
Role Analysis

Viktor Kuncak, Patrick Lam, and Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

{vkuncak, plam, rinard}@lcs.mit.edu

ABSTRACT

We present a new role system in which the type (or role)
of each object depends on its referencing relationships with
other objects, with the role changing as these relationships
change. Roles capture important object and data struc-
ture properties and provide useful information about how
the actions of the program interact with these properties.
Our role system enables the programmer to specify the le-
gal aliasing relationships that define the set of roles that
objects may play, the roles of procedure parameters and ob-
ject fields, and the role changes that procedures perform
while manipulating objects. We present an interprocedural,
compositional, and context-sensitive role analysis algorithm
that verifies that a program maintains role constraints.

1. INTRODUCTION
Types capture important properties of the objects that

programs manipulate, increasing both the safety and read-
ability of the program. Traditional type systems capture
properties (such as the format of data items stored in the
fields of the object) that are invariant over the lifetime of
the object. But in many cases, properties that do change
are as important as properties that do not. Recognizing the
benefit of capturing these changes, researchers have devel-
oped systems in which the type of the object changes as the
values stored in its fields change or as the program invokes
operations on the object [45, 44, 10, 51, 52, 6, 18, 11]. These
systems integrate the concept of changing object states into
the type system.

The fundamental idea in this paper is that the type of
each object should also depend on the data structures in
which it participates. Our type system therefore captures
the referencing relationships that determine this data struc-
ture participation. As objects move between data struc-

∗Appears in the Proceedings of the 29th Annual ACM SIGPLAN -

SIGACT Symposium on Principles of Programming Languages Port-
land, January 16-18, 2002. For more information,

see www.mit.edu/∼vkuncak/papers/RoleAnalysis .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL ’02, Jan. 16-18, 2002 Portland, OR USA
Copyright 2002 ACM ISBN 1-58113-450-9/02/01 ...$5.00.

tures, their types change to reflect their changing relation-
ships with other objects. Our system uses roles to formalize
the concept of a type that depends on the referencing rela-
tionships. Each role declaration provides complete aliasing
information for each object that plays that role—in addition
to specifying roles for the fields of the object, the role dec-
laration also identifies the complete set of references in the
heap that refer to the object. In this way roles generalize
linear type systems [48, 30] by allowing multiple aliases to
be statically tracked, and extend alias types [43, 49] with
the ability to specify the roles of objects that are the source
of aliases.

This approach attacks a key difficulty associated with
state-based type systems: the need to ensure that any state
change performed using one alias is correctly reflected in the
declared types of the other aliases. Because each object’s
role identifies all of its heap aliases, the analysis can verify
the correctness of the role information at all remaining or
new heap aliases after an operation changes the referencing
relationships.

Roles capture important object and data structure prop-
erties, improving both the safety and transparency of the
program. For example, roles allow the programmer to ex-
press data structure consistency properties (with the proper-
ties verified by the role analysis), to improve the precision of
procedure interface specifications (by allowing the program-
mer to specify the role of each parameter), to express pre-
cise referencing and interaction behaviors between objects
(by specifying verified roles for object fields and aliases),
and to express constraints on the coordinated movements of
objects between data structures (by using the aliasing infor-
mation in the role definitions to identify legal data structure
membership combinations). Roles may also aid program op-
timization by providing precise aliasing information.

This paper makes the following contributions:

• Role Concept: The concept that the state of an ob-
ject depends on its referencing relationships; specifi-
cally, that objects with different heap aliases should
be regarded as having different states.

• Role Definition Language: It presents a language
for defining roles. The programmer can use this lan-
guage to express data structure invariants and proper-
ties such as data structure participation.

• Programming Model: It presents a set of role con-
sistency rules. These rules give a programming model
for changing the role of an object and the circum-
stances under which roles can be temporarily violated.

1

• Procedure Interface Specification Language: It
presents a language for specifying the initial context
and effects of each procedure. The effects summarize
the actions of the procedure in terms of the references
it changes and the regions of the heap that it affects.

• Role Analysis Algorithm: It presents an algorithm
for verifying that the program respects the constraints
given by a set of role definitions and procedure in-
terface specifications. The algorithm uses a dataflow
analysis similar to [41] to infer intermediate referenc-
ing relationships of objects, allowing the programmer
to focus on role changes and procedure interfaces.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an example that introduces the concept of
roles. Section 3 presents the semantics of roles as global
heap invariants. Section 4 presents the programming model
associated with roles. Section 5 presents the intraprocedu-
ral role analysis; Section 6 presents the interprocedural role
analysis. Section 7 presents several extensions to the ba-
sic role framework. Section 8 presents the related work; we
conclude in Section 9.

2. EXAMPLE
Figure 1 presents the role reference diagram for a process

scheduler. Each box in the diagram denotes a disjoint set
of objects that play a given role. The labelled arrows be-
tween boxes indicate possible references between the objects
in each set. As the diagram indicates, the scheduler main-
tains a list of live processes. A live process can be either
running or sleeping. The running processes form a doubly-
linked list, while the sleeping processes form a binary tree.
Both kinds of processes have a reference from the proc field
of a live list node. The header objects RunningHeader and
SleepingHeader simplify operations on the data structures
that store the process objects.

As Figure 1 indicates, data structure participation deter-
mines the conceptual state of each object. In our example,
processes that participate in the sleeping process tree are
classified as sleeping processes, while processes that partici-
pate in the running process list are classified as running pro-
cesses. Moreover, movements between data structures cor-
respond to conceptual state changes—when a process stops
sleeping and starts running, it moves from the sleeping pro-
cess tree to the running process list.

2.1 Role Definitions
Figure 2 presents the role definitions in our example. Each

role definition specifies the constraints that an object must
satisfy to play the role. Field constraints specify the roles of
the objects to which the fields refer, while slot constraints
identify the number and kind of aliases of the object.1

In our example, the field constraints indicate that objects
playing the RunningProc role have two fields: a next field
that refers to either another RunningProc object or to the
RunningHeader object, and a prev field that also refers to
an object playing one of these two roles. The slot constraint
indicates that RunningProc objects have three slots. The
first slot is filled by a reference from the next field of either
the RunningHeader object or a RunningProc object. The

1An alias of an object is a reference to that object stored in some

field of some object in the heap.

Figure 1: Role Reference Diagram for Scheduler

second slot is filled by a reference from the prev field of an
object playing one of these two roles. The third and final slot
is filled by a reference from the proc field of an object playing
the LiveList role. In general, each slot must be filled by
exactly one reference; together, these references make up the
complete set of heap aliases of an object playing the role. In
our example, this aliasing constraint implies that no process
can be simultaneously running and sleeping.

Role definitions may also contain two additional kinds of
constraints: identity constraints, which specify paths that
lead back to the object, and acyclicity constraints, which
specify paths with no cycles. In our example, the identity
constraint next.prev in the RunningProc role specifies the
cyclic doubly-linked list constraint that following the next,
then prev fields always leads back to the initial object. The
acyclic constraint left, right in the SleepingProc role
specifies that there are no cycles in the heap involving only
left and right edges. On the other hand, the list of run-
ning processes must be cyclic because its nodes can never
point to null.

In general, roles can capture data structure consistency
properties such as disjointness and can prevent representa-
tion exposure similarly to ownership types [8]. As a data
structure description language, roles can naturally specify
trees with additional pointers. Roles can also approximate
non-tree data structures like sparse matrices. Because most
role constraints are local, it is possible to inductively infer
them from data structure instances.

2.2 Roles and Procedure Interfaces
Procedures specify the initial and final roles of their pa-

rameters. The suspend procedure in Figure 3, for example,
takes two parameters: the RunningProc object p, and the
SleepingProc object s. The procedure changes the role of
the object referenced by p to SleepingProc, while the ob-
ject referenced by s retains its original role. To perform the
role change, the procedure removes p from the RunningProc

linked list and inserts it into the SleepingProc tree s. If the
procedure fails to perform the insertions or deletions cor-
rectly, for instance by leaving an object in both structures,
the role analysis will report an error.

In addition to specifying the roles of the parameters, each
procedure also specifies its read and write effects. For exam-
ple, the suspend procedure specifies that it 1) must set the

2

role LiveHeader {

fields next : LiveList | null;

}

role LiveList {

fields next : LiveList | null,

proc : RunningProc | SleepingProc;

slots LiveList.next | LiveHeader.next;

acyclic next;

}

role RunningHeader {

fields next : RunningProc | RunningHeader,

prev : RunningProc | RunningHeader;

slots RunningHeader.next | RunningProc.next,

RunningHeader.prev | RunningProc.prev;

identities next.prev, prev.next;

}

role RunningProc {

fields next : RunningProc | RunningHeader,

prev : RunningProc | RunningHeader;

slots RunningHeader.next | RunningProc.next,

RunningHeader.prev | RunningProc.prev,

LiveList.proc;

identities next.prev, prev.next;

}

role SleepingHeader {

fields root : SleepingProc | null,

acyclic left, right;

}

role SleepingProc {

fields left : SleepingProc | null,

right : SleepingProc | null;

slots SleepingProc.left | SleepingProc.right |

SleepingHeader.root;

LiveList.proc;

acyclic left, right;

}

Figure 2: Role Definitions for Scheduler

prev and next fields of p to refer to null, 2) may set the prev
and next fields of some objects playing the RunningProc or
RunningHeader roles to refer to objects playing RunningProc

or RunningHeader roles, and 3) must set the root field of
s to refer to p and the left field of p to refer to either
null or an object playing the SleepingProc role. Note that
the ! keyword, which precedes each must effect, syntacti-
cally distinguishes must effects (which the procedure must
always perform) from may effects (which the procedure may
or may not perform).

In general, each procedure may specify an initial context
in the form of a graph that identifies procedure-specific ref-
erencing relationships. Nodes in this graph represent sets
of objects in the heap; edges represent references between
objects, and the context specifies a role for each node. The
procedure specifies its effects at the granularity of the nodes
in this graph. In our example, the procedure uses a default
initial context which is derived automatically from the role
reference diagram given the roles of the parameters.

2.3 Role Properties
In general, roles capture important properties of the ob-

jects and provide useful information about how the actions
of the program affect those properties.

procedure suspend(p: RunningProc ->> SleepingProc,

s: SleepingHeader)

effects

!(p.prev = null), !(p.next = null),

(RunningProc|RunningHeader) . (prev|next) =

(RunningProc|RunningHeader),

!(s.root = p), !(p.left = SleepingProc | null);

var pp, pn, r;

{

pp = p.prev; pn = p.next;

r = s.root;

p.prev = null; p.next = null;

pp.next = pn; pn.prev = pp;

s.root = p; p.left = r;

setRole(p : SleepingProc);

}

Figure 3: Suspend Procedure

• Consistency Properties: Roles can ensure that the
program respects application-level data structure con-
sistency properties. The roles in our process scheduler,
for example, ensure that a process cannot be simulta-
neously sleeping and running.

• Interface Changes: In many cases, the interface
of an object changes as its referencing relationships
change. In our process scheduler, for example, only
running processes can be suspended. Because proce-
dures declare the roles of their parameters, the role
system can ensure that the program uses objects cor-
rectly even as the object’s interface changes.

• Correlated Relationships: In many cases, groups
of objects cooperate to implement a piece of function-
ality. Standard type declarations provide some infor-
mation about these collaborations by identifying the
points-to relationships between related objects at the
granularity of classes. But roles can capture a much
more precise notion of cooperation, because they track
correlated state changes of related objects.

3. SYNTAX AND SEMANTICS OF ROLES
In this section, we precisely define what it means for a

given heap to satisfy a set of role definitions. In subsequent
sections we will use this definition as a starting point for the
programming model and role analysis.

3.1 Heap Representation
We represent a concrete program heap as a finite directed

graph Hc with nodes(Hc) representing the objects in the
heap and labelled edges representing heap references. A
graph edge 〈o1, f, o2〉 ∈ Hc denotes a reference with field
name f from object o1 to object o2. To simplify the pre-
sentation, we fix a global set of fields F and assume that all
objects have all fields in F .

3.2 Role Representation
Let R denote the set of roles used in role definitions, nullR

be a special symbol always denoting a null object nullc, and
R0 = R∪{nullR}. We represent each role as the conjunction
of the following four kinds of constraints:

3

• Fields: For every field name f ∈ F we introduce a
function fieldf : R → 2R0 denoting the set of roles
that objects of role r ∈ R can reference through field
f . A field f of role r can be null if and only if nullR ∈
fieldf (r). The explicit use of nullR and the possibility
to specify a set of alternative roles for every field al-
lows roles to express both may and must referencing
relationships.

• Slots: Every role r has slotno(r) slots. A slot slotk(r)
of role r ∈ R is a subset of R×F . Let o be an object of
role r and o′ an object of role r′. A reference 〈o′, f, o〉 ∈
Hc can fill slot number k of object o if and only if
〈r′, f〉 ∈ slotk(r). An object with role r must therefore
have exactly slotno(r) aliases.

• Identities: Every role r ∈ R has a set identities(r) ⊆
F × F . Identities are pairs of fields 〈f, g〉 such that
following reference f on object o and then returning
on reference g leads back to o.

• Acyclicities: Every role r ∈ R has a set acyclic(r) ⊆
F of fields along which cycles are forbidden.

The role definitions induce a role reference diagram RRD

which captures some, but not all, of the role constraints.

RRD = {〈r, f, r′〉 | r′ ∈ fieldf (r) and ∃i 〈r, f〉 ∈ sloti(r
′)}

∪ {〈r, f, nullR〉 | nullR ∈ fieldf (r)}

3.3 Role Semantics
We give the semantics of roles as a conjunction of in-

variants associated with the role definitions. A concrete
role assignment is a map ρc : nodes(Hc) → R0 such that
ρc(nullc) = nullR.

Definition 1. Given a set of role definitions, we say that
a heap Hc is role consistent iff there exists a role assignment
ρc : nodes(Hc) → R0 such that for every o ∈ nodes(Hc), the
predicate locallyConsistent(o, Hc, ρc) is satisfied. We call any
such role assignment ρc a valid role assignment.

The predicate locallyConsistent(o, Hc, ρc) formalizes the con-
straints associated with role definitions.

Definition 2. locallyConsistent(o, Hc, ρc) iff all of the fol-
lowing conditions are met for r = ρc(o).

1) For every field f ∈ F , if 〈o, f, o′〉 ∈ Hc then
ρc(o

′) ∈ fieldf (r).

2) Let {〈o1, f1〉, . . . , 〈ok, fk〉} = {〈o′, f〉 | 〈o′, f, o〉 ∈ Hc}
be the set of all aliases of object o. Then k = slotno(r)
and there exists some permutation p of {1, . . . , k} such
that 〈ρc(oi), fi〉 ∈ slotpi(r) for all i.

3) If 〈o, f, o′〉 ∈ Hc, 〈o
′, g, o′′〉 ∈ Hc, and

〈f, g〉 ∈ identities(r), then o = o′′.

4) It is not the case that graph Hc contains a cycle
o1, f1, . . . , os, fs, o1 where o1 = o and
f1, . . . , fs ∈ acyclic(r)

Note that a role consistent heap may have multiple valid
role assignments ρc. However, in each of these role assign-
ments, every object o is assigned exactly one role ρc(o).
The existence of a role assignment ρc with the property
ρc(o1) 6= ρc(o2) thus implies o1 6= o2.

4. A PROGRAMMING MODEL
In this section we define what it means for an execution

of a program to respect the role constraints. Our goal is
to allow the program to temporarily violate the constraints
during data structure manipulations. To achieve this goal,
we let the program violate the constraints for objects refer-
enced by local variables or parameters, but require all other
objects to satisfy the constraints.

We assume a simple imperative language with dynamic
object allocation. The language contains, as basic state-
ments, Load (x=y.f), Store (x.f=y), Copy (x=y), and New
(x=new). We use a test statement combined with nondeter-
ministic choice and iteration to express if and while state-
ment, using the standard translation [20, 3]. We represent
the control flow of programs using control-flow graphs.

A program is a collection of procedures proc ∈ Proc. Pro-
cedures change the global heap but do not return values.
Every procedure proc has a list of parameters param(proc) =
{parami(proc)}i and a list of local variables locals(proc). A
procedure definition specifies the initial role preRk(proc) and
the final role postRk(proc) for every parameter paramk(proc).
We use procj for indices j ∈ N to denote the activation
records of procedure proc. We represent a local variable or
a parameter x as an edge 〈procj , x, o〉 ∈ Hc from the acti-
vation record procj to the referenced object o. We further
assume that there are no modifications of parameter vari-
ables so that every parameter references the same object
throughout the procedure execution. We use an operational
semantics with explicit error states that have heap errorc.

4.1 Onstage and Offstage Objects
At every program point the set of all heap objects can be

partitioned into:

1. onstage objects onstage(Hc) referenced by a local
variable or parameter of some activation record;

2. offstage objects offstage(Hc) unreferenced by local
or parameter variables.

Onstage objects need not have correct roles. Offstage ob-
jects must have almost correct roles assuming some role as-
signment for onstage objects.

Definition 3. Given a set of role definitions and a set
of objects Sc ⊆ nodes(Hc), we say that a heap Hc is role
consistent for Sc, and we write con(Hc, Sc), iff there exists a
role assignment ρc : nodes(Hc) → R0 such that the predicate
locallyConsistent(o, Hc, ρc, Sc) is satisfied for all o ∈ Sc.

We define locallyConsistent(o, Hc, ρc, Sc) to generalize the
locallyConsistent(o, Hc, ρc) predicate, weakening the acyclic-
ity condition.

Definition 4. locallyConsistent(o, Hc, ρc, Sc) holds iff
conditions 1), 2), and 3) of Definition 2 are satisfied and
the following condition holds:

4’) It is not the case that graph Hc contains a cycle
o1, f1, . . . , os, fs, o1 such that o1 = o,
f1, . . . , fs ∈ acyclic(r), and
additionally o1, . . . , os ∈ Sc.

Here Sc is the set of onstage objects that are not allowed to
create a cycle; the objects in nodes(Hc)\Sc are exempt from
the acyclicity condition. The locallyConsistent(o, Hc, ρc, Sc)

4

and con(Hc, Sc) predicates are monotonic in Sc, so a larger
Sc implies a stronger invariant. For Sc = nodes(Hc), consis-
tency for Sc is equivalent to heap consistency from Defini-
tion 1. Note that the role assignment ρc specifies roles even
for objects o ∈ nodes(Hc) \ Sc. This is because the role of
o may influence the role consistency of objects in Sc which
are adjacent to o.

At procedure calls, the role declarations for parameters
restrict the set of potential role assignments. We therefore
generalize con(Hc, Sc) to conW(ra, Hc, Sc), which restricts
the set of role assignments ρc considered for heap consis-
tency.

Definition 5. Given a set of role definitions, a heap Hc,
a set Sc ⊆ nodes(Hc), and a partial role assignment ra ⊆
Sc → R, we say that the heap Hc is consistent with ra for Sc,
and write conW(ra, Hc, Sc), iff there exists a (total) role as-
signment ρc : nodes(Hc) → R0 such that ra ⊆ ρc and for ev-
ery object o ∈ Sc the predicate locallyConsistent(o, Hc, ρc, Sc)
is satisfied.

4.2 Role Consistency
We are now able to precisely state the role consistency re-

quirements that must be satisfied for program execution. We
extend the operational semantics of the language with tran-
sitions leading to a program state with heap errorc whenever
one of the constraints below is violated.

4.2.1 Offstage Consistency
At every program point, we require con(Hc, offstage(Hc))

to be satisfied. This means that offstage objects have correct
roles, but onstage objects may have their role temporarily
violated.

4.2.2 Reference Removal Consistency
The Store statement x.f=y has the following safety pre-

condition. When removing a reference 〈ox, f, of 〉 ∈ Hc for
〈procj , x, ox〉 ∈ Hc, and 〈ox, f, of 〉 ∈ Hc from the heap, both
ox and of must be onstage. It is sufficient to verify this
condition for of , because ox is already onstage by defini-
tion. The reference removal consistency condition enables
the completion of the role change for of after the reference
〈ox, f, of 〉 is removed and ensures that heap references are
introduced and removed only between onstage objects.

4.2.3 Procedure Call Consistency
Our programming model ensures role consistency across

procedure calls using the following protocol.
A procedure call proc′(x1, ..., xp) requires the role consis-

tency precondition conW(ra, Hc, Sc), where the partial role
assignment ra requires objects oi, corresponding to param-
eters xi, to have roles preRi(proc′) expected by the callee,
where Sc = offstage(Hc) ∪ {oi}i for 〈procj , xi, oi〉 ∈ Hc.

To ensure that the callee proc′j never observes incorrect
roles, we impose an accessibility condition for the callee’s
Load statements. The accessibility condition prohibits ac-
cess to any object o referenced by some local variable of
an activation record other than proc′j , unless o is referenced

by some parameter of proc′j . Provided that this condition

is not violated, the callee proc′j only accesses objects with
correct roles, even though objects that it does not access
may have incorrect roles. The role analysis uses read effects
(Section 6.1.2) to ensure that the accessibility condition is
never violated.

At the procedure exit point, we require correct roles for
all objects referenced by the current activation record proc′j .

This implies that heap operations performed by proc′j pre-

serve heap consistency for all objects accessed by proc′j .

4.3 Instrumented Semantics
We expect the programmer to have a specific role as-

signment in mind when writing the program; this role as-
signment changes as the statements of the program change
the referencing relationships. Thus, when the programmer
wishes to change the role of an object, he or she writes a
program that brings the object onstage, changes its refer-
encing relationships so that it plays a new role, then puts
it offstage in its new role. The roles of other objects do not
change.2

To support these programmer expectations, we introduce
an augmented programming model in which the role as-
signment is conceptually part of the program’s state and
changes under the control of the programmer. This aug-
mented model has an underlying instrumented semantics as
opposed to the original semantics.

The instrumented semantics extends the concrete heap Hc

with a role assignment ρc. We introduce a new statement
setRole(x:r), which modifies a role assignment ρc, giving
ρc[ox 7→ r], where ox is the object referenced by x. All
statements other than setRole preserve the current role as-
signment. For every consistency condition conW(ra, Hc, Sc)
in the original semantics, the instrumented semantics uses
the corresponding condition conW(ρc ∪ ra, Hc, Sc) and fails
if ρc is not an extension of ra.

Note that our instrumented semantics does not imply an
implementation that explicitly stores roles of objects. We
instead use the instrumented semantics as the basis of our
role analysis and ensure that all role checks can be stati-
cally removed. Because the instrumented semantics is more
restrictive than the original semantics, our role analysis is
a conservative approximation of both the instrumented se-
mantics and the original semantics.

5. INTRAPROCEDURAL ROLE ANALYSIS
Our analysis representation is a graph in which nodes rep-

resent objects and edges represent references between ob-
jects. There are two kinds of nodes: onstage nodes represent
onstage objects, with each onstage node representing one
onstage object; and offstage nodes, with each offstage node
representing a set of objects that play that role. To increase
the precision of the analysis, the algorithm occasionally gen-
erates multiple offstage nodes that represent disjoint sets of
objects playing the same role. The goal is to capture reach-
ability distinctions; offstage objects that have the same role
but are represented by different offstage nodes have different
reachability properties from onstage nodes.

The key observation behind our analysis algorithm is that
role consistency for the concrete heap Hc can be verified
incrementally by ensuring role consistency for every node
when it goes offstage. This allows us to represent the stat-
ically unbounded offstage portion of the heap using sum-
mary nodes with “may” references. In contrast, we use a
“must” interpretation for references to and from onstage

2An extension to the programming model supports cascading role

changes in which a single role change propagates through the heap

changing the roles of offstage objects, see Section 7.1.

5

nodes, which allows the analysis to verify role consistency
in the presence of temporary violations of role constraints.

We frame the role analysis as a dataflow analysis operating
on a distributive lattice P(RoleGraphs) of sets of role graphs
with set union ∪ as the join operator. In this section we
present an algorithm for intraprocedural analysis. We use
procc to denote the topmost activation record in a concrete
heap Hc. More details on the intraprocedural role analysis
can be found in [32].

5.1 Abstraction Relation
Every dataflow fact G ⊆ RoleGraphs is a set of role graphs

G ∈ G. Every role graph G ∈ RoleGraphs is either a bot-
tom role graph ⊥G representing the set of all concrete heaps
(including errorc), or a tuple G = 〈H, ρ, K〉 representing
non-error concrete heaps, where

• H ⊆ N × F × N is the abstract heap with nodes N
(representing objects) and fields F . The abstract heap
H represents heap references 〈n1, f, n2〉 and variables
of the currently analyzed procedure 〈proc, x, n〉 where
x ∈ locals(proc). Null references are represented as
references to abstract node null. We define two sets
of abstract nodes: onstage nodes onstage(H) = {n |
〈proc, x, n〉 ∈ H, x ∈ locals(proc) ∪ param(proc), n 6=
null} and offstage nodes
offstage(H) = nodes(H) \ onstage(H) \ {proc, null}.

• ρ : nodes(H) → R0 is an abstract role assignment,
ρ(null) = nullR;

• K : nodes(H) → {i, s} indicates the kind of each node;
when K(n) = i, then n is an individual node repre-
senting at most one object, and when K(n) = s, n is a
summary node representing zero or more objects. We
require K(proc) = K(null) = i, and require all onstage
nodes to be individual, K[onstage(H)] ⊆ {i}.

The abstraction relation α relates a pair 〈Hc, ρc〉 of a con-
crete heap and a concrete role assignment to an abstract
role graph G.

Definition 6. We say that an abstract role graph G rep-
resents a concrete heap Hc with role assignment ρc and write
〈Hc, ρc〉α G, iff G = ⊥G or: Hc 6= errorc, G = 〈H, ρ, K〉,
and there exists a function h : nodes(Hc) → nodes(H) such
that

1) Hc is role consistent: conW(ρc, Hc, offstage(Hc)),

2) identity constraints of onstage nodes with offstage nodes
hold: if 〈o1, f, o2〉 ∈ Hc and 〈o2, g, o3〉 ∈ Hc for o1 ∈
onstage(Hc), o2 ∈ offstage(Hc), and
〈f, g〉 ∈ identities(ρc(o1)), then o3 = o1;

3) h is a graph homomorphism: if 〈o1, f, o2〉 ∈ Hc then
〈h(o1), f, h(o2)〉 ∈ H;

4) an individual node represents at most one concrete ob-
ject: K(n) = i implies |h−1(n)| ≤ 1;

5) h is bijection on edges which originate or terminate at
onstage nodes: if 〈n1, f, n2〉 ∈ H and n1 ∈ onstage(H)
or n2 ∈ onstage(H), then there exists exactly one
〈o1, f, o2〉 ∈ Hc such that h(o1) = n1 and h(o2) = n2;

6) h(nullc) = null and h(procc) = proc;

7) the abstract role assignment ρ corresponds to the con-
crete role assignment: ρc(o) = ρ(h(o)) for every object
o ∈ nodes(Hc).

〈Hc, ρc〉 - 〈H ′
c, ρ

′
c〉

�
��

	
α α

?

@
@@R

α

G1 � G2 =⇒ G3 � G4

Figure 4: Simulation Relation Between Abstract

and Concrete Semantics

Note that the error heap errorc can be represented only by
the bottom role graph ⊥G. The analysis uses ⊥G to indicate
a potential role error.

Condition 3) implies that role graph edges are a conserva-
tive approximation of concrete heap references. These edges
are in general “may” edges. Hence it is possible for an off-
stage node n that 〈n, f, n1〉, 〈n, f, n2〉 ∈ H for n1 6= n2. This
cannot happen when n ∈ onstage(H) because of 5). Another
consequence of 5) is that the existence of an edge in H from
an onstage node n0 to a summary node ns implies that ns

represents at least one object. Condition 2) strengthens 1)
by requiring certain identity constraints for onstage nodes
to hold, as explained in Section 5.2.4.

5.2 Transfer Functions
The key complication in developing the transfer functions

for the role analysis is to accurately model the movement of
objects onstage and offstage. For example, a load statement
x=y.f may cause the object referred to by y.f to move on-
stage. In addition, if x was the only reference to an onstage
object o before the statement executed, object o moves off-
stage after the execution of the load statement, and thus
must satisfy the locallyConsistent predicate.

The analysis uses an expansion relation � to model the
movement of objects onstage and a contraction relation �
to model the movement of objects offstage. Conceptually,
the expansion relation pulls onstage nodes out of offstage
nodes as necessary to model the actions of each statement.
The contraction relation merges onstage nodes into offstage
nodes to model the movement of objects offstage.

We present our role analysis as an abstract execution rela-
tion ;. The abstract execution uses expansion and contrac-
tion to ensure that the abstraction relation α is a forward
simulation relation from the space of concrete heaps with
role assignments to the set RoleGraphs. The simulation re-
lation implies that the traces of ; include the traces of the
instrumented semantics −→. To make sure that the program
does not violate the role constraints, it is thus sufficient to
guarantee that ⊥G is not reachable via ;.

To prove that ⊥G is not reachable in the abstract exe-
cution, the analysis computes, for every program point p,
a set of role graphs G that conservatively approximates the
possible program states at point p. The transfer function
for a statement st is given as an image [[st]](G) = {G′ | G ∈

G, G
st
; G′}. The analysis computes the relation

st
; in three

steps: 1) ensure that the relevant nodes are instantiated us-

ing the expansion relation �; 2) perform the symbolic execu-

tion
st

=⇒ of the statement st; 3) if needed, merge nodes using
the contraction relation � to keep the role graph bounded.
Figure 4 shows how the abstraction relation α relates �,

6

st
=⇒, and � with the concrete execution −→ in the instru-
mented semantics. One of the role graphs G2 obtained after
expansion remains an abstraction of 〈Hc, ρc〉. The symbolic
execution of a statement followed by the contraction rela-
tion corresponds to a step in the instrumented operational
semantics.

Figure 5 presents the definition of the abstract execution

relation
st
;. Only the Load statement uses the expansion

relation, because the other statements operate on objects
that are already onstage. The Load, Copy, and New state-
ments may remove a local variable reference from an object,
so they use the contraction relation to move the object off-
stage if needed. For the rest of the statements, the abstract
execution reduces to the symbolic execution =⇒ described
in Section 5.2.3.

5.2.1 Expansion

Given a role graph 〈H, ρ, K〉, the expansion relation
n,f

�
(presented in Figure 6) attempts to produce a set of role
graphs 〈H ′, ρ′, K′〉 in each of which 〈n, f, n0〉 ∈ H ′ and
K(n0) = i. The analysis uses the expansion in the ab-
stract execution of the Load statement. The expansion first
performs a check for null pointer dereference and reports
an error if the check fails. If 〈n, f, n′〉 ∈ H and n′ is on-
stage, the expansion returns the original state. Otherwise,
the expansion first instantiates the offstage node n′ using
the instantiation relation ⇑.

The instantiation relation (Figure 7) generates a set of role
graphs which approximate the original role graph and have
n0 as an onstage node. The instantiation uses localCheck

(Section 5.2.4) to filter out cases which cannot occur given
the role constraints.

The analysis next applies the split operation ‖ (see [32])
if the acycCheck (Section 5.2.4) does not hold for the newly
instantiated node. Let ρ(n0) = r. The split operation en-
sures that in the role graph n0 is not a member of any cy-
cle of offstage nodes which contains only edges in acyclic(r)
by splitting the offstage nodes. In this way split encodes
the reachability information implied by the acyclicity con-
ditions. The analysis can use this information even after
the role of node n0 changes. In particular, this allows the
verification of the acyclicity condition for n0 when n0 moves
offstage.

5.2.2 Contraction

The analysis applies the contraction relation
n

� (Figure 8)
when a local variable reference to node n is removed. If
there are other local variables referencing n, contraction
does nothing. Otherwise n has just gone offstage, so con-
traction invokes nodeCheck (Section 5.2.4) to ensure that
the role of n is consistent with its referencing relationships.
If the check fails, the result is ⊥G. If the check succeeds,
the contraction applies the normalization operation to en-
sure that the role graph remains bounded.

The normalization operation takes a role graph 〈H, ρ, K〉
and produces a role graph 〈H ′, ρ′, K ′〉 that is a factor graph
of the original graph under the equivalence relation ∼. Two
offstage nodes are equivalent under ∼ if they have the same
role and the same may reachability from all onstage nodes.
Here we consider n to be reachable from an onstage node
n0 if there is some path in the role graph from n0 to n
whose edges belong to acyclic(ρ(n0)) and whose nodes are

all in offstage(H). In this way normalization avoids merging
nodes which were previously generated in the split operation
‖, while still ensuring a bound on the size of the role graph.

5.2.3 Symbolic Execution

The symbolic execution
st

=⇒ of most statements st in Fig-
ure 9 acts on the abstract heap in the same way that the
statement would act on the concrete heap. In particular,
the Store statement always performs strong updates. The
simplicity of the symbolic execution is due to conditions 3)
and 5) in the abstraction relation α. (The analysis main-
tains these conditions using the expansion relation �.) The
symbolic execution also verifies the consistency conditions
that are not verified by � or �.

5.2.3.1 Verifying Reference Removal Consistency.
The transfer relation

st
; for the Store statement can easily

verify the Store safety condition from section 4.2.2, because
the set of onstage and offstage nodes is known precisely for
every role graph. It returns ⊥G if the safety condition does
not hold.

5.2.3.2 Symbolic Execution of setRole.
The setRole(x:r) statement sets the role of node nx ref-

erenced by the variable x to r. Let G = 〈H, ρ, K〉 be the cur-
rent role graph and let 〈proc, x, nx〉 ∈ H . If nx has no adja-
cent offstage nodes, the role change always succeeds. In gen-
eral, there are restrictions on when the change can be done.
Let 〈Hc, ρc〉 be a concrete heap with role assignment repre-
sented by G and h be a homomorphism from Hc to H. Let
h(ox) = nx and r0 = ρc(ox). The symbolic execution must
make sure that the condition conW(ρc, Hc, offstage(Hc)) con-
tinues to hold after the role change. Because the set of on-
stage objects does not change, it suffices to ensure that the
original roles for offstage nodes are consistent with the new
role r. The acyclicity constraint involves only offstage ob-
jects, so it remains satisfied. The other role constraints are
local, so they can only be violated for offstage neighbors of
ox. To make sure that no violations occur, we require:

1. r ∈ fieldf (ρ(n)) for all 〈n, f, nx〉 ∈ H, and

2. 〈r, f〉 ∈ sloti(ρ(n)) for all 〈nx, f, n〉 ∈ H and every slot
i such that 〈r0, f〉 ∈ sloti(ρ(n))

This is sufficient to guarantee conW(ρc, Hc, offstage(Hc)).
To ensure condition 2) in Definition 6 of the abstraction
relation, we require that for every 〈f, g〉 ∈ identities(r),

1. 〈f, g〉 ∈ identities(r0) or

2. for all 〈nx, f, n〉 ∈ H : K(n) = i and (〈n, g, n′〉 ∈ H
implies n′ = nx).

We use roleChOk(nx, r, 〈H, ρ, K〉) to denote the check just
described.

5.2.4 Checking Node Properties
The analysis uses the localCheck, acycCheck, acycCheckAll,

and nodeCheck predicates to incrementally maintain the ab-
straction relation.

We first define the predicate localCheck, which roughly
corresponds to the predicate locallyConsistent (Definition 2),
but ignores the nonlocal acyclicity condition and addition-
ally ensures condition 2) from Definition 6. Our role analysis

7

Transition Definition Conditions

〈H, ρ, K〉
x=y.f

; G′ 〈H, ρ, K〉
ny,f

� G1
x=y.f
=⇒ G2

nx

� G′ 〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H

〈H, ρ, K〉
x=y
; G′ 〈H, ρ, K〉

x=y
=⇒G1

n1

� G′ 〈proc, x, n1〉 ∈ H

〈H, ρ, K〉
x=new

; G′ 〈H, ρ, K〉
x=new
=⇒ G1

n1

� G′ 〈proc, x, n1〉 ∈ H

〈H, ρ, K〉
s
;G′ 〈H, ρ, K〉

s
=⇒G′

s ∈ {x.f=y,
test(c),

setRole(x:r)}

Figure 5: Abstract Execution Relation ;

Transition Definition Condition

〈H, ρ, K〉
n,f

� 〈H, ρ, K〉 〈n, f, n′〉 ∈ H, n′ ∈ onstage(H)

〈H, ρ, K〉
n,f

� G′ 〈H, ρ, K〉
n0

⇑
n′

〈H1, ρ1, K1〉
n0

‖ G′ 〈n, f, n′〉 ∈ H, n′ ∈ offstage(H)
〈n, f, n0〉 ∈ H1

Figure 6: Expansion Relation �

〈H, ρ, K〉
n0

⇑
n′

〈H ′, ρ′, K ′〉

H ′ = H \ H0 ∪ H ′
0 ∪ H ′

1

n′ /∈ nodes(H ′), if K(n′) = i
ρ′ = ρ[n0 7→ ρ(n′)]
K′ = K[n0 7→ i]
localCheck(n0, 〈H

′, ρ′, K′〉)
H0 ⊆ H ∩

`

onstage(H) × F × {n′} ∪ {n′} × F × onstage(H)
´

H1 ⊆ H ∩
`

offstage(H) × F × {n′} ∪ {n′} × F × offstage(H)
´

H ′
0 = swing(n′, n0, H0)

H ′
1 ⊆ swing(n′, n0, H1)

swing(nold, nnew, H) = {〈nnew, f, n〉 | 〈nold, f, n〉 ∈ H} ∪ {〈n, f, nnew〉 | 〈n, f, nold〉 ∈ H} ∪
{〈nnew, f, nnew〉 | 〈nold, f, nold〉 ∈ H}

Figure 7: Instantiation Relation ⇑

〈H, ρ, K〉
n

�〈H, ρ, K〉 ∃x 〈proc, x, n〉 ∈ H

〈H, ρ, K〉
n

� normalize(〈H, ρ, K〉) nodeCheck(n, 〈H, ρ, K〉, offstage(H))

Figure 8: Contraction Relation �

Statement s Transition Conditions

x = y.f 〈H ⊎ {proc, x, nx}, ρ, K〉
s

=⇒〈H ⊎ {proc, x, nf}, ρ, K〉 〈proc, y, ny〉, 〈ny, f, nf 〉 ∈ H

x.f = y 〈H ⊎ {nx, f, nf}, ρ, K〉
s

=⇒〈H ⊎ {nx, f, ny}, ρ, K〉
〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H

nf ∈ onstage(H)

x = y 〈H ⊎ {proc, x, nx}, ρ, K〉
s

=⇒〈H ⊎ {proc, x, ny}, ρ, K〉 〈proc, y, ny〉 ∈ H

x = new 〈H ⊎ {proc, x, nx}, ρ, K〉
s

=⇒〈H ⊎ {proc, x, nn}, ρ
′, K〉

nn fresh
ρ′ = ρ[nn 7→ unknown]

test(c) 〈H, ρ, K〉
s

=⇒〈H, ρ, K〉 satisfied(c, H)

setRole(x:r) 〈H, ρ, K〉
s

=⇒〈H, ρ[nx 7→ r], K〉
〈proc, x, nx〉 ∈ H

roleChOk(nx, r, 〈H, ρ, K〉)

satisfied(x==y, Hc) iff {o | 〈proc, x, o〉 ∈ Hc} = {o | 〈proc, y, o〉 ∈ Hc}

satisfied(!(x==y), Hc) iff not satisfied(x==y, Hc)

Figure 9: Symbolic Execution of Basic Statements =⇒

8

uses localCheck in the instantiation relation (Section 5.2.1)
and in the contraction relation (Section 5.2.2).

Definition 7. For a role graph G = 〈H, ρ, K〉, an in-
dividual node n and a set S, the predicate localCheck(n, G)
holds iff the following conditions are met for r = ρ(n).

1A. (Outgoing fields check) For fields f ∈ F , if 〈n, f, n′〉 ∈
H then ρ(n′) ∈ fieldf (r).

2A. (Incoming slots check) Let {〈n1, f1〉, . . . , 〈nk, fk〉} =
{〈n′, f〉 | 〈n′, f, n〉 ∈ H} be the set of all aliases of
node n in abstract heap H. Then k = slotno(r) and
there exists a permutation p of the set {1, . . . , k} such
that 〈ρ(ni), fi〉 ∈ slotpi

(r) for all i.

3A. (Identity Check) If 〈n, f, n′〉 ∈ H, 〈n′, g, n′′〉 ∈ H,
〈f, g〉 ∈ identities(r), and K(n′) = i, then n = n′′.

4A. (Neighbor Identity Check) For every edge 〈n′, f, n〉 ∈
H, if K(n′) = i, ρ(n′) = r′ and 〈f, g〉 ∈ identities(r′)
then 〈n, g, n′〉 ∈ H.

5A. (Field Sanity Check) For every f ∈ F there is exactly
one edge 〈n, f, n′〉 ∈ H.

Conditions 1A and 2A correspond to conditions 1) and 2)
in Definition 2. Condition 3) in Definition 4 is not neces-
sarily implied by condition 3A) if some of the neighbors of
n are summary nodes. Condition 3) cannot be established
based only on summary nodes, because verifying an iden-
tity constraint for field f of node n where 〈n, f, n′〉 ∈ H
requires knowing the identity of n′, not only its existence
and role. We therefore rely on Condition 2) of Definition 6
to ensure that the identity relations of neighbors of node n
are satisfied before n moves offstage.

The predicate acycCheck(n, G, S) verifies the acyclicity
condition from Definition 4 for the node that has just been
brought onstage. The split operation uses acycCheck to
check whether it should split any nodes (Section 5.2.1). The
set S represents offstage nodes.

Definition 8. We say that a node n satisfies an acyclic-
ity check in graph G = 〈H, ρ, K〉 with respect to the set
S, and we write acycCheck(n, G, S), iff it is not the case
that H contains a cycle n1, f1, . . . , ns, fs, n1 where n1 = n,
f1, . . . , fs ∈ acyclic(ρ(n)) and n1, . . . , ns ∈ S.

The analysis uses the predicate acycCheckAll(n, G, S) in
the contraction relation (Section 5.2.2) to make sure that n
is not a member of any cycle that would violate the acyclicity
condition of any of the nodes in S, including n.

Definition 9. We say that a node n satisfies a strong
acyclicity check in graph G = 〈H, ρ, K〉 with respect to a
set S, and we write acycCheckAll(n, G, S), iff it is not the
case that: H contains a cycle n1, f1, . . . , ns, fs, n1 where
n1 = n, f1, . . . , fs ∈ acyclic(ρ(ni)), for some 1 ≤ i ≤ s,
and n1, . . . , ns ∈ S.

acycCheckAll is a stronger condition than acycCheck because
it ensures the absence of cycles containing n for acyclic(ρ(ni))
fields of all offstage nodes ni, and not only for the fields
acyclic(ρ(n)).

The analysis uses the predicate nodeCheck to verify that
bringing a node n offstage does not violate role consistency
for offstage nodes.

Definition 10. nodeCheck(n, G, S) holds iff both predi-
cates localCheck(n, G) and acycCheckAll(n, G, S) hold.

6. INTERPROCEDURAL ROLE ANALYSIS
Our interprocedural role analysis can be seen as similar

in the spirit to the functional approach to interprocedural
dataflow analysis [42]. However, simply tagging a dataflow
fact G with the abstract values of the initial procedure con-
text G0 is not appropriate for a complex abstraction such
as role graphs. We instead approximate the transfer func-
tions in the concrete semantics with procedure interfaces
consisting of: 1) an initial context and 2) a set of effects.
Effects summarize store statements and can naturally de-
scribe local heap modifications. We assume that procedure
interfaces are supplied and we are concerned with a) veri-
fying that procedure interfaces conservatively approximate
behavior of the procedure, and b) instantiating procedure
interfaces at the call sites.

6.1 Procedure Interfaces
A procedure interface for a procedure proc extends the

procedure signature with an initial context context(proc),
and procedure effects effect(proc).

6.1.1 Initial Context
An initial context is a description of the initial role graph

of the procedure. The initial role graph specifies a set of
concrete heaps at procedure entry and assigns names for
the sets of objects in these heaps. We denote the initial role
graph by 〈HIC, ρIC, KIC〉. The set of legal states at procedure
entry is the set of concrete heaps that are represented by
the initial role graph:

Definition 11. We say that a concrete heap 〈Hc, ρc〉 is
represented by the initial role graph 〈HIC, ρIC, KIC〉 and we
write 〈Hc, ρc〉α0〈HIC, ρIC, KIC〉, iff there exists a function h0 :
nodes(Hc) → nodes(HIC) such that

1. conW(ρc, Hc, h
−1
0 (read(proc));

2. h0 is a graph homomorphism;

3. KIC(n) = i implies |h−1
0 (n)| ≤ 1;

4. h0(nullc) = null and h0(procc) = proc;

5. ρc(o) = ρ(h0(o)) for every object o ∈ nodes(Hc).

Here read(proc) is the set of initial role graph nodes that
represent the objects read by the procedure as specified by
its read effects (Section 6.1.2). For simplicity, we assume one
context per procedure; it is straightforward to generalize the
treatment to multiple contexts.

We explain the syntax of the initial role graph through the
example of the insert procedure in Figure 10. The insert

procedure inserts an isolated object with no slots or fields
onto the end of an acyclic singly linked list. As a result, the
role of the inserted object changes to ListNode.

Syntactically, each procedure specifies ρIC and KIC using
a nodes declaration and specifies HIC using an edges dec-
laration. The declaration nodes introduces individual and
summary nodes and specifies a role for every node at pro-
cedure entry. Individual nodes are denoted with lowercase
identifiers, summary nodes with uppercase identifiers. The
procedure interface in Figure 10 introduces two individual
nodes: ln, denoting the object referenced by the l param-
eter, and xn, denoting the object referenced by the x pa-
rameter. The roles of these nodes at procedure entry are
List and Isolated, as the declaration of parameters l and
x indicates. The interface can use individual and summary

9

nodes to specify the heap structure of objects that are not
directly referenced by parameters. In this case the interface
must explicitly specify the roles of these nodes. In general,
the interface can use multiple summary nodes to specify the
disjointness of heap regions and reachability properties.

The initial role graph may contain two kinds of edges:
parameter edges and heap edges. A parameter edge p->pn

is interpreted as 〈proc, p, pn〉 ∈ HIC. The role of a parame-
ter node referenced by parami(proc) is always preRi(proc). A
heap edge n -f-> m denotes an edge 〈n, f, m〉 ∈ HIC. The pro-
cedure interface in Figure 10 introduces two parameter edges
l->xn and x->xn, and two heap edges ln -next-> ListNode

and ln -next-> null. The two heap edges are written us-
ing a shorthand notation that groups edges with the same
source.

We assume that the initial role graph always contains the
role reference diagram RRD. We call nodes from the RRD

anonymous nodes. The initial context descriptions denote
these nodes with role names. The procedure interface in
Figure 10 uses ListNode as an anonymous node. The de-
scription of the initial role graph specifies the edges between
explicitly declared nodes as well as the edges between anony-
mous nodes and the explicitly declared nodes. In our exam-
ple there is one edge, ln -next-> ListNode, from a declared
node (ln) to an anonymous node (ListNode).

The analysis automatically derives the edges between the
anonymous nodes from the RRD, leveraging the global role
definitions to reduce the size of the initial role graph. A
procedure can even entirely omit the initial context speci-
fication and use the RRD as a default initial role graph, as
in Figure 3. As a notational convenience, the procedure in-
terface description may use parameter names to denote the
nodes referenced by the parameters.

6.1.2 Procedure Effects
Procedure effects conservatively approximate the region of

the heap that the procedure accesses and indicate changes
to the referencing relationships within this region. There
are two kinds of effects: read effects and write effects.

A read effect specifies a set read(proc) of initial role graph
nodes accessed by the procedure. It is used to ensure that
the accessibility condition in Section 4.2.3 is satisfied. If
the set of nodes read(proc) is mapped to a node n which is
onstage in the caller but is not an argument of the procedure
call, a role check error is reported at the call site. This
check guarantees that the callee never accesses objects with
temporarily violated roles.

A write effect of the form e1.f = e2 summarizes the effect
of Store operations within the callee. The expression e1

denotes the written objects, f denotes the written field, and
e2 denotes the objects whose references are written into the
field. Write effects are may effects by default, which means
that the procedure is free not to perform them. If the !

keyword precedes the effect, the procedure must perform
the effect.

In Figure 10 two write effects summarize the body of the
procedure insert. The first write effect indicates that the
procedure may perform zero or more Store operations to
the next fields of objects mapped to ln or ListNode in
context(proc). The second write effect indicates that the ex-
ecution of the procedure must perform a Store to the next

field of the object mapped to the xn node, where the ref-
erence stored is a ListNode object or null. A procedure

role List {

fields next : ListNode | null;

slots none;

}

role ListNode {

fields next : ListNode | null;

slots List.next | ListNode.next;

}

role Isolated { }

procedure insert(l: List,

x: Isolated ->> ListNode)

nodes ln, xn;

edges l-> ln, x-> xn,

ln -next-> ListNode|null;

effects ln|ListNode . next = xn,

! (xn.next = ListNode|null);

var c, p;

{

p = l;

c = l.next;

while (c!=null) {

p = c;

c = p.next;

}

p.next = x;

x.next = c;

setRole(x:ListNode);

}

Figure 10: Insert Procedure for Acyclic List

interface may omit a read effect for a node that appears
on the left-hand side of some write effect in the interface.
Hence there is no need to declare read effects in Figure 3 or
Figure 10.

The analysis uses write effects to modify the caller’s role
graph to conservatively model any writes that an execution
of the procedure could perform.

Effects also summarize assignments that procedures per-
form to newly created objects. Here we adopt the simple
solution of using a single summary node denoted NEW to
represent all objects created inside the procedure. We write
nodes0(HIC) for the set nodes(HIC) ∪ {NEW}.

We represent all may write effects as a set mayWr(proc) of
triples 〈n, f, n′〉 where n, n′ ∈ nodes0(HIC) and f ∈ F . We
represent must write effects as a sequence mustWrj(proc) of
subsets of the set K−1

IC
(i) × F × nodes0(HIC). Here 1 ≤ j ≤

mustNo(proc) where mustNo(proc) is the number of must
write effects of procedure proc.

To simplify the interpretation of the declared procedure
effects in terms of concrete reads and writes we require that
the union ∪imustWri(proc) must be disjoint from the set
mayWr(proc). We also require the nodes n1, . . . , nk in a
must write effect n1| · · · |nk.f = e2 to be individual nodes.
This allows strong updates when instantiating effects (Sec-
tion 6.3.2).

6.2 Verifying Procedure Interfaces
In this section we show how the analysis makes sure that

a procedure conforms to its specification, expressed as an
initial context with a list of effects. To verify the effects, we
first extend the analysis representation from Section 5.1. A
non-error role graph is now a tuple 〈H, ρ, K, τ, E〉 where:

10

[[entry•]] =
n

Gk

˛

˛G0
n17−→

n′

1
,p1

· · ·
nk7−→

n′

k
,pk

Gk,

G0 = 〈H0, ρIC, KIC, id, ∅〉,
id(x) = x, for x ∈ nodes(H0),
Hp = {〈proc, pi, n〉 | 〈proc, pi, n〉 ∈ HIC},
H0 = HIC \ Hp,

∀i 〈proc, pi, n
′
i〉 ∈ Hp

o

G
n07−→

n′,p
〈H2 ∪ {〈proc, p, n0〉}, ρ2, K2, τ2, E2〉

where G
n0

⇑
n′

G1

n0

‖ 〈H2, ρ2, K2, τ2, E2〉

Figure 11: Role Graphs at Entry to proc(p1, . . . , pk)

1. τ : nodes(H) → nodes0(HIC) is an initial context trans-
formation that assigns an initial role graph node τ(n) ∈
nodes(HIC) to every node n representing an object that
existed prior to the procedure call. It also assigns NEW

to every node representing an object created during
the execution of the procedure;

2. E ⊆ ∪imustWri(proc) is a list of must write effects
that the procedure has performed so far.

The initial context transformation τ tracks how objects have
moved since the beginning of the procedure execution and
is essential for the verification of the effects, which refer to
initial role graph nodes.

We represent the list E of performed must effects as a
partial map from the set K−1

IC (i) × F to nodes0(HIC). This
representation allows the analysis to perform must effect
“folding” by recording only the last must effect for every
pair 〈n, f〉 of individual node n and field f .

6.2.1 Role Graphs at Procedure Entry
Our role analysis creates the set of role graphs at proce-

dure entry from the initial role graph context(proc). This is
conceptually simple because of the similarity of the abstrac-
tion relation for role graphs (Section 5.1) and the semantics
of initial role graphs (Section 6.1). The difference is that in
the role graph, the activation record proc has exactly one
reference for each parameter, and this reference points to an
instantiated onstage node. The analysis therefore instanti-
ates the nodes in the initial role graph to create a set of role
graphs that satisfy the representation invariant from Section
5.1.

Figure 11 describes this process. The analysis first selects
one parameter edge for each parameter. It then uses the
parameter expansion relation 7−→ to instantiate and split
the referenced node. The parameter expansion relation 7−→
is similar to the expansion relation � from Section 5.2.1.

6.2.2 Verifying Basic Statements
To ensure that a procedure conforms to its interface, the

analysis uses the map τ to assign every Load and Store state-
ment to a declared effect. Figure 12 describes this effect
verification. The symbolic execution of a Load statement
x=y.f makes sure that the load is recorded in some read
effect. If this is not the case, an error is reported. The sym-
bolic execution of the Store statement x.f=y first retrieves
nodes τ(nx) and τ(ny) of the initial role graph that corre-

spond to nodes nx and ny in the current role graph. If the
effect 〈τ (nx), f, τ (ny)〉 is declared as a may write effect, the
execution proceeds as usual. Otherwise, the effect is used to
update the list E of must-write effects. The list E is checked
at the end of procedure execution to allow the folding of the
effects performed on the same node. The symbolic execu-
tion of the New statement updates the initial role graph
transformation τ assigning τ (nn) = NEW for the new node
nn.

It is straightforward to lift the expansion and contraction
relations from Section 5 to operate on role graphs contain-
ing τ and E as components. The expansion and contraction
relations do not modify the list of performed effects E. In-
stantiation ⇑ of node n′ into node n0 assigns τ(n0) = τ(n′),
and splitting copies the values of τ into the nodes generated
as a result of split. The normalization operation does not
merge nodes n1 and n2 if τ(n1) 6= τ(n2).

6.2.3 Verifying Procedure Postconditions
At the end of the procedure, the analysis verifies that

ρ(ni) = postRi(proc) where 〈proc, parami(proc), ni〉 ∈ H,
and then performs a node check on all onstage nodes us-
ing the predicate nodeCheck(n, 〈H, ρ, K〉, nodes(H)) for all
nodes n ∈ onstage(H).

The analysis also verifies that every performed effect in E
can be attributed to exactly one declared must effect. This
means that for k = mustNo(proc) there exists a permutation
s of the set {1, . . . , k} such that es(i) ∈ mustWri(proc) for
all i, 1 ≤ i ≤ k.

6.3 Analyzing Call Sites
The analysis updates the set of role graphs at the pro-

cedure call site based on the callee’s interface. Consider a
procedure proc with a call site of the form proc′(x1, . . . , xp).
Let 〈HIC, ρIC, KIC〉 be the initial role graph of the callee proc′.
The computation of the transfer function for a call site has
the following phases:

1. Parameter Check ensures that roles of parameters
conform to the roles expected by the callee proc′.

2. Context Matching (matchContext) ensures that the
caller’s role graphs represent a subset of the concrete
heaps represented by 〈HIC, ρIC, KIC〉 by deriving a map-
ping µ from the caller’s role graph to nodes(HIC).

3. Effect Instantiation (
FX
−→) uses mayWr(proc′) and

mustWri(proc′) to approximate all changes to the role
graph that proc′ may perform.

4. Role Reconstruction (
RR
−→) uses final roles for pa-

rameter nodes, postRi(proc′), combined with global
role definitions, to reconstruct roles for all nodes in
the part of the role graph representing modified region
of the heap.

The parameter check requires nodeCheck(ni, G, offstage(H)∪
{nj}j) for every parameter node ni. We next describe the
other three phases.

6.3.1 Context Matching
Figure 13 presents our context matching function. The

matchContext function takes a set G of role graphs and pro-
duces a set of pairs 〈G, µ〉 where G = 〈H, ρ, K, τ, E〉 is a role
graph and µ is a homomorphism from H to HIC. The homo-
morphism µ guarantees that α−1(G) ⊆ α−1

0 (context(proc′))

11

Statement s Transition Constraints

x = y.f 〈H ⊎ {proc, x, nx}, ρ, K, τ, E〉
s

=⇒〈H ⊎ {proc, x, nf}, ρ, K, τ, E〉
〈proc, y, ny〉, 〈ny, f, nf 〉 ∈ H

τ(nf) ∈ read(proc)

x = y.f 〈H ⊎ {proc, x, nx}, ρ, K, τ, E〉
s

=⇒⊥G
〈proc, y, ny〉, 〈ny, f, nf 〉 ∈ H

τ(nf) /∈ read(proc)

x.f = y 〈H ⊎ {nx, f, nf}, ρ, K, τ, E〉
s

=⇒〈H ⊎ {nx, f, ny}, ρ, K, τ, E〉
〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H

〈τ(nx), f, τ(ny)〉 ∈ mayWr(proc)

x.f = y 〈H ⊎ {nx, f, nf}, ρ, K, τ, E〉
s

=⇒〈H ⊎ {nx, f, ny}, ρ, K, τ, E′〉
〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H

〈τ(nx), f, τ (ny)〉 ∈ ∪imustWri(proc)
E′ = updateWr(E, 〈τ (nx), f, τ(ny)〉)

x.f = y 〈H ⊎ {nx, f, nf}, ρ, K, τ, E〉
s

=⇒⊥G

〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H
〈τ (nx), f, τ(ny)〉 /∈ mayWr(proc)∪

∪imustWri(proc)

x = new 〈H ⊎ {proc, x, nx}, ρ, K, τ, E〉
s

=⇒〈H ⊎ {proc, x, nn}, ρ, K, τ ′, E〉
nn fresh

τ ′ = τ [nn 7→ NEW]

updateWr(E, 〈n1, f, n2〉) = E[〈n1, f〉 7→ n2]

Figure 12: Verifying that Load, Store, and New Statements Respect the Declared Effects

because the homomorphism h0 from Definition 11 can be
constructed from the homomorphism h in Definition 6 by
putting h0 = µ ◦ h. This implies that it is legal to call proc′

with any concrete graph represented by G.
The algorithm in Figure 13 starts with empty maps µ =

nodes(G) × {⊥} for each role graph G in the set of role
graphs. The algorithm extends each map µ until µ is defined
on all nodes(G) or there is no way to extend it further. It
proceeds by choosing a role graph 〈H, ρ, K, τ, E〉 and node
n0 for which the mapping µ is not defined yet. It then
finds candidates in the initial role graph that n0 can be
mapped to. The accessibility requirement—that a procedure
may access no object with an incorrect role—is enforced by
making sure that nodes in inaccessible are never mapped
onto nodes in read for the callee. As long as this requirement
holds, nodes in inaccessible can be mapped onto nodes of any
role since their role need not be correct anyway.

We generally require that the set µ−1(n′
0) for individual

node n′
0 in the initial role graph contain at most one node,

and this node must be individual. In contrast, there might
be many individual and summary nodes mapped onto a sum-
mary node. We relax this requirement and instantiate a
summary node in the caller if, at some point, that is the
only way to extend the mapping µ (this corresponds to the
first recursive call in the definition of match in Figure 13).

The algorithm is nondeterministic in the order in which
nodes to be matched are selected. One possible ordering of
nodes is the depth-first order in the role graph starting from
parameter nodes. If some nondeterministic branch does not
succeed, the algorithm backtracks. The function fails if all
branches fail. In that case the procedure call is considered
illegal and ⊥G is returned. The algorithm terminates since
every recursive call to matchContext defines µ(n) where µ(n)
was previously undefined.

6.3.2 Effect Instantiation
The result of the matching algorithm is a set of pairs

〈G, µ〉 of role graphs and mappings. These pairs are used to
instantiate the procedure effects in each of the role graphs
of the caller. The analysis verifies that the region read by
the callee is included in the region read by the caller. Then

it uses µ to find the inverse image S of the performed write
effects. The effect instantiation groups effects in S by the
source n and field f . There are three cases when the analysis
applies an effect to a node n and field f :

1. There is only one node in nodes(H) that is a target of
the write effect, and the effect is a must write effect. In
this case the analysis performs a strong update, which
is possible because n is an individual node.

2. The condition in 1) is not satisfied, and the node n is
offstage. In this case the analysis conservatively adds
all relevant edges from S to H , using the fact that
edges for offstage nodes are may edges.

3. The condition in 1) is not satisfied, but the node n
is onstage i.e. it is a parameter node. In this case
the analysis does a case analysis, choosing which write
was performed last and generating a new role graph
for each case. If there are no must effects that affect
n, the analysis also generates the role graph in which
the original references are unchanged.

6.3.3 Role Reconstruction
Our procedure effects approximate structural changes to

the heap, but they do not provide information about role
changes for non-parameter nodes. The role reconstruction

algorithm
RR
−→ in Figure 14 uses the role changes for the

parameters and the global role definitions to conservatively
infer possible roles for these nodes after the procedure call.

The role reconstruction algorithm first finds the set N0

of all nodes that might be accessed by the callee (these are
nodes whose roles may change). It then splits each node
n ∈ N0 into |R| different nodes ρ(n, r), one for each role
r ∈ R. The node ρ(n, r) represents the subset of objects that
were initially represented by n and have role r after the pro-
cedure executes. The analysis derives edges between nodes
in the new graph by simultaneously satisfying 1) structural
constraints between nodes of the original graph; and 2)
global role constraints from the role reference diagram. In
this way, the analysis preserves the context-specific infor-
mation on reachability, while assigning consistent roles to

12

〈〈H, ρ, K, τ, E〉, µ〉
RR
−→〈H ′, ρ′, K ′, τ ′, E′〉

H ′ = GC(H0), 〈procj , xi, ni〉 ∈ H, N0 = µ−1[read(proc′)]
s : N0 × R → N where s(n, r) are all different nodes fresh in H
ρ′ = ρ \ (N0 × R) ∪ {〈s(n, r), r〉 | n ∈ N0, r ∈ R} \ ({ni}i × R) ∪ {〈ni, postRi(proc)〉}
K′(s(n, r)) = K(n), τ ′(s(n, r)) = τ(n), E′ = E
H0 = H \ {〈n1, f, n2〉 | n1 ∈ N0 or n2 ∈ N0}

∪ {〈s(n1, r1), f, s(n2, r2)〉 | 〈n1, f, n2〉 ∈ H, 〈r1, f, r2〉 ∈ RRD}
∪ {〈n1, f, s(n2, r2)〉 | 〈n1, f, n2〉 ∈ H, 〈ρIC(µ(n1)), f, r2〉 ∈ RRD}
∪ {〈s(n1, r1), f, n2〉 | 〈n1, f, n2〉 ∈ H, 〈r1, f, ρIC(µ(n2))〉 ∈ RRD}

Figure 14: Call Site Role Reconstruction

matchContext(G) = match({〈G, nodes(G) × {⊥}〉 | G ∈ G})

match : P(RoleGraphs × (N ∪ {⊥})N)
⇀ P(RoleGraphs × NN)

match(Γ) =
Γ0 := {〈G, µ〉 ∈ Γ | µ−1(⊥) 6= ∅};
if Γ0 = ∅ then return Γ;
〈〈H, ρ, K, τ, E〉, µ〉 := choose Γ0;
Γ′ = Γ \ 〈〈H, ρ, K, τ, E〉, µ〉;
paramnodes := {n | ∃i : 〈proc, xi, n〉 ∈ H};
inaccessible := onstage(H) \ paramnodes;
n0 := choose µ−1(⊥);
candidates := {n′ ∈ nodes(HIC) |

(n0 /∈ inaccessible and ρIC(n
′) = ρ(n0)) or

(n0 ∈ inaccessible and n′ /∈ read(proc′))}
T

〈n0,f,n〉∈H

µ(n) 6=⊥

n

n′
˛

˛

˛ 〈n′, f, µ(n)〉 ∈ HIC

o

T

〈n,f,n0〉∈H

µ(n) 6=⊥

n

n′
˛

˛

˛
〈µ(n), f, n′〉 ∈ HIC

o

;

if candidates = ∅ then fail ;
if candidates = {n′

0}, K(n0) = s, KIC(n
′
0) = i, µ−1(n′

0) = ∅

then match(Γ′ ∪ {〈G′, µ[n1 7→ n′
0]〉 | 〈H, ρ, K, τ, E〉

n1

⇑
n0

G′})

else n′
0 := choose {n′ ∈ candidates | K(n′) = s or

(K(n0) = i, µ−1(n′) = ∅)}
match(Γ′ ∪ 〈〈H, ρ, K, τ, E〉, µ[n0 7→ n′

0]〉);

Figure 13: The Context Matching Algorithm

all offstage nodes. The nodes ρ(n, r) not connected to the
parameter nodes are garbage collected in the role graph. In
practice, we can generate nodes ρ(n, r) on demand starting
from the parameters, making sure that they are reachable
while satisfying both kinds of constraints.

7. EXTENSIONS
This section presents extensions of the basic role system.

7.1 Cascading Role Changes
In some cases it is desirable to change the roles of an entire

set of offstage objects without bringing them onstage. We
use the statement setRoleCascade(x1 : r1, . . . , xn : rn) to
perform a cascading role change on a set of objects. The

need for cascading role changes arises when roles encode
reachability properties.

Given a role graph 〈H, ρ, K, E〉, a cascading role change
finds a new valid role assignment ρ′ in which the onstage
objects have the desired roles and the roles of offstage ob-
jects are adjusted appropriately. This operation makes sure
it is legal to change the role of a node n from ρ(n) to ρ′(n)
given that the neighbors of n also change role according to
ρ′. This check resembles the check in the setRole statement
of Section 5.2.3.2.

There may be zero or more solutions that satisfy the con-
straints for a given cascading role change. Any solution that
satisfies the constraints is sound with respect to the original
semantics.

7.2 Simultaneous Roles
We next sketch an extension of our role framework to allow

objects to play multiple roles simultaneously. In the context
of simultaneous roles, each role specifies constraints on some
of the fields and aliases of an object. An object playing
multiple roles simultaneously satisfies the conjunction of the
constraints associated with each role. For example, consider
the definition of a tree:

role TreeHeader {

fields left : TreeNode | null,

right : TreeNode | null;

left,right slots none;

}

role TreeNode {

fields left : TreeNode | null,

right : TreeNode | null;

left,right slots : TreeHeader.left

| TreeHeader.right

| TreeNode.left

| TreeNode.right;

}

This definition specifies that a data structure is a tree along
the left and right fields, but does not constrain fields other
than left and right. Similarly, the definition of a linked
list specifies constraints only for the next field:

role ListHeader {

fields next : ListNode | null;

next slots none;

}

role ListNode {

fields next : ListNode | null;

next slots ListHeader.next | ListNode.next;

}

13

Note how the definition of ListHeader specifies the absence
of any aliases along the next field. We can combine the tree
and list roles to obtain a threaded tree role:

role LinkedTreeNode extends TreeNode,ListNode { }

Every object playing the LinkedTreeNode role simultane-
ously plays both the TreeNode and ListNode roles.

In the context of simultaneous roles, not mentioning a
field f in a definition of role r implies no constraints on
the f -references of the objects playing role r. A slot con-
straint for a simultaneous role r contains an additional set
scope(r) = {f1, . . . , fk} of fields that determines the scope of
the slot constraints. A slot declaration gives complete aliases
for references from other objects along scope(r) fields, but
imposes no constraints on aliases from other fields.

Role definitions for simultaneous roles can reuse previous
role definitions via the extends keyword. We represent the
extends relationships by the set of roles subroles(r) for each
role r. A set S ⊆ R is closed if subroles(r) ⊆ S for every
r ∈ S.

To give semantics for simultaneous roles, we define a role-
set assignment ρs

c to assign a closed set of roles to every
object. We say that a role assignment ρc is a choice of a role-
set assignment ρs

c iff ρc(r) ∈ ρs
c(r) for every role r ∈ R. We

first generalize locallyConsistent to take the role of the object
o independently of the role assignment ρc. The following
definition is similar to Definition 2.

Definition 12. locallyConsistent(o, Hc, ρc, r) iff all of the
following conditions are met.

1) For every field f ∈ F such that fieldf is defined, if
〈o, f, o′〉 ∈ Hc, then ρc(o

′) ∈ fieldf (r).

2) Let {〈o1, f1〉, . . . , 〈ok, fk〉} = {〈o′, f〉 | 〈o′, f, o〉 ∈ Hc,
f ∈ scope(r)} be the set of all scope(r)-aliases of node
o. Then k = slotno(r) and there exists some permu-
tation p of the set {1, . . . , k} such that 〈ρc(oi), fi〉 ∈
slotpi(r) for all i.

3) If 〈o, f, o′〉 ∈ Hc, 〈o
′, g, o′′〉 ∈ Hc, and

〈f, g〉 ∈ identities(r), then o = o′′.

4) Hc does not contain a cycle o1, f1, . . . , os, fs, o1 where
o1 = o and f1, . . . , fs ∈ acyclic(r)

We now define local role-set consistency as follows.

Definition 13. locallyRSConsistent(o, Hc, ρ
s
c) iff for each

r ∈ ρs
c(o) there exists a role assignment ρc which is a choice

of ρs
c such that locallyConsistent(o, Hc, ρc, r) holds. We say

that a heap Hc is role-set consistent for a role-set assignment
ρs

c if locallyRSConsistent(o, Hc, ρ
s
c) for every o ∈ nodes(Hc).

We call such role-set assignment ρs
c a valid role-set assign-

ment.

We similarly extend the definitions of consistency for a given
set of objects from Definition 3.

Simultaneous roles enable us to develop a role system that
supports a form of polymorphism. We allow role graphs at
procedure call sites to have more specific roles than roles in
the initial context of the callee. For example, a procedure
for manipulating a linked list can be called on a node of
a threaded tree. The analysis uses the procedure effects
to identify the unmodified sets of references. Because the
linked list operation does not modify the tree references,
our analysis preserves the information about the tree edges
across the procedure call.

8. RELATED WORK
Typestate, as a type system extension for statically veri-

fying dynamically changing object properties, was originally
proposed in [45, 44]. In this system, the state of an object
depends only on its initialization status. In general, alias-
ing causes problems for typestate-based systems because the
declared typestates of all aliases must change whenever the
state of the referred object changes. Because of this prob-
lem, the original typestate system did not support refer-
ences to dynamically allocated objects. More recently pro-
posed typestate approaches use linear types for heap ref-
erences to support state changes of dynamically allocated
objects [10]. Researchers have also developed typestate ap-
proaches for verifying safety properties of assembly language
programs [51, 52].

Motivated by the need to enforce safety properties in low-
level software systems, several researchers have developed
systems that use extensions of linear types to avoid general
aliasing and rely on language design to avoid non-local type
inference [43, 49, 9]. These systems take a construction-
based approach that specifies data structures as unfoldings
of basic elaboration steps [49]. Similarly to shape types [13]
this approach can capture very precise properties of tree-
like data structures but cannot approximate data structures
such as sparse matrices.

Graph types and the Pointer Assertion Logic [28, 29, 26,
34] use monadic second-order logic [46] to describe heap in-
variants. In these systems, each data structure must be rep-
resented as a spanning tree backbone with additional pointer
fields constrained to denote exactly one target node [34]. If
a data structure is expressible in this way, the system can
verify strong properties about it. Because of the constraints
on pointer fields, however, it is not possible to approximate
the full range of data structures. It is also impossible to
describe objects that participate in multiple data structures
at the same time because the system does not allow objects
to be part of multiple backbones simultaneously.

Like shape analysis techniques [7, 15, 40, 41] we have
adopted a constraint-based approach that characterizes data
structures in terms of the constraints that they satisfy. This
approach supports a wide range of data structures, but gives
up some precision to achieve this generality. A high-level
difference between previous approaches and our approach is
that our approach focuses on global aspects such as the par-
ticipation of objects in multiple data structures, while previ-
ous approaches focused on detailed properties of individual
data structures. We do, however, use techniques similar to
those developed previously to analyze detailed properties of
a single data structure. For example, our instantiation rela-
tion is analogous to the materialization operation of [40, 41,
33], and our split operation [32, 31] achieves a similar goal to
the focus operation of [41]. Like the parametric analysis of
[41], our analysis uses reachability properties to keep nodes
separate in the abstract graph, but differs in that it does not
maintain an explicit reachability predicate for every node.

Researchers have developed a precise interprocedural anal-
ysis that treats activation records as dynamically allocated
structures [37]. This approach also effectively synthesizes an
application-specific set of contexts, eliminating any need for
the program to specify additional interface information. Our
approach differs in that it uses a less precise but more scal-
able treatment of procedures. It also uses a compositional
approach that analyzes each procedure once in isolation to

14

verify that it conforms to its interface. The goal is to obtain
an interface general enough to be used in any context, not
just those contexts that happen to appear in the specific
program at hand.

Context-sensitive pointer analyses [50, 17, 38] typically
compute points-to relationships by caching generated con-
texts and using a fixpoint computation inside strongly con-
nected components of the call graph. Our analysis tracks
much more detailed information about the heap and uses
procedure effects to achieve compositionality at the level of
procedures.

The path matrix approaches [16, 15] have been used to
implement efficient interprocedural analyses that infer one
level of referencing relationships, but are not sufficiently pre-
cise to track must aliases of heap objects for programs with
destructive updates of more complex data structures.

The ADDS and ASAP languages allow programmers to
express data structure properties [23, 25, 24]. This work uses
data structure invariants to enable compiler optimizations,
but, unlike our role analysis, does not verify that operations
on data structures preserve these invariants [22].

Several researchers have developed annotation languages
to enable the separate analysis of multiple procedures, specif-
ically for pointer analysis, bounds analysis of array indices,
and effect analysis [19, 39]. The techniques presented in this
paper track much more detailed aliasing properties. Our
procedure effects are also more specific and precise than the
effects in [27]; as a result they are not idempotent. Both
verification and instantiation of our effects require specific
techniques that precisely keep track of the correspondence
between the initial heap of a procedure and the heap at each
program point.

The object-oriented community has long been aware of
the benefits of dynamically changing classes in large sys-
tems [36]. Recognizing these benefits, researchers have pro-
posed dynamic techniques that change the class of an object
to reflect its state changes [18, 6, 11, 14, 1, 53, 47]. These
systems illustrate the need for a static system that can verify
the correct use of objects with changing roles.

The presence of aliasing makes it difficult to enforce en-
capsulation in object-oriented languages. Motivated by this
problem, researchers have developed several systems [21, 2,
8, 35] that restrict aliasing to prevent representation expo-
sure. Many of these systems use unique references to limit
aliasing, an approach that has also been proposed to ver-
ify the absence of data races in multithreaded programs [4]
and to improve the ability of the compiler to generate opti-
mized code [12]. The work on alias burying [5] shows how
a static analysis can increase the flexibility of unique refer-
ences. These approaches do not attempt to describe more
general invariants of recursive data structures or participa-
tion of objects in data structures.

Model checking [3] can also be used to verify properties of
dynamically allocated data structures, but additional tech-
niques appear necessary to represent properties of heap re-
gions not referenced directly by local variables.

9. CONCLUSION
This paper proposes two key ideas: aliasing relationships

should determine, in part, the type of each object, and the
type system should use the resulting object states as its
fundamental abstraction for describing procedure interfaces
and object referencing relationships. We present a role sys-

tem that realizes these two key ideas and an analysis algo-
rithm that can verify that the program correctly respects
the role constraints. The result is that programmers can
use roles for a variety of purposes: to ensure the correct-
ness of extended procedure interfaces that take the roles
of parameters into account, to verify important data struc-
ture consistency properties, to express how procedures move
objects between data structures, and to check that the pro-
gram correctly implements correlated relationships between
the states of multiple objects. We therefore expect roles to
improve the reliability of the program and its transparency
to developers and maintainers.

10. REFERENCES

[1] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An
introduction to the database programming language
Fibonacci. The VLDB Journal, 4(3), 1995.

[2] Paulo Sergio Almeida. Balloon types: Controlling sharing
of state in data types. In Proc. 11th ECOOP, 1997.

[3] Thomas Ball, Rupak Majumdar, Todd Millstein, and
Sriram K. Rajamani. Automatic predicate abstraction of C
programs. In Proc. ACM PLDI, 2001.

[4] Chandrasekhar Boyapati and Martin C. Rinard. A
parameterized type system for race-free Java programs. In
Proc. 16th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2001.

[5] John Boyland. Alias burying: Unique variables without
destructive reads. Software—Practice & Experience,
6(31):533–553, May 2001.

[6] Craig Chambers. Predicate classes. In Proc. 7th ECOOP,
pages 268–296, 1993.

[7] David R. Chase, Mark Wegman, and F. Kenneth Zadeck.
Analysis of pointers and structures. In Proc. ACM PLDI,
1990.

[8] David G. Clarke, John M. Potter, and James Noble.
Ownership types for flexible alias protection. In Proc. 13th
Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 1998.

[9] Karl Crary, David Walker, and Greg Morrisett. Typed
memory management in a calculus of capabilities. In Proc.
26th ACM POPL, 1999.

[10] Robert DeLine and Manuel Fähndrich. Enforcing high-level
protocols in low-level software. In Proc. ACM PLDI, 2001.

[11] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and
P. Giannini. Fickle: Dynamic object re-classification. In
Proc. 15th ECOOP, LNCS 2072, pages 130–149. Springer,
2001.

[12] Jeffrey S. Foster and Alex Aiken. Checking
programmer-specified non-aliasing. Technical Report
CSD-01-1160, University of California, Berkeley, 2001.

[13] Pascal Fradet and Daniel Le Métayer. Shape types. In
Proc. 24th ACM POPL, 1997.

[14] Giorgio Ghelli and Debora Palmerini. Foundations for
extensible objects with roles. In Proc. 6th Workshop on
Foundations of Object-Oriented Languages, 1999.

[15] Rakesh Ghiya and Laurie Hendren. Is it a tree, a DAG, or
a cyclic graph? In Proc. 23rd ACM POPL, 1996.

[16] Rakesh Ghiya and Laurie J. Hendren. Connection analysis:
A practical interprocedural heap analysis for C. In Proc.
8th Workshop on Languages and Compilers for Parallel
Computing, 1995.

[17] Rakesh Ghiya and Laurie J. Hendren. Putting pointer
analysis to work. In Proc. 25th ACM POPL, 1998.

[18] Georg Gottlob, Michael Schrefl, and Brigitte Roeck.
Extending object-oriented systems with roles. ACM
Transactions on Information Systems, 14(3), 1994.

[19] Samuel Z. Guyer and Calvin Lin. An annotation language
for optimizing software libraries. In Second Conference on
Domain Specific Languages, 1999.

15

[20] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic
Logic. The MIT Press, Cambridge, Mass., 2000.

[21] John Hogg. Islands: Aliasing protection in object-oriented
languages. In Proc. 5th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, 1991.

[22] Joseph Hummel. Data Dependence Testing in the Presence
of Pointers and Pointer-Based Data Structures. PhD
thesis, Dept. of Computer Science, Univ. of California at
Irvine, 1998.

[23] Joseph Hummel, Laurie J. Hendren, and Alexandru
Nicolau. Abstract description of pointer data structures:
An approach for improving the analysis and optimization of
imperative programs. ACM Letters on Programming
Languages and Systems, 1(3), September 1993.

[24] Joseph Hummel, Laurie J. Hendren, and Alexandru
Nicolau. A general data dependence test for dynamic,
pointer-based data structures. In Proc. ACM PLDI, 1994.

[25] Joseph Hummel, Laurie J. Hendren, and Alexandru
Nicolau. A language for conveying the aliasing properties of
dynamic, pointer-based data structures. In Proc. 8th
International Parallel Processing Symposium, Cancun,
Mexico, April 26–29 1994.

[26] Jacob L. Jensen, Michael E. Jørgensen, Nils Klarlund, and
Michael I. Schwartzbach. Automatic verification of pointer
programs using monadic second order logic. In Proc. ACM
PLDI, Las Vegas, NV, 1997.

[27] Pierre Jouvelot and David K. Gifford. Algebraic
reconstruction of types and effects. In Proc. 18th ACM
POPL, 1991.

[28] Nils Klarlund and Michael I. Schwartzbach. Graph types.
In Proc. 20th ACM POPL, Charleston, SC, 1993.

[29] Nils Klarlund and Michael I. Schwartzbach. Graphs and
decidable transductions based on edge constraints. In Proc.
19th Colloquium on Trees and Algebra in Programming,
number 787 in LNCS, 1994.

[30] Naoki Kobayashi. Quasi-linear types. In Proc. 26th ACM
POPL, 1999.

[31] Viktor Kuncak. Designing an algorithm for role analysis.
Master’s thesis, MIT Laboratory for Computer Science,
2001.

[32] Viktor Kuncak, Patrick Lam, and Martin Rinard. Roles are
really great! Technical Report 822, Laboratory for
Computer Science, Massachusetts Institute of Technology,
2001.

[33] Tal Lev-Ami. TVLA: A framework for kleene based logic
static analyses. Master’s thesis, Tel-Aviv University, Israel,
2000.

[34] Anders Møller and Michael I. Schwartzbach. The Pointer
Assertion Logic Engine. In Programming Language Design
and Implementation, 2001.

[35] James Noble, Jan Vitek, and John Potter. Flexible alias
protection. In Proc. 12th ECOOP, 1998.

[36] Trygve Reenskaug. Working With Objects. Prentice Hall,
1996.

[37] Noam Rinetzky and Mooly Sagiv. Interprocedual shape
analysis for recursive programs. In Proc. 10th International
Conference on Compiler Construction, 2001.

[38] R. Rugina and M. Rinard. Pointer analysis for
multithreaded programs. In Proc. ACM PLDI, Atlanta,
GA, May 1999.

[39] Radu Rugina and Martin Rinard. Design-driven
compilation. In Proc. 10th International Conference on
Compiler Construction, 2001.

[40] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm.
Solving shape-analysis problems in languages with
destructive updating. In Proc. 23rd ACM POPL, 1996.

[41] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm.
Parametric shape analysis via 3-valued logic. In Proc. 26th
ACM POPL, 1999.

[42] Micha Sharir and Amir Pnueli. Two approaches to

interprocedural data flow analysis problems. In Program
Flow Analysis: Theory and Applications. Prentice-Hall,
1981.

[43] Frederick Smith, David Walker, and Greg Morrisett. Alias
types. In Proc. 9th ESOP, Berlin, Germany, March 2000.

[44] Robert E. Strom and Daniel M. Yellin. Extending typestate
checking using conditional liveness analysis. IEEE
Transactions on Software Engineering, May 1993.

[45] Robert E. Strom and Shaula Yemini. Typestate: A
programming language concept for enhancing software
reliability. IEEE TSE, January 1986.

[46] Wolfgang Thomas. Languages, automata, and logic. In
Handbook of Formal Languages Vol.3: Beyond Words.
Springer-Verlag, 1997.

[47] Michael VanHilst and David Notkin. Using role components
to implement collaboration-based designs. In Proc. 11th
Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 1996.

[48] Philip Wadler. Linear types can change the world! In IFIP
TC 2 Working Conference on Programming Concepts and
Methods, Sea of Galilee, Israel, 1990.

[49] David Walker and Greg Morrisett. Alias types for recursive
data structures. In Workshop on Types in Compilation,
2000.

[50] R. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proc. ACM PLDI, June
1995.

[51] Zhichen Xu, Barton Miller, and Thomas Reps. Safety
checking of machine code. In Proc. ACM PLDI, 2000.

[52] Zhichen Xu, Thomas Reps, and Barton Miller. Typestate
checking of machine code. In Proc. 10th ESOP, 2001.

[53] Phillip M. Yelland. Experimental classification facilities for
Smalltalk. In Proc. 6th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, 1992.

16

