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Abstract: A system identification methodology that makes use 
of data mining techniques to improve the reliability of 
identification is presented in this paper.  An important aspect of 
the methodology is the generation of a population of candidate 
models.  Indications of the reliability of system identification are 
obtained through an examination of the characteristics of the 
population. Data mining techniques bring out model 
characteristics that are important.   

1. INTRODUCTION

With the development of accurate and inexpensive sensors, interest in
system (model) identification has grown. System identification [1] involves 
determining the state of a system and values of system parameters through 
comparisons of predicted and observed responses. Appropriate optimisation 
problems are formulated for the minimization of the difference between 
analytical predictions of models and measurements. In structural 
engineering, such procedures are generally known as model updating or 
model calibration. Friswell and Mottershead [2] provide a survey of model 
updating procedures using vibration measurements The growing interest in 
this area is demonstrated by the large number of papers that have been 
published recently ([3]-[17]). Most work involves computing sets of 
stiffness coefficients that help predict observed responses of structures.  

Reliability of system identification has rarely been studied in previous 
research. Many thousands of models may predict responses that reasonably 
match observations. Therefore procedures that match measured and 
predicted responses might identify wrong models. Robert-Nicoud et al. 
[18],[19] developed a system identification methodology that takes these 
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factors into account. A key aspect of this methodology is the generation of a 
population of candidate solutions in the feasible domain whose objective 
function values lie below a threshold.  An indication of the reliability of 
identification is obtained through an examination of the characteristics of 
the population.  If all candidate models lie in a narrow well-defined region 
of the search space, the solution is likely to be unique and identification is 
reliable.  On the other hand, if candidates are distributed among multiple 
clusters or if the parameter values of candidates vary widely, reliability of 
identification is poor. A simple semi-automatic feature extraction procedure 
was used to extract characteristics of the set of candidate models.  Features 
such as the ranges of parameter values and the number of distinct classes of 
models are extracted with this procedure. The present work extends this 
methodology to include more sophisticated data mining techniques. 

Data mining is an active research area.  Even though several textbooks 
([20],[21],[22]) and research publications ([23],[24]) on data mining have 
come out recently, mining model data is a novel concept.  Data mining 
techniques have never been used for identifying characteristics of good 
models that explain observations.  Features extracted using data mining 
provide indications related to the reliability of system identification and 
actions to be taken for improving the quality of system identification. This 
has never been attempted before. 

The outline of the paper is as follows:  Factors that affect the reliability 
of system identification are discussed in Section 2.  Our methodology for 
system identification is presented in Section 3.  An example of application 
of the methodology is provided in Section 4.  Section 5 contains the 
conclusions. 

2. Reliability of system identification 

In system identification, models are selected through computing a 
distance function that evaluates the difference between predictions and 
observations. Model selection and calibration involves minimisation of the 
distance function through searching for appropriate values of model 
parameters.  However, different types of errors could influence the results 
and accurate estimates of model parameters are difficult to obtain.  In this 
study, reliability of identification is defined as the probability that the 
candidate model(s) obtained through system identification corresponds to 
reality.  Reliability of system identification is poor when many models 
produce the same response at measured locations.  



The degree of match between model predictions and measurements is 
evaluated using a distance function such as the one given below: 
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where xi,m is the value measured at the i-th measurement point and xi,c is 
the corresponding value computed using the model. Model identification 
procedures minimize the distance function through searching for appropriate 
values of model parameters. If xi,a is the real value of the response at the i-th 
measurement point and ei,meas is the corresponding measurement error, 

xi,a = xi,m + ei,meas        (2) 
Modeling error ([25]) consists of 4 components, these are due to 

mathematical modeling (differential equations) (e1), numerical computation 
of solutions, for example, discretisation errors (e2), wrong assumptions for 
example, related to boundary conditions (e3a) and wrong values of 
parameters for example, values of moment of inertia and Young’s modulus 
(e3b). Therefore, 

xi,a =  xi,c + ei,1 + + ei,2 +  ei,3a + ei,3b     (3) 
Substituting equations (2) and (3) in (1), 
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 When there are modeling and measurement errors, correct values of 
model parameters result in a non-zero value of the distance function.  It is 
often possible to reduce this value by using incorrect values of model 
parameters for example if (ei,3b) is opposite in sign to the resultant of other 
terms in Equation (4). Thus, the location of the global minimum of the 
distance function is not close to the correct values. Therefore, models that 
are selected through the minimization of the distance function may not 
correspond to reality, thereby lowering the reliability of system 
identification.  

The measurement system accuracy and configuration is often the factor 
that has the maximum influence on the reliability of system identification.  
System identification using more measurements is obviously more reliable 
than identification with a few measurements.  Incorrect models might 
predict responses that match measurements exactly when only a few 
measurements are available. Nevertheless, when more measurements are 
added, it becomes increasingly difficult to obtain zero value of the cost 
function since model predictions may not match all measurement points. 



3. System identification methodology 

This methodology accounts for factors that influence the reliability of 
identification.  A schematic of the process is shown in Fig. 1.  Users input 
measurement data and specify a set of modelling assumptions. The model 
selection process identifies a set of candidate models whose predictions are 
close to measurements.  A feature extraction module extracts characteristics 
of these models.  

Four key modules in the methodology are global search, model 
composition, measurement system configuration and extraction of model 
characteristics. Details of these modules are described next. 

3.1. Global search 

A stochastic global search algorithm called PGSL ([26]) is used to 
minimise the cost function that evaluates the difference between 
measurements and model predictions. Search variables are assumptions that 
are needed to create complete models.  These assumptions are related to the 
condition of the structure such as the presence of cracks and support 
settlements, as well as values of parameters such as Young’s modulus and 
rigidity of joints. PGSL proposes values of variables which are used by the 
model composition module to create complete models. These models are 
analysed by the finite element method in order to compare the predicted 
responses with measured values. The cost function evaluates the degree of 
match between predicted and measured responses.  The value of the cost 
function is used by PGSL to identify regions containing good solutions 
where more intensive search is carried out.  At the end of each search, a 
model whose predictions have a good match with measurements is obtained.   

3.2. Model composition 

Compositional modelling is a framework for constructing adequate 
device models by composing model fragments selected from a model 
fragment library ([27]). Model fragments partially describe components and 
physical phenomena. A complete model is created by combining a set of 
fragments that are compatible.  For modelling the behaviour of structures, 
fragments represent support conditions, material properties, geometric 
properties, nodes, elements and loading.  Assumptions are explicitly 
represented in model fragments so that the model composition module 



generates only valid models that are compatible with the assumptions 
chosen by users.   

Model composition makes it possible to search for models containing 
varying number of degrees of freedom.  There is no need to formulate an 
optimisation problem in which the number of variables is fixed a-priori. 
Models are automatically generated by combining model fragments and are 
analysed by the finite element method in order to compare their predictions 
with measurements.   

3.3. Measurement system configuration 

The methodology for measurement system configuration is described in 
detail in Robert-Nicoud et al. ([28]); key features are summarised here. The 
principal goal of measurement system configuration is to improve the 
reliability of identification. Reliability of identification is poor when many 
models predict the same responses at the locations of sensors. Therefore, 
locations and types of measurement devices are chosen such that there is 
maximum separation between candidate models.  In this work, the degree of 
separation between models is measured using the entropy function defined 
by Shannon and Weaver ([29]). The entropy concept has been developed in 
the field of information theory and is a measure of “disorder” within a set. 
There is maximum disorder when models and parameter values show wide 
dispersion.  Sensors are ideally placed where there are large variations in 
predicted responses of candidate models.  Therefore, the location and type 
of measurement devices are chosen such that the entropy of the set of model 
predictions is the maximum.    

3.4. Extracting model characteristics 

When many different models are output by the system identification 
procedure, it is difficult to make conclusive diagnostic assessments. Two 
situations are encountered.   

1. Candidate models belong to different classes having different sets of 
parameters (heterogeneous model set) 

2. All candidate models have the same structure with the same set of 
variables and differ only in the values of continuous variables 

The first situation is difficult to automate. Current data mining techniques 
are unable to accommodate data containing different sets of parameters. 
Development of techniques for mining heterogeneous data is a topic of 



ongoing research. In the present work, a semi-automatic procedure is 
employed in the case of heterogeneous models.  Users manually separate 
models into classes using their knowledge of important parameters.  Ranges 
of values of model parameters within each class are then computed in order 
to assess the reliability of identification.  

Data mining techniques are more effective in the second situation. 
Different types of patterns in model data can be discovered by appropriate 
data mining techniques. A few examples of situations where data mining 
helps to discover patterns in data are given in Fig. 2. Each dot corresponds 
to a model. The values of two model parameters x1 and x2 are plotted for 
each model. Four situations are shown.  In the first case, all candidate 
models have nearly the same values for one of the parameters.  In the 
second case, there is a non-linear relationship between x1 and x2.  In the 
third case, models appear in three clusters separated from each other.  In the 
final case, models are uniformly distributed throughout the space. 

Three data mining techniques were evaluated for bringing out their 
potential for identifying common characteristics of good models.  First, 
correlation measurement was used to examine if there are relations between 
model variables. Secondly, Principal Components Analysis (PCA) was used 
to check if some variables have a greater importance than others. Finally, 
decision trees were used for the same purpose. These techniques are 
described below. 

Correlation is a measure of the association degree between two random 
variables.  It is derived from the covariance measure and is given by: 
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  where cov is the covariance and var the variances of the specified 

variables. The correlation between two variables x and y thus corresponds to 
the link between them and is written as: 
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  where n is the number of samples. The correlation varies between -1 
and 1. These bounds are reached when the association between x and y is 
perfectly linear. If the correlation is zero, it means that the covariance is 
zero. When the correlation is zero the two variables are independent. 

The idea of PCA is to generate a new set of variables called principal 
components that are linear combinations of the original variables. The goal 
of PCA is to find a system of principal components that are sorted in a 
manner that the first components can explain most of the data. To obtain the 
principal components, the covariance matrix S is constructed as follows: 
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where sij is the covariance between the parameter pi and pj. The formula 

of the covariance corresponds to the numerator of equation 2. Note that the 
special cases skk are equal to the variance of k.  The covariance matrix S can 
be written as: 

 
  (8) TVLVS =
 

where L is a diagonal matrix containing the eigenvalues of S and the 
column of V contains the eigenvectors of S (for more details see [30]). The 
principal components, which are linear combinations of the original 
variables, correspond to the eigenvectors of S and can be represented as an 
orthogonal basis for the new space of the data. The principal components 
are sorted in decreasing order according to how well they represent the 
variability of the data. Each sample is transformed to a new dimensional 
space defined by selected principal components. The goal is to reduce the 
number of dimensions by choosing only the first two or three principal 
components. Thus the original data are represented by a linear combination 
of the original parameters in a new and lower dimensional space. 

Decision Tree is an inductive method ([25]) that can be used for 
regression or classification; here it is used only for classification. The 
classification task is defined as follows: Given a training set in which each 
sample contains attributes and a class value, find a hierarchy of rules (tree) 
that correctly classifies training data samples into their respective classes.  



Classification of a data point is done by asking a sequence of questions 
based on the attributes. Each node of the tree is a question, each branch is an 
answer and each leaf corresponds to a classification. 

  In our case, attributes refer to parameters and the class to the boolean 
value whether the model is good or bad. As parameters have continuous 
values, questions in the tree are represented by inequalities. Therefore, 
nodes are questions such as “is the parameter pi less than a certain value a”. 
One of the most important steps in constructing a decision tree is selecting 
which attribute to test at each node in the tree. The methodology divides the 
current sample set into two child sets that are purer than the data in the 
parent set. The goal is to arrive at a set of leafs that contains either good or 
bad models. It is not possible to construct all possible trees and to select the 
one that best classifies the data since the number of different possible trees 
is exponential with respect to the mean number of possible values of 
attributes.  Many different criteria can be chosen for selecting the best split 
at each node. The measure of node impurity chosen in this study is the Gini 
index of diversity ([31]).  

3.5. Flowchart 

The flowchart for the methodology is shown in Fig. 3.  Users specify an 
initial set of possible hypotheses and potential sensor locations.  The 
measurement system configuration module selects the best combination of 
sensors. Measurements from these sensors are used to identify a population 
of models by repeating search several times. The population size is specified 
by users. Characteristics of candidate models are studied in order to 
determine whether identification is reliable and whether models are 
physically possible. If the evaluation is not satisfactory, either assumptions 
are modified or the measurement system is improved by adding new 
sensors.   

4. Evaluation of methodology 

The methodology has been applied to case studies such as a timber beam 
supported on springs, a beam made of high strength concrete, the Lutrive 
bridge in Switzerland ([32]) and leak detection in the fresh water supply 
network of town Martigny in Switzerland.  The state of the system has been 
correctly identified in all cases provided that enough number of sensors is 
used.  Only one case study (timber beam) is described here. Two 



experiments are presented. The first illustrates semi-automatic extraction of 
features.  The second experiment illustrates advantages of data mining 
techniques for extracting features. 

4.1. Experiment 1:  Simple feature selection 

A timber beam supported on springs has been constructed in the 
laboratory.  Eight inductive sensors were used to measure vertical 
displacements at different locations. These were uniformly distributed over 
the length of the beam.  Positions and magnitudes of applied loads along 
with characteristics of the structure, such as the material properties and 
support conditions, were treated as unknown variables (Fig. 4).  The order 
of sensors suggested by the measurement system configuration 
methodology is given in Table 1.  

 
Rank 1 2 3 4 5 6 7 8 
Sensor 5 2 7 3 6 4 1 8 

Table 1 The order of sensors for maximum entropy (from [18]) 

 
Loads were applied on the structure and measurements were taken from 

all the sensors in order to test the system identification methodology. Three 
measurement system configurations were considered.  In the first 
configuration, measurement from a single sensor (sensor 5) was used to 
identify models.  The set of models whose predicted responses were close to 
the measured value included the correct model as well as those that involved 
wrong support conditions and loading. The deflections measured by sensors 
and the corresponding ranges of values predicted by candidate models are 
shown in Table 2.  All models match the deflection at the location of sensor 
5, but differ significantly at sensor locations that were not used in model 
identification. Values predicted by candidate models show a wide dispersion 
at the location of sensors that were not used in identification. 



 
Predicted range (m) Sensor Measured value 

(m) min max 
1 -0.00017 -0.00587 -0.00005
2 -0.00103 -0.00462 -0.00038
3 -0.00165 -0.00359 -0.00077
4 -0.00211 -0.00299 -0.00125
5 -0.00219 -0.00219 -0.00219
6 -0.00178 -0.00334 -0.00145
7 -0.00103 -0.00464 -0.00075
8 -0.00011 -0.00601 -0.00008

Table 2  When only sensor 5 was used to identify models  

 
Predicted range (m) Sensor Measured value 

(m) min max 
1 -0.00017 -0.00016 -0.00013
2 -0.00103 -0.00114 -0.00091
3 -0.00165 -0.00188 -0.00160
4 -0.00211 -0.00227 -0.00203
5 -0.00219 -0.00230 -0.00210
6 -0.00178 -0.00186 -0.00170
7 -0.00103 -0.00108 -0.00099
8 -0.00011 -0.00012 -0.00011

 

Table 3 When three sensors (2,5,7) were used to identify models 

 
In the second measurement system configuration, three sensors were 

used. The candidate models reasonably matched measurements at all sensor 
locations including those that were not used in system identification (Table 
3). Two classes of models were obtained (Table 4). In the first model class, 
there is a single point-load and a settlement at the second support.  In the 
second model class, there are two point-loads without any support 
settlement.  This class corresponds to the real situation as tested in the 
laboratory.  The results were not significantly different using a third 
measurement system configuration using 8 sensors.   



 
 Parameter 
Type X1 F1 X2 F2 ∆1 ∆2 ∆3

Real structure        
Identification with measurement system consisting of 3 sensors 
Model Class 1        
Model Class 2        
 

Table 4 Classes of models obtained through the second measurement 
system configuration. The symbol  indicates that the parameter 
belongs to the model.   

 
The application of the methodology resulted in a set of candidate models 

which included those that correctly modelled the state of the system.  Three 
sensors are sufficient to reduce the number of model classes to two.  These 
sensor locations have been obtained using the methodology for 
measurement system configuration that is described in Section 3.3.  The 
envelope of predicted responses of candidate models contains independent 
measurements that were not used for system identification. This is an 
indication of the validity of candidate models. 

4.2. Experiment 2:  Feature selection using data mining techniques 

The timber beam supported on springs described in Experiment 1 is also 
used in this study. Instead of a two-point load, a single point load is applied 
on Node 10 which is located near the middle of the left span. Only models 
containing single point loads were searched for candidate models. 
Measurements taken from three sensors are used and the mean square error 
between model predictions and measurements was minimised by PGSL. All 
the models generated by PGSL were saved for data mining. Most good 
models (candidates) that are identified within a PGSL run are located near 
the best solution found in that run.  Therefore multiple PGSL runs are 
carried out in order to obtain good models in different parts of the search 
space. By changing the parameters of the PGSL algorithm, it is also possible 
to perform a uniform and pure random search over the entire search space. 
The term, random run, is used in this paper to denote this procedure.  
Random run does not always result in the identification of good models. The 
term focused run will be used to denote a normal PGSL search that 
converges to a good solution. 



    
The input attributes of the data set are the following.  

• p1 Load position (Node number) 
• p2 Load magnitude (kN) 
• p3 Axial stiffness of the spring at the mid-span (kN/m) 
• p4 Rotational stiffness of the spring at the mid-span (kNm) 

Data set used for the decision tree algorithm consists of an additional 
attribute.  That is, the output Boolean attribute that indicates whether the 
model is good or bad according to the mean square error function. Results 
of applying the three data mining techniques are discussed below. 

4.2.1. Correlation  
With correlation, we examine how two parameters pi and pj are related in 

good models. For achieving this, only good models are selected from the 
case study and a correlation matrix is constructed in which each element is 
computed as explained in Section 3.4. Each row and each column of the 
matrix correspond to one of the four parameters. For example, the element 
(2, 3) represents the correlation between p2 and p3. The correlation matrix is 
symmetric about its diagonal since correlation is a commutative operation. 

The correlation matrix was computed for several PGSL runs, both 
random and focused. It was found that the correlations between parameters 
in a random run are different with the ones in focused runs. In the first case, 
there is no significant correlation between parameters. In the second case, 
correlations between certain parameters are observed, See Table 5. 

 
 p1 p2 p3 p4

p1 1.0000 0.0000 -0.0000 0.0000 
p2 0.0000 1.0000 0.4682 -0.5541
p3 -0.0000 0.4682 1.0000 -0.3109
p4 0.0000 -0.5541 -0.3109 1.0000 

 

Table 5       Correlation matrix for four parameters in a focused run. 

 
  If two parameters have a high degree of correlation, for example, 

greater than 0.5, it is assumed that there is a relationship between them. It 
was found that correlation values change from one PGSL run to the next.  
This result is due to the manner in which PGSL generates models.  
Nevertheless, two results are important. First, the first parameter (i.e. the 



load position) is not correlated with any other parameter since the first 
column of the correlation matrix is zero (except for the first element). This 
means that the load position is an independent parameter for system 
identification. This is because the position of the load is always the same in 
all good models. A good match between predictions and measurements is 
not obtained if the load is not in the correct position. Therefore, the load 
position is a parameter that can be estimated reliably using this system 
identification methodology. 

The second important result concerns the second parameter, the load 
magnitude. The load magnitude varies significantly among good models in 
multiple PGSL runs.  It is also found that the correlations between this 
parameter and others vary between different runs. Nevertheless, there are 
always high values in the second column of the correlation matrix. This 
implies that the load magnitude has strong correlations with other 
parameters. Therefore, the load magnitude cannot be estimated 
independently of other parameters. Different combinations of the load 
magnitude and other parameters could result in the same degree of match 
with measurements. 

 

4.2.2. Principal Components Analysis (PCA) 
 

In this study, PCA is used as a "weighting method" that gives an 
indication of the relative importance of different parameters for determining 
the characteristics of the set of good models.  By examining the principal 
components, a measure of the importance of each parameter for explaining 
variations in the data is obtained.  Similarly to the correlation measurement, 
the PCA is an unsupervised data mining method. Only good models are 
used in the analysis.  

After launching PCA on this data the first three principal components are 
examined.  The first two components explain more than 98% of the 
variations in the model data as shown in Fig. 5. Approximately 78% of the 
candidate models differ in the value of the first principal component. 20% of 
the models differ in the value of the second principal component.  There is 
no significant variation in the values of remaining components.  

Instead of using the original model parameters, new variables c1, c2, c3 
and c4 which contain the values of the principal components in each model 
are introduced.  Using these new variables, a common characteristic of all 
good models is that the values of variables, c3 and c4 are nearly constant.  



Models differ mostly in the values of c1 and c2. It can be seen that the 
standard goal of PCA has been achieved, since a few components explain 
most variations in data. For example, a two-dimensional plot (i.e. using only 
two variables instead of four), show almost all the variability in the data.  

When c1 and c2 are plotted in a two dimensional graph, a number of 
small clusters are observed. It is speculated that this is due to the manner in 
which PGSL generates models. Since PGSL performs focused search in 
regions where good solutions are found, when PGSL finds a good model it 
generates many models in the neighbourhood, and this gives rise to these 
small clusters. This observation is valid only for focused runs. In the case of 
a random run, we see only a cloud of models. In this case, PCA cannot 
group the models since there is no correlation between them as indicated by 
the correlation measurement. The first three principal components of a 
sample focused run are given in Table 6.  

 
 

 c1 c2 c3 c4

p1 -0.0000 -0.0000 -0.0000 1.0000 
p2 0.0007 -0.0402 -0.9992 -0.0000
p3 0.5855 0.8100 -0.0322 -0.0000
p4 0.8107 -0.5850 0.0241 0.0000 

 

Table 6 The first 3 principal components of a focused run ordered 
according to their ability in explaining the variability of the data. 

 
Each column contains the coefficients of the original parameters in the 

linear equation used to compute a principal component. For example, 
coefficients in the first column should be multiplied by the respective values 
of original parameters and summed up in order to calculate the value of the 
new variable c1.  In other words, each coefficient is a weight factor that 
represents the importance of the original parameter in the new dimensional 
space. The first coefficient is zero for all principal components. This means 
that the first parameter, the load position, has no influence on the variability 
of the data. This is because the load position is always the same for good 
models. This is not the case with other parameters, they vary among good 
models. However, their coefficients are quite different for two different 
focused runs. This is because although two focused runs find the same value 
for the load position, different values are found for other parameters. It can 



be shown that the load position can be estimated reliability by plotting the 
Mean Square Error (MSE) between the model and the measurements against 
the load position for all the models (Fig. 6). 

Each point in the plot corresponds to a model.  All the models that have a 
low MSE have the load on node 10.  However, all models that have a load 
on node 10 need not have a low MSE because the values of other 
parameters might be wrong. Therefore, a necessary but not sufficient 
condition for a good model is that the load is on node 10. Therefore, this 
plot shows that identification is good with respect to the load position. This 
is not the case with other parameters except the load magnitude as explained 
in next section. This is evident from the plot of p3 shown in Fig. 7. For 
parameter p3 good models are widely spread out. This parameter cannot be 
estimated reliably by system identification. 

 

4.2.3. Decision Tree  
 
The primary objective of the decision tree in this study is to assess the 

importance of parameters in separating good and bad models. A 
classification tree is created as described in section 3.4. The input is a matrix 
containing values of parameters for each model with the last column 
containing a value that indicates whether it is a good or bad model. This is 
the only method of the three where all the models are used (both bad and 
good). As with other studies (correlation and PCA), different focused runs 
gave different results. Fig. 8 shows a tree based on one focused run. 

 
Even though results depend on the run, two conclusions can be made. 

First, (as confirmed by correlation and PCA), the load position is clearly 
identifiable. For example, the position must be between 9.5 and 10.5 for the 
model to be good. The second important result is the importance of the load 
magnitude. Here, the tree indicates that for a good model the load 
magnitude must be less than 0.05. This result can be verified by plotting the 
MSE with respect to the load magnitude (Fig. 9). 

 

4.2.4. Discussion 
 
Correlation brings out information related to the reliability of 

identification of parameters. For example, the load position is clearly 



detected as a reliable parameter for identification. Correlations are different 
from one run to another. This means that we cannot bring out all 
relationships between two parameters with correlation. The correlation 
measure can only accommodate linear relationships between two parameters 
and there are certainly non-linear relationships between parameters. Another 
limitation is that we cannot obtain relationships between more than two 
parameters at a time. This last limitation can be overcome by the principal 
components analysis. 

 
Two results are obtained using PCA. First, some parameters have more 

importance then others. This is seen in the coefficients of the principal 
components (PC). More important parameters have higher values of 
coefficients than the others. Secondly, the coefficient for the load position is 
always zero. This does not mean that the parameter p1 has no influence on 
separating good and bad models. On the contrary, this means that every 
good model has the same value for the location of the load. In other words, 
p1 is a reliable parameter in identification. This result is confirmed by the 
two-dimensional plot of the MSE. PCA brings out the fact that there are 
relationships between parameters of good models. However, it is difficult to 
determine the exact relationship. Since PCA is a linear data mining method, 
it is not able to bring out non-linear relationships in the data. 

 
  Decision trees provide new information related to the data and confirms 

others. The new information that was not provided by the correlation 
measurement or PCA, is the importance of the load magnitude. The first 
parameter that best separates good and bad models is the load magnitude p2. 
For different focused runs, the trees are different. However, two aspects 
always remain the same. First p1 and p2 are always in the tree and second, 
the load magnitude is always at the root node. The fact that p2 is an 
important parameter for system identification - and is therefore reliable - has 
been brought out only with the decision tree technique. Therefore, decision 
tree has definite advantages over other techniques. One of the strengths of 
decision tree is that they generate easily understandable rules. The tree thus 
brings out meaning of data. The limitation of decision tree is that the 
method does not perform well when combinations of variables (in the form 
of linear or non-linear relationships) determine the classes of data points. 



5. Concluding remarks 

Conclusions from this study are the following 
• The system identification methodology that has been developed is 

able to identify candidate models as well as provide indications 
related to the reliability of identification. 

• Data mining techniques are useful for bringing out common 
characteristics of the set of good models. 

• If there are independent variables whose values can be uniquely 
identified, they are spotted by the correlation measurement. Non-
diagonal terms are nearly zero for these variables.  

• The first principal components in PCA consist of independent 
variables whose values are identified.  A few principal components 
are sufficient for explaining the variation in data. 

• Decision trees bring out variables that separate good and bad 
models.   

• All the three techniques namely, correlation, PCA and decision trees, 
are unable to bring out non-linear relationships between model 
variables.   

 
The methodology that is described in this paper has the potential to be 

applied to domains outside structural engineering. The methodology is 
already proving to be a valuable tool for engineers who are involved in the 
task of monitoring and maintenance of engineering systems.   
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Fig. 2 Examples of situations where data mining helps to discover 

patterns in data.   
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Fig. 3 Flowchart of the methodology (adapted from [18]) 
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Fig. 4 Variables in the system identification 
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Fig. 5 The first two components explain more than 80% of the variations 
in the model data 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6 Plot of mean square error versus load position for the case of 
timber beam supported on springs.  All good models contain the load 
at node 10.   



 
 

 
Fig. 7 Plot of mean square error versus spring stiffness for the case of 

timber beam supported on springs.    
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Fig. 8 A decision tree constructed on data from a focus run. The number 
1 means a set of bad models and 2 a good set. 



Fig. 9 Mean Square Error (MSE) of a focused run in comparison with p2, 
i.e. the load magnitude. Each point on the plot is a model. The line
shows the threshold for good models.
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