Implications of a Data Structure Consistency Checking
System

Viktor Kuncak, Patrick Lam, Karen Zee, and Martin Rinard

MIT Computer Science and Artificial Intelligence Laborator
32 Vassar Street, Cambridge, MA 02139, USA
{vkuncak, pl am kkz, ri nard}@sail . nmt.edu

Abstract. We present a framework for verifying that programs corgepteserve impor-
tant data structure consistency properties. Results framnoplemented system indicate
that our system can effectively enable the scalable vetificaf very precise data structure
consistency properties within complete programs. Ouresydteats bottinternal proper-
ties, which deal with a single data structure implementatiamdexternalproperties, which
deal with properties that involve multiple data structukegey aspect of our system is that
it enables multiple analysis and verification packages talpetively interoperate to ana-
lyze a single program. In particular, it supports the tadetse of very precise, unscalable
analyses in the context of a larger analysis and verificaystem. The integration of differ-
ent analyses in our system is based on a common set-baséficatiea language: precise
analyses verify that data structures conform to set spatiiits, whereas scalable analyses
verify relationships between data structures and pretiondiof data structure operations.
There are several reasons why our system may be of interadirimader program analysis
and verification effort. First, it can ensure that the praggeatisfies important data structure
consistency properties, which is an important goal in anitseff. Second, it can provide
information that insulates other analysis and verificat@mois from having to deal directly
with pointers and data structure implementations, thesstapling these tools to focus on
the key properties that they are designed to analyze. Finedl expect other developers to
be able to leverage its basic structuring concepts to etladlscalable verification of other
program safety and correctness properties.

1 Introduction

This paper discusses a set of issues that arise in the védfiaaf sophisticated pro-
gram correctness and consistency properties. The backdrdpis discussion is our
experience building the Hob program analysis and verificasiystem, which verifies
that programs correctly preserve detailed data structomeistency properties. There
are several reasons that this experience is relevant tagarlgarogram analysis and
verification effort. Data structures usually play a centde in the program. Other
kinds of program correctness properties often depend oddteestructure consistency
properties. Analyses that are designed to verify other qamogcorrectness properties
must therefore incorporate (and in some cases interac) tghanalyses that verify
data structure consistency properties. Failure to eithefywdata structure consistency
properties or to present these properties in a form thatatpfurther analysis can
therefore threaten the entire program verification effort.

Data structure consistency properties are also some of tst challenging pro-
gram properties to analyze and verify. Data structure sterscy properties often in-
volve complex relationships between pointers, arrays,umtmunded numbers of data
objects. There is no consensus on an abstraction or antigsisould be suitable for
effectively reasoning about such properties. Indeed ntegears have seen a prolifer-
ation of abstractions and analyses, each with an abilityuppert the verification of
a particular class of data structure consistency progel@ie8, 15, 25, 27]. It currently

seems unlikely that any single approach will prove to be sssful for the full range
of data structures that developers will legitimately desiruse. Any system that over-
comes these substantial difficulties to successfully yetétailed data structure con-
sistency properties in non-trivial programs is therefdkely to provide concepts and
approaches that will be relevant to other analysis and wetifin efforts. We see sev-
eral specific contributions that our concepts, system, aedatl approach can make to
a broad program analysis and verification effort.

Data Structure Consistency Properties. Data structure consistency properties are
important in and of themselves. Our system shows how to aatioally verify detailed
data structure consistency properties in complete programparticular, it shows how
multiple analysis and verification systems can cooperatetiy a diverse range of
properties.

Foundational System. Pointers and the data structures that they implement arg a ke
complication that any analysis or verification system masteshow deal with. In many
cases pointers are tangential to the primary focus, buteifathalysis or verification
system does not treat them soundly, the system can deliverrgct results. One con-
tribution of our system is that it provides a layer that erstdates the pointers behind
data structure interfaces and provides a characterizafitime properties that objects
accessed via pointers or retrieved from data structurefys@ur system builds on this
layer, as can other systems, to obtain the data structurpanter information needed

to provide correct results.

Transferable Concepts and Approaches.Our framework provides several concepts
and approaches that developers ought to be able to levetzgetivey build their anal-
ysis and verification tools. Approaches that we think will fe¢evant in other areas
include 1) our approach for applying very precise, unsdalabalyses to targeted sec-
tions of the program as part of a broader scalable analysis/arification effort and
2) our technique for eliminating specification aggregati®action 2.3), which occurs
when procedure preconditions propagate up the procedlitdearchy to complicate
the specifications of high-level procedures.

Multiple Interoperating Analyses. One of the major themes of this paper is the need
for multiple analysis and verification systems to intergpeito analyze the same pro-
gram. Attempting to build a single general system that sralifanalysis and verification
problems in a uniform way is counterproductive—it forcesmgvpotential developer to
understand the system and work within it if they are to cbote and makes it diffi-
cult to combine results from different, potentially indegently developed, program
analysis and verification systems.

2 The Hob System

The Hob system is based on several observations about dattuses and how systems
use them.

Encapsulated Complexity. Many data structures are designed to provide efficient
implementations of relatively simple mathematical aluttoms such as sets, relations,
and functions. Appropriately encapsulating the data strecimplementation behind
an abstraction boundary (as in an abstract data type) caatigély encapsulate this
implementation complexity. The complexity of the data stiwe (and therefore the
complexity of reasoning about its consistency properigesyubstantially larger inside
the implementation than outside the implementation. Itigalar, it is usually possible

to completely encapsulate any use of pointers within tha staticture implementation.
This encapsulation eliminates the need for analyses ofsdatature clients to reason
about pointers—they can instead simply reason about thieemredttical abstraction that
the data structure implements.

Internal and External Consistency Constraints. Most programs contain two kinds
of data structure consistency constraimitgernal constraintddentify properties of a
single encapsulated data structure. These constraintsatlypdeal with elements of
the low-level representation of the data structure sucklasenships between pointers
and array indice€xternal constraintson the other hand, involve multiple data struc-
tures and typically deal with individual data structureshat level of the mathematical
abstraction that the data structure implements. A typigtraal constraint might, for
example, state that one data structure contains a subde¢ objects in another data
structure.

Client Dependence. Many data structure implementations will violate theireirmal
consistency constraints if their clients use them incdlyeEor example, a linked list
implementation may corrupt its internal representaticasifed to insert an object into
the list that is already present. Any practical data stmgctwwnsistency analysis must
therefore analyze both data structure implementationskents.

Diversity. Known data structures have a diverse range of internal stamgy prop-
erties. Moreover, new data structures may very well comk néw and unanticipated
kinds of properties.

The overall design and approach of the Hob system takes tsseverations into
account and differs substantially from previous data stmgcanalysis systems.

2.1 Decoupled Approach With Multiple Cooperating Analyses

In our approach, each data structure is encapsulated in aley@dich consists of three
sections: an implementation section, a specification@ectind an abstraction section
(which provides definitions for abstract specification &bles). Thamplementation
sectionof a Hob module is written in a standard imperative languddpe specifica-
tion sectionof a module is written in terms of standard mathematicalrabsbns such
as sets of objects. Each exported procedure has a preconditd postcondition ex-
pressed as first-order logic formulas in the language of $etitlustrate the benefits of
set interfaces, Figure 1 presents the specification secfiamrmodule implementing a
doubly-linked list with an iterator. Note how complex mamigtions of a list data struc-
ture are replaced by a relationship between the valuesobsébre and after procedure
execution. Thabstraction sectiois written in whatever language is appropriate for the
analysis that will analyze the implementation. This setiimlicates a representation in-
variant that holds whenever control is outside of the dateciire implementation, and
provides the values of abstract variables (sets) in ternteetoncrete variables (the
values of fields of a linked data structure or expressionsling global arrays).

While this design adopts several standard techniquesr{amia, the use of pre-
conditions and postconditions to support assume/guaaessoning), it deploys these
techniques in the context of very strong modularity bouigdathat fully decouple the
analyses. In particular, it is possible to apply differemalgses to verify different data
structure implementations and clients. Moreover, the denity of each individual data
structure implementation is encapsulated behind the datetsre’s interface. Here is
how this design has worked out in practice.

spec nmodul e DLLIter {
format Node;
specvar Content, lter : Node set;
invariant Iter in Content;

proc i sEnpty() returns e: bool
ensures not e <=> (card(Content’) >= 1);
proc add(n : Node)
requires card(n)=1 & not (n in Content)
nodi fi es Content
ensures (Content’ = Content + n);
proc renmove(n : Node)
requires card(n)=1 & (n in Content)
nodi fies Content, Iter
ensures (Content’ = Content - n) & (lter’ = Iter - n);

proc initlter()
requires card(lter) =0
nodifies Iter
ensures (lter’ = Content);
proc nextlter() returns n : Node
requires card(lter)>=1
nodifies Iter
ensures card(n’)=1 & (n’ in lter) & (lter’ =lIter - n');
proc isLastlter() returns e:bool
ensures not e <=> (card(lter’) >= 1);
proc closelter()
nodifies Iter
ensures card(lter’) = 0;

Fig. 1. Specification Section of a Doubly Linked List with an Itenato

Multiple Targeted Analyses. We have developed a variety of analyses, with each
specific analysis structured to verify a specific, fairlynoar class of data structures.
The ability to target each analysis to a specific class of datectures has provided
substantial benefits. Eliminating the burden of buildingrayle general analysis has
reduced the overall development overhead and enabled usdage very narrow but
very sophisticated analyses with relatively little engirieg effort. It has also reduced
the amount of broad expertise any one person needs to atguievelop an analysis.
Finally, it has enabled us to simply decline to implementlyematic special cases.
These properties have made it much easier for us to brindgtmgether to work on the
system since the barrier to entry (in terms of required moganalysis and verification
expertise) to development effort for any one analysis amasch smaller.

Interoperating Analyses. We have been able to productively apply multiple cooper-
ating analyses to the same program. This property has besshugddy crucial to de-
veloping a reasonable system in a reasonable amount of tinhas-given us effective
abstraction barriers that have allowed us to decoupleiita@t development tasks and
farm these tasks out to different people. This developmeategy has had two key
benefits: first, it has allowed us to parallelize the work, sadond, it has allowed us to
bring the strengths of multiple people to bear on the projeith each person given a
task best suited to his or her capabilities.

Relief from Onerous Scalability Requirements Because the data structure interfaces
are written in terms of high-level mathematical abstrai@rather than implementation-
level concepts such as pointers), the data structure ingsieation complexity remains
encapsulated inside the implementation and is not expastuktclient. Of course, a
data structure’s implementation must be analyzed usingesamalysis technique. Be-
cause implementations may be arbitrarily complicated, lz@xhuse our system aims

to verify sophisticated data structure consistency prigserit is difficult to imagine
any suitable analysis which could scale to sizable progratoeever, our design elim-
inates any need for any single data structure analysis te-sem analysis needs only
analyze the data structure implementation, leaving théysisaof the clients to simpler
and more scalable analyses.

Consider the implications of this approach. Roughly spagkinuch of the history
of program analysis deals with managing the trade-off betwsralability and preci-
sion. To a first approximation, it is relatively straightficard to build an analysis or
verification strategy for almost any property of interestdélability is not a concern. It
has also proved to be possible to build analyses of almogtampscalability [24, 26]
as long as precision is not a concern. Building scalableigeeanalyses has, however,
eluded the field despite years of effort. Our approach ateigproblem by 1) limiting
the amount of code that any one internal data structure stemsly analysis is respon-
sible for processing to the data structure implementatomtecand 2) enabling the use
of less precise, more scalable analyses outside of the WatéLse implementations.

The result is that we have been able to effectively use aeslydose scalability
limitations would be prohibitive in any other context. Sipieally, we have used anal-
yses with exponential and super-exponential complexi®y §hd even made good use
of interactive theorem proving [30].

2.2 Clean Analysis Problems

One of the key problems that program analysis and verifinasearchers have strug-
gled with is what abstraction to use for programs with pomi{g, 15, 20]. Indeed, this
question is still open today and is the subject of much orgyo#search. Standard ap-
proaches have used either special-purpose logics [18] pleimentation-oriented ad-
hoc formalisms such as graphs [23]. The result is that thd fiak been effectively
estranged from many years of research into more standattematical foundations,
which have provided a significant body of potentially use&dults in areas such as set
theory and more standard logics.

Our elimination of pointers as a concept outside of datactire implementations
has enabled us to use more standard mathematical absteas&is and relations) for
the majority of the program. This has, in turn, allowed us ffeaively draw on the
large body of research on the properties of these standattematical abstractions.

2.3 Specification Aggregation

During our development of the system we encountered a prothiat, as far as we can
tell, will complicate all attempts to use assume/guarargasoning to achieve modular
program verification. Assume/guarantee reasoning stattisprocedure preconditions
and postconditions. To verify a procedure call, it traredathe precondition into the
caller's context, verifies that the analyses or verificataart at the point before the pro-
cedure call implies the translated precondition, thendetas the postcondition into
the caller context to obtain the analysis or verificatior facthe point after the pro-
cedure call. It can verify that the procedure correctly iempénts its precondition and
postcondition independently. In this way, assume/guarrgasoning enables modular
program analysis and verification.

If we attempt to apply this reasoning approach, however,aom sun intospecifi-
cation aggregationTo verify the precondition of the invoked procedure at acpdure
call site, we typically have to include some form of the pmedition in the precondi-
tion of the calling procedure. The preconditions theretaygregate as we move up the

procedure call hierarchy. At the top of the hierarchy thecpture preconditions and
postconditions can become unmanageably complex. Morgtihveeneed to aggregate
preconditions and postconditions violates the modularftthe program, as the pre-
conditions of leaf procedures inappropriately appear égtreconditions of transitive

callers; in principle, these transitive callers should haware of the low-level imple-

mentation details of the procedures that they invoke.

Our solution is to use aspect-oriented concepts to pulkiamts out into specifica-
tions which exist on-the-side; such invariants livesgcopeg11]. A scope identifies an
invariant and the part of the program that may update therigmwa Because these in-
variants do not appear in procedure preconditions or poditions, they do not cause
specification aggregation. The analysis or verificatioroalgm does, however, have
access to the invariant and can use it to prove propertiestzang except in the region
of the program that may update the involved state. Scopkes ffibm hierarchical struc-
turing mechanisms in that they can contain arbitrarily taggsing modules and avoid
the dominant program decomposition problem. The scopetranisvorks well with
data structure consistency properties, since they tend toule throughout most of the
program and updated only in relatively small portions. Thd eesult is a substantial
simplification of the specification of the program.

2.4 Experience

We have built a prototype system and used this system tongerédnge of data structure
consistency properties [10-12, 30]. As expected, we hage bble to use unscalable
analyses to verify very detailed internal data structumstgiency properties. Specific
properties include the consistency of linked data strestwuch as linked lists (both
singly and doubly linked lists), trees, and array-based ditictures. Our system is the
first to verify such properties in the context of completegveons.

Our system has also been able to use the results of the analyside the data
structure implementation to verify that the program usegihta structure correctly. In
particular, we have also been able to use multiple analysélseosame program, then
combine the analysis results to verify higher-level caesisy properties that involve
multiple data structures. These properties include caticels between data structures,
for example that two data structures contain disjoint sétbfects. These properties
often capture application-level constraints; for insgno our Minesweeper program
[10], we verify that the set of revealed cells is disjointrfréhe set of hidden cells.

Our system, perhaps surprisingly, enables developersrify y@wogram correct-
ness properties that may not appeatr, at first, to be datdwsteLmonsistency properties.
Specifically, we have been able to express typestate piepeftobjects and verify that
programs do not invoke operations on objects when they ateeimrong typestate.

We have verified programs that are roughly one to two thoukaesllong and con-
tain multiple data structures analyzed by different aredy$loreover, these programs
implement complete computations such as the popular Mieepar game, Water (a
scientific computation that simulates liquid water) [3]danweb server. Our ability to
demonstrate that our system is capable of verifying largegqams is limited largely
by our ability to develop or port these programs.

3 Comparison to Some Related Approaches

Frameworks for formal software development use the ideat cefinement [7, Chap-
ter 8] but achieve levels of automation similar to the usewfsystem with an inter-
active theorem prover alone [30]. The use of the full strerajtour system provides

a greater degree of automation compared to approaches pasag on verification
condition generation and interactive theorem provingykisdo the use of decision pro-
cedures and techniques for loop invariant inference. Likedur system acknowledges
the importance of both aspects of the verification: the \eiion of data structure im-
plementations and the verification of data structure dielm contrast, most existing
static analysis approaches verify only the clients of faiees, typically expressed as
finite state machines [1, 6], [22, Chapter 6]. The interfaceslob are more expres-
sive than finite state machines, because they can expregsdiaie properties of an
unbounded number of objects, and because they can expredasatity constraints on
the number of objects that satisfy a given property. Rebeasthave also explored the
verification of the usage of interfaces that are based ondidsr logic [19]. Imple-
mentations of abstract data types have also been verifiad GSLA [14]. Integration
of these two sides—implementatations and interfaces—aficagion in TVLA using
assume/guarantee reasoning is the subject of ongoingchagd@s, 29]. Our approach
in Hob was to single out the simple, yet powerful abstractibglobal sets and explore
the range of properties that such interfaces support [1&%). &#hd the Spec# verifier [2]
address different points in the design space. Whereas Hotsid simple model of
encapsulation using modules and introduces new constiarcéxploring novel over-
lapping inter-module grouping mechanisms such as scopes#3ises instantiatable
classes as the main unit of encapsulation and remains @oi¢e $tarting point, the
programming language C#. Regarding the level of automatiob appears to provide
more automated handling of reachability properties inileedata structures, whereas
Spec# has more support for arithmetic; these differencepartly a consequence of
design decisions and partly a conequence of the decisi@megues employed in these
two systems. Finally, there is currently little emphasisatistract specification vari-
ables in Spec#, whereas Hob uses them as the starting posudiable analysis of the
largest parts of the program.

4 Implications for Other Efforts

We see our system as relevant to other analysis and veficafforts in two ways.
First, our treatment of pointers and data structures careses a foundation for other
analysis or verification efforts that must deal somehow wpitbgrams that contain
pointers and data structures. We envision analyses whosanyrfocus is not to verify
detailed properties involving data structures or pointbta that rely on the truth of
some incidental data structure properties for the anatgsssicceed. We envision our
analysis providing these other analyses with a relativie$tract, tractable, and verified
view of the data structures and pointers. Ideally, our sysi@uld give the developers
of the new analysis or verification system the informatiaytheed quickly and easily,
enabling them to productively focus their efforts on thelydeon of interest.

Second, we believe that the developers of other analysesomayple to use sev-
eral of the concepts from our system to build analysis fraorks/for their analysis
problems. By building on these concepts, these analysmsefnarks would be able
to support the targeted application of multiple very preciateroperating, unscalable
analyses in a scalable way to a single program. We view oasids likely to be partic-
ularly useful when there is some relatively small part ofphegram that manipulates,
in a fairly complex way, a clearly delineable part of the si@ither of the program itself
or of some system that it interacts with). Outside this sipaift of the program the state
may be of interest but there is nothing complex going on. ¥éta structures provide

a canonical example of such a situation, we believe thatidwsc pattern is pervasive
in modern software.

5 Future Work

We have implemented a prototype system Hob [13] for vergfydata structure consis-
tency and successfully applied it to a range of programseiaéfurther problems are
worth exploring as we move forward; many of these probleresnat specific to the
domain of data structure consistency properties.

Specialized analyses and libraries of verified data structes. Among the strengths
of our approach is the ability to verify a wide range of prdjgerfor a variety of data
structures. This strength comes from the availability dfcsgplized analyses for com-
mon data structures. Researchers have successfully gemifiny properties of tree-like
data structures; on the other hand, there are fewer extautsen data structures that
use arrays and non-tree-like data structures. Many uloigsiitlata structures still lack
verified implementations; we envision verifying them usiteghniques with varying
levels of automation and building a library of verified datastures. We expect that, as
such libraries grow, there will be many common reasonintgpas that will allow the
results of verification to be extrapolated into fully autdethanalyses. Our approach
supports such incremental development because it suppattisinteractive theorem
proving and analyses with an increasing degree of automatio

Relevant tractable fragments of general-purpose logics.By using logical formu-
las to communicate analysis results, our system makes vieowent to build analyses
that themselves use logic to encode dataflow informatioidénthe implementations
of modules. Such analyses are often precise and predidtabbuse it is possible to
describe the class of properties to which they apply. Itésefore useful to explore new
classes of computationally tractable fragments of logicb@onstraints that can be used
as a basis for analyses. We suggest defining these logicagaeénts of general logics
such as typed set theory, which have proven successfulimaiaing a wide range of
properties. The study of logical fragments allows us to dggpecialized algorithms
while retaining simple semantics and the ability to commoate between different anal-
yses. Our experience suggests that, although traditidexsditications based on simple
syntactic criteria are still useful [4, 9], data structuomsistency constraints are likely
to yield new kinds of classifications and new ways of definmgctasses of logics [17].

Experience from larger applications. Experience from using our techniques in the
context of larger applications would further contributauttderstanding the data struc-
ture consistency problem. We expect that the problem ofniatelata structure consis-
tency is essentially the same in both large and small agjgits with larger applica-
tions having greater diversity and wider data structurerfates (to support many usage
scenarios). We also believe that we have identified someedfitih-level data structure
consistency properties (such as disjointness and inclugiat are likely to be gener-
ally useful. It remains to investigate classes of more cempigh-level properties. It
is possible that most of these properties will be domairci§igewith different kinds of
useful and tractable constraints applicable to differembhdins.

Supporting common language features. To obtain experience with larger applica-
tions, itis important to support the features of commonkdigrogramming languages.
The evolution of languages has simultaneously contribddefatures that simplify
program semantics (such as memory safety and the abilitydodz simple invariants
using types) and 2) features that complicate reasonindp @sitigher-order functions,

continuations, dynamic dispatch, exceptions, reflectioi, concurrency). An attempt
to handle the worst-case scenario arising from the use sétfeatures is not likely to be
fruitful; it is instead important to consider the patternsihich these features are used
and adapt the analyses to work reasonably well in these.dasaddition to making
the automated analysis of these features practical, tiy stuthese patterns is likely
to yield important results in programming methodology amdggamming language
design.

Correctness of analysis resultsOne of the major themes of this paper is the need for
multiple analyses to interoperate on the same programilydeaplementors will have
maximum flexibility in the implementation of these analysasabling the full range of
implementors to bring their skills effectively to bear andka a contribution. In par-
ticular, we envision developers with varying areas of etiperlevels of competence,
and programming styles and inclinations. Any time one cor@bihe work of multiple
people, questions of competence and trust arise. An ermréranalysis or verification
can call the entire result into question. We therefore keltbat it is important to build
a system that can verify the results of the various analysgéserifications. Such a sys-
tem would accept and verify proofs of correctness of thelt&sWe envision a system
similar to Credible Compilation [16, 21] in which each arg$yor verification system
would generate, for each part of the program it processemd that the specific result
it generated on that analysis or verification is correct.

6 Conclusion

We are becoming ever closer to having the basic requirenreptace for a successful
and ambitious program analysis and verification projecteengnized and growing
acknowledgement of the need for more reliable software rdélaecomputing power
necessary to support the required reasoning, and a comnafipitogram analysis and
verification researchers that, given an appropriate tinmee space budget, is able to
deliver algorithms that extract or check virtually any wedfined property of interest.

Important remaining barriers include techniques that déattively with pointers
and data structures and, especially, ways to bring muléiptdyses together to interop-
erate during the analysis of a single program. It is esplgdiaportant to support the
targeted application of unscalable approaches in the xbotta larger scalable analysis
effort—these unscalable analysis and verification algor# are the only way to verify
the precise, detailed properties to which any successhlyais and verification effort
must aspire.

We have addressed all of these issues in the context of thesytem for verify-
ing data structure consistency. This system provides att@fé analysis interface for
providing other analyses with pointer and data structuferimation. It has also em-
ployed a range of techniques that have enabled the suctesefdinated application
of a range of unscalable analyses to complete programseThekniques, and espe-
cially the concepts behind them, should generalize to entiel construction of other
systems for scalably verifying very precise program sadgiy correctness properties.

References

1. T.Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auotatic predicate abstraction of C programs.
In Proc. ACM PLD| 2001.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# prograng system: An overview. IGASSIS:
Int. Workshop on Construction and Analysis of Safe, Seautidretieroperable Smart device2004.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. W. Blume and R. Eigenmann. Performance analysis of gdizatig compilers on the Perfect Bench-

marks programslEEE Transactions on Parallel and Distributed SysteB($):643—-656, Nov. 1992.

. E. Borger, E. Gradel, and Y. Gurevichihe Classical Decision Problen$pringer-Verlag, 1997.
. D.R. Chase, M. Wegman, and F. K. Zadeck. Analysis of piraed structures. IRroc. ACM PLD|

1990.

. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitiveramgerification in polynomial time. IRroc.

ACM PLDI, 2002.

. C. B. JonesSystematic Software Development using V[P¥entice Hall International (UK) Ltd., 1986.
. V. Kuncak, P. Lam, and M. Rinard. Role analysis Aimual ACM Symp. on Principles of Programming

Languages (POPLR002.

. V. Kuncak and M. Rinard. Decision procedures for setemilfields. Inlst International Workshop on

Abstract Interpretation of Object-Oriented Languages@@®IL 2005) 2005.

P. Lam, V. Kuncak, and M. Rinard. On our experience wittdutar pluggable analyses. Technical
Report 965, MIT CSAIL, September 2004.

P. Lam, V. Kuncak, and M. Rinard. Cross-cutting teche&jiin program specification and analysis. In
4th International Conference on Aspect-Oriented Softvizeeelopment (AOSD’052005.

P. Lam, V. Kuncak, and M. Rinard. Generalized typestageking for data structure consistency.6th
International Conference on Verification, Model Checkimgl &bstract Interpretation2005.

P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for verifyirdata structure consistency. Irith
International Conference on Compiler Construction (toehtb) April 2005.

T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Puttingt&tanalysis to work for verification: A case
study. Ininternational Symposium on Software Testing and Angl26i80.

T. Lev-Ami and M. Sagiv. TVLA: A system for implementingatic analyses. IRroc. 7th International
Static Analysis Symposiuyr2000.

D. Marinov. Credible compilation. Master's thesis, achusetts Institute of Technology, 2000.

B. Marnette, V. Kuncak, and M. Rinard. On algorithms aathplexity for sets with cardinality con-
straints. Technical report, MIT CSAIL, August 2005.

P. O'Hearn, J. Reynolds, and H. Yang. Local reasoningitapagrams that alter data structures. In
Proc. CSL, Paris 2001volume 2142 o NCS 2001.

G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and &% Deriving specialized program analyses
for certifying component-client conformance. Ri.DI, 2002.

J. C. Reynolds. Separation logic: a logic for shared bietdata structures. Ih7th LICS pages 55-74,
2002.

M. Rinard and D. Marinov. Credible compilation with pirs. InProceedings of the Workshop on
Run-Time Result Verificatiori999.

N. Rinetzky. Interprocedural shape analysis. Masteesis, Technion - Israel Institute of Technology,
2000.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysoblems in languages with destructive
updating. ACM TOPLAS$20(1):1-50, 1998.

B. Steensgaard. Points-to analysis in almost linea.timProc. 23rd ACM POPLSt. Petersburg Beach,
FL, Jan. 1996.

A. D. Salcianu and M. Rinard. Purity and side-effectlysia for java programs. IfProc. 6th Inter-
national Conference on Verification, Model Checking andtrsas Interpretation January 2005. To
appear.

Y. Xie and A. Aiken. Scalable error detection using baaleatisfiability.POPL’'05, 2005.

J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using etaihecking to find serious file system
errors. InOSDI'04, 2004.

G. Yorsh, T. Reps, and M. Sagiv. Symbolically computingstyprecise abstract operations for shape
analysis. InL0th TACAS2004.

G. Yorsh, A. Skidanov, T. Reps, and M. Sagiv. Automatisuase/guarantee reasoning for heap-
manupilating programs. Ihst AIOOL Worksho@2005.

K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theorgroving with static analysis for data
structure consistency. limternational Workshop on Software Verification and Vaiida (SVV 2004)
Seattle, November 2004.

