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0 ABSTRACT 20 

Although there are several procedures predicting concrete compressive strength, reliable methodologies 21 

involve either extensive testing or voluminous databases. This paper presents a simple and efficient 22 

procedure to evaluate the activation energy and the rate constant of concrete. These two parameters can 23 
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be used for a rapid prediction of the mechanical properties of concrete and particularly the evolution of 24 

compressive strength. They also allow separation of effects due to physical phenomena such as 25 

humidity loss. The procedure uses an experimentally-determined parameter called “hardening time” as 26 

an indicator of equivalent maturity when comparing two hardening profiles. Test results from 27 

specimens of six concrete types validate the approach. 28 

 29 

Keywords: maturity, activation energy, degree of hydration, hardening time, separation of effect, 30 

prediction, fiber optic sensors, frequency factor, concrete strength 31 

------------------------------------------------------------------------------------------------------------------------ 32 

1 RESEARCH SIGNIFICANCE 33 

A maturity method is used to predict the compressive strength evolution of concrete. Values for the 34 

activation energy and the rate of reaction are necessary to implement this approach. Determination of 35 

these values usually requires either extensive tests or large databases. This has resulted in limited use of 36 

maturity methods. A simple and fast methodology to determine these values and consequently predict 37 

compressive strength evolution is presented. More timely knowledge of compressive strength evolution 38 

will lead to savings during construction and improve safety. 39 

 40 

2 INTRODUCTION 41 

At early age, the mechanical properties of cement-based materials are time-dependent and involve 42 

hydration. The hydration process is a thermally-activated reaction that may be described by the 43 

Arrhenius equation. This equation establishes the progression of a chemical reaction in terms of rate of 44 

reaction k [1]. The integral over time of the rate of reaction gives the degree of reaction. Two 45 

independent and parallel research areas have been generated through applying degree of reaction 46 
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indices in this research. For the purposes of this paper they are called “predictions” and “separation of 47 

effects”. Predictions of mechanical properties of concrete are possible based on empirical relationship 48 

between the degree of reaction (hydration) and physical properties such as compressive strength, tensile 49 

strength and elastic modulus [2, 3, 4, 5 and 6]. Separation of effects involves decoupling the 50 

contributions to the total deformation of a physical and chemical phenomenon during hardening [7]. 51 

Unfortunately the separation of an effect cannot be done by direct comparison of deformation time-52 

histories, measured in concrete pours that are hardening in different environments. The effects of the 53 

temperature after similar elapsed times of hydration change with the thermal expansion coefficient 54 

(TEC), and this coefficient depends on the degree of hydration [8]. In order to perform predictions and 55 

separate effects, knowledge of maturity indices is required. Maturity indices need to be determined 56 

experimentally for each concrete type. This article describes a new methodology to determine two 57 

common maturity indices. These indices lead to the prediction of the evolution of compressive strength 58 

in six different concretes.  59 

 60 

2.1 Background 61 

The Arrhenius equation states that the rate of a chemical reaction, k, increases exponentially with 62 

absolute temperature, regardless of the degree of reaction already obtained (see Eq. 1) 63 

 64 

1 Eq.        
RT
E- expA k a=  65 

 66 

A  Frequency factor (s-1) 67 

Ea  Activation energy (KJ/mole) 68 

k reaction rate 69 
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R  Gas constant (KJ*mole-1* K-1) 70 

T  Absolute temperature (K) 71 

 72 

The degree of reaction is calculated by integrating Eq. 1 over time. The rate of reaction k is constant 73 

when the temperature of the hydration process is constant (T=Tr= constant imply k=kr=constant). Eq. 2 74 

uses kr to predict the compressive strength. This empirical equation is widely used [9]. 75 

 76 

2 Eq.      
)t(tk1

)t(tkSt),S(k
0r

0r
ur −+

−
=  77 

 78 

kr  Rate of reaction at the reference temperature Tr, 79 

S  Compressive strength at age t, 80 

Su  Ultimate compressive strength, 81 

t0  Age at start of strength development (hours) 82 

t  Time (hours) 83 

 84 

With the exception of controlled laboratory conditions, the temperature of the hydration process 85 

changes during the reaction and the Eq. 2 becomes inapplicable. To overcome this difficulty, it is 86 

sufficient to change the time-history into a degree of reaction history. This can be done using the 87 

equation of Freisleben-Hansen and Pedersen [10]. Observing that hydration of cement is a chemical 88 

reaction; the Arrhenius law is integrated to describe cement hydration through a new index, called 89 

Equivalent Age (Et) (see Eq. 3) 90 

 91 
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3 Eq.dt      
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 93 

Et  Equivalent age (hours)  94 

Q  Activation energy divided by gas constant (Ea / R) 95 

t  Time (hours) 96 

t0  Time at hydration start (hours) 97 

T Temperature of concrete (K) 98 

Tr  Reference temperature (K) 99 

 100 

Et is the integral in time of the ratio between the rates of reaction k1 and kr of two specimens of the 101 

same concrete types. One is a fictitious specimen and is assumed to be kept at a constant temperature Tr 102 

(generally 20 °C in Europe, 23 °C in USA). 103 

The other specimen is real and has a temperature profile T1=T1(t). At every time t* the real specimen 104 

has an equivalent age Et,1(t*). This means that at the time t*, it has the same degree of reaction that the 105 

reference process will have after a total time Et,r(t*), being cured at T=Tr. Where time is converted in 106 

equivalent age, the temperature of the process assumes the value T=Tr. Thus, if T=Tr=constant, Eq. 2 107 

is applicable (see Eq. 4) for cases when temperature varies during hydration. 108 

 109 

4 . Eq
)Et(Etk1

)Et(EtkSEt),S(k
0r

0r
ur −+

−
=  110 

 111 

S  Compressive strength at age t, 112 

Su  Ultimate compressive strength, 113 
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kr  Rate of reaction at the reference temperature Tr, 114 

Et  Equivalent age at the time t 115 

Et0  Equivalent age at start of strength development 116 

 117 

The equivalent age is of great interest for predictions and for separation of effects, since it allows direct 118 

comparisons of concrete pours (or specimens) that are hydrating at different speeds (see Fig. 1). 119 

Moreover, when used in predictions, it takes into account the so-called cross over effect of concrete [9], 120 

which affect predictions made with other degree of reaction indices [9, 11, 12,13]. 121 

The procedure explained below allows the calculation of the activation energy can be used to determine 122 

the datum temperature without modification. 123 

2.2 The hardening time 124 

A long gauge fiber optic deformation sensor called SOFO has recently been developed [14]. SOFO is 125 

particularly suitable for concrete, because of its robustness, temperature compensation, insensibility to 126 

magnetic fields, and a precision of 2 µm. Moreover, SOFO sensors follow the deformation of fresh 127 

concrete without disturbing the strain field of the host material [15]. The stiffness and the thermal 128 

expansion coefficient (TEC) of the SOFO sensor are influenced mainly by the characteristics of the 129 

protective tube. For instance, the axial stiffness of standard SOFO is very low because it is housed in a 130 

plastic protective tube. Glisic proposed a new sensor called SOFO “setting” sensor with a higher axial 131 

stiffness using a protective tube made of stainless steel [15, 16] (see Fig. 2). The setting sensor, once 132 

embedded in concrete together with a standard sensor of the same gauge length, leads to determination 133 

of the hardening time, see below. When concrete is placed, the standard sensor measures the swelling 134 

of concrete while the stiff sensor is not initially influenced by the deformations of the concrete matrix 135 

and therefore the difference between deformations measured by the two sensors increases. 136 
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After concrete hardens, both sensors measure only the deformation of the concrete matrix and the 137 

difference between the deformations measured by the two sensors remains constant (see Fig. 3). The 138 

hardening time is defined as the time when the derivative of the difference between the deformations 139 

measured by setting and standard sensors becomes zero. 140 

 141 

3 EXPERIMENTAL INVESTIGATIONS 142 

3.1 Determination of the activation energy Ea 143 

Originally hardening time was intended to be an equivalent of setting time. Studies of the mechanism 144 

of force transmission between sensors and concrete-matrix indicate that hardening time depends on the 145 

degree of concrete hydration. This degree is unknown and will be denoted as α=α*. Values for 146 

hardening time depend on the following factors 147 

 148 

• Degree of reaction (types of concrete, temperature of hydration, time) 149 

• Sensors features (thermal expansion properties, stiffness) 150 

 151 

The strategy adopted for determining the activation energy uses two specimens of the same type of 152 

concrete. Both specimens have the same dimensions. They are monitored with a stiff and a soft sensor. 153 

Aside from their stiffness, each pair of sensors has the same features. One specimen is wrapped with 154 

glass wool. The glass wool acts as insulation and keeps the temperature of this specimen at a higher 155 

level than the temperature of the other specimen. This induces a higher rate of reaction in the insulated 156 

cylinder. The temperature is measured in both specimens (see Fig. 4). The degree of reaction, in terms 157 

of equivalent time (Et), is expressed through Eq. 3. For both specimens, at the hardening time, the 158 

degree of reaction index Et has the same value. Temperature profiles are inserted in Eq. 3 for each 159 
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specimen and the integral is calculated to the hardening time. As a result two equations with two 160 

unknown values (Et and Ea) are obtained. Resolution leads to determination of the activation energy Ea 161 

(see Fig. 4). 162 

 163 

3.2 Predictions of the compressive strength. 164 

The activation energy is necessary but not sufficient for determining the rate constant kr (see Eq. 1). 165 

The value of kr is needed to predict mechanical properties (see Eq. 4). The value of kr can be 166 

determined if two compressive tests using standard specimens of the same composition, humidity, 167 

boundary conditions and temperature histories, are performed at different equivalent ages Et. This 168 

allows determination of kr through the application of Eq. 4 (see Fig. 5). Compressive tests have been 169 

carried out after 48 and 72 hours (with exception of Test 1 where test are made at 24 and 72 hours). 170 

The 24-hour test has not been found to be representative for slowly hydrating concrete. 171 

 172 

4 COMPARISON OF PREDICTIONS AND EXPERIMENTAL RESULTS 173 

Hardening time, activation energy and rate of reaction were evaluated and applied to six different types 174 

of concrete (see Tables 1-6) using the procedure presented above. Five were commonly used concrete 175 

types in civil engineering. They were made with different types of aggregate. Air entrainers, 176 

superplasticizers and different types of cements were used (see tables 1-6). The results shown in 177 

Figures 6-11 have been obtained within the first 72 hours. All predictions obtained were realistic and 178 

acceptable without any correction according to the criteria given in the code TEX-426-A (see Tables 7 179 

and 8). The quality of the prediction was verified after 7, 21 and 28 days. The maximum deviation 180 

between predicted and tested values of each test is presented in Table 8. Zero equivalent age in Figures 181 

6-11 does not always refer to the pouring time. Since poured concrete temperature is influenced by 182 
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ambient temperature in the initial phases, the zero equivalent age is taken to be the point where cooling 183 

(if it occurs) slows to a variable rate. If no cooling occurs, the zero time is taken to be the batching 184 

time.  185 

 186 

5 DISCUSSION OF THE RESULTS 187 

The methodology presented assumes that the hardening time is an indicator of the degree of reaction. 188 

Tests support this assumption for the concrete that was studied. More mixes will be tested in order to 189 

clarify the limits of applicability. Constraints on the testing procedure (such as minimum difference in 190 

temperature profiles) could be added for a better definition of hardening time when necessary. The 191 

relationship between the hardening curve and the degree of reaction is an important issue for the 192 

extension of the methodology to the general field of hardening materials and this will be the subject of 193 

further study. The basis of the proposed methodology involves passing from mechanical properties of 194 

concrete (hardening time) to thermodynamic-chemical properties (activation energy and rate constant) 195 

and back again to mechanical properties (compressive strength). Some codified methods use similar 196 

concepts by inserting the final setting time into maturity-strength equations and performing regression 197 

analyses. A recently-developed method [17] uses a variant of the setting time to determine the 198 

equivalent age and thus helping to determine strength-maturity relationships. 199 

Maturity methods are still rarely used in practice. This lack of acceptance is partially related to limited 200 

experience with these approaches. Confidence in the methodology presented here would be increased 201 

through performing more compressive tests during the early age of concrete. For example, using a 202 

given pair of compressive-strength values, the value of kr and Su are obtained, and a predictive curve 203 

can be calculated. Using other pairs, an envelope of curves is obtained. A standard apparatus for the 204 
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application of this methodology is under development. Due to reusability and robustness of equipment, 205 

an inexpensive and in-situ application of the methodology is feasible. 206 

 207 

6 SUMMARY AND CONCLUSIONS 208 

Compressive strengths of several widely used concrete mixes have been successfully predicted using a 209 

procedure that involves early age deformation monitoring. The same procedure has been applied to a 210 

special concrete in order to study the applicability of the methodology to other types of hardening 211 

materials. This methodology allows a fast and accurate prediction of compressive strength on site. 212 

Seventy-two hours are sufficient to gather the necessary data and provide accuracy of less than 8% 213 

error. It is also an attractive procedure for the determination of the activation energy and the rate 214 

constant. Separation of various contributions to deformation (autogenous, thermal and humidity loss) is 215 

thus possible in-situ and in real time. More timely knowledge of compressive strength evolution will 216 

lead to savings during construction and improve safety. 217 

 218 
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Fig. 7 Compressive strength vs. equivalent age for test series 2. Calibration strengths of young concrete 288 

are used to predict strength evolution and this prediction is verified by independent test results using 289 

cylinders containing more mature concrete. 290 

Fig. 8 Compressive strength vs. equivalent age for test series 3. Calibration strengths of young concrete 291 

are used to predict strength evolution and this prediction is verified by independent test results using 292 
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Fig. 9 Compressive strength vs. equivalent age for test series 4. Calibration strengths of young concrete 294 
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Fig. 10 Compressive strength vs. equivalent age for test series 5. Calibration strengths of young 297 

concrete are used to predict strength evolution and this prediction is verified by independent test results 298 

using cylinders containing more mature concrete. 299 

Fig. 11 Compressive strength vs. equivalent age for test series 6. Calibration strengths of young 300 

concrete are used to predict strength evolution and this prediction is verified by independent test results 301 

using cylinders containing more mature concrete. 302 

 303 

Test 1 

Water/cement Ratio 0.45 

Cement CEM II / A-LL 42.5 R 325 Kg/m3 

Superplasticizer 0.9% 

Air Entrainer 0.1% 

Aggregate 0-32 
Hüttwangen 

Maximum temperature difference 5 °C 
 304 

Table 1 Mix-design test 1 305 
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Test 2 

Water/cement Ratio 0.45 

Cement CEM I 42.5 R 350 Kg/m3 

Superplasticizer 0.8% 

Air Entrainer No 

Aggregate 0-32 Sergey 

Maximum temperature difference 15 °C 
 306 

Table 2 Mix-design test 2 307 

Test 3 

Water/cement Ratio 0.48 

Cement CEM I 42,5 N HS 360 Kg/m3 

Superplasticizer 0.8% 

Air Entrainer No 

Aggregate 0-32 Sergey 

Maximum temperature difference 20.2 °C 
 308 

Table 3 Mix-design test 3 309 

 310 

Test 4 

Water/cement Ratio 0.48 

Cement CEM III/A 32,5 N 360 Kg/m3 

Superplasticizer 0.8% 

Air Entrainer No 

Aggregate 0-32 Sergey 

Maximum temperature difference 14.5 °C 
 311 

Table 4 Mix-design test 4 312 

 313 
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Test 5 

Water/cement Ratio 0.48 

Cement CEM II/ A-LL 32.5 R 360 Kg/m3 

Superplasticizer 0.8% 

Air Entrainer No 

Aggregate 0-32 Sergey 

Maximum temperature difference 21.6 °C 
 314 

Table 5 Mix-design test 5 315 

 316 

Test  6 

Water/cement Ratio 0.18 

Cement CEM I 52,5 N 1051.1 Kg/m3 

Superplasticizer 35.1 kg/m3 

Steel fiber Not available 

Air Entrainer No 

Silica fume 273.3 Kg/m3 

Aggregate 0-4 Sand of 
Fontainebleau 

Max temp. difference 14.5 °C 
*Further detail on the mix-design of this test:  

Katrin Habel, katrin.habel@epfl.ch 
 317 

Table 6 Mix-design test 6 318 

319 
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 320 

Verification criteria Adjusting procedure 

s* ≤0.90 s 
s* ≥ 1.10 s 

Develop new S-M 
relationship 

3 consecutives within 
0.90 s ≤ s* ≤ 0.95 s 
1.05 s ≤ s* ≤ 1.10 s 

Evaluate batching and 
placement adjust s-M* 
relationship if needed 

Better correlations S-M relationship 
accepted 

 321 

Table 7 Verification criteria for maturity prediction; code TEX-426-A. s = predicted strength, s* 322 

= independent test results. 323 

 324 

Test Maximum Errors 

Day Maximum error % 
1 7 +4.5 % 
2 28 -5.1 % 
3 28 +5.1 % 
4 21 -7.4 % 
5 28 -6.4 % 
6 13 +3.7 % 

 325 

Table 8 Maximum error between predicted strength and independent test results 326 

 327 

 328 
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 332 

Fig. 2 The standard and stiff SOFO sensors. 333 
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Fig. 3 The hardening time 336 
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Fig. 4 Determination of the activation energy Ea 338 
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Fig. 5 Determination of the rate of reaction kr, the frequency factor A and the ultimate 341 

compressive strength Su 342 
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 344 

 345 

Fig. 6 Compressive strength vs. equivalent age for test series 1. Calibration strengths of young 346 

concrete are used to predict strength evolution and this prediction is verified by independent test 347 

results using cylinders containing more mature concrete. 348 

 349 

Fig. 7 Compressive strength vs. equivalent age for test series 2. Calibration strengths of young 350 

concrete are used to predict strength evolution and this prediction is verified by independent test 351 

results using cylinders containing more mature concrete. 352 
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 354 

Fig. 8 Compressive strength vs. equivalent age for test series 3. Calibration strengths of young 355 

concrete are used to predict strength evolution and this prediction is verified by independent test 356 

results using cylinders containing more mature concrete. 357 

 358 

 359 

Fig. 9 Compressive strength vs. equivalent age for test series 4. Calibration strengths of young 360 

concrete are used to predict strength evolution and this prediction is verified by independent test 361 

results using cylinders containing more mature concrete. 362 
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 364 

Fig. 10 Compressive strength vs. equivalent age for test series 5. Calibration strengths of young 365 

concrete are used to predict strength evolution and this prediction is verified by independent test 366 

results using cylinders containing more mature concrete. 367 

 368 

 369 

Fig. 11 Compressive strength vs. equivalent age for test series 6. Calibration strengths of young 370 

concrete are used to predict strength evolution and this prediction is verified by independent test 371 

results using cylinders containing more mature concrete. 372 
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