
Object Models, Heaps, and Interpretations

Martin Rinard and Viktor Kuncak

{rinard,vkuncak}@lcs.mit.edu

January 2001

Abstract

This paper explores the use of object models for specifying verifiable

heap invariants. We define a simple language based on sets and relations

and illustrate its use through examples. We give formal semantics of

the language by translation into predicate calculus and interpretation of

predicates in terms of objects and references in the program heap.

1 Introduction

Program analysis systems have traditionally operated on the source code alone,
utilizing no other information about the program, its design, or its intended
behavior. This report describes our initial steps towards integrating design
information into a program analysis system. The expected result is a more pre-
cise, efficient program analysis system and a system that guarantees that the
program faithfully implements its design. This guarantee will allow develop-
ers to rely on the design as a valid source of information about the program,
integrating the design effectively across the entire lifecycle of the software. In
the absence of such a guarantee, the design and implementation diverge, with
the design becoming increasingly less relevant as development proceeds into the
implementation and maintenance phases.

We propose to use object models as our source of design information [10, 6].
Object models are widely used and have a graphical representation that many
developers find convenient. In our interpretation, they provide crucial infor-
mation about the intended structure of the heap. Our interpretation therefore
allows us to precisely capture a key aspect of the design (heap properties) and
serves as a foundation for an analysis that can verify that the program preserves
key information representation properties.

We contrast our approach with that of traditional type systems. In a tradi-
tional type system, each object has the same type throughout its entire lifetime.
Type systems therefore fail to capture the different roles that a typical object
may play during its lifetime in the program. We believe that we can capture
these changes by further characterizing objects as follows:

1

• Content-Based Classification: The values stored in an object often
determine the role that it plays.

• Relative Classification: The object’s points-to relationships often de-
termine its role. Specifically, objects often move between data structures
as they play different roles in the computation.

• Experience-Based Classification: An object’s lifetime is often char-
acterized by a sequence of operations that the program performs on it.
Role changes often correlate with the intiation or completion of specific
operations.

Because object models focus on the relationships between objects, they are
well suited for specifying relative classifications. Because they may specify in-
formation about the values that objects contain, they are also appropriate for
specifying content-based classifications. Because they focus on invariants that
are always valid, we view them as less well suited for specifying experience-based
classifications.

We view object models as containing three basic concepts: sets, relations
between sets, and properties that the sets and relations satisfy. Object models
therefore describe the heap at a higher level of abstraction than the objects,
values, and references present in the heap. The key to our approach is an
interpretation that bridges the abstraction gap between the object model and
the heap. Specifically, the interpretation tells how the objects, values, and
references in the heap map onto the sets and relations of the object model.

2 Object Models

Researchers have developed several notations for expressing object models, among
them UML [10] and Alloy [6]. Our approach is neutral — as long as the object
model has the concepts of sets of objects and relations between these sets, our
approach is valid. We next describe a simple object model language inspired by
Alloy. We view Alloy as basically as a syntactic sugar for first-order predicate
calculus with transitive closure. Figure 1 presents a grammar for the example
object model language we use in this paper.

We place non-terminals such as Def in brackets, while terminals such as
RelID have no brackets.

2.1 Object Models in Use

In this section we illustrate how object models can be used to refer to parts of
the heap and specify constraints.

A simple way of using sets and relations are class diagram specifications.

2

<Def> ::= RelID := <RelExpr> | SetID := <SetExpr> | <Constr>

<SetExpr> ::= SetID | {} | _ | <SetExpr> <SetOper> <SetExpr>

| <SetExpr> . <RelExpr> | <RelExpr> . <SetExpr>

<SetOper> ::= + | - | &

<RelExpr> ::= RelID | <RelExpr> <RelOper> <RelExpr>

| <RelExpr> . <RelExpr> | <RelExpr> *

| <SetExpr> # <SetExpr>

<Constr> ::= <SetExpr> : <SetExpr> | <SetExpr> = <SetExpr>

| <RelExpr> : <RelExpr> | <RelExpr> = <RelExpr>

| <RelExpr> : <SetExpr>

| <RelExpr> :: <SetExpr> <Card> -> <Card> <SetExpr>

<Card> ::= ! | ? | + | *

Figure 1: Grammar for Object Model Language

Example. Consider the following class declarations.

class CarList {

Car car;

CarList next;

}

class Car {

String name;

int id;

}

We can represent these relationships by the following specification.

next : CarList # CarList

car : CarList # Car

name : Car # String

id : Car # int

The notation f : A # B introduces a relation f from set A to set B. To specify
that a relation is function, we use cardinality constraints. The notation
f :: A ->! B specifies that for every element of A there is precisely one related
element of B. To specify partial functions we use the notation f :: A ->? B

meaning that for every element of A there is at most one related element of B.
Dually, we write e.g. f :: A !-> B if for every element of B there is precisely
one element of A which is related to it.

In the previous example we used sets to denote classes. Such sets are called
primitive sets. It is often useful to specify a particular subset of a set of objects
which are instances of a class. We write D : C to indicate that set D is subset
of set C.
Example. Consider class declarations from previous example. To refer to a
subset of all possible strings which includes only strings used to name cars in

3

the program as opposed to all possible strings, we define the set CarName by
writing

CarNames := Car.name

Similarly, to denote the set of only those cars that are stored in a list we use
expression CarList.car. Let f : A # B. The notation A.f denotes set of all
elements for which there exists an element of A related to it by the relation f

(direct relation image). Dually, we consider f.B to be the set of all elements
that are related to some element of B (inverse image of a relation). Clearly,
A.f : B.
Example. Inverse relation image is useful for content-based classification.
Consider the class Owner with a local boolean field localResident.

class Owner {

String firstName;

String lastName;

boolean localResident;

}

Owners which are local residents are then defined by

LocalOwner := localResident.true

and those that are not by NonlocalOwner = localResident.false. Here, we
use false and true as primitive singleton sets whose interpretation is known.

We permit set operations union (+), intersection (&) and set difference (-)
on sets and relations. The symbol _ denotes universal set and {} empty set.
Example. In the previous example, the set LastLocal of last names of local
residents is defined by

LastLocal := (Owner & localResident.true).LastName

whereas the set of last names which are not also first names is

LastOnly := Owner.lastName - Owner.firstName

To refer to set of elements reachable by following some field unknown number
of times, we use regular expressions.
Example. Let local variables owned and sold be pointers to lists of cars.

class CarList {

Car car;

CarList next;

}

CarList owned;

CarList sold;

The content of the list owned is given by the regular expression

owned.next*.car

4

and the content of the list list sold is given by sold.next*.car. Regular
expressions denote relations defined in terms of relation composition, union of
relations and transitive closure. Define relation nodesof := next*. Then

owned.nodesof & sold.nodesof = {}

is a constraint indicating that nodes of these lists are disjoint. To specify that
objects in these lists are disjoint, we define contentof := nodesof.car and
require

owned.contentof & sold.contentof = {}

Example. Consider definition of binary tree.

class TreeNode {

TreeNode left;

TreeNode right;

}

TreeNode t;

The set (t.left*) & left.null denotes the leftmost leaf of the tree t. It is
defined as the intersection of nodes reachable along the left references from
the root and nodes that have left pointer null. The set of all leaves of tree t

is given by

t.(left+right)* & left.null & right.null

If we want to define a relation specifying the notion of a leaf of a tree, we lift
the sets left.null and right.null to relations and use similar definition.

leafof = (left+right)* & _#(left.null) & _#(right.null)

Now we can reuse the definition of this relation to refer to sets of leaves of trees
rooted at different nodes.

Next, observe that the following information for class diagram of a tree

left : TreeNode # TreeNode

right : TreeNode # TreeNode

left :: TreeNode ->? TreeNode

right :: TreeNode ->? TreeNode

does not fully specify a tree since it does not imply that all branches have disjoint
nodes. We can use cardinality constraints to convey this information.

(left+right) :: TreeNode ?-> TreeNode

This illustrates usefullness of cardinality constraints on arbitrary relations.

5

2.2 Object Model Semantics

We provide the semantics for object models by specifying a translation from the
object model syntax into closed formulas of predicate calculus with transitive
closure. Sets are translated to unary predicates; set operations are naturally
translated by extending logical operations to unary predicates.

Definition 1 (∀x)¬[[{}]](x)

Definition 2 (∀x)[[_]](x)

Definition 3 (∀x)[[S+T]](x) ⇐⇒ ([[S]](x) ∨ [[T]](x)

Definition 4 (∀x)[[S-T]](x) ⇐⇒ ([[S]](x) ∧ ¬[[T]](x))

Definition 5 (∀x)[[S&T]](x) ⇐⇒ ([[S]](x) ∧ [[T]](x))

Relations are translated into binary predicates. Full relation between sets A

and B is Cartesian product A#B.

Definition 6 (∀x, y)[[A#B]](x, y) ⇐⇒ A(x) ∧ B(y)

Set operations on relations are also defined naturally.

Definition 7 (∀x, y)[[s+t]](x, y) ⇐⇒ ([[s]](x, y) ∨ [[t]](x, y)

Definition 8 (∀x, y)[[s-t]](x, y) ⇐⇒ ([[s]](x, y) ∧ ¬[[t]](x, y))

Definition 9 (∀x, y)[[s&t]](x, y) ⇐⇒ ([[s]](x, y) ∧ [[t]](x, y))

Next we define relation composition as well as direct and inverse images of sets
under relations.

Definition 10 [[f.g]](x, z) ⇐⇒ (∃y)([[f]](x, y) ∧ [[g]](y, z))

Definition 11 [[S.g]](z) ⇐⇒ (∃y)([[S]](y) ∧ [[g]](y, z))

Definition 12 [[f.T]](x) ⇐⇒ (∃y)([[f]](x, y) ∧ [[T]](y))

Transitive closure is defined as usual.

Definition 13 (∀x)[[∼f]](x, y) ⇐⇒ [[f]](y, x)

Definition 14 (∀x, y)[[f∗]](x, y) ⇐⇒ [[f]]∗(x, y) where ∗ is transitive closure

operator in predicate calculus i.e.

(∀x, y)f∗(x, y) ⇐⇒ (∃n ≥ 0)(∃z1, . . . , zn)(f(x, z1) ∧ f(z1, z2) ∧ · · · ∧ f(zn, y))

Notation : denotes subset for sets and relations.

Definition 15 [[S:T]] ⇐⇒ (∀x)([[S]](x) ⇒ [[T]](x))

Definition 16 [[f:g]] ⇐⇒ (∀x, y)([[f]](x, y) ⇒ [[g]](x, y))

6

Equality of sets and relations is a useful syntactic sugar for two subset specifica-
tions. Definitional equality (:=) is semantically equality as well. (The purpose
of distinguishing = from := is to indicate which sets and relations are primitive
and which are derived.)

Definition 17 [[S=T]] ⇐⇒ [[S:T]] ∧ [[S:T]]

Definition 18 [[f=g]] ⇐⇒ [[f:g]] ∧ [[g:f]]

Cardinality specifications are a useful way of writing heap invariants. They give
upper and lower bounds on the number of elements of the source set that are
related to the target set.

Definition 19

r :: A -> [1..q] B ⇒ (∀x)(A(x) ⇒ (∃y)(B(y) ∧ r(x, y)))
r :: A -> [p..0] B ⇒ (∀x)(A(x) ⇒ ¬(∃y)(B(y) ∧ r(x, y)))
r :: A -> [p..1] B

⇒ (∀x)(A(x) ⇒ ((B(y) ∧ r(x, y) ∧ B(z) ∧ r(x, z)) ⇒ y = z))

Following abbreviations are used: + = [1..∗], ? = [0..1], ! = [1..1], 0 = [0..0]. 0
as lower bound implies no constraints as well as ∗ as upper bound. Notation
r : A[x..y] → B is a shorthand for r : B → [x..y]A; both upper and lower
bounds can be stated in the same declaration with obvious meaning.

2.3 Primitive and Derived Sets and Relations

Note that there are conceptually two kinds of sets and relations in our object
models: primitive sets and relations and derived sets and relations. Each set
SetID with a definition SetID := <SetExpr> is a derived set; each relation
RelID with a definition RelID := <RelExpr> is a derived relation. All other
sets and relations are primitive. As we will see in Section 4, once we provide a
meaning for the primitive sets and relations, the definitions provide a meaning
for the derived sets and relations. Primitive and derived sets and relations are
translated into primitive and derived unary and binary predicates, respectively.
To ensure that the object model is well-formed, we require that it have no
circular definitions.

3 Heaps

We view the heap as a directed graph with labelled edges. The nodes of the
graph are objects; the edges are the references between nodes. There is an edge
in the graph from object o1 to object o2 labelled by f iff o1 has a field named
f and o1.f = o2. Each node may also have several fields with primitive values.

7

4 Interpretation

We establish the connection between the object model and the heap by inter-
preting the predicate calculus reading of the object model in terms of the heap.
Thus we treat the heap as a model of the first-order theory defined by the object
model. The equality symbol is interpreted as equality of nodes in the heap, in
accordance with the view that every object has unique identity.

Formally we need to provide an interpretation for all predicate symbols that
appear in formulas describing an object model. However, given an interpreta-
tion of primitive unary and primitive binary predicates, there is a unique way
to extend that finite domain interpretation so that formulas defining derived
predicates are true. To define an interpretation for an arbitrary object model,
it is therefore enough to provide an interpretation for the primitive sets and
primitive relations of the model. The designer and/or programmer provides
this interpretation by mapping each primitive set in the object model to a cor-
responding set of objects and each primitive relation in the object model to
a relation on objects. Typically, primitive binary relations will be mapped to
edges in the heap.

There are several ways to define the mappings for primitive sets:

• Class-Based Mappings: A set is defined to be all objects of a given
class.

• Content-Based Mappings: A set is defined to be all objects whose
primitive fields satisfy a given property.

• Collection-Based Mappings: A set is defined to be all objects in a
given collection.

There are also several ways to define the mappings for primitive relations:

• Edge-Based Mappings: A primitive relation is defined to correspond
to a set of edges between two sets of objects in the heap. A typical edge-
based mapping would be the set of all pairs of objects 〈o1, o2〉 such that
the field f of o1 refers to o2.

• Collection-Based Mappings: Many collection classes in standard li-
braries implement relations between objects. A primitive relation could
correspond to the relation implemented by an instance of such a collection
class.

Note that, in general, these mappings will need to refer to program variables.
For any program state, mapping specification defines values of sets and relations
in that state. Thus the interpretation of primitive sets and relations as well as
interpretation of derived sets and relations changes over the time.

Note that we can use the concepts of derived sets and derived relations in
the object model to define more sophisticated sets and relations:

8

• Upstream Relative Classification: A set is defined to be all objects
in the image of a known relation on a known set. In practice, upstream
relative mappings usually correspond to classifying objects into sets based
on what kind of objects point to them.

• Downstream Relative Classification: A set is defined to be all objects
in the inverse image of a known relation on a known set. In practice,
downstream relative mappings usually correspond to classifying objects
into sets based on what kind of objects they point to.

• Combined Classification: A set is defined using union, intersection, or
other set operation.

Given interpretation of primitive sets and relations, it is possible to evaluate
the predicate calculus reading of the object model in the current program state
to determine if the heap satisfies the conditions in the object model. If so, we
say that the heap conforms to the object model under the given interpretation.
We say that a program conforms to an object model under given interpretation
rules if and only if all of the heaps that it may build conform to the object
model under interpretation given by the rules.

5 Related Work

Software specifications based on object models are widely used. The standard-
ization of an informal approach to specifications resulted in Unified Modeling
Language [10]. It is essential for our purpose to have precise formal semantics of
object models to integrate design information into a program analysis system.
Semantics can be given using formalisms based on predicate calculus, such as
Alloy [6]. Alloy has full expressive power of first-order predicate calculus with
transitive closure as well as many syntactic shorthands. Specifications in Alloy
are checked on finite models of chosen size using translation into propositional
calculus. In contrast, we expect to arrive at a proper subset of first-order pred-
icate calculus so that a static program analysis is capable of producing sound
even if conservative results. The original purpose of Alloy is checking of invari-
ants of abstract program models (which are usually much smaller than actual
programs). We aim at program analysis establishing conformance of actual code
with a given model and view checking of abstract models as an orthogonal activ-
ity. The use of Alloy-like language for specifying program invariants is discused
in [7], which also interprets predicate calculus in terms of program heap. In
our example language we decided to decompose relation declaration into sub-
set declaration, ability to form Cartesian product, and cardinality constraints.
The result is that cardinality constraints can be applied to derived relations
which permits aliasing properties such as linearity to be expressed easily. [7]
also considers graphical notation which is not subject of this report.

Interpreting object models in terms of the heap results in specifications sim-
ilar to those used in shape analysis [11]. The notion of core predicates in [11] is

9

similar to our primitive sets and relations. However, both [7] and [11] assume
direct correspondence of predicate calculus formulas (or sets and relations) with
nodes and edges in heap, whereas we permit more complex mapping specifica-
tion.

In [9], the authors use monadic second-order logic to specify and verify heap
invariants as pre-conditions, post-conditions and loop invariants by using deci-
sion procedure of MONA [8].

Shape types [4], based on graph grammars [3], can be used for similar pur-
pose. A system for program analysis with additional information about data
structures is proposed in [5]. A type-based approach for conveying alias prop-
erties is given in [12]. Documenting alias information in programs and verifying
ownership properties is discussed in [2] and [1].

6 Conclusions

We introduced a small object-modeling language. We defined its syntax and
semantics in terms of program heaps. We can summarize the concept of program
conforming to an object model as follows:

1. an object model consists of definitions and constraints

2. definitions and constraints are translated into a finite set of formulas of a
first-order predicate calculus with equality and transitive closure

3. predicate calculus formulas are interpreted in terms of the program heap

4. a mapping specifies rules that in any given program state assign meaning
to primitive sets and relations

5. given a meaning of primitive sets and relations, predicate calculus formulas
corresponding to object model definitions uniquely determine the meaning
of derived sets and relations

6. given a meaning of primitive and derived sets of relations, the truth value
of each formula corresponding to an object model specification can be
evaluated

7. the program conforms to an object model if all formulas of the object
model are true at a chosen set of program execution points.

The next step is to precisely define a mapping language for primitive sets and
relations, then to develop and implement a program analysis algorithm that is
capable of determining if a program conforms to its object model under a given
interpretation. We expect that we may need to limit the expressive power of
the object model and/or the mapping language to realize this goal. We may
also augment the object model and interpretation language if it becomes clear
that we would like to express properties that are beyond the expressive power
of the current formalism of sets and relations.

10

7 Acknowledgements

We would like to thank Daniel Jackson for many conversations about the con-
cepts in this technical report.

References

[1] Paulo Sergio Almeida. Balloon types: Controlling sharing of state in data
types. In Proc. 11th ECOOP, 1997.

[2] David G. Clarke, John M. Potter, and James Noble. Ownership types for
flexible alias protection. In Proc. 13th Annual ACM Conference on Object-

Oriented Programming, Systems, Languages, and Applications, 1998.

[3] Pascal Fradet and Daniel Le Métayer. Structured gamma. Technical Report
989, IRISA, 1996.

[4] Pascal Fradet and Daniel Le Métayery. Shape types. In Proc. 24th ACM

POPL, 1997.

[5] Laurie J. Hendren, Joseph Hummel, and Alexandru Nicolau. A general
data dependence test for dynamic, pointer-based data structures. In Proc.

ACM PLDI, 1994.

[6] Daniel Jackson. Alloy: A lightweight object modelling notation. Technical
Report 797, MIT Laboratory for Computer Science, 2000.

[7] Daniel Jackson. Object models as heap invariants. In Annabelle McIver
and Carroll Morgan, editors, Collected Papers of IFIP Working Group 2.3

on Programming Methodology. Springer-Verlag, 2001.

[8] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA im-
plementation secrets. In Proc. 5th International Conference on Implemen-

tation and Application of Automata. LNCS, 2000.

[9] Anders Møller and Michael I. Schwartzbach. The Pointer Assertion Logic
Engine. In Proc. ACM PLDI, 2001.

[10] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modelling

Language Reference Manual. Addison-Wesley, Reading, Mass., 1999.

[11] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. ACM TOPLAS, 24(3):217–298, 2002.

[12] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In Proc.

9th ESOP, Berlin, Germany, March 2000.

11

