj are countably infinite.
More generally, when the interpretation of disjoint soms sets of equal cardinality,
such examples have the same truth value in the multisorsglazawell as in the case
with equality. More precisely, we have the following resukt ¢* denote the result of
omitting all sort information from a multisorted formufsand representing the equality
(regardless of the sort of arguments) using the built-ireéityusymbol.

Theorem 1. Assume that there are finitely many pairwise disjoint sdfat their in-
terpretations are sets of equal cardinality, and that thisrao overloading of predicate
and function symbols other than equality. Then there eridtsction mapping each
multisorted structureZ into an unsorted structurg* and each multisorted environ-
mentp to an unsorted environmenpt, such that the following holds: for each formula
v, structureZ, and a well-sorted environment

[o* T2 ifandonlyif  [¢]?

The proof of Theorem 1 is in Appendix F. It construgtsby taking a new set of same
cardinality as the sort interpretatiofis, . . ., .S,, in Z, and defining the interpretation of
symbols inZ* by composing the interpretation b with bijectionsf; : S; — S.
Theorem 1 implies that if a formulg-v))* is unsatisfiable, then so is. Therefore, if
* is valid, so isy. In summaryfor disjoint sorts of same cardinality, omitting sorts
is a sound method for proving validity, even in the preseri@nmverloaded equality
symbol

A resolution theorem prover with paramodulation rules carive ill-sorted clauses
as consequences gf. However, Theorem 1 implies that the existence of a refutati
of ¢* implies thaty is also unsatisfiable, guaranteeing the soundness of threagp
This approach is also complete. Namely, notice that stngpgorts onlyincreaseghe
set of resolution steps that can be performed on a set ofedaliberefore, we can show
that if there exists a proof fap, there exists a proof af*. Moreoverthe shortest proof

10



for the unsorted case is no longer than any proof in multsdrtaseAs a result, any
advantage of preserving sorts comes from the reductioneobtnching factor in the
search, as opposed to the reduction in proof length.

Impact of omitting sort information.  Figure 5 shows the effect of omitting sorts
on some of the most problematic formulas that arise in ouchearks. They are the
formulas that take more than one second to prove using SPABSarts, in the two
hardest methods of our Tree implementation. The figure shioatomitting sorts usu-
ally yields a speed-up of one order of magnitude, and sonestimore. In our examples,
the converse situation, where omitting sorts substantédws down the theorem prov-
ing process, is rare.

Time (S) Proof length Generated clauses
Benchmark —passT—E SPASS | SPASS E
w/o w|w/o w/| w/o w.| w/o W. w/o W.

1.1 5.330.0 349.0 155 799 9425 18376122508 79486
0.3 3.610.4 42.0 309 1781 1917 19601 73399 10891
4.9 9.815.7 18.0 174 178127108 33868100846 25655
0.5 8.1125 459 301 1611 3922 31892 85164 26310
4.7 81179 19.3 371 177328170 3724109032 17659
0.3 7.910.6 41.8 308 1391 3394 41354 65700 28725
0.22400|59.0 76.% 97 - 1075 1872566 95345
FuncTree.RemoveMax6.8 78.914.9 297.61159 265519527 17775837711 151282,
0.8 34.838.1 0.1 597 4062 5305 115718389334 759

FuncTree.Remove

OTroo—m W0 B OO0

Fig. 5. Verification time, and proof data using the provers SPASSErah the hardest formulas
from our examples.

5 Experimental Results

We implemented our translation to first-order logic and titerfaces to the first-order
provers E [41] (using the TPTP format for first-order fornwld2]) and SPASS [43]
(using its native format). We also implemented filtering atdzed in Appendix A to
automate the selection of assumptions in proof obligatidfesevaluated our approach
by implementing several data structures, using the systatngltheir development.
In addition to the implementation of a relation as a funcdicimee presented in Sec-
tion 2, we ran our system on dynamically instantiable setkratations implemented
as a functional singly-linked list, an imperative linkedtJiand a hash table. We also
verified operations of a data structure client that instdes a relation and two sets and
maintains invariants between them (Appendix H gives berackmdetails).

Table 6 illustrates the benchmarks we ran through our syateirshows their ver-
ification times. Lines of code and of specifications are cedntithout blank lines or
comments®

6 We ran the verification on a single-core 3.2 GHz Pentium 4 inactvith 3GB of memory, running
GNU/Linux. As first-order theorem provers we used SPASS arid their automatic settings. The E
version we used comes from the CASC-J3 (Summer 2006) systetmvea and calls itself v0.99pre2
“Singtom”. We used SPASS v2.2, which comes from its officiabvwpage.
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[Benchmark [lines of coddlines of specificatiojpumber of methods

Relation as functional list 76 26 9
Relation as functional Tree 186 38 10
Set as imperative list 60 24 9
Library system 97| 63 9
Relation as hash table 69 53 10

Benchmark Prover |method V(_erification decision formulas
time (sec) | procedures (se¢) proved

cons 0.9 0.8 9

removeall 1.7 1.1 5

remove 3.9 2.6 7

AssoclList E lookup 0.7 0.4 3
image 1.3 0.6 4

inverselmage 1.2 0.6 4

domain 0.9 0.5 3

entire class 11. 7.3 44

add 7.2 5.7 24

update 9.0 7.4 28

lookup 1.2 0.6 7

min 7.2 6.6 21

FuncTree|SPASS + Emax 7.2, 6.5 22
removeMax 106.5 (12.7 46.6+59.3  9+11

remove 17.Q 8.2+ ( 26+0

entire class 178.4 96.0+65.7 147+16

add 1.5 1.2 9

member 0.6 0.3 7

'mpLeig";‘t'Ve SPASS |getOne 0.1 0.1 2
remove 11.4 9.9 48

entire class 17.9 14.9+0. 74

currentReader 1.0 0.9 5

checkOutBook 2.3 1.7 6

Library E returnBook 2.7 2.1 7
decommissionBodk 3.0 2.2 7

entire class 20. 17. 73

init 25.5(3.8 252 (3.4 12

add 2.7 1.6 7

addl 22.7 22.7 14

HashTable SPASS |lookup 20.8 20.3 9
remove 57.1 56.3 12

update 1.4 0.8 2

entire class 11 113. 75

Fig. 6. Benchmarks Characteristics and Verification Times
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Our system accepts as command-line parameters timeoutgnpege of retained
assumptions in filtering, and two flags that indicate dessegtd of arithmetic axioms.
For each module, we used a fixed set of command line optionsrity\all the proce-
dures in that module. Some methods can be verified fastém@stshown in parenthe-
ses) by choosing a more fine-tuned set of options. Jahobsa#ipecifying a cascade of
provers to be tried in sequence; when we used multiple psovergive the time spent
in each prover and the number of formulas proved by each ofi thote that all steps
of the cascade run on the same input and are perfectly garalie. Running all steps
in parallel is an easy way to reduce the total running timmil&r parallelization op-
portunities arise across different conjuncts that resaihfsplitting, because splitting is
done ahead of time, before invoking any theorem provers.

The values in the “entire class” row for each module are nestim of all the other
rows, but the time actually spent in the verification of thérerclass, including some
methods not shown and the verification that the invarianid imitially. Running time
of first-order provers dominates the verification time, #@aining time is mostly spent
in our simple implementation of polymorphic type inferefieehigher-order logic for-
mulas.

Verification experience. The time we spent to verify these benchmarks went down
as we improved the system and gained experience usingdoktdapproximately one
week to code and verify the ordered trees implementatiomeder, it took only half
a day to write and verify a simple version of the hash tabléodk another few days
to verify an augmented version with a rehash function thatdaamically resize its
array when its filling ratio is too high.

On formulas generated from our examples, SPASS seems tceballovore effec-
tive. However, E is more effective on some hard formulaslivimg complex arithmetic.
Therefore, we use a cascading system of multiple proversspWeify a sequence of
command line options for each prover, which indicate thestiot to use, the sets of
axioms to include, and the amount of filtering to apply. Fareple, to verify the entire
FuncTree class, we used the following cascade of provers: 1) SPAS8wi-second
timeout and 50% assumption filtered; 2) SPASS with two-sétiomeout, axioms of the
order relation over integers and 75% assumption filtered 3k without timeout, with
the axioms of the order relation and without filtering. Matfilg these settings can re-
sult in a great speed-up (for exampfeincTree.removeMax  verifies in 13 seconds
with tuned settings as opposed to 106 seconds with the géeltithgs common to the
entire class). Before we implemented assumption filtemvegfaced difficulties finding
a set of options allowing the verification of the entirencTree class. Namely, some
proof obligations require arithmetic axioms, and for othedding these settings would
cause the prover to fail. Next, some proof obligations regjbackground axioms (gen-
eral assumptions that encode our memory model), but somlewach faster without
them. Assumption filtering allows the end-user to worry lalssut these settings.

6 Related Work

We are not aware of any other system capable of verifying strdmg properties of
operations on data structures that use arrays, recursirenyecells and integer keys
and does not require interactive theorem proving.
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Verification systems.Boogie [6] is a sound verification system for the Spec# laggua
which extends C# with specification constructs and intregucparticular methodology
for ensuring sound modular reasoning in the presence dfiadjaand object-oriented
features. This methodology creates potentially more diffirame conditions when

analyzing procedure calls compared to the ones createtiabJhut the correctness of
this methodology seems easier to establish.

ESC/Java 2 [9] is a verification system for Java that uses ML ds a specification
language. It supports a large set of Java features and sasrgoundness to achieve
higher usability for common verification tasks.

Boogie and ESC/Java2 use Nelson-Oppen style theorem grpyét, 13], which
have potentially better support for arithmetic, but haverendifficulties dealing with
quantified invariants. Jahob also supports a prototype EM8Tinterface to Nelson-
Oppen style theorem provers. Our preliminary experienggeasts that, for programs
and properties described in this paper, resolution-bdssatém provers are no worse
than current Nelson-Oppen style theorem provers. Compithiese two theorem prov-
ing approaches is an active area of research [2, 37], andysters could also take
advantage of these ideas, potentially resulting in moreisbbupport for arithmetic
reasoning.

Specification variables are present in Boogie [26] and ES@Q[8] under the name
model fieldsWe are not aware of any results on non-interactive verifinahat data
structures such as trees and hash tables meet their sp@mificexpressed in terms of
model fields. The properties we are reporting on have prslydoeen verified only
interactively [14, 15, 19, 47].

The Krakatoa tool [29] can verify JML specifications of Javde. We are not aware
of its use to verify data structures in an automated way.

Abstract interpretation. Shape analyses [25, 39, 40] typically verify weaker proper-
ties than in our examples. In [27] the authors use the TVLAewg0 verify insertion
sort and bubble sort. In [38, Page 35], the author uses TVLetdy implementations
of insertion and removal operations on sets implementedwdabie lists and binary
search trees. The approach [38] uses manually supplieicpted and transfer func-
tions and axioms for the analysis, but is able to infer loo@irants in an imperative
implementation of trees. Our implementation of trees i<fiomal and uses recursion,
which simplifies the verification and results in much smalleming times. The analy-
sis we describe in this paper does not infer loop invaridntsdoes not require trans-
fer functions to be specified either. The only informatioattthe data structure user
needs to trust is that procedure contracts correctly fammdhe desired behavior of
data structure operations; if the developer incorrecticjes an invariant or an update
to a specification variable, the system will detect an error.

Translation from higher-order to first-order logic. In [16, 31, 33] the authors also
address the process of proving higher-order formulas dssteprder theorem provers.
Our work differs in that we do not aim to provide automationat@eneral-purpose
higher-order interactive theorem prover. Therefore, weevadle to avoid using general
encoding of lambda calculus into first-order logic and wedwel that this made our
translation more effective.
The authors in [16, 33] also observe that encoding the fpk tinformation slows

down the proof process. The authors therefore omit typerimétion and then check
the resulting proofs for soundness. A similar approach wapted to encoding multi-
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sorted logic in the Athena theorem proving framework [1]cémtrast, we were able to
prove that omitting sort information preserves soundnedscampleteness when sorts
are disjoint and have the same cardinality.

The filtering of assumptions also appears in [32]. Our tegtais similar but sim-
pler and works before transformation to clause normal fddmr. results confirm the
usefulness of assumption filtering in the context of prolderising in data structure
verification.

A quantifier-free language that contains set operationsbeatranslated into the
universal fragment of first-order logic [23]. In our experde so far we found no need
to limit the precision of the translation by restricting selves to the universal fragment.

Type systems. Type systems have been used to verify algebraic data ty0¢sdtt

ray bounds [46], and mutable structures [48], usually erifigrweaker properties than
in our case. Recently, researchers have developed a pngnaigproach [34] based on
separation logic [17] that can verify shape and content gnttgs of imperative recur-
sive data structures (although it has not been applied to taddes yet). Our approach
uses standard higher-order and first-order logic and seemseptually simpler, but
generates proof obligations that have potentially morentifiers and case analyses.

Constraint solving and testing. In [12] the authors use a constraint solver based
on translation to propositional logic to identify all ersowithin a given scope. They
apply the technique to analysis of real-world implementaiof linked lists. Another
approach for finding bugs is exhaustive testing by geneagdgsts that satisfy given
preconditions [18, 30]. These techniques are very effeaivinding bugs, but do not
guarantee the absence of errors.

7 Conclusions

We presented a technique for verifying complex data strecforoperties using
resolution-based first-order theorem provers. We used plsitranslation that expands
higher-order definitions and translates function appiices to applications of uninter-
preted function symbols, without encoding set theory orddencalculus in first-order
logic. We have observed that omitting sort information im wanslation speeds up the
theorem proving process. This motivated us to prove thattomisuch sort informa-
tion is sound for disjoint sorts of same cardinality, evethimpresence of an overloaded
equality operator. We have also confirmed the usefulnestteririig to reduce the size
of formulas used as an input to the theorem prover.

Using these techniques we were able to prove strong prepddi an implemen-
tation of a hash table, an instantiable mutable list, forrecfional implementation of
ordered binary search tree, and for a functional assoaoi#iib We also verified a sim-
ple library system that instantiates two sets and a relai@hmaintains constraints on
them in the presence of changes to the sets and relation y&tens proves that opera-
tions act as expected on the abstract content of the datdist(that is, they establish
their postcondition such as insertion or removal of tuplesnfa relation), that they
preserve non-trivial internal representation invariaateh as sortedness of a tree and
structural invariants of a hash table, and that they do naseaun-time errors such as
null dereference or array out of bounds access.
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Assumption Filtering

Typically, the theorem prover only needs a subset of assomgpof a sequent to estab-
lish its validity. Indeed, th&uncTree.remove procedure has a median proof length
of 4; with such a small number of deduction steps only a foaotf all the assumptions
are necessary. Unnecessary assumptions can dramaticatase the running time of
theorem provers and cause them to fail to terminate in a nedd® amount of time,
despite the use of selection heuristics in theorem provplementations.

Finding a minimal set of assumption is in general as hard asipyg the goal.

We therefore use heuristics that run in polynomial time teceassumptions likely

17



to be relevant. Our technique is based on [32], but is simgoterworks at the level of
formulas (after definition substitution and beta redudtias opposed to clauses. The
technique ranks the assumptions and sorts them in the i@okiter. A command-line
option indicates the percentage of the most highly rankedmaptions to retain in the
proof obligation.

Impact of filtering. We verified the impact of assumption filtering on a set of 2000
valid formulas generated by our system, with the averagebeuniof assumptions being
48.5 and the mediad3. After ranking the assumptions, we measured the numbeeof th
most relevant assumptions that we needed to retain for theef fw still succeed. With
our simple ranking technique, the average required nunftyetevant assumptions was
16, and the median wakl. One half of the formulas of this set are proved by retaining
only the top one third of the original assumptions.

Assumption filtering yields an important speed-up in thefigation of the hash
table implementation of a relation. The hash table is imgleted using an array, and
our system checks that all array accesses are within bolihdsrequires the ordering
axioms for the< operator. However, when proving that operations corragilyate the
hash table content, these axioms are not required, ands®BRASS: the verification
of the insertion method takes 211 seconds with all assumgt@nd onlyl.3 second
with assumption filtering set to 50%. In some cases this effegld be obtained man-
ually, by asking the system to try to prove the formula firsthwut, and then with the
arithmetic axioms, but assumption filtering makes the gpation of command-line
parameters simpler and decreases the overall running time.

B HOL to FOL Translation Rules

Translation rules that formalize the description in SetBoare in Figures 7, 8, 9, 10,
and 11. Figure 12 shows our partial axiomatization of liregéthmetic.

VAR-TRUE
(H1/\"'/\Hifl/\v/\HiJrl/\"'/\Hn):>G

{(Hl/\-~~/\HZ~,1/\HZ~+1/\~~~/\HH):>G]{v»—>True}

VAR-FALSE
(HiN---ANHi-it N=vANHip1t A+~ ANHyp) = G

[(Hl/\"'/\Hi_l/\HH.l/\"'/\Hn):>G]{’U'—>Fal86}

VAR-DEF FV
(HLA-AHiaAv=pAHisi A AHy) =G VEFV(p) .
VAR-TRUE cannot be applied

[((Hy A ANHici AHipy A+ A Hy) = Gl{v — ¢} VAR-FALSE cannot be applied

Fig. 7. Rules for definition substitution
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CARD-CONSTRAINT-EQ CARD-CONSTRAINT-LEQ
card S = k

card S < k
3%1,...,Jik.sg {xl,...,mk}

cardS < k AcardS > k

CARD-CONSTRAINT-GEQ
cardS > k

dx1, ..., xk. {xl,...,l‘k}gS/\ /\ a0y = vy

1<i<j<k

Fig. 8. Rules for constant cardinality constraints

SET-INCLUSION
S1 C So

Ve.x € S1 = x € 5o

SET-EQUALITY
S1 =52
Ve.x € S1 < x € Ss

INTERSECTION
x €51 NS

r€e€Si Nz €Sy

UNION DIFFERENCE FINITESET
x € S1US2 z € S\ S z €{01,...,0}
reS1VreSs z€SiANz ¢S z=01V---Vz=0

COMPREHENSION
z € {y|p}
ely — 2]

Fig. 9. Rules for complex set expressions
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OBJECT-FIELD-WRITE-READ
Vi = fieldWrite (f, Va, Va)(Va)

(Va=VaAVi=V3)V (Va#£Va AVE = f(Va))

OBJECT-ARRAY-WRITE-READ
Vi = arrayWrite (fa, V2, V3, Va)(V5, Vs)

(Ve=VaAVe=VaAVi=V)V(=(Vs=VaAVe=Va)AVi = fo(V5,V5))

FUNCTION-ARGUMENT EQUALITY-NORMALIZATION
V:g(Vl,...,‘/;;_1,0,‘/;;_‘.1,...,‘/]6) c=V
Juu=CAV =g(Vi,..,Vic1,u, Vig1, ..., Vi) V=C_C
EQUALITY-UNFOLDING SET-FIELD-WRITE-READ
C1 =0C> Vi € fieldWrite (f, VQ, V3)(V4)
Fvw=CiAv=Cs (Va=VaAVL € Va)V (Vu#VaAVL € f(Va))

MEMBERSHIP-UNFOLDING
CeT

Jvwv=CAveT

Fig. 10. Rewriting rules to rewrite complex field expressiofisdenotes a complex terri; de-
notes a variablef denotes a field or array function identifier (not a complexreggion).

(T1, ooy Tn) = (Y15 -y Yn) 2= (Y1y-yYn) Z =y z:51 X ...x S,
/\xi:yi /\zi:yi /\Zi:yi
=il o=1 o=1
(Y1, .-, Yn) €S (Y1, .oy Yn) € x.f z€S z2:851 X ... XSy
S(y1, - Yn) F(z,y1,...,Yn) S(#1, .., 2n)
z€wx.f z:81 X ... %X Sn Q(z: 51 X ... X Sn).p
F(z,z1,..., 2n) Q(z1: 51,y 2n : Sn).

Fig. 11.Rules for removal of tuples
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Vn. n<n
Vnm. (n<mAm<n)=n=m
Ynm. m<mAm<o)=n<o
VYnm. (n<m) <= (n=mV =(m <n))
Vnmpqg. mM<mAp<qg =>n+p<m-+tgq
Vnmpqg. mn<mAp<q)=n—qg<m-—p

Vnmp. n<m=>n+p<m+p
Vnmp. n<m=>n—-p<m-—p
Ynm. n+m=m+n
Ynmp. (n4+m)+p=n+(m+p)
Vn. n+0=mn
Vn. n—0=mn
Vn. n—nm=20

Fig. 12. Arithmetic axioms optionally conjoined with the formulas

C First-Order Logic Syntax and Semantics

To avoid any ambiguity, this section presents the syntaxsangantics of unsorted and
multisorted first-order logic. We use this notation in thegfs in the following sections.
C.1 Unsorted First-Order Logic with Equality

An unsorted signatur&’ is given by:

— a setV of variables;
— asetP of predicate symbols, each symtdle P with arity ar(P) > 0;
— asetF of function symbols, each symbgle F with arity ar(f) > 0.

Figure 13 shows the syntax of unsorted first-order logic.stamts are function symbols
of arity 0.

pu=Pt1,...,tn) |[t1=t2 | 70 | p1 A2 | Tz. F
to=x| f(t1,... tn)
Fig. 13. Syntax of Unsorted First-Order Logic with Equality

@ u=Pt1,...,tn) | t1 =t2 | 7 | p1 A2 | Jziis. F

Fig. 14. Syntax of Multisorted First-Order Logic with Equality

An unsorted¥-structureZ is given by:
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— the domain seX = dom(Z);

— for every predicaté € P with ar(P) = n, the interpretatiofiP]Z C X" defining
the tuples on whictP is true;

— for every function symbof in F of arity n, a set of tuple§f]* € X"*!, which
represents the graph of a total functigt — X.

An Z-environmenp is a function) — X from variables to domain elements.
The interpretation of a termin structureZ and environmeng is denoteq[t]]% and
is given inductively as follows:

— [«]} = p(x), if z € Vis a variable;

= [f(z1,...,z0)]E =y where([z1]%, ..., [z.]%.y) € [f]*,if f € Fisafunction
symbol of arityn > 0.

Interpretation of a formula in structureZ and environmenp is denoteqkp]]% and is
given inductively as follows:

[P(t1,... t)]5 = ([]%. .- -, [ta]?) € [P]*
[t1 = to] 2 = ([a]5=[t=]%)
[ A @2]]% = [[901]},1; A [[902]]%
[~¢l7 = -lel;
[[Elx.ga]]% =da € dom(I).[[gp]}lI,[mHa]

wherep[x — al(y) = p(y) for y # z andp[z — a|(z) = a.

C.2 Multisorted First-Order Logic with Equality
A multisorted signature’ with sortso = {s1, ..., s,} is given by:

— asetV of variables, each variablec V with its sortar(z) € o;
— a setP of predicates, each symb#& € P with a sort signaturer(P) € o for

somen > 0;
— a setF of function symbols, each symbgl € F with a sort signaturer(f) €
o™t we writear(f) 1 sy % ... % 8y — spi1 if ar(f) = (81, -+, Sn, Sn1)-

Figure 14 shows the syntax of multisorted first-order logithwequality, which differs
from the syntax of the unsorted first-order logic with eqtyailn that each quantifier
specifies the sort of the bound variable. In addition, we ireghe terms and formulas
to be well-sorted, which means that predicates and funajonbols only apply to
arguments of the corresponding sort, and equality apmiesrins of the same sort.

A multisortedX-structureZ is given by:

— for each sort;, a domain sef; = [s;]%;

— for every predicate” in P of types; * ... * s,, arelation[ P]Z C Sy x ... x S,
for [s;]* = S;, defining the tuples on whicR is true;

— for every function symbof in F of types; * ... x s, — s,41, the function graph
fCS) x...x 8, x S,41 of atotal function that interprets symbgl
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A multisorted environment maps every variable € Var with sorts; to an element of
S, sop(z) € [ar(z)]%;

We interpret terms the same way as in the unsorted case. Afpiiet formulas
analogously as in the unsorted case, with each bound varidigorts; ranging over
the interpretatiord; of the sorts;.

[P(t1,... ,tn)]]% = ([[tlﬂlz,, A [[tnﬂlz,) € [P]*
[t1 = to] 2 = ([ta]>=[t=]%)
[o1 A 992]]% = [[991]},1; A [[902]]%
[-¢l; = -[el7
[[Elx::s.go]]f =da € [[8]]1.[[99]}%—[%_)“]

C.3 Omitting Sorts

If ¢ is a multisorted formula, we define its unsorted versidrby eliminating all type
annotations. For a tery we would write the termt* in the same way ag but we
keep in mind that the function symbols it have an unsorted signature. The rules in
Figure 15 make this definition more precise.

r =T
f(t1,...,tn * Ef(t1*,...,tn*)
P(t1,... tn * EP(tl*,...,tn*)

)
)
ta)" = (" =t27)
(prAp2)" = 1" Ap2”
(mp)" == (¢")
(Bx:s.p)" = Jz. (p¥)

Fig. 15.Unsorted formula associated with a multisorted formula

D Omitting Sorts in Logic without Equality

In this section we prove that omitting sorts is sound in the&-farder language without
equality. We therefore assume that there is no equality syyrahd that each predicate
and function symbol has a unique (ground) type. Under thesenaptions we show
that unification for multisorted and unsorted logic coirgievhich implies that reso-

lution proof trees are the same as well. Completeness amdisess of resolution in

multisorted and unsorted logic then implies the equivaderfche validity in unsorted

and multisorted logics without equality.
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D.1 Multisorted and Unsorted Unification

Unification plays a central role in the resolution proceswel as in the proof of our
claim. We review it here for completeness, although the eptecwe use are standard.
We provide definitions for the multisorted case. To obtaim definitions for the un-
sorted case, assume that all terms and variables have oversai” sort.

Definition 2 (Substitution). A substitutions is a mapping from terms to terms such

thato (f(t1,...,tn)) = f(o(t1),...,0(t2)).
Substitutions are homomorphisms in the free algebra ofdevith variables.

Definition 3 (Unification problem). A unification problems a set of pairs of terms of
the form:P = {s; = t1,..., s, = t,}, where all terms are well-sorted, and both sides
of the= operator have the same sort.

Definition 4 (Unifier). A unifier o for a problemP is a substitution such that(s;) =
o(t;) for all constraintss; = t; in P.

Definition 5 (Resolved form).A problemP is in resolved formiff it is of the form
{z1 =1t1,...,2, = tn}, Where, foreach <i < n:

1. all z; are pairwise distinct variablesi ¢ j — z; # x;).
2. z; does not appear in; (z; ¢ FV(L;)).

Definition 6 (Unifier for resolved form). Let P = {xy =t1,...,2, =1t,} be a
problem in resolved form. Thenifier associated wittP is the substitutionrp =
{1‘1 — tl, N o tn}.

DECOMPOSE ORIENT
PU{f(s1,.-.,8n) = f(t1,-..,tn)} PU{t ==z} t¢yV
PU{s1=t1,...,5n =tn} PuU{z =t}

REPLACE ERASE
PU{z =s} z € Var(P) x ¢ FV(s) PU{s=s}
(Plz — s]) U {z = s} P

Fig. 16. Unification algorithm

We define the unification algorithm as the set of rewritingstih Figure 16. We assume
a fixed strategy for applying these rules (for example, asaggyply the first applicable
rule in the list). The resulting algorithm is terminatingh&n given a unification prob-
lemP, their application yields a unification problem in resolfedn P’. If the result is
in resolved form, then consides-, the unifier associated with’. We callo» themost
general unifieiof the unification probler® and denote imgu(P). If the resultP’ is not

in resolved form, then there does not exist a unifierfcaind we definengu(P) = L
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and say thaP is not unifiable. IfP = {s = ¢}, we denote the most general unifier of
P by mgu(s = t). For the purpose of unification we treat predicate symbdsljke
function symbols returning boolean sort, and we treat twolgperations as function
symbols with boolean arguments and results; we can thergfdte mgu(A = B) for
the most general unifier of literal$ and 5.

If o is a substitution in multisorted logic, we write for the unsorted substitution
such thav*(x) = o(z)". It follows that(a(¢))" = o*(t*) for any termt. For a unifi-
cation problenP = {s1 =t1,...,s, = t,, }, we defineP* = {s;* = t1%,...,8,* =
tn*}.

The key observation about multisorted unification withaiisj sorts is the following
lemma.

Lemma 1. LetP be a multisorted unification problem astép(P) denote the result of
applying one step of the unification algorithm in Figure 16efistep(P)” = step(P*)
wherestep(P*) is the result of applying one step of the unification algoritto the
unsorted unification probler®*. Consequently,

mgu(P)" = mgu(P")
In particular, P is unifiable if and only ifP* is unifiable.

Lemma 1 essentially shows that omitting sorts during urtificayields the same result
as preserving them. The proof uses the fact thaklates terms or formulas of the
same type and that substituting terms with variables of #mestype preserves sort
constraints.

D.2 Multisorted and Unsorted Resolution

We next show that omitting sorts from a set of clauses doeshatge the set of possi-
ble resolution steps, which implies the soundness of amgitbrts.

We consider a finite sef', ..., C,, of well-sorted clauses. A clause is a disjunc-
tion of literals, where a literal is an atomic formu(t,,...,t,) or its negation
=P(ty,...,t,). If A denotes atomic formulas then we defideas -4 and-A as
A. AsetCy,...,C, iswell-sorted ifC, .. ., C, are formulas with free variables in the
same multisorted signature, which implies that the sameVagiable occurring in two
distinct clauseg¢’; # C; has the same sort.

RESOLUTION
C1V L1 Ca V Lo .=

a(C1) V o (Cz) o = mgu(L1 = L2)

FACTORISATION
CV LV Ls

m g = mgu(L1 = L2)

Fig. 17.Resolution rules
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Consider a multisorted clause set= {C,...,C,}, and its unsorted counterpart
S*={C:1",...,C,"}. Consider the resolution procedure rules in Figure 17.

Lemma 2. If Dy € S* is the result of applying theesocuTion rule toC1 *, Coy* € S*,
thenDy is of the formCy* whereC\ can be obtained by applying the resolution rule to
Ci andCs.

If Dy € S* is the result of applying theactorine rule to C* € S*, thenDy is of
the formCy* whereC\ can be obtained by applying factoring €&

The proof of Lemma 2 follows from Lemma 1: the most generafienin the multi-
sorted proof step is such that* is the most general unifier in the unsorted step.

By induction on the length of the resolution proof, Lemma 2Jlies that if an
empty clause can be derived frasti, then an empty clause can be derived fr6nBy
soundness and completeness of resolution in both the edsand sorted case and the
fact that the skolemization process is isomorphic in theottesl and multisorted case,
we obtain the desired theorem.

Theorem 2. Letp be a multisorted formula without equality.4f is valid, so isp.

E Completeness of Omitting Sorts

This section continues Section D and argues that elimigatort information does
not reduce the number of provable formulas. The followingrea is analogous to
Lemma 2 and states that resolution steps on multisortedetacan be performed on
the corresponding unsorted clauses.

Lemma 3. If Cy is the result of applying the resolution rule to clauggsandCs, then
Cy™ can be obtained by applying the resolution rule to clauSgsand Cs*.

If Cy is the result of applying the factoring rule to a clausg thenCy* can be
obtained by applying the factoring rule to clausé.

Analogously to Theorem 2 we obtain Theorem 3.

Theorem 3. Let ¢ be a many-sorted formula without equalityfis valid then so is

*

@

F Soundness of Omitting Sorts in Logic with Equality

Sections D and E show that in the absence of an interpretediggsymbol there is an
isomorphism between proofs in the multisorted and unsarésg. This isomorphism
breaks in the presence of equality. Indeed, consider tih@filg clauseC":

r=yV fz)# fy)

expressing injectivity of a function symbglof types; — s, for two disjoint sortss;
andss. In the unsorted case it is possible to resaliiith itself, yielding

v=yV f(f(x)# f(fy)
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Such a resolution step is, however, impossible in the nwutgsl case.
In general, eliminating sorts in the presence of equalitynisound, as the conjunc-
tion of formulas
Va::0bj.Vy::obj.x =y
Jzzintyzint.o(x = y)
shows. In this section we assume that sorts are of the satie&kty, which eliminates
such examples without being too restrictive in practice tNés prove Theorem 1 stated
in Section 4, which implies soundness of omitting sorts evethe presence of an
overloaded equality operator. The key step in the proof @&ofam 1 is the construction
of a function that maps each multisorted structfiiato an unsorted structug®.
We fix a multisorted signatur&’ with sortssy, ..., s, and denote by* its un-
sorted version.

Definition of Z* and p*. Consider a multisorted structuZeover the signaturé’ with
m sort interpretations,, ..., S,,. Because alb; have equal cardinality, there exists a
setS andm functionsf; : S; — S, for 1 < i < m, such thatf; is a bijection between
S; and S. (For example, také& to be one of thes;.) We let S be the domain of the
unsorted model™.

We map a multisorted environmeminto an unsorted environmept by defining
p*(x) = fi(p(x)) if xis a variable of sors;.

We define a similar transformation for the predicate andtionssymbols ofz. For
each predicaté® of types;, *...x*s;, , we let

[PT" = {(fu (1), fi (@3,)) | (21,0 20) € [PTF)

Similarly, for each function symbat of types;, ... x*s;, — s;,., we let

[[f]]z* = {(fTI (1‘1), IR fin+1(xn+1)) | (731, R axn+1) € [[f]]z}

which is a relation denoting a function because the funstjprare bijections.
This completes our definition @f andZ*. We next show that these definitions have
the desired properties.

Lemma 4. If t is a multisorted term of sox,,, andp a multi-sorted environment, then

[T = fu([17)

Proof. Follows from definition, by induction on term

Proof of Theorem 1.The proof is by induction orp.

— If ¢ is (t1 = t2) andty,ts have sorts,, the claim follows from Lemma 4 by
injectivity of f,.
— If pis P(t,...,t,) whereP is a predicate of type;, = ... s; , we have:
[P(ty,.... )]} = ([tal7. - .. [ta]}) € [P]*
(by definition ofZ* and f; inject|V|ty) = (f “([[tl]]z) o fi (Ita]2)) € [PTF
([[ *v'~ [[t ﬂp*)e[[P]]I*
= [P(ts,...,ta) T

(by Lemma 4)
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— The case® = 1 Apy andyp = —y; follow directly from the induction hypothesis.
— @ = Jz::84.90.
= Assume [¢]] is true. Then, there exists an elementof the sorts,
such that[po]” .., is true. By induction,[oo* r )+ Is true. Because

plz—e (plz—e]
(plz —e])" = p*[z — fu.(e)], we havdIElz.goo*]]%:.
<= Assume[y"]7.. Then, there exists € S of Z* such thaflpo*]%. ., . Let
po = plz — f;1(e)]. Thenpy* = p*[z — e]. By the induction hypothesis,
[ol?, SO[3z::50.00 ] -

G Sort Information and Proof Length

Theorem 1 shows that omitting sort information is sound fsjaiht sorts of the same
cardinality. Moreover, experimental results in Sectiorhdvg that omitting sorts is of-
ten beneficial compared to the standard relativization @imgoof sorts using unary
predicates [28, Chapter 6, Section 8], even for SPASS [48]ths built-in support for
sorts. While there may be many factors that contribute ® ¢mpirical fact, we have
observed that in most casemitting sort information decreases the size of the proofs
found by the prover

We next sketch an argument that, in the simple settings witth@ paramodulation
rule [35], removing unary sort predicates only decreasetetigth of resolution proofs.
Let P,..., P, be unary sort predicates. We use the teort literal to denote a literal
of the form P;(¢) or —P;(t) for somel < i < n. The basic idea is that we can map
clauses with sort predicates into clauses without sortipages, while mapping resolu-
tion proofsinto correct new proofs. We denote this mappinghe mappingx removes
sort literals and potentially some additional non-sodrhds, and potentially performs
generalization. It therefore maps each clause into a sérziguse.

Consider mapping an application of a resolution step tosda@’; and Cs with
resolved literalsl.; and L, to obtain a resolvent clausgé. If L, and L, are not sort
literals, we can perform the analogous resolution step errglsult of removing sort
literals fromC; andCs. If, on the other handl; and L. are sort literals, then(C)
anda(Cs) do not containl; or L. We map such a proof step into a trivial proof step
that simply selects as(C') one of the premise&(C;) or «(C5). For concreteness,
let «(C) = a(C1). Becaus& in this case contains an instance of each non-sort literal
from C1, we have thatv(C') is a generalization of a subset of literalgdfThe mapping
« works in an analogous way for the factoring step in a resmtugiroof, mapping it
either to an analogous factoring step or a trivial proof step

The trivial proof steps are the reason wlayemoves not only sort literals but also
non-sort literals. Because removes non-sort literals as well, even some proof steps
involving non-sort literals may become inapplicable. Hearethey can all be replaced
by trivial proof steps. The resulting proof tree has the s&mmight and terminates at
an empty clause, becausemaps each clause into a stronger one. Moreover, trivial
proof steps can be removed, potentially reducing the heifjthte tree. This shows that
the shortest resolution proof without guards is the samehortsr than the shortest
resolution proof with guards.
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H Further Details on Verified Benchmarks

This section gives some additional details about the beacksypresented in Figure 6.

FuncTree is a functional binary search tree implementing a map, sleetin Sec-
tion 2. To give an idea of the complexity of this implemerdatiFigures 18 shows the
remove method, which is the most difficult to verify in the functidiigee implemen-
tation. Note that Jahob can infer that it is enough to remawug one node from the
tree, because the uniqueness of keys follows from the stritetring constraints. The
auxiliary operationsnax andremove _-maxare in Figures 19 and 20.

public static FuncTree remove(int k, FuncTree t)
[ *: ensures “result..content = t..content - {(x,y). x=k}" */

if (t == null) return null;
else if (k == tkey) {
if ((t.right == null) && (tleft == null)) return null;
else if (t.left == null) return t.right;
else if (t.right == null) return t.left;
else {
Pair m = max(t.left);
FuncTree foo = remove_max(t.left, m.key, m.data);

FuncTree r = new FuncTree();
r.key = m.key;
r.data = m.data;
rleft = foo;
r.right = tright;
/I: "r..content" := "t..content - {(x,y). x=k}"
return r;
}
}
else {
FuncTree new_left;
FuncTree new_right;
if (k < tkey) {
new_left = remove(k, t.left);
new_right = t.right;
} else {
new_left = t.left;
new_right = remove(k, t.right);
}
FuncTree r = new FuncTree();
r.key = tkey;
r.data = t.data;
rleft = new_left;
r.right = new_right;
/I: "r.content" := "t..content - {(x,y). x=k}"
return ;

Fig. 18.Removal of an element
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class Pair {
public int key;
public Object data;

public static Pair max(FuncTree t)
/= requires "t.content "= {}"
ensures "result "= null
& result..Pair.data "= null
& ((result..Pair.key, result..Pair.data) : t..content)
& (ALL k. (k "= result..Pair.key -->
(ALL v. ((k,v) : t.content --> k < result..Pair.key))))"

*/
if (t.right == null) {
Pair r = new Pair();
rkey = tkey;
r.data = t.data;
return r;
} else {
return max(t.right);
}
}
Fig. 19. Computing the maximal element
private static FuncTree remove_max(FuncTree t, int k, Obje ct v)

/= requires "(k,v) : t.content &
(ALL x.(x "= k --> (ALL y. ((xy) : t.content --> x < k)))) &
theinvs"
ensures "result "= t
& result..content = t..content - {(k,v)}
& (ALL x. (ALL y. ((x,y) : result..content --> x < Kk)))

& theinvs"
*/
if (t.right == null) {
return t.left;
} else {

FuncTree new_right = remove_max1(t.right, k, v);

FuncTree r = new FuncTree();

r.key = tkey;

rdata = t.data;

rleft = tleft;

r.oright = new_right;

/I: "r..content" := "t..content - {(k,v)}"
return r;

Fig. 20.Removal of the maximal element
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AssocList is an implementation of an instantiable relation using acfiomal
linked list. The methods issocList are pure in the sense that they only mutate
newly allocated heap objects, without changing any objelttsated before procedure
execution. Theemove _all method inAssocList removes all bindings for a given
key, and theemove method removes all bindings for the given key-value paiisTh
difference between the behaviorsreimove andremove _all is naturally charac-
terized by the different contracts of these two proceduresimage method returns
the set of values bound to a a given key. Tineerselmage  method is analogous.
domain returns the set of all keys amenge the set of all values. The contracts of
these procedures are easily expressed using set algebsatasainprehension.

ImperativeList is an implementation of an instantiable set using an imperat
linked list. Unlike AssocList , it performs mutations on an existing data structure.
It contains operations for element insertiadd ), element removalrémove ), and
testing the membership of elements in a lisiefnber). We found that the verification
of most operations was similarly easy as in the verificatidngertion into a functional
data structure. The verification odmove was more difficult. Theemove method
contains a loop, so we had to supply a loop invariant. Morgaeenoval of an element
x in the middle of the list requires updates to the specificatields of all elements
precedinge in the list. These additional abstract mutations requiretbistate as loop
invariant a variation of the class representation invdsian

TheHashtable class is an efficient imperative implementation of an intsadute
relation. The class contains an encapsulated mutable atreh stores entries of the
(previously verified)AssocList  class. The verification of the hash table uses the
specification ofAssocList in terms of a single relation instead of having to reason
about the linked list data structure. This implementatibavés how hierarchical ab-
straction is useful even when verifying individual dataistures. The hash table imple-
ments standarddd , remove , andupdate operations on key-value pairs with natural
preconditions and postconditions. To verify the corressn@remove andupdate
the class contains a representation invariant (na@aterence in Figure 21) spec-
ifying that a node storing a given key-value pair is in thek®iavhose array index is
a function of the key. Our specification uses an uninterdrepecification variablé
to represent the result of computing the bucket for a givgnodkgect and a given table
size, as opposed to verifying a user-specified hashingibmddur implementation of
theadd procedure dynamically resizes the array containing th&édtsavhen the filling
ratio is too high. As in standard hash table implementatitiis operation rehashes all
elements into a larger array, which we implemented and eeriiising a tail-recursive
method.

ThelLibrary class implements a simple library system built on top of aorar
data structures. It maintains two sets of objects: thgpsetonsof registered users of
a library system, and the sbboksof all publication items in the library. The system
also maintains &orrowsrelation, which relates each person to the books that the per
son is currently using from the library. The sets and refetiare implemented using
the previously described container classes. The systeoncas consistency properties
between these three containers. For example, for eachofpdysok) pair in the bor-
rows relation, the person belongs to the person set and thie lielongs to the book
set. Also, each book is borrowed by at most one person at aay goint of time. The
class supports library operations such as checking outetndning a book, checking
who is the reader of a borrowed book, and removing a book frensystem.
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class Hashtable {
private AssoclList[] table = null;
private int size;

[ *:
public ghost specvar content :: "(obj * obj) set"
public ghost specvar init :: "bool* = "False :: bool"

private static ghost specvar h :: "obj => int => int"
invariant HiddenArray: "init --> table : hidden"

invariant contentDefinition: "init -->
content = {(k,v). EX i. 0 <= i & i < table..Array.length
& (k,v) : table.[i]..AssocList.content}"
invariant TableNotNull: “init --> table "= null"
invariant TableAlloc: "table : Object.alloc"

invariant Coherence: "init --> (ALL i k v.
0 <= i & i < table..Array.length -->
((k,v) : table.[i]..AssocList.content -->
h k (table..Array.length) = i))"
invariant Tablelnjectivity: "ALL u v.
u : Objectalloc & u : Hashtable & u "= null &
v : Objectalloc & v : Hashtable & v "= u --> u..table "= v..tabl

invariant TableSize: "init --> table..Array.length > 0" */

Fig. 21.Class invariants of the hash table implementation
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