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Abstract— New tendencies in the consumer electronics market present
Multi-Processor Systems-On-Chip (MPSoCs) as a promising solution
for meeting the processing demands of upcoming generationsof user
applications. MPSoCs are complex to design, as they must execute
multiple applications (real-time video processing, 3D games), while meet-
ing additional design constraints (energy consumption, time-to-market).
When an integrated system is built for a certain MPSoC, the definition
of an appropriate floorplan is a very complex task for system integration
designers. In fact, deciding a suitable placement of each block in the
MPSoC architecture requires taking into account multiple constraints
(e.g., power, energy, performance, etc) with values that are specific for
each design. Recently, due to the increasing temperature inMPSoCs,
thermal behavior has become another key factor to define the placement
of each block of the design. In this context, we show how designers
will benefit from applying our FPGA-based Emulation Framework to
the MPSoC design cycle. Starting with a set of constrains (performance,
latency...) and the HW elements of the system, with the help of our
exploration tool, the thermal behaviour of different floorplan alternatives
can be profiled at an early stage of the development cycle. It will also
guide the designer in selecting the right packaging solution for the final
chip, minimizing the cost without compromising the chip reliability. Our
platform enables thermal monitorization of the final (real) applications
over the different architectures, at speeds very close to real time, as
opposed to SW simulators.

I. I NTRODUCTION

The increasing complexity of recent SoC designs has definitely
modified the clasic design cycle. Due to the time-to-market factor,
it is not possible anymore to build these systems from scratch.
Multi-Processor Systems-on-Chip (MPSoCs) have been proposed as
a promising solution for this context, since they are single-chip
architectures consisting of complex integrated components (IP-Cores)
communicating with each other at very high speeds [16]. The concept
of IP-Cores seems to have relieved designers from dealing with the
low level implementation details, (every core is independent, and
tipically it has been verified by third party manufacturers). In theory,
designing is just a matter of putting together different blocks and
interconnecting them, thus, rising the abstraction level.Nevertheless,
in practice, some new challenges make even more necessary than
ever the need to be aware of the physical aspects of the design. Lets
take a look at the insides of today’s chips: Several on-chip clocks:
With the scaling of the technology, It is not possible to cover the
whole die with only one clock source. Related logic must be placed
together sharing the same clock. Synchronization methods have to
be implemented among different clock domains. Bandwidth/latency
requirements: Bus contention problems create the need for complex
interconnection schemes (Networks-on-Chip).

The logic density of this kind of designs coupled with very
demanding SW applications can lead to generation of hot spots that

compromise the chip reliability [23] With these schema, newdesign
constrains need to be taken into account. Temperature is nowa major
concern. In the past, thermal problems were solved out by improving
the packaging solution, but now, designing a chip for the worse-case
scenario often makes the final product prohibitibely expensive, and
sometimes not even possible to manufacture (due to space constrains
in the embedded systems). Recent studies have demonstratedthat an
intelligent placement of cores can reduce the thermal gradient of the
chip, therefore improving the system robustness and reliability. This
is an interesting research line in future MPSoCs, calledtemperature-
aware placement [25], [26], [30]. In this case, the temperature
issues are addressed at design-time to ensure that circuit blocks
are placed in such a way that they even out the thermal profile.
Also, by adding techniques (SW- or HW- based) for limiting the
maximum allowable temperature (dynamic thermal management), we
can reduce the packaging cost as well. In both cases, designers
need from exhaustive system profiling to discover the best trade-
off: performance vs peak temperature or cost. Of course, each design
is different, so the goals are not always the same. Sometimesthere
is a need for performance at no matter what cost, while in another
situation, the designer may be looking for the cheapest chip, the higest
power-efficiency or the most reliable design. Therefore, one of their
main design challenges is the fast exploration of multiplehardware
(HW) and software (SW) implementation alternatives with accurate
estimations of performance, energy, power and temperatureto tune
the MPSoC architecture in an early stage of the design process. In
our previous work we have developed a cycle-accurate HW emulation
platform [3], which can obtain detailed reports of the thermal features
of MPSoCs.

In this paper, we explore the design space of different floorplan and
packaging alternatives for latest MPSoCs. We use as case studies two
real-life MPSoC architectures and their associated applications. In
the first set of experiments, we compare three different chiplayouts.
The chip funtionality is the same in these three cases, but from the
thermal point of view, they show different behaviours. Hence, as the
cost is alike, our exploration guides the designer to selectthe one
with the best thermal properties. In the second set of experiments,
both the chip functionality and the floorplan remain unaltered, but
we vary the packaging technology of the final chip. In this case, we
explore the benefits and drawbacks of employing different solutions
within the range of low-cost SoCs to high-performance solutions. Our
results show that different trade-offs exist for the designer between the
different packaging options according to the desired performance and
temperature-rise tolerance. Furthermore, the possible addition of on-
chip Dynamic Thermal Management (DTM) techniques in the final



SoC creates an additional degree of freedom to take into account
when the packaging option is selected

The remainder of the paper is organized as follows. In Section II,
we overview related work on MPSoC modeling, testing and thermal-
aware design. In Section III, we present the FPGA-based emulation
framework and explain how it works. In Section IV we detail the
setup for the presented set of experiments. Next, in SectionV we
show in detail the experiments performed, together with theobtained
results, illustrating the speed and versatility of our thermal emulation
tool for MPSoC designers. Finally, we draw our conclusions and
dedicate some lines to possible future work in Section VI.

II. RELATED WORK

The future of the embedded systems envisages MPSoCs as a
promising solution for the consumer electronics market [16]. Ac-
cording to this, research efforts for improving the tasks ofmodeling
and prototyping MPSoC designs are in great need.

One of the biggest problems when exploring the MPSoC design
space is that the evaluation of each of the implementation alternatives
(e.g. selecting the appropriate placement of all the cores)takes a
considerably amount of time. The most common exploration method
is the use of SW simulators that only achive a few Khz’s when used
for accurate profiling. A typical workaround to solve this issue is to
use models with higher abstraction levels that, although being faster
alternatives, have the disadvantage of the loss of accuracy, feature
that makes them bad candidates for exploring thermal properties.
Another way to tackle the problem is the use of HW prototyping
environments, faster than SW simulators, but in this case, they are
tipically very expensive, and not flexible enough. At some point in
between these two options is HW emulation, i.e. Zebu-XL [9],[2],
[21], System Explore [1]. In [3] it has been presented a HW-SW
emulation framework that offers the necessary accuracy levels while
running at Mhz speeds.

In this paper we compare the performance of our emulation
results with the MPARM SW simulator. The MPARM SystemC
framework [4] is a complete simulator for system-exploration. It can
extract reliable energy and performance figures. As most of these
tools, its major shortcoming is its simulation speed (120 KHz in a
P-IV at 2.8 GHz).

Regarding thermal modeling, several thermal/power modelsare
being developed for predicting on-chip temperatures [23].The main
conclusion is that in forthcoming generations of embedded systems,
thermal issues will gain more importance. To be noted that they
already limit/reduce performance and affect leakage powerof current
designs. Using these thermal modeling tools, researchers are starting
to propose different design solutions to overcome on-chip temperature
problems. SeveralDynamic Thermal Management (DTM) techniques
have been suggested for processors using both architectural adap-
tation (e.g.,Dynamic Voltage Scaling (DVS), Dynamic Frequency
Scaling (DFS), fetch-toggling, throttling, and speculation control)
and profiling-based techniques (e.g. those based on feedback con-
trol theory). Since these countermeasures typically decrease system
performance, they are usually triggered when the power consumption
of a processor crosses a predetermined threshold (e.g. not to schedule
hot tasks when the temperature reaches a critical level [31]), or its
workload decreases.

III. OVERVIEW OF THE MPSOC EMULATION FRAMEWORK

As presented in [3], our emulation platform is composed of
different parts. Physically, it is an FPGA connected to a host pc
through an ethernet cable. A system that emulates the designed

Fig. 1. Overview of the emulation framework

target architecture is mapped inside the FPGA, together with the
statistics extraction system, a completely transparent element that
continuously monitors the emulation, logs the required information,
and periodically sends it to the host pc. Inside the computer, this
data is input to a SW thermal library that receives activity indicator
values and outputs temperatures. These temperatures are then fed
back into the FPGA and written to our artificial temperature sensors,
that can be accessed from the emulated system, thus converting it
into a thermal-aware platform. This very important featureallows the
system to trigger dynamic frequency scaling mechanisms at run-time,
based on the stimated on-chip temperature. In fact, a simpleDFS
mechanism based on previous works is presented in our experiments
to illustrate the flexibility of the proposed HW-SW FPGA-based
framework to interact with the SW part and to explore in real-time
different temperature-management policies.

By using our tool, designers are able to tune their applications
to meet not only the performance constrains, but also the thermal
limitations given by the selected packaging solution. On the HW part,
the designer can experiment with diffent floorplan configurations (cal-
culated automatically or by hand), as well as modify the packaging
of the chip, (depending, of course, on the budget limitations).

Regarding the SW thermal library, we consider MPSoCs HW that
are made of silicon die wrapped into a package placed on aPrinted
Circuit Board (PCB), with a variable cost (from low-cost to high-cost
packaging, shown in Section V). In this case, see Figure 2, the heat
flow starts from the bottom surface of the die and goes up to the
silicon, passes through the heat spreader and ends at the environment
interface, where the heat is spread by natural convection [23]. For
modeling the heat flow, we rely on an electrical RC model (see
[3]) that splits the floorplan into small cells, each of them presents
its resistance to the flowing current. This analogy mimics the way
the heat transfers occur. Currently, we can analyze 2 seconds of
simulation (in a 660-cell floorplan), in 1.65 seconds on a P-4at 3GHz,
which is fast enough to interact in real-time with our FPGA-based
MPSoC emulation. On the other hand, we have cross-checked our
results by including in our tool the possibility to use the Hotspot
v3.0 thermal model [23].

In order to perform all the temperature calculations, the thermal
library needs to know some architectural parameters at compile
time (size and placement of all the components of the system
(i.e., floorplan layout), technology and packaging information), as
well as some others needed at run-time (current frequency ofthe
different parts of the system, number of accesses to the resources,
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Fig. 2. Chip packaging solution

Fig. 3. Overview HW architecture of emulated MPSoCs

bus congestion).

IV. MPSOC REAL -L IFE CASE STUDIES

Our experiments include the application of the presented frame-
work to test a run-time DFS mechanism for one complex MPSoC
case study based on ARM-7 cores (Section V), and with different
thermal-aware floorplan solutions (Section V-A) and various packag-
ing techniques (Section V-B).

1) HW Architecture: As explained in Section V, we evaluate
three different floorplans for a real-life MPSoC example. The first
of them (Figure 4) has been manually designed, while the other two,
(Figure 5(a)) and (Figure 5(b)), have been automatically generated
by a placing tool. An schematical overview of the common baseline
HW architecture of the emulated MPSoCs is depicted in Figure3. It
consists of three main elements:

1) 4 processing ARM7 cores running at 100 MHz or 500 MHz,
0.13 µm technology.

2) The definition of configurable I- and D-cache, as well as
main memories (i.e., private and shared memories between
processors).

3) Interconnection mechanisms (buses and NoCs) between the
different levels of the memory hierarchy (caches and main
memories). The interconnect is clocked at the same frequency
that the cores in each case.

The cell sizes (for the SW library) used in all cases are150um ∗

150um. We assume that the power is uniformly burned in this region,
which represents 1/8th of the size of an ARM processor in 0.13
µm. For technologies with a worse thermal conductance, such as,
fully depleted silicon-on-insulator [24], it is possible to use smaller
thermal cells (down to the level of standard cells). Of course, all the
necessary HW sniffers [3] as well as the emulation mechanismhave
been instantiated and connected to conform the overall system.
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Fig. 4. Original floorplan

2) SW Driver: As SW driver for this MPSoC design, we defined
a benchmark (Matrix-TM) that keeps the workload of the processors
close to 100% all the time, pushing the MPSoC to its processing
power limits to observe effects in temperature. This benchmark
implements a pipeline of 100K matrix multiplications kernels. Each
processor executes a matrix multiplication between an input matrix
and a private operand matrix, then feeds its output to the logically
following processor. The platform receives a continuous flow of input
matrices and produces a continuous flow of output matrices. Every
core follows a fixed execution pattern: (i) copy of an input matrix
from the shared memory to its private memory; (ii) multiplication of
the new matrix with a matrix already stored in the private memory;
(iii) copy of the resulting matrix back to the shared memory.During
the whole execution, interrupt and/or semaphore slaves arequeried
to keep synchronization, creating an important amount of traffic to
the memories.

V. EXPERIMENTAL RESULTS

A. Floorplan selection exploration in MPSoCs

When an integrated system is built for a certain MPSoC, the
definition of an appropriate floorplan is a very complex task for
system integration designers. In fact, deciding a suitableplacement
of each block in the MPSoC architecture requires taking intoaccount
multiple constraints (e.g., power, energy, performance, etc) with
values that are specific for each design. Recently, due to theincreasing
temperature in MPSoCs, thermal behavior has become anotherkey
factor to define the placement of each block of the design [25], [26].
In this set of experiments, we have used our tool to evaluate three
different chip layouts: one baseline floorplan (Figure 4), and two
additional floorplans (Figure 5) (all of them are thermal-aware). The
initial case study is composed of four processing cores and NoC-
based interconnect working at 500 MHz (see Figure 4). The first
alternative floorplan scatters the processing cores in the corners of the
chip (Figure 5(a)), while in the second one all the cores are clustered
together in the center of the chip (Figure 5(b)). We assumed the use
of a low-cost packaging solution in all the cases (40K/W, seeSection
VI ).

The results are shown in Figure 6. In this case we can observe that
the best floorplan to minimize temperature (15% less heatingspeed
on average than the initial floorplan of Figure 4) was achieved with
the placement technique that tries to assign the processingcores to the
corners of the layout (labelled asscattered in Figure 6). Hence,
this solution is the best out of the three thermal-aware placement
options because it delays the most the need to apply the available
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Fig. 5. MPSoC floorplan with cores (a) scattered in the corners and (b)
clustered together in the center of the chip

DFS mechanism in Figure 6, although its interconnects experience
more heating effects due to the longer and more conflicting con-
nection paths between components, which can originate moreNoC
congestion effects. Then, the solution that tries to place all the
processing cores in the center of the chip (labelled asclustered
in Figure 6) shows the worst thermal behavior, but just slightly
worst in temperature (5% on average) than the original manual
placement of cores used for this MPSoC design, while the delays in
the interconnections between cores are minimal for the former due
to their closest locations in the floorplan (see Figure 5(b)). The main
conclusion from this study is that a more aggresive temperature-aware
placement must be applied (e.g., placement of cores scattered in the
corners of the chip) to justify the placement of cores apart,as tried in
the original manual design, to compensate for the heating effects on
the chip due to longer interconnects. Otherwise, the possible penalty
for long interconnects may not be justified in the end since a uniform
distribution of power sources does not need to lead to a uniform
temperature on the die. Moreover, these results clearly outline the
importance for designers of tools to explore the specific thermal
behavior of each design, and to select the most appropriate placement
in an early stage of the integration flow. Note that in the figure it has
also been included a series of data labeled as ”MPARM”. We have
assessed the performance and flexibility of the proposed emulation
framework in comparison with the MPARM framework [4] and its
internal SW thermal library. As explained, this is a clasical (only
SW) architecture simulator that lacks from the speed up of emulation.
The small circle around the origin represents the simulatedtime for
MPARM when the emulation finished (In our experiments MPARM
is executed on a P-IV at 3.0 GHz with 1 GByte SDRAM and running
GNU/Linux 2.6).

B. Effect of different packaging technologies and SW thermal li-
braries

In this final set of experiments we have tested different packaging
solutions and compared them with the thermal behavior of thelow-
cost value of 40K/W initially considered for our initial reference
of MPSoC floorplan with four RISC-32 processing cores working
at 500 MHz and NoC interconnect (Figure 4). We simulated this
floorplan with two additional values, namely, 12K/W in the case
of standard packaging [27] and 5K/W in the case of high-cost and
high-performance embedded processors [28]. The results obtained are
shown in Figure 7.

As this figure shows, in the case of the standard packaging solution,
the MPSoC design required more time to heat up and it reached a
maximum value of 360 degrees Kelvin when the DFS mechanism

Fig. 6. Average temperature evolution with different floorplans for Matrix-
TM at 500 MHz with DFS on

Fig. 7. Thermal behavior for an MPSoC floorplan using low-cost, standard
and high-cost packaging solutions

was not applied, which is lower than the case of low-cost packaging
(40K/W) that reached a temperature of more than 500 degrees Kelvin.
However, the thermal behavior of the standard packaging system was
similar to the low-cost solution (only its starting point was slightly
shifted to the right due to the less steep temperature rise curve)
when the threshold-based DTM strategy was applied (As observed
in the figures, the temperature threshold was fixed at 250 degrees
Kelvin. Each time a part of the system reaches this temperature, an
automatic response is triggered, that reduces the running frequency
from 500 MHz to 100 MHz). Therefore, in this case, with this
threshold value, no significant improvements were obtainedwith the
standard package, and the low-cost solution would be preferably
selected for this design using DTM. However, in the case of the high-
cost packaging solution (for 5K/W), the system showed a completely
different temperature behavior, where the chip never went beyond
325 degrees Kelvin. Therefore, this packaging solution creates a
much lower thermal stress in the overall MPSoC implementation,
and it does not require the application of DFS because the design
never reaches a temperature above the 350-degree-Kelvin threshold.
As a result, this solution could significantly increase the expected
mean-time-to-failure of the component and be interesting in highly
reliable versions of this MPSoC chip design. However, note that this
type of package has the important drawback of the high cost for
the manufacturer of the final embedded system, namely, typically 5
to 12× more than standard package solutions and more than 20×

the low-cost package solution [29]; Thus, it can seriously increase
the price of the final product and developers would like to avoid
it if possible. Hence, this type of experiments and the presented



framework can be a very powerful tool for designers to decidewhich
type of packaging technique would be enough for a specific setof
constraints in forthcoming generations of MPSoC designs.

Finally, we performed the same set of emulation experiments
replacing our library with the well-known Hotspot v3.0 thermal
library [23], configuring it with the same packaging optionspre-
viously tested. The results of this additional set of experiments
shown a very similar thermal behavior with this second RC thermal
library in comparison to our own library in the case of high-cost
packaging (less than 3 degrees Kelvin of difference), whichis the
original target of the Hotspot library. Then, in the case of low-cost
and standard packaging, variations that range between 4-15degrees
Kelvin have been observed. The origin of these variations come from
the non-linear dependency factor of silicon thermal conductivity with
respect to the actual temperature in the die, which is included in our
own library, but is not modeled in the Hotspot library. In fact, our
results indicate that this non-linear part of the thermal equations is
particularly important when the temperature rises beyond 360 degrees
Kelvin in the case of low-cost packaging solutions, and needs to be
considered at each moment of the emulation to get accurate thermal
measurements for this type of MPSoC packaging technology.

VI. CONCLUSIONS ANDFUTURE WORK

Future consumer devices based on MPSoC architectures will
contain a really large amount of transistors thanks to nanoscale
technologies, but will be very complex to design as they mustexecute
multiple complex real-time applications (e.g., video processing or
3D games), while meeting several additional design constraints (e.g.,
energy consumption or short time-to-market). Moreover, the rise of
temperature in the die for on-chip components can seriouslyaffect
performance and reliability of final MPSoC designs.

In this paper we have used our tool to evaluate different
temperature-aware placement techniques that try to compensate the
heating effects on MPSoCs. Our study indicates that significant
overheads of power dissipated in long interconnects can clearly affect
the overall thermal behavior of the final MPSoC, and that a uniform
distribution of power sources in the die does not need to produce
a uniform temperature in the final chip. Hence, MPSoCs designed
in latest technology nodes require the use of tools to study their
suitable placement in an early stage of system integration,according
to the applications that will be executed in each final MPSoC.
Also, we have illustrated the effectiveness of the presented thermal
evaluation tool to rapidly study the effects of different packaging
options for concrete MPSoC solutions. Our results indicatethat the
selection of final packaging solutions clearly depend on thethermal
management techniques included in the target MPSoCs and more
costly packagings may show from the same heating effects as low-
cost ones; Thus, the need of expensive packaging solutions cannot
be justified without prior extensive thermal exploration. Finally, we
have shown the versatility of our tool to use various thermallibraries,
and illustrated the need for different thermal models according to the
implementation requirements of the target MPSoCs (e.g., high- or
low-cost packaging).

Having demonstrated the versatility and benefits of our emulation
framework for MPSoC design exploration, one possible future line of
research is to study the application and testing of complex dynamic
thermal management policies to the emulated MPSoC. In this context,
we are currently developing a library that offers complete support for
testing advanced task migration policies. On the architectural part, it
is possible to extend the emulation platform to be able to model the
state-of-the-art 3D floorplans[30]. They are a very recent proposal,

but will gain importance in future SoCs generations. Since we are
emulating, no modification would be necessary into the VHDL code
describing the HW system. Only the SW thermal library needs to be
modified to support the modeling of this kind of layouts.
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