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Abstract— In recent years, works on geometric multi-
dimensional signal representations have established a
close relation with signal expansions on redundant
dictionaries. For this purpose, Matching Pursuits (MP)
have shown to be an interesting tool. Recently, most
important limitations of MP have been underlined, and
alternative algorithms like Weighted-MP have been
proposed. This work explores the use of Weighted-
MP as a new framework for motion-adaptive geometric
video approximations. We study a novel algorithm to
decompose video sequences in terms of few, salient
video components that jointly represent the geometric
and motion content of a scene. Experimental coding
results on highly geometric content reflect how the
proposed paradigm exploits spatio-temporal video ge-
ometry. 2D Weighted-MP improves the representation
compared to those based on 2D MP. Furthermore,
the extracted video components represent relevant
visual structures with high saliency. In an example
application, such components are effectively used as
video descriptors for the joint audio-video analysis of
multimedia sequences.
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I. INTRODUCTION

Visual data representation has been a very active field
of research in recent years. Many works have underlined
the importance of compact representations of image and
video signals for a wide range of applications such as
compression, denoising, signal analysis or data mining,
where a well defined and structured decomposition of
data is required. Good modeling of visual data implies to
capture its main structural properties, exploiting as much
as possible underlying correlations. Moreover, models need
to be compact (or sparse) such that dimensionality is
reduced as much as possible.

In this direction, geometry adaptive representations
have been found to be of capital importance in order
to properly exploit the underlying structure of images.
For this purpose, image models based on the additive
superposition of geometric primitives (or atoms) have been
proposed and studied, typically based on over-complete
bases (e.g. [2], [3], [4]), or general highly coherent! dictio-
naries [5].

Concerning video representation, models based on the
additive superposition of 3D functions have been typically
related to separable 3D wavelet transforms [6] or to mo-
tion compensated variants of these [7], [8]. However, such
models do not specifically take into account the geometric
structure of video signals.

Most recently, works such as [9],[10],[11],[12] investigate
the use of more geometry related video models. These
works try to develop an intuitive video signal represen-
tation framework that takes into account the underlying
geometric nature of spatial video components. Considering
the fact that such components may have a transformation
through time, video sequences can thus be expressed as a
linear superposition of 3D functions representing spatial

IThe coherence is a measure often used to characterize redundant
dictionaries which is defined as maz; j|;; [(9i, 95|, where g; and g;
for any i, j are elements of the dictionary. Through the paper, highly
coherent dictionaries stands for redundant dictionaries with a high
cross-correlation among elements.



geometry structures and their evolution through time as:
K—1

f= Z Ckg»?;kDa (1)
k=0

where f is an approximation of a video signal, gng are 3D
video atoms (s.t. Vg g'fﬂ? € D, where D is a dictionary of
functions) and ¢y, are scalars weighting the different spatio-
temporal components of the model.

Signal models such as (1) typically require to be sparse
in order to supply efficient and compact signal descrip-
tions. To achieve sparseness, the large variety of compo-
nents present in natural video signals have to be repre-
sented using adapted sets of basis functions that can effi-
ciently describe them. Akin to images, but with the added
complication of temporal deformation, large, redundant,
and possibly coherent, dictionaries are required for sparse
video approximations. Nevertheless, one cannot consider
directly using such a large dictionary for video decom-
position due to complexity issues. Instead, a possibility
is to split into two steps the extraction of spatial and
temporal components in order to lessen computational
requirements. For this purpose, an approach is to first find
spatial geometric components in a particular frame, and
then track these through time. Hence, each gng can be
represented by means of a parametric description of spatial
geometric properties, plus the changes of these through
time.

This paper studies the use of greedy algorithms for
such a two step decomposition approach. First we consider
the use of Matching Pursuit (MP) for the retrieval of
spatial 2D components (as proposed in [5]). Then, a
similar decomposition approach is used in order to recover
the changes of 2D functions through time, i.e. trying to
match each 2D atom from a frame at time ¢ with its
corresponding one at time t+1. However, MP is unsuitable
for retrieving such spatio-temporal correspondences when
dictionaries in use are too coherent [13], because it falls in
local minima that are far from the optimal solution. Based
on the findings of [14], [15], Weighted Matching Pursuit?
(Weighted-MP) is used instead in order to overcome MP
limitations. Weighted-MP considers the use of a priori
knowledge within the signal decomposition process. This
makes possible to take into account more complex and
rich signal models that consider additional features such
as joint motion/signal structure and the interaction among
3D atoms.

In this paper, we formalize a new geometric video repre-
sentation framework. As assessed by the results, Weighted-
MP is able to recover more compact decompositions (such
as (1)) than MP, reducing the negative effects of dictionary
coherence. Our approach shows to provide a signal repre-
sentation with relevant structural and semantic content.
In the results, examples are also shown on the potential
possibilities of the studied representation for geometry

2Weighted Matching Pursuit was first proposed as an heuristic
solution in [14].
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based video compression, as well as a source of video
features in an audio-visual source localization application.

This paper is organized as follows: Image modeling
based on the superposition of geometric 2D components
is recalled in Sec. II, along with a proposal for the ex-
tension of such a modeling framework to video signals.
Then, Sec. III reviews MP and Weighted-MP algorithms,
together with a general comparison between them. A video
decomposition approach based on Weighted-MP and the
use of priors on video and motion structures is presented
in Sec. IV. Sec. V shows results on the use of Weighted-
MP and MP for geometry-adaptive spatio-temporal video
decompositions. Finally, conclusions are drawn in Sec. V1.

II. A GEOMETRY-ADAPTIVE VIDEO MODEL

The proposed video model, together with Weighted-
MP, builds upon the works [16], [17], [5], [18], [19], where
geometry-adaptive image models were investigated using
geometric redundant dictionaries and MP. In the following,
we first recall the image model described in these works;
then, we discuss how this model can be extended to
approximate video signals.

A. A 2D Geometry-Adaptive Image Model

Images are often represented or approximated as a finite
sum of 2D basis functions:

i

~ K=
f=

k=0

Ckg’yk I (2)

where f is the image approximation, ¢ are the coefficients
and g+, the selected functions (Vv g, € D), being D a
dictionary of waveforms.

In order to have efficient image representations, basis
functions have to adapt to contours, smooth regions and
textures. Contours are often the most relevant and mean-
ingful feature in natural images. Hence, they deserve the
use of appropriate, adapted dictionaries of functions to
efficiently describe them. Contours are assumed to be 1D
continuous smooth functions [20], [21], [22], [4], [2], [17]
with high geometric meaning.

Geometric dictionaries used in these are generated by
applying a set of transformations to a mother function
g [5], [18], [19]. The dictionary is spanned by a family of
unitary operators U(7):

D = {U(y)g,v € A}, (3)

for a given set of geometric transformations A. g defines

the structural and morphological properties of the dictio-

nary functions, while A captures most of its geometrical

properties. In the remaining of the paper g, = U(y)g.
Here we adopt the mother function g [5]:

g(u,v) = C(4u® — 2) exp (—(u® +v?)) , (4)

where C' is a normalizing constant and (u,v) are, in this
case, coordinates on a plane. In (4), the v axis is formed
by a Gaussian function that has the capacity to represent
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smooth structures. The perpendicular direction, is formed
by a Mexican Hat (or Marr) wavelet [23], [24]. This intends
to represent big variations within the signal, such as lines
and edges.

Operator U(y) in (3) adapts (4) to the necessary variety
of scalings, rotations and translations:

wul | & O cosf  sind T —d,
v| |0 é —sind

cos 6 Y —dy

i.e. each 7y index identifies a set of parameters {d, 0, s, s, }.
s, and s, define the anisotropic scaling of the function, ¢
sets the rotation of the function and finally, d = (d, dy)
are the translation of the function. (z,y) denote the
image coordinates. In order to avoid ill-formed functions
inappropriate to edges, only atoms with s, > s, are taken
into account (edges require long smooth functions along
the contour with thin oscillating structures perpendicular
to the contour).

A very low resolution version of the image is also used
as part of the components in (2) in order to represent non-
zero mean smooth image components.

| 6

B. A 3D Geometry-Adaptive Video Model: Tracking 2D
Image Features Through Time

In the framework of video, 2D geometric features of-
ten follow temporal geometric transformations. A way to
represent this is by modeling video as a superposition
of 3D primitives that jointly capture spatial geometry
and temporal evolution. However, most video representa-
tion paradigms separate motion information from image
structures. This may produce less compact signal models,
having a negative impact on the performance and/or
efficiency of video applications.
Dictionaries of 3D spatio-temporal geometric functions
may have a size that is difficult to deal with. Even for
simple MP, this may turn atoms search into an intractable
task. Moreover, temporal geometry evolution is often so
complex that a dictionary, able to represent them, is likely
to be extremely coherent. It is, thus, necessary to adopt
strategies that take into account some prior about the
signal in order to: i) simplify the search problem and ii)
reduce the impact of dictionary coherence on MP.
Let I; Vt be a set of consecutive images in a sequence.
The changes suffered from frame I; to I;41 can be modeled
as the application of an operator F; on the image I; such
that
Iipr = Fy (1),
Iiio = Fip1 (It1) = Feyr (Fy (1)) (6)
It+3 = ...

where the subindex ¢ indicates time.

From (2) and (6), I;;; is modeled as a transformation
of the geometric representation of I (where I, stands for
an approximation of I):

jt-‘,—l = Ft Z ny . g}Y . (7)
el

A relation needs to be established between F; and the
transformation of each one of the 2D components involved
in the frame approximation. This is why we make the
hypothesis that F; is composed by the set of F} that
independently transform each one of the frame expansion
terms, i.e.

T =Y B (-4t (®)
yell

No simple global model can be established for the joint
transformation of all geometric primitives. Hence, local
transformation models, applied to the basic elements used
for frame approximation gfy, are considered.

In the following, F; may sometimes be referred to as a
deformation. The action of each F} in (6) corresponds to a
geometric deformation on g, and to a change of coefficient
¢t Intuitively, this mechanism intends to implement local
change of scale (s, s,), position (d,,d,) and/or orienta-
tion () for each primitive (see Fig. 1(a) and 1(b)). The
sequence of deformations F,' : t € [T1,T3] and the 2D
atom gfY form a 3D primitive that represents how scene

geometry flows through time.

In this work, F, operators are approximated as the
set of differential parameter values Ad = (Ady, Ady),
As = (As,, As,), AP mapping atom g, from time ¢ to
t+ 1:

Y
Vv, Yt gl g?fl s.t. gi,g?fl eD. (9)

In order to be consistent with 2D pictures representa-
tion, we impose that F} is such that gg and gfjl belong
to the same dictionary D. This allows the use of fast atom
search algorithms (such as the one used for 2D image
approximation [25]). Since the set of F, are used as a
parametric description for coding purposes, a quantization
on the evolution of geometric parameters v is required.
Such a quantization needs to be considered within the
decomposition loop of the greedy algorithm [9]; hence,
deformed atoms must also belong to D.

The set of all possible transformations F}' is an approxi-
mation of the affine model of local transformations defined
for sequences. This approximation intends to supply a
trade off between adaptation flexibility and dictionary
complexity. The model considered in this work does not
include shearing and is limited by the granularity of D
parameters. According to (6), geometric video primitives
are recovered on a frame by frame basis, tracking its
deformation through time to recover the video structures.

A graphic example can be seen in Fig. 1(a), where the
approximation of a simple synthetic object by means of
a single atom is performed. First and third picture rows
show the original sequence and the second and fourth rows
provide the reconstruction of the approximation. Fig. 1(b)
shows the parametric representation of the sequence. We
see the temporal evolution of the coefficient cfy, and the
other 2D geometric parameters.
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(a) Synthetic sequence approximated by 1 atom: First and third row show the original sequence made by a simple
moving object. Second and fourth row depict the different slices that form a 3D geometric atom.

3

x position, y position, x (short axis) scale, y (long axis) scale, angle.

Fig. 1. Approximation of a synthetic scene by means of a 3D atom.

III. WEIGHTED MATCHING PURSUIT
A. A General Greedy Algorithm: Matching Pursuit

Sparse approximation of signals using highly redun-
dant dictionaries typically requires the use of sub-optimal
strategies due to computational feasibility issues [26], [27],
[28]. One of the most popular algorithms, due to its sim-
plicity and usability with highly redundant dictionaries, is
the so-called Matching Pursuit (MP) [27].

Consider an over-complete dictionary D where atoms
belong to RY. General MP [29], [30], [27] iteratively builds
m-~term approximants by selecting at each step the most
appropriate term from D according to a certain rule. Each
one of these iterations can be seen as a two step procedure:

1) A selection step where an atom g;, € D is chosen
(where k > 0 indicates the iteration number).

2) A projection step where an approximant f,, €
span(gi, E € {0,..,m—1}) and a residual
rm = f — fm are generated.

The selection step, at iteration k, can be formulated

as the maximization of a similarity measure C(ry,g¢;)
between the signal to approximate (the residual at the kth

iteration: i = f — fx) and the dictionary atoms:

gi, = argmax C(rx, g;).
gi€D

(10)

MP uses the modulus of the scalar product as similarity
measure in order to minimize the projection error, i.e.
C(ri, gi) = [{re, 9i)|-

Consider 7o = f; then, at the first iteration, MP will
represent the signal as:

f =To = <f7 g’Yo>g"/n + 7, (11)

where 71 is the residual after approximating ry in the
direction of g.,.
Hence, from (11):

K-1
f= Z (Ths Gy ) G + Tk (12)
k=0

Recent studies like [13], [29] suggest that the use of inco-
herent dictionaries is very important for the good behavior
of MP. However, as underlined in [15], experience teaches
us that highly coherent dictionaries are more powerful for
natural signal approximations [5], [2], [21]. Alternatives to
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MP are thus required for good sparse decompositions when
highly overcomplete (and coherent) dictionaries are in use.
Yet, usable alternatives must be simple enough.

B. Using A Priori Information within Matching Pursuit:
Weighted Matching Pursuit

The use of the scalar product as similarity measure in
MP bears some similarity with searching for the “Most
Likely” atom g;, given the residual ry: i.e. the atom g;,
that maximizes the probability p (g;|rk) is selected. Thus,
[{(r%, g;)| may be intuitively seen as a measure of the con-
ditional probability p (rg|g;), and when all g; are equally
probable, maximizing |(rg, g;)| is equivalent to maximizing
p(gi|rk). Based on this, [15], [14], [1] consider the case
where, depending on the signal, dictionary waveforms do
not have the same a priori probability to appear in the
optimal set of m atoms (T'),). Indeed, the authors propose
an algorithmic approach where some prior knowledge
p (gi) on the likelihood of each g; is available. By the Bayes’
Rule, the probability to maximize becomes

p(rrlgi) p(9i)
p(rk)
where the denominator is usually assumed to be constant
for any signal r;. Based on this, one can modify the MP
selection rule by multiplying the modulus of the scalar
product by a weighting factor w; € (0,1] (which depends
on the atom index ¢) in order to represent the insertion of

a measure of prior information. Hence, now C(ry,g;) in
(10) is such that:

p(gilre) = (13)

C(rk, 9i) = [ri, 9i)| - wi. (14)

See [1] for a formal relation between w; and p (g;).

The general family of weighted greedy algorithms using
(14) are called Weighted-MP [14], [15]. Weighted-MP does
not modify the projection step of the algorithm, allowing
to freely select MP or OMP (Orthogonal MP). A priori
knowledge (w; Vi € 2) may change, if necessary, depending
on the iteration k and the signal to approximate as shown
in Alg. 1.

Algorithm 1 : Weighted-MP flow

1: Compute Initial A priori information (generate w; Vi).
2: Initialize rq = f, where f represents the original signal
and r is the residual signal to approximate. Initialize
f =0, where f is the generated approximation.
3: for k =0 to K-1 do
4 Find g;, st. g;, = argmax, cpC(rg,g:), where
C(r, 9:) = e, gi)| - ws
5 The1 =Tk — (Tky Gi) * Giy
Update the probability maps considering ¢;, in or-
der to generate the new w; Vi for the next iteration.
7:  Generate approximation ka = fi + (Tks Gi) * Giy,
8: end for

As demonstrated in [15], when coherent dictionaries are
used, Weighted-MP is more likely to recover good signal

approximations than MP [13], [29]. This helps to better
respect the structural nature of signal components. At the
same time, it also proves that a more sophisticate atom
selection criterion help to speed-up the convergence of
greedy approximations, which reduces the negative effect
of dictionary coherence on the greedy algorithm.

In this work, the use of Weighted-MP in the frame-
work of geometry-adaptive video approximations is inves-
tigated. A geometric video model is proposed in the next
sections for both: video representation, and as an a priori
model to drive Weighted-MP. The use of Weighted-MP
and the prior is compared with simple MP by considering
diverse application scenarios.

IV. A GEOMETRY-ADAPTED VIDEO DECOMPOSITION
BASED ON WEIGHTED-MP

In this section, we propose an a priori model in the se-
lection step of Weighted-MP for frames that have temporal
precedent frames. The first frame of a sequence or group
of pictures is decomposed using a full MP as described in
Sec. II, and the rest of the frames, using weighted MP.

A. Weighted-MP Selection Criteria for Video Decomposi-
tion

Video frames decomposition can be formulated from a
Bayesian point of view if some a priori information about
Fﬁ, the relation between atoms depending on ~ and/or
their temporal evolution, is available. For this purpose,
we make the assumption that neighboring atoms, in space
and time, present similar deformations. This can be done
by the use of proper regularization terms in (13); i.e.
by using a Bayesian functional in (10) that maximizes
the Maximum a Posteriori (MAP) probability. In the
following, Weighted-MP selection criterion is formulated
considering a Markovian framework in order to define
probabilistic relations among atom motions.

For every Weighted-MP iteration, in the decomposition
of a video frame the following expression is optimized:

F) = Ay, = ar%maX {p (A'Ym Acy | it g't)’n)}
’Y"l

= argmax {p (Tytz+1a gftyn | A’an Acn) P (A’Wu Acn)} )

Avn
(15)
where A, represents the parameter differences between
" eI and 4%, € T, and £+ is the nth iteration frame
residual at time ¢ + 1.

Equation (15) makes use of the Bayes’ rule to establish
the atom selection criterion, by maximizing the matching
probability of a given ¢! ~with the residual r;™, condi-
tioned to the probability of the transformation A<, and
the temporal change on the projection coefficient Ac,.
The matching probability p (ri, ¢ | Ay, Acy) can be
defined as a function of an estimated residual error energy
ff:_llHQ for the retrieval of function g, at iteration n.
Atoms are assumed to deform through time under consis-

tent motion transformation. Thus, the coefficient should




not change (except for scale changes) in the estimation of
the most probable motion. Hence,

At+1

t+1
Tn+1 =Tn

1
—(rt, gt )9s, (16)
where < {2 gff > stands for the scalar product normalized
according to the re-scaling of gH'1 with respect to gfyn,

ie <rt v 95 > = <rn,g%> VAsgAsy, where \/As;As, re-

normalizes the new atom to preserve unitary norm. The
re-scaling is necessary in order to compensate for temporal
changes in scale of the normalized atoms, so that the
amplitude of the data they represent is maintained. At
time ¢, r,,; L gf , in order to minimize the energy
of the projection error. In the same way, after motion
transformation, g J,rl should be such that AZTIH is also
minimized.

The probability measure assumes Gaussianity (by the
central limit theorem [31]) and independence of error
samples 7, 41(z,y) for simplicity. Akin to other approaches
such as block matching and Markov Random Fields
(MRF) [32], [33], we consider:

p(rih gl | Ay, Acy) =
o 17
LT Xp( e (o y>|> a7)
2
Z . \/27TU2 20
where Z is a normalizing constant and o2 =~

[’rflj_ll T y)| 1 Note that rn_H is considered to have
zero mean. In fact, prior to any operation, a low pass

approximation is removed from every frame (as discussed

in Sec. II). Introducing the evaluation of o2 in (17) we
obtain the conditioned optimization criterion:
Cy
p (g, | A, Acy) # ———, (18)
at+1
rn-&-lH

where C is a constant.

Probability p (A7, Ac,) imposes the model that drives
the transformation F}' of the g}, and the associated coeffi-
cient. This is, thus, defined as the conditioned probability
of Ay and Ac, in the Markovian framework. At every
iteration, Weighted-MP tries to select a new atom that
maintains regularity with all those previously selected
in the neighborhood (Fig. 2). Earlier atoms are trusted
to generate the motion regularity estimates for future
appearing atoms (within the same frame). This unbal-
anced criteria derives from the fact that first atoms of the
Weighted-MP decomposition capture more energy, thus
they tend to represent much more significant (i.e. reliable)
signal features.

We can formulate p (Avy,,, Ac,) as

p (A'Yna Acn) =
(19)

p(Ac, | Ady, As,, AG,) - p(Ady,, As,, Ab,),

where Ac,, (temporal variation of the nth atom scalar
product with the residual) depends on the choice of new
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Frame Expansion (atoms + coefficients)

=

Probability Maps Previous Frame
Spatio-temporal ~ ~«— Expansion
Regularization Storage

Input Frame
Weighted
MP/OMP
t
r

i

Dictionary

Initialization

L Awoms Motion Predicior &
!

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 2. Expansion Block Scheme.

~ parameters. Considering Ad, As, A independent, (19)
turns into:

P (A, Acyn) =

p (Acn | Ad'm Asn7 Aen) P (Adn) P (Asn) P (A@n) .
(20)
Each of the probability functions has the form of a MRF,
and thus, they may be modeled by a Gibbs distribution

[34]:
o) = 5o (- 252, (21)

where E, (z) is an energy function that characterizes the
MRF and how neighboring variables are related, while T,
stands for its variance.

From (15), (18), (20) and (21
optimized can be expressed as:

), the functional to be

A~y,, = argmin { log (
Avyp

) + s, B, (D) +

Aad, Eag, (Ady) + Aas, Eas, (Asp) + Aag, Eac, (A(Qng}
22
where Av,, = {Ad,, As,, Ad,} and each A\, are a function
of the statistics parameter T, in (21).

B. Regularity Models

1) Coefficient Model: Temporal variations of coeffi-
cients, Ac,,, should be small in ideal tracking of an atom.
In any case, coefficients may not change sign. Changes to
coeflicients should be driven mainly by the change of scale
of the approximating function. A normalized quadratic
distance between the coefficients at time ¢t and ¢ + 1 is
considered for Ea., (Acy):

cttl

EAC” (Acn) = ( n

¢ /Ashs, 23
ct - \/AsgAsy ’
¢

where previous ¢;, are re-normalized with respect to the
scale transformation. One can observe that (23) is nor-
malized in order to be independent of n.

2) Geometric Models: Displacement, change of scale
and rotation constraints are measured as the euclidean
distance between the value under test and the most likely
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(ML) transformation estimated from previous Weighted-
MP iterations at every image location. Hence,

~ 2 R 2
EAdn = (daz,n - d:c,n) + (dy,n - dy,n)
A 2 ~ 2
EAsn - (Sat,n - Sw,n) + (Sy,n - Sy,n) (24)

Enp, = (an - én)z,

where d, § and 0 correspond to the ML estimates (see
Sec. IV-C for details about their calculation).

C. Motion and Probability Fields Estimation

ML motion estimates are computed considering all
atoms that interact within a given region. In the example
presented in this work, atoms have a localized support
in space (see (4)). Even though (4) has not a strictly
finite support, amplitude decay is fast enough such that
atoms located sufficiently far away can be considered not
to interact among them. Furthermore, the decay of the
Gaussian envelop of (4) can also be considered as a hint
of the fact that the strength of constraints (23) and (24)
should increase the closer an atom is from another one, i.e.
two atoms have a more coherent motion the closer they
are.

1) Ay Modeling: From (4), the atom envelop is a bi-
variate Gaussian with the same scaling dimensions (s,
sy) as the atom itself:

py(u,0) = Kexp (= (u? +07%)) st

cosf (x —d,)+sinf (y — dy)
Sz (25)

—sinf (x — dy) + cos b (y — dy)

)

Sy
where K is a constant. This model is assumed to represent
the influence law of the transformation of a given atom
in a neighborhood. Thus, for any z, A, depend on the
spatial location and are proportional to p,(u,v). That
is, the variance of the probabilities described in Sec. IV-
A depends on the spatial location and decreases as a
function of scale and with the distance to the center of
an atom. Every )\, is a constant (tuned in order to fit
the deformation model) multiplied by the bivariate model
of (25):
)‘I('r’y) = C>\m -pv(u,v).

As one can observe, A, depends on the area of influence
of each atom g,. In a given area, where more than one
atom overlap, only the highest p.(u,v) at position (u,v)
is considered.

2) Motion Parameter Estimates: Motion parameters
dw,dy,§w,§y,é in (24) are estimated from the preceding
n — 1 atoms of current frame expansion. They are the ML
estimates according to the energy probability associated
to each atom.

In fact, considering that a given frame energy can be
represented as the sum of the square of the coefficients in
a MP expansion:

o0
1l = 3 feal?,
n=0
we approximate the probability associated with the nth
atom as a fraction of ||I]|?

(26)

|cnl

(27)

The conditioned probability that a given atom contributes
to spatial location (x,y) can be modeled through (25).
Thus,

\/% exp (— (u(x, y)2 + ’U("E, y)2))
(28)

The motion parameters induced by atom gfyn at point
(z,y) have probability:

p(@,y | ) =

P,y | 1n)p(n)
PO L) = Sy )
We can see that the summation in the above equation will
only integrate those atoms close to position (z,y) (due
to their amplitude decay -(25)-). Giving as example the
case of the ML displacement ( d, in (24)) at a given
(z,y), we formulate it as the weighted average of all the
transformations induced by all the atoms at a given point:

(29)

n—1

&n = E{dn | z,y} = Zcfk(x,y) (v | T, Y).
k=0

(30)

The same applies to the other parameters, § and 0.

Only the precedent (n — 1) available atoms are consid-
ered for the statistical measurements and calculations of
the ML motion. When no reliable estimate of p (A~,) is
available (i.e. when none of the (n — 1) atoms spatially
overlaps with the nth atom), an initial value is generated
by matching the region (patch) where the atom is sup-
ported in frame ¢ with frame t + 1. The cross-correlation
(matching) of the zero mean and normalized versions of
the patch and the frame that we want to approximate
is used, i.e. the correlation between the normalized patch
and the normalized frame is measured for every possible
geometric transformation of the atom.

D. Atom Refresh

This work considers a forward mapping scheme where all
atoms from frame at time ¢ try to get matched in the frame
at time ¢ + 1. This is not always possible and sometimes
the atom will not be able to find at ¢+ 1 the feature it was
representing at time t. Thus we measure the reliability
of the predicted atoms motion as follows. At every new
frame, the normalized scalar product of the transformed
atom is compared with the projection of the atom in the
first frame:

t+1]|2 02
> ) 6€ (0,1 31




If a significant drop in the scalar product is detected, the
atom is canceled (the trajectory is not valid anymore). At
the end of the projection process, those atoms that have
been canceled are reintroduced in the frame through a full
MP search.

In the present investigation, when the atom refresh is
used, it is set such that a very small portion of atoms
can be renewed at every frame (e.g. no more than three
percent).

V. EXPERIMENTAL STUDY

A series of experimental tests are presented to asses
the effect of Weighted-MP with respect to MP in the
extraction of spatio-temporal, geometry-adaptive, video
structures. In the following, experiments are realized con-
sidering a 2D dictionary sampling such that (according
to Sec. II-A), d, and d, have pixel resolution, rotation
0 is sampled every m/36 and s, and s, are uniformly
distributed on a logarithmic scale from one up to a fourth
of the size of the image, with a resolution of a half of
octave. In what concerns temporal search for the recovery
of the 3D atoms deformation, a maximum search window
of +/—-30 pixels, +/—2 scale samples and +/—4 rotation
samples is considered. Unless the contrary is said, natural
sequences are decomposed using the following settings in
our experiments: A, = 2.5-1074, AAd, = 1~10_3,)\Asn =
1.25 - 1074, App, = 6.5-107% and 6 = 0.2. In the
current implementation, a search based on the use of
FFTs is used in order to compute scalar products [25].
In the following, first, a set of experiments evidences the
motion regularization effect of a priori information within
Weighted-MP. Then, the entropy of the generated video
representations is measured and used for comparison. A
simple coding scheme is used on video representations
generated in this work for illustration. Finally, an example
on the use of present video representation for multi-modal
video analysis is shown.

A. Regularization Effect of Weighted-MP on Geometric
Video Structures

Fig. 3 shows, by means of a motion flow, the local
deformation of atoms from frame 2 to 3 in the sequence
foreman (see the 1st row of Fig. 6 for an extract of this
sequence). The left image shows geometry deformations
captured by the MP based algorithm. The right image
shows a much more stable set of deformations obtained
by Weighted-MP. Unlike the representation generated by
MP, video atoms captured by Weighted-MP have a local
motion closer to the real one. The same phenomenon is
observed for sequence motorway (Fig. 4). A priori driven
selection criteria of Weighted-MP succeeds in extracting
much more stable geometric video primitives than MP.
Only those atoms really concerned by moving objects
present a temporal deformation. The weaker selection
criteria of MP gets more easily destabilized, leading to a
much shakier (i.e. noisier) video representation.
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Fig. 3. Comparison of the computed deformations (atoms associ-
ated motion) for the 2nd frame of the foreman sequence: left not
regularized, right regularized.

E TR

Fig. 4. Natural sequence motorway. Left column: non-regularized
solution. Right column: regularized tracking. First and third rows:
Respective reconstructions with 500 atoms. Second and fourth rows:
Most reliable primitives motion.

In the following, two examples on the results generated
by Weighted-MP are presented. For these results, Aa¢, =
1.66 - 1072, Aaq, = 0.0227 - 1072 \ps, = 4.0 - 1072,
Ans, = 0.129 - 1072, The first one can be seen in Fig. 5.
This shows a sequence where a bar translates and rotates.
In the second line, one can observe the motion flow of
spatio-temporal atoms recovered by Weighted-MP.

Fig. 6 shows several geometric atoms with their evolu-
tion through time. These are represented in the second,
third and forth row by showing the spatial “footprint” (in
white) of a selected atom and its evolution through time
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Fig. 5. Affine motion of a synthetic model (line). From top to bottom: approximation of the line, residual with respect to the original model
and motion associated to the atoms. In the second row, we clearly see the effect of parameter quantization, in this case error is induced by
the limited resolution in translations and rotations.
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Fig. 6. Several consecutive frames of a natural sequence showing the reconstructed signal with 500 atoms. First row: the original frame;
Second to Forth: motion of 3 different atoms from the sequence on the reconstructed signal. Their temporal evolution is indicated by the
changes on the white footprint.

distribution of temporal atoms length

700 \ \ \ \ Geometric video primitives do not necessarily last all
along a GOP. Fig. 7 shows the histogram of temporal
lengths for atoms prediction that are determined by the
criteria described in Sec. IV-D. In this example the 48 first
frames (3 GOPs) of the sequence foreman have been taken
into account for the generation of the statistics. The total
number of spatio-temporal atoms (sets of atoms that are
predicted from frame to frame without being refreshed)
within this 3 GOPs is 1876. There are about 35 per cent of
atoms that succeed in being predicted from frame to frame
during all the GOP. However, a relevant number needs
to be refreshed quite often: common temporal lengths are
I I TR from 1 to 8 frames. Sequence changes (occlusions, uncov-

erings and simple interaction among atoms) force their
Fig. 7. Distribution of length for the temporal atoms. The length ~ refresh. Atom refresh is a natural manner to introduce
is (.ietermined by .the atom refresh criteria of Sec. IV-D where atoms  components to represent new information that appeared
losing 80% of their amplitude are refreshed in the signal. This is the case in Fig. 8 (both pictures
are decoded approximations reconstructed with 500 atoms
each), where some regions on Foreman face get uncovered.
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(from left to right). Combinations of different temporal
geometric deformations such as translation, rotation and
scaling can be observed in the three different examples
displayed in Fig. 6.
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Fig. 8. Reconstructed frames 12,13 from the foreman sequence.
In them, we observe the uncovering of the left region (right in the
picture) of the man’s face.

B. Entropic Effect of Weighted-MP on Geometric Video
Structures

In here, a simple coding scheme is used to code a
spatio-temporal video representation generated using the
Weighted-MP video decomposition. This is used to evalu-
ate the effect of using Weighted-MP instead of MP on a
entropy basis. Tests are performed on Foreman sequence in
QCIF format at 30Hz. For simplicity of the coding model,
no atom refresh is considered in here; allowing to cumulate
a more significant temporal drift with the frame number.

1) A Predictive Scheme for 3D Structures Coding: The
coding scheme presented here tries to exploit the temporal
redundancy of geometric video features with what has
been presented in Sec. IV-D. The coding algorithm sees
the video representation as a set of spatial atoms that
are tracked through time. The tracking algorithm is the
Weighted-MP video decomposition, which generates the
set of data streams (coefficients and atom parameters
changing through time).

Video representation data streams are, then, coded
based on a DPCM [35] approach (in the present case, this
is based on the simplest of the predictors, i.e. difference
prediction, and a uniform dead-zone quantizer for the co-
efficients). Prediction residue is then coded by an adaptive
m-ary arithmetic encoder [36], [37], [38]. Symbol statistics
are independently estimated for each kind of parameter. A
statistical context for every kind of parameter is reserved
for “intra” coding (first DPCM sample), and another one is
kept for “inter” coding (predicted samples). A module may
estimate whether the trajectory of an atom is at its end. If
this is the case, an additional signal could be transmitted
to indicate that the atom, tracked until that point, is not
tracked anymore and new intra data (new geometric atom)
is introduced for tracking.

Predictive representation of spatio-temporal video com-
ponents is performed on a limited length group of pictures
(GOP) basis. A maximum prediction length (L) is fixed.
Every L frames, atom trajectories are terminated and
a new prediction GOP is started. In the present test,
trajectories cover the full length of a GOP independently
of the fact that an atom coefficient decreases significantly
its amplitude. While this is done in order to keep the
encoding algorithm simple for the present work, it makes
difficult to properly represent sequences with occlusion or
changes through time.

IEEE TRANS. IN IMAGE PROC.

RD comparison gop 16

PSNR

Fig. 9. Comparison of the regularized and non-regularized foreman
sequences (16 frames GOP). Left: R-D, Right: Temporal comparison
at two particular rates of the evolution of the PSNR with the frame
number.

As described in Sec. II-A, low frequency components
are represented separately under the form of a highly
downsampled version of the original image. To code this
information, low frequency bands are jointly coded by
applying a simple temporal wavelet transform on them
(spatial wavelet transformation is not possible since the
low frequency band is already downscaled as much as pos-
sible). Here, a simple Haar temporal transform is applied
to each group of low frequency bands, belonging to the
same GOP. These are quantized using a dead-zone uniform
quantizer and then coded by means of arithmetic coding,
following a raster-scan ordering. Dedicated m-ary adaptive
statistical context estimation is used for Haar low band
and for Haar high subbands.

To guarantee independence among GOPs, all adaptive
arithmetic coding contexts are reset at the beginning of
every GOP.

2) Influence of Weighted-MP on Compression Results:
Curves on Fig. 9 (left) show the gain obtained in terms
of rate-distortion (R-D) of the regularized Weighted-MP
with respect to the non-regularized MP. A consequence of
the regularization turns to be, as expected, the reduction
of the amount of necessary bit-rate to represent frame to
frame variations. The entropy of the parametric represen-
tation gets reduced by the low-pass filtering of parameters
imposed by the Weighted-MP selection criteria. Further-
more, this criteria (and motion initialization when no a
priori is available), reduce the propagation of error in atom
parameters, contributing to a better R-D behavior.

Fig. 9 (right) shows the effect of using Weighted-MP
compared to MP in terms of rate distortion for Foreman
sequence. Both curves show the common drift behavior
appearing from the predictive nature of the representation.
Notice that the regularized version has a gain between
0.5-1.5 dBs over the non-regularized with 20kbps less.
The range of rates appearing in the curves is obtained by
exploiting the natural SNR scalability that MP expansions
have. For a given bit-rate, video frames are progressively
reconstructed by limiting the number of spatial atoms used
per frame. In this way, coding costs respect a pre-selected
bit-rate.

Coding results on a very geometric sequence are com-
pared to two other coding schemes in order to better
understand the interest of studying geometry and motion
adaptive video representations. In this case, coding results
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of the first 64 frames in Foreman QCIF are compared
to SPIHT-3D [39] and MP3D [10] (a non-motion adap-
tive geometric video representation). For this particular
sequence full of geometric features, the most comparable
scheme in performance is that corresponding to MP3D.
At very low bit-rates, average representation of structures
using the simpler dictionary of MP3D is more interest-
ing from a R-D point of view. Indeed, at very-low bit-
rates, motion information becomes too expensive to code.
Signaling atom index from the smaller dictionary in [10]
requires less bits than for current Weighted-MP approach
where motion needs also to be described. At the same
time, the slight picture quality improvement at such coarse
approximations does not compensate for the associated
increase of information needs. For middle and higher rates,
in this example, and despite the temporal drift, the richer
dictionary available in our work gives advantage to our
decomposition. Indeed, the improved reconstruction qual-
ity pays for the increased amount of information required
to signal the temporal motion of each of the atoms.
Results also show that both geometric approaches are
able to exploit spatial correlations better than 3D wavelet
approach for this highly geometric sequence. A sufficiently
lower number of non-zero coefficients is required in the
geometric schemes.

In order to achieve significantly better and consistent re-
sults through further sequences, neighboring atoms should
be jointly coded. Also an atom tracking scheme free of drift
or a proper strategy able to handle, in a robust way, most
occlusions and disocclusions should be available. However,
at this point, this is beyond the scope of the present work.

R-D curves comparison for different schemes
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Fig. 10. Comparison of R-D performance for the first 64 frames
of the sequence Foreman QCIF using different coding schemes. In
particular, current Weighted-MP based scheme is compared to non-
motion adaptive MP based MP3D [10] and non-geometry non-motion
adaptive wavelet based SPIHT-3D [39].

If a priori motion information does not match with the
sort of content, then the approximation will not be good.
Indeed, spatio-temporal structures are then more difficult
to be extracted, and the extracted video features will not
capture properly the desired structure. A consequence of
this can be seen in Fig. 11. In it we compare the RD
performance of 3 representations of the first two GOPs of
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the sequence Football (QCIF). This part of the sequence
contains a series of Football players racing in an erratic
motion full of occlusions. As expected, the difficulty of
Weighted-MP in capturing the proper signal structure
is reflected in a lower R-D performance with respect to
the simpler SPIHT-3D. Indeed, the stronger the a pri-
ori the worse the compression performance. Despite the
geometric characteristics of our dictionary, the high drift
introduced within the sequence representation makes it
difficult to out-perform SPIHT-3D in this case. Further
work in proper handling of occlusions and disocclusions is
thus required.

R-D curves comparison for football (sequence with occlusions)
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Fig. 11. Comparison of R-D performance for the first 32 frames
of the sequence Football QCIF using SPIHT-3D and Weighted-MP
with two different a priori strengths. Since the a priori mismatches
with the highly erratic motion in the scene, the higher the As used,
the worse the performance is.

C. Use of Weighted-MP Based Geometric Video Repre-
sentations for Multi-modal Sequence Analysis : Speaker
Localization

Geometry-adaptive video representations can also be
used for multi-modal audio-visual analysis. Indeed, the
present Weighted-MP based video representation has
shown to be an interesting alternative for video feature
selection ([40], [41], [42]). These works, however, do not
describe in detail the video representation framework used,
focusing rather on the aspect of fusing multi-modal data
descriptions for audio-visual signal analysis. In [40], [41],
[42], a sound is assumed to be generated through the syn-
chronous motion of important visual elements extracted
using the proposed video representation framework. Au-
dio and video signals are represented in terms of their
most salient structures using redundant dictionaries of
functions, making it possible to define acoustic and visual
events. An audio event is defined as a local maximum
(peak) of the audio signal energy. A visual event is defined
as a peak in the displacement of relevant visual edges
represented by video atoms. The intuition behind such a
definition is that a maximum in the atoms displacement
reflects a movement with respect to a certain equilibrium
position, like the one occurring when lips open and close.
The synchrony between acoustic and visual events reflects
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Fig. 12. Sample raw frames (top), video atoms highly correlated
with the soundtrack highlighted in white (middle) and reconstruction
using only visual structures close to the estimated sound source
(bottom). On the first sample the left person is speaking while on
the second one the right person is speaking.

the presence of a common source, which is effectively
localized. Indeed, the correlation between the audio peaks
and the evolution of video atom coefficients is measured
in order to determine which are the atoms that are more
related to the sound.

Fig. 12 shows an example of the usage of Weighted-
MP based geometric video representations for audio-visual
data correlation. The test clip involves two persons taking
turn in reading series of digits in English. It is recorded at
29.97 fps and at a resolution of 120 x 176 pixels. The video
sequence is decomposed with the proposed algorithm using
200 atoms for the whole scene. To simplify the analysis,
no atom refresh mechanism (Sec. IV-D) is used here.

The top row of pictures shows two sample frames taken
from the video : on the first one the left person is speaking
while on the second one the right person is speaking. In
Fig. 12 (middle), the video structures (atoms) that are
more correlated with the soundtrack are highlighted in
white. In both cases the mouth of the correct speaker
is localized. Notice how video atoms nicely adapt their
orientation according to the geometric characteristics of
the structures they represent.

The Weighted-MP based video representation is very
rich and the defined visual structures have a high semantic
meaning. This allows to extract and manipulate these
structures in a simple and intuitive way. For example, it
is possible to reconstruct the scene using only those video
atoms that are consistent with the audio track by simply
encoding the video sequence with atoms that are close to
the detected sound source. The bottom row of pictures in
Fig. 12 shows sample frames of the test sequence recon-
structed by summing to the low-pass images only those
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video atoms that are closer than 80 pixels to the estimated
sound source. The reconstructed images can be seen as
audio-visual key frames that focus on the sound source at a
given time instant. Moreover, in a compression application
scenario, a sequence may be selectively encoded using only
video atoms associated with the soundtrack, saving bits for
the coding while keeping the salient information about the
scene.

As also shown in [40], [41], [42], results are promising
and encourage for further research. The interested reader
will find additional results and future development of this
research in [43].

VI. CONCLUSIONS

In this paper, a study on the representation of video
signal as a superposition of spatio-temporal geometric
structures has been presented. The purpose of this work
is to study the recovery of sparse video approximations
where atoms jointly represent spatial geometry and tempo-
ral trajectories. In the present work, the problem has been
formulated taking into account lessons learned in previous
works for the use of redundant coherent dictionaries for
sparse approximations. Highly non-linear algorithms such
as Matching Pursuit are used together with geometry
adapted dictionaries in order to extract geometric prim-
itives from video sequences. The results presented in this
work clearly underline that the use of a prior: information
within MP is of key importance for the successful recovery
of signal structures with coherent dictionaries. In our
investigation, the recently introduced variant of greedy
algorithms, Weighted Matching Pursuits [15], is used. This
helps to consider motion regularity models for tracking
geometric video primitives through time. Results show
that Weighted-MP strategies have potential to improve
the decomposition of video signals. The obtained repre-
sentations show to be able to represent and exploit spatio-
temporal video structures. Results are promising and en-
courage for further research in order to better understand
the structure of video signals, its proper representation as
well as its use in video processing and coding applications.
Further research in this direction may include forward-
backward extraction of geometric video components, such
that occlusions and appearing/disappearing objects are
better handled. Also, more accurate a priori motion mod-
els may be taken into account. In this sense, work is under
development in order to study the use of particle filters in
the recovery of temporal evolution of video primitives [44].
The use of more signal adapted dictionaries should also be
investigated, as well as possible applications of successful
representations.
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