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Abstract. This paper presents our integration of efficient resolution-based theo-
rem provers into the Jahob data structure verification system. Our experimental
results show that this approach enables Jahob to automatically verify the correct-
ness of a range of complex dynamically instantiable data structures, including
data structures such as hash tables and search trees, without the need for interac-
tive theorem proving or techniques tailored to individual data structures.
Our primary technical results include: (1) a translation from higher-order logic to
first-order logic that enables the application of resolution-based theorem provers
and (2) a proof that eliminating type (sort) information in formulas is both sound
and complete, even in the presence of a generic equality operator. Our experimen-
tal results show that the elimination of type information dramatically decreases
the time required to prove the resulting formulas.
These techniques enabled us to verify complex correctness properties of Java pro-
grams such as a mutable set implemented as an imperative linked list, a finite map
implemented as a functional ordered tree, a hash table with amutable array, and
a simple library system example that uses these container data structures. Our
system verifies (in a matter of minutes) that data structure operations correctly
update the finite map, that they preserve data structure invariants (such as order-
ing of elements, membership in appropriate hash table buckets, or relationships
between sets and relations), and that there are no run-time errors such as null
dereferences or array out of bounds accesses.

1 Introduction

One of the main challenges in the verification of software systems is the analysis of
unbounded data structures with dynamically allocated linked data structures and arrays.
Examples of such data structures are linked lists, trees, and hash tables. The goal of
these data structures is to efficiently implement sets and relations, with operations such
as lookup, insert, and removal. This paper explores the verification of programs with
such data structures using resolution-based theorem provers for first-order logic with
equality.

Initial goal and the effectiveness of the approach.The initial motivation for using
first-order provers is the observation that quantifier-freeconstraints on sets and rela-
tions that represent data structures can be translated to first-order logic or even its frag-
ments [23]. This approach is suitable for verifying clientsof data structures, because



such verification need not deal with transitive closure present in the implementation of
data structures. The context of this work is the Jahob systemfor verifying data struc-
ture consistency properties [20]. Our initial goal was to incorporate first-order theorem
provers into Jahob to verify data structure clients. While we have indeed successfully
verified data structure clients, we also discovered that this approach has a wider range
of applicability than we had initially anticipated.

– We were able to apply this technique not only to data structure clients, but also to
data structure implementations, using recursion and ghostvariables and, in some
cases, confining data structure mutation to newly allocatedobjects only.

– We found that there is no need in practice to restrict properties to decidable frag-
ments of first-order logic as suggested in [23], because manyformulas that are not
easily categorized into known decidable fragments have short proofs, and theorem
provers can find these proofs effectively.

– Theorem provers were effective at dealing with quantified invariants that often arise
when reasoning about unbounded numbers of objects.

– Using a simple partial axiomatization of linear arithmetic, we were able to verify
not only linking properties traditionally addressed by shape analyses, but also or-
dering properties in a binary search tree, hash table invariants, and bounds for all
array accesses.

The context of our results.We find our current results encouraging and attribute them
to several factors. Our use of ghost variables eliminated the need for transitive closure
in our specifications. Our use of recursion in combination with Jahob’s approach to han-
dling procedure calls resulted in more tractable verification conditions. The semantics
of procedure calls that we used in our examples is based on complete hiding of modifi-
cations to encapsulated objects. This semantics avoids thepessimistic assumption that
every object is modified unless semantically proven otherwise, but currently prevents
external references to encapsulated objects using simple syntactic checks. Finally, for
those of our procedures that were written using loops instead of recursion, we manually
supplied loop invariants.

Key ideas. The complexity of the properties we are checking made verification non-
trivial even under these assumptions, and we found it necessary to introduce the follow-
ing techniques for proving the generated verification conditions.

1. We introduce a translation to first-order logic with equality that avoids the potential
inefficiencies of a general encoding of higher-order logic into first-order logic by
handling the common cases and soundly approximating the remaining cases.

2. We use a translation to first-order logic that ignores information about sorts that
would distinguish integers from objects. The results are smaller proof obligations
and substantially better performance of provers. Moreover, we prove a somewhat
surprising result: omitting such sort information is always sound and complete for
disjoint sorts of the same cardinality. This avoids the needto separately check the
generated proofs for soundness. Omitting sorts was essential for obtaining our re-
sults. Without it, difficult proof obligations are impossible to prove or take a sub-
stantially larger amount of time.

3. We use heuristics for filtering assumptions from first-order formulas that reduce
the input problem size, speed up the theorem proving process, and improve the
automation of the verification process.
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The first two techniques are the main contribution of this paper; the use of the third
technique confirms previous observations about the usefulness of assumption filtering
in automatically generated first-order formulas [32].

Verified data structures and properties. Together, these techniques enabled us to
verify, for example, that binary search trees and hash tables correctly implement their
relational interfaces, including an accurate specification of removal operations. Such
postconditions of operations in turn required verifying representation invariants: in bi-
nary search tree, they require proving sortedness of the tree; in hash table, they require
proving that keys belong to the buckets given by their hash code. To summarize, our
technique verifies that

1. representation invariants hold in the initial state;
2. each data structure operation

– establishes the postcondition specifying the change of a user-specified abstract
variable such as a set or relation; for example, an operationthat updates a key
is given by the postcondition

content = (old content \ {(x, y) | x = key}) ∪ {(key, value)}

– does not modify unintended parts of the state, for example, amutable operation
on an instantiable data structure preserves the values of all instances in the heap
other than the receiver parameter;

– preserves the representation invariants;
– never causes run-time errors such as null dereference or array bounds violation.

We were able to prove such properties for an implementation of a hash table, a muta-
ble list, a functional implementation of an ordered binary search tree, and a functional
association list. All these data structures are instantiable (as opposed to global), which
means that data structure clients can create an unbounded number of their instances.
Jahob verifies that changes to one instance do not cause changes to other instances.
In addition, we verified a simple client, a library system, that instantiates several set
and relation data structures and maintains object-model like constraints on them in the
presence of changes to sets and relations.

What is remarkable is that we were able to establish these results using a general-
purpose technique and standard logical formalisms, without specializing our system
for particular classes of properties. The fact that we can use continuously improving
resolution-based theorem provers with standardized interfaces suggests that this tech-
nique is likely to remain competitive in the future. We expect that the techniques we
identify in this paper will help make future theorem proverseven more useful for pro-
gram verification tasks.

2 Binary Tree Example

We illustrate our technique using an example of a binary search tree implementing a
finite map. Our implementation is written in Java and is persistent, which means that the
data structure operations do not mutate existing objects, only newly allocated objects.
This makes the verification easier and provides a data structure which is useful in, for
example, backtracking algorithms.
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public ghost specvar content :: "(int * obj) set" = "{}";

public static FuncTree empty_set()
ensures "result..content = {}"

public static FuncTree add(int k, Object v, FuncTree t)
requires "v ˜= null & (ALL y. (k,y) ˜: t..content)"
ensures "result..content = t..content + {(k,v)}"

public static FuncTree update(int k, Object v, FuncTree t)
requires "v ˜= null"
ensures "result..content = t..content - {(x,y). x=k} + {(k, v)}"

public static Object lookup(int k, FuncTree t)
ensures "(result ˜= null & (k, result) : t..content)

| (result = null & (ALL v. (k,v) ˜: t..content))"

public static FuncTree remove(int k, FuncTree t)
ensures "result..content = t..content - {(x,y). x=k}"

Fig. 1. Method contracts for a tree implementation of a map

Figure 1 shows the public interface of our tree data structure. The interface in-
troduces an abstract specification variablecontent as a set of (key,value)-pairs and
specifies the contract of each procedure using a precondition (given by therequires
keyword) and postcondition (given by theensures keyword). The methods have no
modifies clauses, indicating that they only mutate newly allocated objects. In Jahob,
the developer specifies annotations such as procedure contracts in special comments
/ * : ... * / that begin with a colon. The formulas in annotations belong to an ex-
pressive subset of the language used by the Isabelle proof assistant [36]. This language
supports set comprehensions and tuples, which makes the specification of procedure
contracts in this example very natural. Single dot. informally means “such that”, both
for quantifiers and set comprehensions. The notationf x denotes functionf applied
to argumentx . Jahob models instance fields as functions from objects to values (ob-
jects, integers, or booleans). The operator.. is a variant of function application given
by x..f = f x . Operator: denotes set membership,˜= denotes disequality,Un (or,
overloaded,+) denotes union and\<setminus> (or, overloaded,−) denotes set dif-
ference.

public static Object lookup(int k, FuncTree t)
/ * : ensures "(result ˜= null & (k, result) : t..content)

| (result = null & (ALL v. (k,v) ˜: t..content))" * /
{

if (t == null) return null;
else

if (k == t.key) return t.data;
else if (k < t.key) return lookup(k, t.left);
else return lookup(k, t.right);

}

Fig. 2.Lookup operation for retrieving the element associated with a given key
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Figure 2 presents the tree lookup operation. The operation examines the tree and
returns the appropriate element. Note that, to prove thatlookup is correct, one needs
to know the relationship between the abstract variablecontent and the data structure
fields left , right , key , anddata . In particular, it is necessary to conclude that if
an element is not found, then it is not in the data structure. Such conditions refer to
private fields, so they cannot be captured by the public precondition; they are instead
given byrepresentation invariants. Figure 3 presents the representation invariants for
our tree data structure. Using these representation invariants and the precondition, Jahob
proves (in 4 seconds) that the postcondition of thelookup method holds and that the
method never performs null dereferences. For example, whenanalyzing tree traversal
in lookup , Jahob uses the sortedness invariants (leftSmaller , rightBigger )
and the definition of tree contentcontentDefinition to narrow down the search
to one of the subtrees.

class FuncTree {
private int key;
private Object data;
private FuncTree left, right;

/ * :
public ghost specvar content :: "(int * obj) set" = "{}";

invariant nullEmpty: "this = null --> content = {}"

invariant contentDefinition: "this ˜= null -->
content = {(key, data)} + left..content + right..content"

invariant noNullData: "this ˜= null --> data ˜= null"

invariant leftSmaller: "ALL k v. (k,v) : left..content --> k < key"
invariant rightBigger: "ALL k v. (k,v) : right..content --> k > key" * /

Fig. 3. Fields and representation invariants for the tree implementation

Jahob also ensures that the operations preserve the representation invariants. Jahob
reduces the invariants in Figure 3 to global invariants by implicitly quantifying them
over all allocated objects ofFuncTree type. This approach yields simple semantics
to constraints that involve multiple objects in the heap. When a method allocates a new
object, the set of all allocated objects is extended, so a proof obligation will require that
these newly allocated objects also satisfy their representation invariants at the end of
the method.

Figure 4 shows the map update operation in our implementation. The postcondi-
tion of update states that all previous bindings for the given key are absent in the
resulting tree. Note that proving this postcondition requires the sortedness invariants
leftSmaller , rightBigger . Moreover, it is necessary to establish all representa-
tion invariants for the newly allocatedFuncTree object.

The specification fieldcontent is aghostfield, which means that its value changes
only in response to specification assignment statements, such as the one in the penulti-
mate line of Figure 4. The use of ghost variables is sound and can be explained using
simulation relations [11]. For example, if the developer incorrectly specifies specifica-
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public static FuncTree update(int k, Object v, FuncTree t)
/ * : requires "v ˜= null"

ensures "result..content = t..content - {(x,y). x=k} + {(k, v)}" * /
{

FuncTree new_left, new_right;
Object new_data;
int new_key;
if (t==null) {

new_data = v; new_key = k;
new_left = null; new_right = null;

} else {
if (k < t.key) {

new_left = update(k, v, t.left);
new_right = t.right;
new_key = t.key; new_data = t.data;

} else if (t.key < k) {
new_left = t.left;
new_right = update(k, v, t.right);
new_key = t.key; new_data = t.data;

} else {
new_data = v; new_key = k;
new_left = t.left; new_right = t.right;

}
}
FuncTree r = new FuncTree();
r.left = new_left; r.right = new_right;
r.data = new_data; r.key = new_key;
//: "r..content" := "t..content - {(x,y). x=k} + {(k,v)}";
return r;

}

Fig. 4.Map update implementation for functional tree

tion assignments, Jahob will detect the violation of the representation invariants such
ascontentDefinition . If the developer specifies incorrect representation invari-
ants, Jahob will fail to prove postconditions of observer operations such aslookup in
Figure 2.

Jahob verifies (in 10 seconds) that the update operation establishes the postcondi-
tion, correctly maintains all invariants, and performs no null dereferences. Jahob estab-
lishes such conditions by first converting the Java program into a loop-free guarded-
command language using user-provided or automatically inferred loop invariants. (The
examples in this paper mostly use recursion instead of loops.) A verification condition
generator then computes a formula whose validity entails the correctness of the program
with respect to its explicitly supplied specifications (such as invariants and procedure
contracts) as well as the absence of run-time exceptions (such as null pointer derefer-
ences, failing type casts, and array out of bounds accesses). Jahob then splits the veri-
fication condition into a number of smaller formulas, each ofwhich can be potentially
proved using a different theorem prover or a decision procedure. The specification lan-
guage and the generated verification conditions in Jahob areexpressed in higher-order
logic [36]. In the rest of this paper we show how we translate such verification condi-
tions to first-order logic and prove them using theorem provers such as SPASS [43] and
E [41].
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3 Translation to First-Order Logic

This section presents our translation from an expressive subset of Isabelle formulas (the
input language) to first-order unsorted logic with equality(the language accepted by
first-order resolution-based theorem provers). The soundness of the translation is given
by the condition that, if the output formula is valid, so is the input formula.

Input language. The input language allows constructs such as lambda expressions,
function update, sets, tuples, quantifiers, cardinality operators, and set comprehensions.
The translation first performs type reconstruction. It usesthe type information to dis-
ambiguate operations such as equality, whose translation depends on the type of the
operands.

Splitting into sequents. Generated proof obligations can be represented as conjunc-
tions of multiple statements, because they represent all possible paths in the verified
procedure, the validity of multiple invariants and postcondition conjuncts, and the ab-
sence of run-time errors at multiple program points. The first step in the translation
splits formulas into these individual conjuncts to prove each of them independently.
This process does not lose completeness, yet it improves theeffectiveness of the the-
orem proving process because the resulting formulas are smaller than the starting for-
mula. Moreover, splitting enables Jahob to prove differentconjuncts using different
techniques, allowing the translation described in this paper to be combined with other
translations [22,44,45]. After splitting, the resulting formulas have the form of implica-
tionsA1∧ . . .∧An ⇒ G, which we callsequents. We callA1, . . . , An theassumptions
andG thegoalof the sequent. The assumptions typically encode a path in the procedure
being verified, the precondition, class invariants that hold at procedure entry, as well as
properties of our semantic model of memory and the relationships between sets repre-
senting Java types. During splitting, Jahob also performs syntactic checks that eliminate
some simple valid sequents such as the ones where the goalG of the sequent is equal
to one of the assumptionsAi.

Definition substitution and function unfolding. When one of the assumptions is a
variable definition, the translation substitutes its content in the rest of the formula (using
rules in Figure 7). This approach supports definitions of variables that have complex and
higher-order types, but are used simply as shorthands, and avoids the full encoding of
lambda abstraction in first-order logic. When the definitions of variables are lambda
abstractions, the substitution enables beta reduction, which is done subsequently. In
addition to beta reduction, this phase also expands the equality between functions using
the extensionality rule (f = g becomes∀x.f x = g x).

Cardinality constraints. Constant cardinality constraints express natural generaliza-
tions of quantifiers. For example, the statement “there exists at most one element sat-
isfying P ” is given bycard {x. P x} ≤ 1. Our translation reduces constant cardinality
constraints to first-order logic with equality (using rulesin Figure 8).

Set expressions.Our translation uses universal quantification to expand setoperations
into their set-theoretic definitions in terms of the set membership operator. This process
also eliminates set comprehensions by replacingx ∈ {y |ϕ} with ϕ[y 7→ x]. (Figure
9 shows the details.) These transformations ensure that theonly set expressions in for-
mulas are either set variables or set-valued fields occurring on the right-hand side of the
membership operator.
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Our translation maps set variables to unary predicates:x ∈ S becomesS(x), where
S is a predicate in first-order logic. This translation is applicable whenS is universally
quantified at the top level of the sequent (so it can be skolemized), which is indeed
the case for the proof obligations in this paper. Fields of type object or integer become
uninterpreted function symbols:y = x.f translates asy = f(x). Set-valued fields
become binary predicates:x ∈ y.f becomesF (y, x) whereF is a binary predicate.

Function update. Function update expressions (encoded as functionsfieldWrite and
arrayWrite in our input language) translate using case analysis (Figure 10). If applied
to arbitrary expressions, such case analysis would duplicate expressions, potentially
leading to exponentially large expressions. To avoid this problem, the translation first
flattens expressions by introducing fresh variables and then duplicates only variables
and not expressions, keeping the translated formula polynomial.

Flattening. Flattening introduces fresh quantified variables, which could in princi-
ple create additional quantifier alternations, making the proof process more difficult.
However, each variable can be introduced using either existential or universal quantifier
because∃x.x=a ∧ ϕ is equivalent to∀x.x=a ⇒ ϕ. Our translation therefore chooses
the quantifier kind that corresponds to the most recently bound variable in a given scope
(taking into account the polarity), preserving the number of quantifier alternations. The
starting quantifier kind at the top level of the formula is∀, ensuring that freshly intro-
duced variables for quantifier-free expressions become skolem constants.

Arithmetic. Resolution-based first-order provers do not have built-in arithmetic op-
erations. Our translation therefore introduces axioms (Figure 12) that provide a partial
axiomatization of integer operations+, <,≤. In addition, the translation supplies ax-
ioms for the ordering relation between all numeric constants appearing in the input
formula. Although incomplete, these axioms are sufficient to verify our list, tree, and
hash table data structures.

Tuples. Tuples in the input language are useful, for example, as elements of sets rep-
resenting relations, such as thecontent ghost field in Figure 3. Our translation elim-
inates tuples by transforming them into individual components. Figure 11 illustrates
some relevant rewrite rules for this transformation. The translation maps a variablex
denoting ann-tuple inton individual variablesx1, . . . , xn bound in the same way asx.
A tuple equality becomes a conjunction of equalities of components. The arity of func-
tions changes to accommodate all components, so a function taking ann-tuple and an
m-tuple becomes a function symbol of arityn+m. The translation handles sets as func-
tions from elements to booleans. For example, a relation-valued fieldcontent of type
obj => (int * obj) set is viewed as a functionobj => int => obj => bool
and therefore becomes a ternary predicate symbol.

Approximation. Our translation maps higher-order formulas into first-order logic
without encoding lambda calculus or set theory, so there areconstructs that it cannot
translate exactly. Examples include transitive closure (which can often be translated
into monadic second-order logic [44, 45]) and symbolic cardinality constraints (as in
BAPA [21]). Our first-order translation approximates such subformulas in a sound way,
by replacing them withTrue or False depending on the polarity of the subformula
occurrence. The result of the approximation is a stronger formula whose validity implies
the validity of the original formula.
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Simplifications and further splitting. In the final stage, the translation performs a
quick simplification pass that reduces the size of formulas,by, for example, eliminating
most occurrences ofTrue andFalse . Next, because constructs such as equality of
sets and functions introduce conjunctions, the translation performs further splitting of
the formula to improve the success of the proving process.4

4 From Multisorted to Unsorted Logic

This section discusses our approach for handling type and sort information in the trans-
lation to first-order logic with equality. This approach proved essential for making ver-
ification of our examples feasible. The key insight is that omitting sort information 1)
improves the performance of the theorem proving effort, and2) is guaranteed to be
sound in our context.

To understand our setup, note that the verification condition generator in Jahob pro-
duces proof obligations in higher-order logic notation whose type system essentially
corresponds to simply typed lambda calculus [5] (we allow some simple forms of para-
metric polymorphism but expect each occurrence of a symbol to have a ground type).
The type system in our proof obligations therefore has no subtyping, so all Java objects
have typeobj. The verification-condition generator encodes Java classes as immutable
sets of typeobj set. It encodes primitive Java integers as mathematical integers of type
int (which is disjoint fromobj). The result of the translation in Section 3 is a formula
in multisorted first-order logic with equality and two disjoint sorts,obj andint.5 On the
other side, the standardized input language for first-ordertheorem provers is untyped
first-order logic with equality. The key question is the following:How should we encode
multisorted first-order logic into untyped first-order logic?

The standard approach [28, Chapter 6, Section 8] is to introduce a unary predicate
Ps for each sorts and replace∃x::s.F (x) with ∃x.Ps(x)∧F (x) and replace∀x::s.F (x)
with ∀x.Ps(x) ⇒ F (x) (wherex :: s in multisorted logic denotes that the variablex
has the sorts). In addition, for each function symbolf of sorts1×. . . sn → s, introduce
a Horn clause∀x1, . . . , xn. Ps1

(x1) ∧ . . . ∧ Psn
(xn) ⇒ Ps(f(x1, . . . , xn)).

The standard approach is sound and complete. However, it makes formulas larger,
often substantially slowing down the automated theorem prover. What if we omit-
ted the sort information given by unary sort predicatesPs, representing, for exam-
ple, ∀x::s.F (x) simply as∀x.F (x)? For potentially overlapping sorts, this approach
is unsound. As an example, take the conjunction of two formulas∀x::Node.F (x) and
∃x::Object.¬F (x) for distinct sortsObject and Node where Node is a subsort of
Object. These assumptions are consistent in multisorted logic. However, their unsorted
version∀x.F (x)∧∃x.¬F (x) is contradictory, and would allow a verification system to
unsoundly prove arbitrary claims.

In our case, however, the two sorts considered (int andobj) are disjoint. Moreover,
there is no overloading of predicate or function symbols. Ifwe consider a standard res-
olution proof procedure for first-order logic [3] (without paramodulation) under these
conditions, we can observe the following.

4 We encountered an example of a formulaϕ1 ∧ ϕ2 where a theorem prover proves each ofϕ1 andϕ2

independently in a few seconds, but requires more than 20 minutes to proveϕ1 ∧ ϕ2.
5 The resulting multisorted logic has no sort corresponding to booleans (as in [28, Chapter 6]). Instead,

propositional operations are part of the logic itself.
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Observation 1 Performing an unsorted resolution step on well-sorted clauses (while
ignoring sorts in unification) generates well-sorted clauses.

As a consequence, there is a bijection between resolution proofs in multisorted and
unsorted logic. By completeness of resolution, omitting sorts and using unsorted reso-
lution is a sound and complete technique for proving multisorted first-order formulas.

Observation 1 only applies if each symbol has a unique sort (type) signature (i.e.,
there is no overloading of symbols), which is true for all symbolsexcept for equality. To
make it true for equality, a multi-sorted language with disjoint sorts would need to have
one equality predicate for each sort. Unfortunately, theorem provers we consider have
a built-in support only for one privileged equality symbol.Using user-defined predi-
cates and supplying congruence axioms would fail to take advantage of the support for
paramodulation rules [35] in these provers. What if, continuing our brave attempt at
omitting sorts, we merge translation of all equalities, using the special equality sym-
bol regardless of the sorts to which it applies? The result isunfortunately unsound in
general. As an example, take the conjunction of formulas∀x::obj.∀y::obj.x = y and
∃x::int.y::int.¬(x = y). These formulas state that theobj sort collapses to a single
element but theint sort does not. Omitting sort information yields a contradiction and
is therefore unsound. Similar examples exists for statements that impose other finite
bounds on distinct sorts.

In our case, however, we can assume that bothint andobj are countably infinite.
More generally, when the interpretation of disjoint sorts are sets of equal cardinality,
such examples have the same truth value in the multisorted case as well as in the case
with equality. More precisely, we have the following result. Letϕ∗ denote the result of
omitting all sort information from a multisorted formulaϕ and representing the equality
(regardless of the sort of arguments) using the built-in equality symbol.

Theorem 1. Assume that there are finitely many pairwise disjoint sorts,that their in-
terpretations are sets of equal cardinality, and that thereis no overloading of predicate
and function symbols other than equality. Then there existsa function mapping each
multisorted structureI into an unsorted structureI∗ and each multisorted environ-
mentρ to an unsorted environmentρ∗, such that the following holds: for each formula
ϕ, structureI, and a well-sorted environmentρ,

Jϕ∗KI
∗

ρ∗ if and only if JϕKIρ

The proof of Theorem 1 is in Appendix F. It constructsI∗ by taking a new setS of same
cardinality as the sort interpretationsS1, . . . , Sn in I, and defining the interpretation of
symbols inI∗ by composing the interpretation inI with bijectionsfi : Si → S.
Theorem 1 implies that if a formula(¬ψ)∗ is unsatisfiable, then so is¬ψ. Therefore, if
ψ∗ is valid, so isψ. In summary,for disjoint sorts of same cardinality, omitting sorts
is a sound method for proving validity, even in the presence of an overloaded equality
symbol.

A resolution theorem prover with paramodulation rules can derive ill-sorted clauses
as consequences ofϕ∗. However, Theorem 1 implies that the existence of a refutation
of ϕ∗ implies thatϕ is also unsatisfiable, guaranteeing the soundness of the approach.
This approach is also complete. Namely, notice that stripping sorts onlyincreasesthe
set of resolution steps that can be performed on a set of clauses. Therefore, we can show
that if there exists a proof forϕ, there exists a proof ofϕ∗. Moreover,the shortest proof
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for the unsorted case is no longer than any proof in multisorted case. As a result, any
advantage of preserving sorts comes from the reduction of the branching factor in the
search, as opposed to the reduction in proof length.

Impact of omitting sort information. Figure 5 shows the effect of omitting sorts
on some of the most problematic formulas that arise in our benchmarks. They are the
formulas that take more than one second to prove using SPASS with sorts, in the two
hardest methods of our Tree implementation. The figure showsthat omitting sorts usu-
ally yields a speed-up of one order of magnitude, and sometimes more. In our examples,
the converse situation, where omitting sorts substantially slows down the theorem prov-
ing process, is rare.

Time (s) Proof length Generated clausesBenchmark
SPASS E SPASS SPASS E
w/o w. w/o w. w/o w. w/o w. w/o w.

1.1 5.330.0 349.0 155 799 9425 18376122508 794860
0.3 3.610.4 42.0 309 1781 1917 19601 73399 108910
4.9 9.815.7 18.0 174 178127108 33868100846 256550FuncTree.Remove
0.5 8.112.5 45.9 301 1611 3922 31892 85164 263104
4.7 8.117.9 19.3 371 177328170 37244109032 176597
0.3 7.910.6 41.8 308 1391 3394 41354 65700 287253

0.22+∞ 59.0 76.5 97 - 1075 -872566 953451
FuncTree.RemoveMax6.8 78.914.9 297.61159 265519527 177755137711 1512828

0.8 34.838.1 0.7 597 4062 5305 115713389334 7595

Fig. 5. Verification time, and proof data using the provers SPASS andE, on the hardest formulas
from our examples.

5 Experimental Results

We implemented our translation to first-order logic and the interfaces to the first-order
provers E [41] (using the TPTP format for first-order formulas [42]) and SPASS [43]
(using its native format). We also implemented filtering described in Appendix A to
automate the selection of assumptions in proof obligations. We evaluated our approach
by implementing several data structures, using the system during their development.
In addition to the implementation of a relation as a functional tree presented in Sec-
tion 2, we ran our system on dynamically instantiable sets and relations implemented
as a functional singly-linked list, an imperative linked list, and a hash table. We also
verified operations of a data structure client that instantiates a relation and two sets and
maintains invariants between them (Appendix H gives benchmark details).

Table 6 illustrates the benchmarks we ran through our systemand shows their ver-
ification times. Lines of code and of specifications are counted without blank lines or
comments.6

6 We ran the verification on a single-core 3.2 GHz Pentium 4 machine with 3GB of memory, running
GNU/Linux. As first-order theorem provers we used SPASS and Ein their automatic settings. The E
version we used comes from the CASC-J3 (Summer 2006) system archive and calls itself v0.99pre2
“Singtom”. We used SPASS v2.2, which comes from its official web page.
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Benchmark lines of codelines of specificationnumber of methods

Relation as functional list 76 26 9
Relation as functional Tree 186 38 10
Set as imperative list 60 24 9
Library system 97 63 9
Relation as hash table 69 53 10

Benchmark Prover method
Verification
time (sec)

decision
procedures (sec)

formulas
proved

cons 0.9 0.8 9
removeall 1.7 1.1 5
remove 3.9 2.6 7

AssocList E lookup 0.7 0.4 3
image 1.3 0.6 4
inverseImage 1.2 0.6 4
domain 0.9 0.5 3
entire class 11.8 7.3 44
add 7.2 5.7 24
update 9.0 7.4 28
lookup 1.2 0.6 7
min 7.2 6.6 21

FuncTree SPASS + Emax 7.2 6.5 22
removeMax 106.5 (12.7) 46.6+59.3 9+11
remove 17.0 8.2+ 0 26+0
entire class 178.4 96.0+65.7 147+16
add 1.5 1.2 9
member 0.6 0.3 7

Imperative
List

SPASS getOne 0.1 0.1 2

remove 11.4 9.9 48
entire class 17.9 14.9+0.1 74
currentReader 1.0 0.9 5
checkOutBook 2.3 1.7 6

Library E returnBook 2.7 2.1 7
decommissionBook 3.0 2.2 7
entire class 20.0 17.6 73
init 25.5 (3.8) 25.2 (3.4) 12
add 2.7 1.6 7
add1 22.7 22.7 14

HashTable SPASS lookup 20.8 20.3 9
remove 57.1 56.3 12
update 1.4 0.8 2
entire class 119 113.8 75

Fig. 6. Benchmarks Characteristics and Verification Times
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Our system accepts as command-line parameters timeouts, percentage of retained
assumptions in filtering, and two flags that indicate desiredsets of arithmetic axioms.
For each module, we used a fixed set of command line options to verify all the proce-
dures in that module. Some methods can be verified faster (in times shown in parenthe-
ses) by choosing a more fine-tuned set of options. Jahob allows specifying a cascade of
provers to be tried in sequence; when we used multiple provers we give the time spent
in each prover and the number of formulas proved by each of them. Note that all steps
of the cascade run on the same input and are perfectly parallelizable. Running all steps
in parallel is an easy way to reduce the total running time. Similar parallelization op-
portunities arise across different conjuncts that result from splitting, because splitting is
done ahead of time, before invoking any theorem provers.

The values in the “entire class” row for each module are not the sum of all the other
rows, but the time actually spent in the verification of the entire class, including some
methods not shown and the verification that the invariants hold initially. Running time
of first-order provers dominates the verification time, the remaining time is mostly spent
in our simple implementation of polymorphic type inferencefor higher-order logic for-
mulas.

Verification experience. The time we spent to verify these benchmarks went down
as we improved the system and gained experience using it. It took approximately one
week to code and verify the ordered trees implementation. However, it took only half
a day to write and verify a simple version of the hash table. Ittook another few days
to verify an augmented version with a rehash function that can dynamically resize its
array when its filling ratio is too high.

On formulas generated from our examples, SPASS seems to be overall more effec-
tive. However, E is more effective on some hard formulas involving complex arithmetic.
Therefore, we use a cascading system of multiple provers. Wespecify a sequence of
command line options for each prover, which indicate the timeout to use, the sets of
axioms to include, and the amount of filtering to apply. For example, to verify the entire
FuncTree class, we used the following cascade of provers: 1) SPASS with two-second
timeout and 50% assumption filtered; 2) SPASS with two-second timeout, axioms of the
order relation over integers and 75% assumption filtered; and 3) E without timeout, with
the axioms of the order relation and without filtering. Modifying these settings can re-
sult in a great speed-up (for example,FuncTree.removeMax verifies in 13 seconds
with tuned settings as opposed to 106 seconds with the globalsettings common to the
entire class). Before we implemented assumption filtering,we faced difficulties finding
a set of options allowing the verification of the entireFuncTree class. Namely, some
proof obligations require arithmetic axioms, and for others adding these settings would
cause the prover to fail. Next, some proof obligations require background axioms (gen-
eral assumptions that encode our memory model), but some work much faster without
them. Assumption filtering allows the end-user to worry lessabout these settings.

6 Related Work

We are not aware of any other system capable of verifying suchstrong properties of
operations on data structures that use arrays, recursive memory cells and integer keys
and does not require interactive theorem proving.
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Verification systems.Boogie [6] is a sound verification system for the Spec# language,
which extends C# with specification constructs and introduces a particular methodology
for ensuring sound modular reasoning in the presence of aliasing and object-oriented
features. This methodology creates potentially more difficult frame conditions when
analyzing procedure calls compared to the ones created in Jahob, but the correctness of
this methodology seems easier to establish.

ESC/Java 2 [9] is a verification system for Java that uses JML [24] as a specification
language. It supports a large set of Java features and sacrifices soundness to achieve
higher usability for common verification tasks.

Boogie and ESC/Java2 use Nelson-Oppen style theorem provers [4, 7, 13], which
have potentially better support for arithmetic, but have more difficulties dealing with
quantified invariants. Jahob also supports a prototype SMT-LIB interface to Nelson-
Oppen style theorem provers. Our preliminary experience suggests that, for programs
and properties described in this paper, resolution-based theorem provers are no worse
than current Nelson-Oppen style theorem provers. Combining these two theorem prov-
ing approaches is an active area of research [2, 37], and our system could also take
advantage of these ideas, potentially resulting in more robust support for arithmetic
reasoning.

Specification variables are present in Boogie [26] and ESC/Java2 [8] under the name
model fields. We are not aware of any results on non-interactive verification that data
structures such as trees and hash tables meet their specifications expressed in terms of
model fields. The properties we are reporting on have previously been verified only
interactively [14,15,19,47].

The Krakatoa tool [29] can verify JML specifications of Java code. We are not aware
of its use to verify data structures in an automated way.

Abstract interpretation. Shape analyses [25, 39, 40] typically verify weaker proper-
ties than in our examples. In [27] the authors use the TVLA system to verify insertion
sort and bubble sort. In [38, Page 35], the author uses TVLA toverify implementations
of insertion and removal operations on sets implemented as mutable lists and binary
search trees. The approach [38] uses manually supplied predicates and transfer func-
tions and axioms for the analysis, but is able to infer loop invariants in an imperative
implementation of trees. Our implementation of trees is functional and uses recursion,
which simplifies the verification and results in much smallerrunning times. The analy-
sis we describe in this paper does not infer loop invariants,but does not require trans-
fer functions to be specified either. The only information that the data structure user
needs to trust is that procedure contracts correctly formalize the desired behavior of
data structure operations; if the developer incorrectly specifies an invariant or an update
to a specification variable, the system will detect an error.

Translation from higher-order to first-order logic. In [16, 31, 33] the authors also
address the process of proving higher-order formulas usingfirst-order theorem provers.
Our work differs in that we do not aim to provide automation toa general-purpose
higher-order interactive theorem prover. Therefore, we were able to avoid using general
encoding of lambda calculus into first-order logic and we believe that this made our
translation more effective.

The authors in [16, 33] also observe that encoding the full type information slows
down the proof process. The authors therefore omit type information and then check
the resulting proofs for soundness. A similar approach was adopted to encoding multi-
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sorted logic in the Athena theorem proving framework [1]. Incontrast, we were able to
prove that omitting sort information preserves soundness and completeness when sorts
are disjoint and have the same cardinality.

The filtering of assumptions also appears in [32]. Our technique is similar but sim-
pler and works before transformation to clause normal form.Our results confirm the
usefulness of assumption filtering in the context of problems arising in data structure
verification.

A quantifier-free language that contains set operations canbe translated into the
universal fragment of first-order logic [23]. In our experience so far we found no need
to limit the precision of the translation by restricting ourselves to the universal fragment.

Type systems. Type systems have been used to verify algebraic data types [10], ar-
ray bounds [46], and mutable structures [48], usually enforcing weaker properties than
in our case. Recently, researchers have developed a promising approach [34] based on
separation logic [17] that can verify shape and content properties of imperative recur-
sive data structures (although it has not been applied to hash tables yet). Our approach
uses standard higher-order and first-order logic and seems conceptually simpler, but
generates proof obligations that have potentially more quantifiers and case analyses.

Constraint solving and testing. In [12] the authors use a constraint solver based
on translation to propositional logic to identify all errors within a given scope. They
apply the technique to analysis of real-world implementations of linked lists. Another
approach for finding bugs is exhaustive testing by generating tests that satisfy given
preconditions [18, 30]. These techniques are very effective at finding bugs, but do not
guarantee the absence of errors.

7 Conclusions

We presented a technique for verifying complex data structure properties using
resolution-based first-order theorem provers. We used a simple translation that expands
higher-order definitions and translates function applications to applications of uninter-
preted function symbols, without encoding set theory or lambda calculus in first-order
logic. We have observed that omitting sort information in our translation speeds up the
theorem proving process. This motivated us to prove that omitting such sort informa-
tion is sound for disjoint sorts of same cardinality, even inthe presence of an overloaded
equality operator. We have also confirmed the usefulness of filtering to reduce the size
of formulas used as an input to the theorem prover.

Using these techniques we were able to prove strong properties for an implemen-
tation of a hash table, an instantiable mutable list, for a functional implementation of
ordered binary search tree, and for a functional association list. We also verified a sim-
ple library system that instantiates two sets and a relationand maintains constraints on
them in the presence of changes to the sets and relation. Our system proves that opera-
tions act as expected on the abstract content of the data structure (that is, they establish
their postcondition such as insertion or removal of tuples from a relation), that they
preserve non-trivial internal representation invariants, such as sortedness of a tree and
structural invariants of a hash table, and that they do not cause run-time errors such as
null dereference or array out of bounds access.
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A Assumption Filtering

Typically, the theorem prover only needs a subset of assumptions of a sequent to estab-
lish its validity. Indeed, theFuncTree.remove procedure has a median proof length
of 4; with such a small number of deduction steps only a fraction of all the assumptions
are necessary. Unnecessary assumptions can dramatically increase the running time of
theorem provers and cause them to fail to terminate in a reasonable amount of time,
despite the use of selection heuristics in theorem prover implementations.

Finding a minimal set of assumption is in general as hard as proving the goal.
We therefore use heuristics that run in polynomial time to select assumptions likely
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to be relevant. Our technique is based on [32], but is simplerand works at the level of
formulas (after definition substitution and beta reduction) as opposed to clauses. The
technique ranks the assumptions and sorts them in the ranking order. A command-line
option indicates the percentage of the most highly ranked assumptions to retain in the
proof obligation.

Impact of filtering. We verified the impact of assumption filtering on a set of 2000
valid formulas generated by our system, with the average number of assumptions being
48.5 and the median43. After ranking the assumptions, we measured the number of the
most relevant assumptions that we needed to retain for the proof to still succeed. With
our simple ranking technique, the average required number of relevant assumptions was
16, and the median was11. One half of the formulas of this set are proved by retaining
only the top one third of the original assumptions.

Assumption filtering yields an important speed-up in the verification of the hash
table implementation of a relation. The hash table is implemented using an array, and
our system checks that all array accesses are within bounds.This requires the ordering
axioms for the≤ operator. However, when proving that operations correctlyupdate the
hash table content, these axioms are not required, and confuse SPASS: the verification
of the insertion method takes 211 seconds with all assumptions, and only1.3 second
with assumption filtering set to 50%. In some cases this effect could be obtained man-
ually, by asking the system to try to prove the formula first without, and then with the
arithmetic axioms, but assumption filtering makes the specification of command-line
parameters simpler and decreases the overall running time.

B HOL to FOL Translation Rules

Translation rules that formalize the description in Section 3 are in Figures 7, 8, 9, 10,
and 11. Figure 12 shows our partial axiomatization of lineararithmetic.

VAR-TRUE
(H1 ∧ · · · ∧ Hi−1 ∧ v ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G

ˆ

(H1 ∧ · · · ∧ Hi−1 ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G
˜

{v 7→ True}

VAR-FALSE
(H1 ∧ · · · ∧ Hi−1 ∧ ¬v ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G

ˆ

(H1 ∧ · · · ∧ Hi−1 ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G
˜

{v 7→ False}

VAR-DEF
(H1 ∧ · · · ∧ Hi−1 ∧ v = ϕ ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G

ˆ

(H1 ∧ · · · ∧ Hi−1 ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G
˜

{v 7→ ϕ}

v /∈ FV (ϕ)
VAR-TRUE cannot be applied
VAR-FALSE cannot be applied

Fig. 7. Rules for definition substitution
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CARD-CONSTRAINT-EQ
cardS = k

cardS ≤ k ∧ cardS ≥ k

CARD-CONSTRAINT-LEQ
card S ≤ k

∃x1, . . . , xk.S ⊆ {x1, . . . , xk}

CARD-CONSTRAINT-GEQ
cardS ≥ k

∃x1, . . . , xk. {x1, . . . , xk} ⊆ S ∧
^

1≤i<j≤k

xi 6= xj

Fig. 8. Rules for constant cardinality constraints

SET-INCLUSION
S1 ⊆ S2

∀x.x ∈ S1 =⇒ x ∈ S2

SET-EQUALITY
S1 = S2

∀x.x ∈ S1 ⇐⇒ x ∈ S2

INTERSECTION
x ∈ S1 ∩ S2

x ∈ S1 ∧ x ∈ S2

UNION
x ∈ S1 ∪ S2

x ∈ S1 ∨ x ∈ S2

DIFFERENCE
x ∈ S1 \ S2

x ∈ S1 ∧ x /∈ S2

FINITESET
x ∈ {O1, . . . , Ok}

x = O1 ∨ · · · ∨ x = Ok

COMPREHENSION
x ∈ {y | ϕ}

ϕ[y 7→ x]

Fig. 9. Rules for complex set expressions
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OBJECT-FIELD-WRITE-READ
V1 = fieldWrite (f, V2, V3)(V4)

(V4 = V2 ∧ V1 = V3) ∨ (V4 6= V2 ∧ V1 = f(V4))

OBJECT-ARRAY-WRITE-READ
V1 = arrayWrite (fa, V2, V3, V4)(V5, V6)

(V5 = V2 ∧ V6 = V3 ∧ V1 = V4) ∨ (¬ (V5 = V2 ∧ V6 = V3) ∧ V1 = fa(V5, V6))

FUNCTION-ARGUMENT
V = g(V1, ..., Vi−1, C, Vi+1, ..., Vk)

∃u.u = C ∧ V = g(V1, ..., Vi−1, u, Vi+1, ..., Vk)

EQUALITY-NORMALIZATION
C = V

V = C

EQUALITY-UNFOLDING
C1 = C2

∃v.v = C1 ∧ v = C2

SET-FIELD-WRITE-READ
V1 ∈ fieldWrite (f, V2, V3)(V4)

(V4 = V2 ∧ V1 ∈ V3) ∨ (V4 6= V2 ∧ V1 ∈ f(V4))

MEMBERSHIP-UNFOLDING
C ∈ T

∃v.v = C ∧ v ∈ T

Fig. 10.Rewriting rules to rewrite complex field expressions.C denotes a complex term;V de-
notes a variable;f denotes a field or array function identifier (not a complex expression).

(x1, ..., xn) = (y1, ..., yn)
n

^

i=1

xi = yi

z = (y1, ..., yn)
n

^

i=1

zi = yi

z = y z : S1 × ... × Sn

n
^

i=1

zi = yi

(y1, ..., yn) ∈ S

S(y1, ..., yn)

(y1, ..., yn) ∈ x.f

F (x, y1, ..., yn)

z ∈ S z : S1 × ... × Sn

S(z1, ..., zn)

z ∈ x.f z : S1 × ... × Sn

F (x, z1, ..., zn)

Q(z : S1 × ... × Sn).ϕ

Q(z1 : S1, ..., zn : Sn).ϕ

Fig. 11.Rules for removal of tuples
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∀n. n ≤ n

∀n m. (n ≤ m ∧ m ≤ n) ⇒ n = m

∀n m. (n ≤ m ∧ m ≤ o) ⇒ n ≤ o

∀n m. (n ≤ m) ⇐⇒ (n = m ∨ ¬(m ≤ n))

∀n m p q. (n ≤ m ∧ p ≤ q) ⇒ n + p ≤ m + q

∀n m p q. (n ≤ m ∧ p ≤ q) ⇒ n − q ≤ m − p

∀n mp. n ≤ m ⇒ n + p ≤ m + p

∀n mp. n ≤ m ⇒ n − p ≤ m − p

∀n m. n + m = m + n

∀n mp. (n + m) + p = n + (m + p)

∀n. n + 0 = n

∀n. n − 0 = n

∀n. n − n = 0

Fig. 12.Arithmetic axioms optionally conjoined with the formulas

C First-Order Logic Syntax and Semantics

To avoid any ambiguity, this section presents the syntax andsemantics of unsorted and
multisorted first-order logic. We use this notation in the proofs in the following sections.

C.1 Unsorted First-Order Logic with Equality

An unsorted signatureΣ is given by:

– a setV of variables;
– a setP of predicate symbols, each symbolP ∈ P with arity ar(P ) > 0;
– a setF of function symbols, each symbolf ∈ F with arity ar(f) ≥ 0.

Figure 13 shows the syntax of unsorted first-order logic. Constants are function symbols
of arity 0.

ϕ ::= P (t1, . . . , tn) | t1 = t2 | ¬ϕ | ϕ1 ∧ ϕ2 | ∃x. F

t ::= x | f(t1, . . . , tn)

Fig. 13.Syntax of Unsorted First-Order Logic with Equality

ϕ ::= P (t1, . . . , tn) | t1 = t2 | ¬ϕ | ϕ1 ∧ ϕ2 | ∃x::s. F

Fig. 14.Syntax of Multisorted First-Order Logic with Equality

An unsortedΣ-structureI is given by:
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– the domain setX = dom(I);
– for every predicateP ∈ P with ar(P ) = n, the interpretationJP KI ⊆ Xn defining

the tuples on whichP is true;
– for every function symbolf in F of arity n, a set of tuplesJfKI ⊆ Xn+1, which

represents the graph of a total functionXn → X .

An I-environmentρ is a functionV → X from variables to domain elements.
The interpretation of a termt in structureI and environmentρ is denotedJtKIρ and

is given inductively as follows:

– JxKIρ = ρ(x), if x ∈ V is a variable;
– Jf(x1, . . . , xn)KIρ = y where(Jx1K

I
ρ , . . . , JxnKIρ , y) ∈ JfKI , if f ∈ F is a function

symbol of arityn ≥ 0.

Interpretation of a formulaϕ in structureI and environmentρ is denotedJϕKIρ and is
given inductively as follows:

JP (t1, . . . , tn)KIρ = (Jt1K
I

ρ , . . . , JtnKIρ ) ∈ JP KI

Jt1 = t2K
I

ρ = (Jt1K
I

ρ=Jt2K
I

ρ )

Jϕ1 ∧ ϕ2K
I

ρ = Jϕ1K
I

ρ ∧ Jϕ2K
I

ρ

J¬ϕKIρ = ¬JϕKIρ

J∃x.ϕKIρ = ∃a ∈ dom(I).JϕKIρ[x 7→a]

whereρ[x 7→ a](y) = ρ(y) for y 6= x andρ[x 7→ a](x) = a.

C.2 Multisorted First-Order Logic with Equality

A multisorted signatureΣ with sortsσ = {s1, . . . , sn} is given by:

– a setV of variables, each variablex ∈ V with its sortar(x) ∈ σ;
– a setP of predicates, each symbolP ∈ P with a sort signaturear(P ) ∈ σn for

somen > 0;
– a setF of function symbols, each symbolf ∈ F with a sort signaturear(f) ∈
σn+1; we writear(f) : s1 ∗ . . . ∗ sn → sn+1 if ar(f) = (s1, . . . , sn, sn+1).

Figure 14 shows the syntax of multisorted first-order logic with equality, which differs
from the syntax of the unsorted first-order logic with equality in that each quantifier
specifies the sort of the bound variable. In addition, we require the terms and formulas
to be well-sorted, which means that predicates and functionsymbols only apply to
arguments of the corresponding sort, and equality applies to terms of the same sort.

A multisortedΣ-structureI is given by:

– for each sortsi, a domain setSi = JsiK
I ;

– for every predicateP in P of types1 ∗ . . . ∗ sn, a relationJP KI ⊆ S1 × . . .× Sn

for JsiK
I = Si, defining the tuples on whichP is true;

– for every function symbolf in F of types1 ∗ . . . ∗ sn → sn+1, the function graph
f ⊆ S1 × . . .× Sn × Sn+1 of a total function that interprets symbolf .
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A multisorted environmentρ maps every variablex ∈ Var with sortsi to an element of
Si, soρ(x) ∈ Jar(x)KI ;

We interpret terms the same way as in the unsorted case. We interpret formulas
analogously as in the unsorted case, with each bound variable of sortsi ranging over
the interpretationSi of the sortsi.

JP (t1, . . . , tn)KIρ = (Jt1K
I

ρ , . . . , JtnKIρ ) ∈ JP KI

Jt1 = t2K
I

ρ = (Jt1K
I

ρ=Jt2K
I

ρ )

Jϕ1 ∧ ϕ2K
I

ρ = Jϕ1K
I

ρ ∧ Jϕ2K
I

ρ

J¬ϕKIρ = ¬JϕKIρ

J∃x::s.ϕKIρ = ∃a ∈ JsKI .JϕKIρ[x 7→a]

C.3 Omitting Sorts

If ϕ is a multisorted formula, we define its unsorted versionϕ∗ by eliminating all type
annotations. For a termt, we would write the termt∗ in the same way ast, but we
keep in mind that the function symbols int∗ have an unsorted signature. The rules in
Figure 15 make this definition more precise.

x∗ ≡ x

f(t1, . . . , tn)∗ ≡ f(t1
∗, . . . , tn

∗)

P (t1, . . . , tn)∗ ≡ P (t1
∗, . . . , tn

∗)

(t1 = t2)
∗ ≡ (t1

∗ = t2
∗)

(ϕ1 ∧ ϕ2)
∗ ≡ ϕ1

∗ ∧ ϕ2
∗

(¬ϕ)∗ ≡ ¬ (ϕ∗)

(∃x::s.ϕ)∗ ≡ ∃x. (ϕ∗)

Fig. 15.Unsorted formula associated with a multisorted formula

D Omitting Sorts in Logic without Equality

In this section we prove that omitting sorts is sound in the first-order language without
equality. We therefore assume that there is no equality symbol, and that each predicate
and function symbol has a unique (ground) type. Under these assumptions we show
that unification for multisorted and unsorted logic coincide, which implies that reso-
lution proof trees are the same as well. Completeness and soundness of resolution in
multisorted and unsorted logic then implies the equivalence of the validity in unsorted
and multisorted logics without equality.
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D.1 Multisorted and Unsorted Unification

Unification plays a central role in the resolution process aswell as in the proof of our
claim. We review it here for completeness, although the concepts we use are standard.
We provide definitions for the multisorted case. To obtain the definitions for the un-
sorted case, assume that all terms and variables have one “universal” sort.

Definition 2 (Substitution). A substitutionσ is a mapping from terms to terms such
thatσ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(t2)).

Substitutions are homomorphisms in the free algebra of terms with variables.

Definition 3 (Unification problem). A unification problemis a set of pairs of terms of
the form:P = {s1

.
= t1, . . . , sn

.
= tn}, where all terms are well-sorted, and both sides

of the
.
= operator have the same sort.

Definition 4 (Unifier). A unifierσ for a problemP is a substitution such thatσ(si) =
σ(ti) for all constraintssi

.
= ti in P .

Definition 5 (Resolved form).A problemP is in resolved formiff it is of the form
{x1

.
= t1, . . . , xn

.
= tn}, where, for each1 ≤ i ≤ n:

1. all xi are pairwise distinct variables (i 6= j → xi 6= xj ).
2. xi does not appear inti (xi /∈ FV (ti)).

Definition 6 (Unifier for resolved form). Let P = {x1
.
= t1, . . . , xn

.
= tn} be a

problem in resolved form. Theunifier associated withP is the substitutionσP =
{x1 7→ t1, . . . , xn 7→ tn}.

DECOMPOSE
P ∪ {f(s1, . . . , sn)

.
= f(t1, . . . , tn)}

P ∪ {s1

.
= t1, . . . , sn

.
= tn}

ORIENT
P ∪ {t

.
= x} t /∈ V

P ∪ {x
.
= t}

REPLACE
P ∪ {x

.
= s} x ∈ V ar(P) x /∈ FV (s)

(P [x 7→ s]) ∪ {x
.
= s}

ERASE
P ∪ {s

.
= s}

P

Fig. 16.Unification algorithm

We define the unification algorithm as the set of rewriting rules in Figure 16. We assume
a fixed strategy for applying these rules (for example, always apply the first applicable
rule in the list). The resulting algorithm is terminating: when given a unification prob-
lemP , their application yields a unification problem in resolvedformP ′. If the result is
in resolved form, then considerσP′ , the unifier associated withP ′. We callσP′ themost
general unifierof the unification problemP and denote itmgu(P). If the resultP ′ is not
in resolved form, then there does not exist a unifier forP and we definemgu(P) = ⊥
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and say thatP is not unifiable. IfP = {s
.
= t}, we denote the most general unifier of

P by mgu(s
.
= t). For the purpose of unification we treat predicate symbols just like

function symbols returning boolean sort, and we treat boolean operations as function
symbols with boolean arguments and results; we can therefore writemgu(A

.
= B) for

the most general unifier of literalsA andB.
If σ is a substitution in multisorted logic, we writeσ∗ for the unsorted substitution

such thatσ∗(x) = σ(x)∗. It follows that(σ(t))∗ = σ∗(t∗) for any termt. For a unifi-
cation problemP = {s1

.
= t1, . . . , sn

.
= tn}, we defineP∗ = {s1

∗ .
= t1

∗, . . . , sn
∗ .

=
tn

∗}.
The key observation about multisorted unification with disjoint sorts is the following

lemma.

Lemma 1. LetP be a multisorted unification problem andstep(P) denote the result of
applying one step of the unification algorithm in Figure 16. Thenstep(P)∗ = step(P∗)
wherestep(P∗) is the result of applying one step of the unification algorithm to the
unsorted unification problemP∗. Consequently,

mgu(P)
∗

= mgu(P∗)

In particular,P is unifiable if and only ifP∗ is unifiable.

Lemma 1 essentially shows that omitting sorts during unification yields the same result
as preserving them. The proof uses the fact that

.
= relates terms or formulas of the

same type and that substituting terms with variables of the same type preserves sort
constraints.

D.2 Multisorted and Unsorted Resolution

We next show that omitting sorts from a set of clauses does notchange the set of possi-
ble resolution steps, which implies the soundness of omitting sorts.

We consider a finite setC1, . . . , Cn of well-sorted clauses. A clause is a disjunc-
tion of literals, where a literal is an atomic formulaP (t1, . . . , tn) or its negation
¬P (t1, . . . , tn). If A denotes atomic formulas then we defineA as¬A and¬A as
A. A setC1, . . . , Cn is well-sorted ifC1, . . . , Cn are formulas with free variables in the
same multisorted signature, which implies that the same free variable occurring in two
distinct clausesCi 6= Cj has the same sort.

RESOLUTION
C1 ∨ L1 C2 ∨ L2

σ(C1) ∨ σ(C2)
σ = mgu(L1

.
= L2)

FACTORISATION
C ∨ L1 ∨ L2

σ(C1) ∨ σ(L1)
σ = mgu(L1

.
= L2)

Fig. 17.Resolution rules

25



Consider a multisorted clause setS = {C1, . . . , Cn}, and its unsorted counterpart
S∗ = {C1

∗, . . . , Cn
∗}. Consider the resolution procedure rules in Figure 17.

Lemma 2. If D0 ∈ S∗ is the result of applying theRESOLUTION rule toC1
∗, C2

∗ ∈ S∗,
thenD0 is of the formC0

∗ whereC0 can be obtained by applying the resolution rule to
C1 andC2.

If D0 ∈ S∗ is the result of applying theFACTORING rule toC∗ ∈ S∗, thenD0 is of
the formC0

∗ whereC0 can be obtained by applying factoring toC.

The proof of Lemma 2 follows from Lemma 1: the most general unifier in the multi-
sorted proof step isσ such thatσ∗ is the most general unifier in the unsorted step.

By induction on the length of the resolution proof, Lemma 2 implies that if an
empty clause can be derived fromS∗, then an empty clause can be derived fromS. By
soundness and completeness of resolution in both the unsorted and sorted case and the
fact that the skolemization process is isomorphic in the unsorted and multisorted case,
we obtain the desired theorem.

Theorem 2. Letϕ be a multisorted formula without equality. Ifϕ∗ is valid, so isϕ.

E Completeness of Omitting Sorts

This section continues Section D and argues that eliminating sort information does
not reduce the number of provable formulas. The following lemma is analogous to
Lemma 2 and states that resolution steps on multisorted clauses can be performed on
the corresponding unsorted clauses.

Lemma 3. If C0 is the result of applying the resolution rule to clausesC1 andC2, then
C0

∗ can be obtained by applying the resolution rule to clausesC1
∗ andC2

∗.
If C0 is the result of applying the factoring rule to a clauseC, thenC0

∗ can be
obtained by applying the factoring rule to clauseC∗.

Analogously to Theorem 2 we obtain Theorem 3.

Theorem 3. Letϕ be a many-sorted formula without equality. Ifϕ is valid then so is
ϕ∗.

F Soundness of Omitting Sorts in Logic with Equality

Sections D and E show that in the absence of an interpreted equality symbol there is an
isomorphism between proofs in the multisorted and unsortedcase. This isomorphism
breaks in the presence of equality. Indeed, consider the following clauseC:

x = y ∨ f(x) 6= f(y)

expressing injectivity of a function symbolf of types1 → s2 for two disjoint sortss1
ands2. In the unsorted case it is possible to resolveC with itself, yielding

x = y ∨ f(f(x)) 6= f(f(y))
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Such a resolution step is, however, impossible in the multisorted case.
In general, eliminating sorts in the presence of equality isunsound, as the conjunc-

tion of formulas
∀x::obj.∀y::obj.x = y
∃x::int.y::int.¬(x = y)

shows. In this section we assume that sorts are of the same cardinality, which eliminates
such examples without being too restrictive in practice. Wethen prove Theorem 1 stated
in Section 4, which implies soundness of omitting sorts evenin the presence of an
overloaded equality operator. The key step in the proof of Theorem 1 is the construction
of a function that maps each multisorted structureI into an unsorted structureI∗.

We fix a multisorted signatureΣ with sortss1, . . . , sm and denote byΣ∗ its un-
sorted version.

Definition of I∗ and ρ∗. Consider a multisorted structureI over the signatureΣ with
m sort interpretationsS1, ..., Sm. Because allSi have equal cardinality, there exists a
setS andm functionsfi : Si → S, for 1 ≤ i ≤ m, such thatfi is a bijection between
Si andS. (For example, takeS to be one of theSi.) We letS be the domain of the
unsorted modelI∗.

We map a multisorted environmentρ into an unsorted environmentρ∗ by defining
ρ∗(x) = fi(ρ(x)) if x is a variable of sortsi.

We define a similar transformation for the predicate and function symbols ofI. For
each predicateP of typesi1 ∗ . . . ∗ sin

, we let

JP KI
∗

= {(fi1(x1), . . . , fin
(xin

)) | (x1, . . . , xn) ∈ JP KI}

Similarly, for each function symbolf of typesi1 ∗ . . . ∗ sin
→ sin+1

we let

JfKI
∗

= {(fi1(x1), . . . , fin+1
(xn+1)) | (x1, . . . , xn+1) ∈ JfKI}

which is a relation denoting a function because the functionsfi are bijections.
This completes our definition ofρ∗ andI∗. We next show that these definitions have

the desired properties.

Lemma 4. If t is a multisorted term of sortsu, andρ a multi-sorted environment, then

Jt∗KI
∗

ρ∗ = fu(JtKIρ )

Proof. Follows from definition, by induction on termt.

Proof of Theorem 1.The proof is by induction onϕ.

– If ϕ is (t1 = t2) and t1, t2 have sortsu, the claim follows from Lemma 4 by
injectivity of fu.

– If ϕ is P (t1, . . . , tn) whereP is a predicate of typesi1 ∗ . . . ∗ sin
, we have:

JP (t1, . . . , tn)KIρ = (Jt1K
I
ρ , . . . , JtnKIρ ) ∈ JP KI

(by definition ofI∗ andfi injectivity) = (fi1(Jt1K
I
ρ ), . . . , fin

(JtnKIρ )) ∈ JP KI
∗

(by Lemma 4) = (Jt1
∗KI

∗

ρ∗ , . . . , Jtn
∗KI

∗

ρ∗ ) ∈ JP KI
∗

= JP (t1, . . . , tn)
∗
KI

∗

ρ∗
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– The casesϕ = ϕ1∧ϕ2 andϕ = ¬ϕ1 follow directly from the induction hypothesis.
– ϕ = ∃z::sv.ϕ0.

=⇒ Assume JϕKIρ is true. Then, there exists an elemente of the sort sv

such thatJϕ0K
I

ρ[z 7→e] is true. By induction,Jϕ0
∗KI

∗

(ρ[z 7→e])∗ is true. Because

(ρ[z 7→ e])
∗

= ρ∗[z 7→ fv(e)], we haveJ∃z.ϕ0
∗KI

∗

ρ∗ .

⇐= AssumeJϕ∗KI
∗

ρ∗ . Then, there existse ∈ S of I∗ such thatJϕ0
∗KI

∗

ρ∗[z 7→e]. Let

ρ0 = ρ[z 7→ f−1
v (e)]. Thenρ0

∗ = ρ∗[z 7→ e]. By the induction hypothesis,
Jϕ0K

I
ρ0

, soJ∃z::sv.ϕ0K
I
ρ .

G Sort Information and Proof Length

Theorem 1 shows that omitting sort information is sound for disjoint sorts of the same
cardinality. Moreover, experimental results in Section 4 show that omitting sorts is of-
ten beneficial compared to the standard relativization encoding of sorts using unary
predicates [28, Chapter 6, Section 8], even for SPASS [43] that has built-in support for
sorts. While there may be many factors that contribute to this empirical fact, we have
observed that in most casesomitting sort information decreases the size of the proofs
found by the prover.

We next sketch an argument that, in the simple settings without the paramodulation
rule [35], removing unary sort predicates only decreases the length of resolution proofs.
Let P1, . . . , Pn be unary sort predicates. We use the termsort literal to denote a literal
of the formPi(t) or ¬Pi(t) for some1 ≤ i ≤ n. The basic idea is that we can map
clauses with sort predicates into clauses without sort predicates, while mapping resolu-
tion proofs into correct new proofs. We denote this mappingα. The mappingα removes
sort literals and potentially some additional non-sort literals, and potentially performs
generalization. It therefore maps each clause into a stronger clause.

Consider mapping an application of a resolution step to clausesC1 andC2 with
resolved literalsL1 andL2 to obtain a resolvent clauseC. If L1 andL2 are not sort
literals, we can perform the analogous resolution step on the result of removing sort
literals fromC1 andC2. If, on the other hand,L1 andL2 are sort literals, thenα(C1)
andα(C2) do not containL1 or L2. We map such a proof step into a trivial proof step
that simply selects asα(C) one of the premisesα(C1) or α(C2). For concreteness,
let α(C) = α(C1). BecauseC in this case contains an instance of each non-sort literal
fromC1, we have thatα(C) is a generalization of a subset of literals ofC. The mapping
α works in an analogous way for the factoring step in a resolution proof, mapping it
either to an analogous factoring step or a trivial proof step.

The trivial proof steps are the reason whyα removes not only sort literals but also
non-sort literals. Becauseα removes non-sort literals as well, even some proof steps
involving non-sort literals may become inapplicable. However, they can all be replaced
by trivial proof steps. The resulting proof tree has the sameheight and terminates at
an empty clause, becauseα maps each clause into a stronger one. Moreover, trivial
proof steps can be removed, potentially reducing the heightof the tree. This shows that
the shortest resolution proof without guards is the same or shorter than the shortest
resolution proof with guards.
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H Further Details on Verified Benchmarks

This section gives some additional details about the benchmarks presented in Figure 6.
FuncTree is a functional binary search tree implementing a map, sketched in Sec-

tion 2. To give an idea of the complexity of this implementation, Figures 18 shows the
remove method, which is the most difficult to verify in the functional tree implemen-
tation. Note that Jahob can infer that it is enough to remove only one node from the
tree, because the uniqueness of keys follows from the strictordering constraints. The
auxiliary operationsmax andremove max are in Figures 19 and 20.

public static FuncTree remove(int k, FuncTree t)
/ * : ensures "result..content = t..content - {(x,y). x=k}" * /
{

if (t == null) return null;
else if (k == t.key) {

if ((t.right == null) && (t.left == null)) return null;
else if (t.left == null) return t.right;
else if (t.right == null) return t.left;
else {

Pair m = max(t.left);
FuncTree foo = remove_max(t.left, m.key, m.data);

FuncTree r = new FuncTree();
r.key = m.key;
r.data = m.data;
r.left = foo;
r.right = t.right;
//: "r..content" := "t..content - {(x,y). x=k}"
return r;

}
}
else {

FuncTree new_left;
FuncTree new_right;
if (k < t.key) {

new_left = remove(k, t.left);
new_right = t.right;

} else {
new_left = t.left;
new_right = remove(k, t.right);

}
FuncTree r = new FuncTree();
r.key = t.key;
r.data = t.data;
r.left = new_left;
r.right = new_right;
//: "r..content" := "t..content - {(x,y). x=k}"
return r;

}
}

Fig. 18.Removal of an element
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class Pair {
public int key;
public Object data;

}
public static Pair max(FuncTree t)
/ * : requires "t..content ˜= {}"

ensures "result ˜= null
& result..Pair.data ˜= null
& ((result..Pair.key, result..Pair.data) : t..content)
& (ALL k. (k ˜= result..Pair.key -->

(ALL v. ((k,v) : t..content --> k < result..Pair.key))))"
* /
{

if (t.right == null) {
Pair r = new Pair();
r.key = t.key;
r.data = t.data;
return r;

} else {
return max(t.right);

}
}

Fig. 19.Computing the maximal element

private static FuncTree remove_max(FuncTree t, int k, Obje ct v)
/ * : requires "(k,v) : t..content &

(ALL x.(x ˜= k --> (ALL y. ((x,y) : t..content --> x < k)))) &
theinvs"

ensures "result ˜= t
& result..content = t..content - {(k,v)}
& (ALL x. (ALL y. ((x,y) : result..content --> x < k)))
& theinvs"

* /
{

if (t.right == null) {
return t.left;

} else {
FuncTree new_right = remove_max1(t.right, k, v);

FuncTree r = new FuncTree();
r.key = t.key;
r.data = t.data;
r.left = t.left;
r.right = new_right;
//: "r..content" := "t..content - {(k,v)}"
return r;

}
}

Fig. 20.Removal of the maximal element
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AssocList is an implementation of an instantiable relation using a functional
linked list. The methods inAssocList are pure in the sense that they only mutate
newly allocated heap objects, without changing any objectsallocated before procedure
execution. Theremove all method inAssocList removes all bindings for a given
key, and theremove method removes all bindings for the given key-value pair. This
difference between the behaviors ofremove and remove all is naturally charac-
terized by the different contracts of these two procedures.The image method returns
the set of values bound to a a given key. TheinverseImage method is analogous.
domain returns the set of all keys andrange the set of all values. The contracts of
these procedures are easily expressed using set algebra andset comprehension.

ImperativeList is an implementation of an instantiable set using an imperative
linked list. UnlikeAssocList , it performs mutations on an existing data structure.
It contains operations for element insertion (add ), element removal (remove ), and
testing the membership of elements in a list (member). We found that the verification
of most operations was similarly easy as in the verification of insertion into a functional
data structure. The verification ofremove was more difficult. Theremove method
contains a loop, so we had to supply a loop invariant. Moreover, removal of an element
x in the middle of the list requires updates to the specification fields of all elements
precedingx in the list. These additional abstract mutations required us to state as loop
invariant a variation of the class representation invariants.

TheHashtable class is an efficient imperative implementation of an instantiable
relation. The class contains an encapsulated mutable arraywhich stores entries of the
(previously verified)AssocList class. The verification of the hash table uses the
specification ofAssocList in terms of a single relation instead of having to reason
about the linked list data structure. This implementation shows how hierarchical ab-
straction is useful even when verifying individual data structures. The hash table imple-
ments standardadd , remove , andupdate operations on key-value pairs with natural
preconditions and postconditions. To verify the correctness ofremove andupdate ,
the class contains a representation invariant (namedCoherence in Figure 21) spec-
ifying that a node storing a given key-value pair is in the bucket whose array index is
a function of the key. Our specification uses an uninterpreted specification variableh
to represent the result of computing the bucket for a given key object and a given table
size, as opposed to verifying a user-specified hashing function. Our implementation of
theadd procedure dynamically resizes the array containing the buckets when the filling
ratio is too high. As in standard hash table implementations, this operation rehashes all
elements into a larger array, which we implemented and verified using a tail-recursive
method.

TheLibrary class implements a simple library system built on top of container
data structures. It maintains two sets of objects: the setpersonsof registered users of
a library system, and the setbooksof all publication items in the library. The system
also maintains aborrowsrelation, which relates each person to the books that the per-
son is currently using from the library. The sets and relations are implemented using
the previously described container classes. The system enforces consistency properties
between these three containers. For example, for each (person, book) pair in the bor-
rows relation, the person belongs to the person set and the book belongs to the book
set. Also, each book is borrowed by at most one person at any given point of time. The
class supports library operations such as checking out and returning a book, checking
who is the reader of a borrowed book, and removing a book from the system.
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class Hashtable {
private AssocList[] table = null;
private int size;

/ * :
public ghost specvar content :: "(obj * obj) set"
public ghost specvar init :: "bool" = "False :: bool"

private static ghost specvar h :: "obj => int => int"

invariant HiddenArray: "init --> table : hidden"

invariant contentDefinition: "init -->
content = {(k,v). EX i. 0 <= i & i < table..Array.length

& (k,v) : table.[i]..AssocList.content}"

invariant TableNotNull: "init --> table ˜= null"
invariant TableAlloc: "table : Object.alloc"

invariant Coherence: "init --> (ALL i k v.
0 <= i & i < table..Array.length -->

((k,v) : table.[i]..AssocList.content -->
h k (table..Array.length) = i))"

invariant TableInjectivity: "ALL u v.
u : Object.alloc & u : Hashtable & u ˜= null &
v : Object.alloc & v : Hashtable & v ˜= u --> u..table ˜= v..tabl e"

invariant TableSize: "init --> table..Array.length > 0" * /

Fig. 21.Class invariants of the hash table implementation
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