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A direct stochastic algorithm for global search 
 

ABSTRACT 

This paper presents a new algorithm called PGSL - Probabilistic Global Search 

Lausanne. PGSL is founded on the assumption that optimal solutions can be identified 

through focusing search around sets of good solutions. Tests on benchmark problems 

having multi-parameter non-linear objective functions revealed that PGSL performs 

better than genetic algorithms and advanced algorithms for simulated annealing in 19 

out of 23 cases studied. Furthermore as problem sizes increase, PGSL performs 

increasingly better than these other approaches. Empirical evidence of the 

convergence of PGSL is provided through its application to Lennard-Jones cluster 

optimisation problem. Finally, PGSL has already proved to be valuable for 

engineering tasks in areas of design, diagnosis and control 

Keywords: Global Optimisation, Stochastic Search, Random Search. 

 

1 Introduction 
Search methods are gaining interest with the increase in activities related to modelling 

complex systems.  Although many methods have been proposed, difficulties related to 

computation time and reliability remain.  Often methods do not scale up well when 

applied to full scale practical applications.   

 

Probabilistic methods have been successfully applied to complex engineering and 

scientific tasks where near optimal solutions are sufficient.  Well known methods that 

have been applied to complex tasks include 

• Simulated annealing 

• Genetic algorithms 

• Adaptive random search 

• Multiple random starts with local search 

Methods that make use of gradients are not included in this list since most practical 

applications involve objective functions which cannot be expressed in explicit 

mathematical forms and their derivatives cannot be easily computed.  Similarly 
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methods that approximate objective functions using surrogate models are also 

excluded since these approximations work only in ideal conditions.  

 

We are interested in direct search methods [1] as defined below: 

A direct method for numerical optimisation is any algorithm that depends on 

the objective function only through ranking a countable set of function values.   

Direct methods do not compute or approximate values of derivatives. They use the 

value of the objective function only to determine whether a point ranks higher than 

other points.  

 

This paper proposes a new direct search method that performs better than others for 

difficult bench mark problems that have been published from 1995 to 2000.  Section 2 

contains a review of existing search techniques. The following section describes the 

details of the PGSL algorithm.  In Section 4, performance is compared with other 

algorithms.  Finally, Section 5 contains a discussion of limitations and practical 

applications where improved performance has already been achieved. 

 

2 Existing search techniques 
The most widely used search methods in engineering applications are simulated 

annealing [2] and genetic algorithms [3].  Since these are well known, they are not 

described here.  The following paragraphs contain brief summaries of selected search 

methods.   

 

Adaptive Random Search: Pure random search procedures have been used for 

optimization problems as early as 1958 [4].  These techniques are attractive due to 

their simplicity.  However, they converge extremely slowly to a global optimum in 

parameter spaces of many dimensions.  In order to improve convergence, "random 

creep" procedures are used in which exploratory steps are limited to a hyper-sphere 

centred about the latest successful point.  Masri and Beki [5] have proposed an 

algorithm called Adaptive Random Search  in which the step size of the random 

search procedure is optimized periodically throughout the search process.  Controlled 
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Random Search (CRS) [6],[7] is another search method that samples points in the 

neighbourhood of the current point through the use of a probability density function. 

 

Multiple random starts with local search: Local search techniques involve 

iteratively improving upon a solution point by searching in its neighbourhood for 

better solutions.  If better solutions are not found, the process terminates; the current 

point is taken as a locally optimal solution.  Since local search performs poorly when 

there are multiple local optima, a modification to this technique has been suggested in 

which local search is repeated several times using randomly selected starting points.  

This process is computationally expensive because after every iteration, the search re-

starts from a point possibly far away from the optimum. Also search might converge 

to the same point obtained in a previous iteration. Furthermore, no information that 

has been obtained from previous iterations is reused.   Random Bit Climbing (RBC) 

[8] is a form of local search in which neighbouring points are randomly evaluated and 

the first move producing an improvement is accepted for the next stage.   

 

Improving hit and run: The basic structure of Improving Hit and Run  (IHR) [9] is 

to generate a random direction followed by a candidate point that is along a random 

step in that direction. A positive definite matrix H in the algorithm controls the 

direction distribution. If the matrix H is the identity matrix, then the direction 

distribution is uniform on a hyper-sphere.  In practice, H is locally estimated in a 

similar way to derivative-based local search procedures.   

 

IHR has polynomial complexity with respect to the number of variables for the class 

of elliptical programs.  This complexity is attainable for strictly convex quadratic 

programs by choosing H to be the Hessian of the objective function.  IHR is an 

approximation of pure adaptive search (PAS).  PAS is an idealistic procedure used to 

model realistic algorithms and to analyse their complexity (Hendrix and Klepper, 

2000).  PAS involves generating a sequence of improving points in the feasible region 

with the property that each point is uniformly distributed in the level set 

corresponding to its predecessor. Zabinsky and Smith [10] have shown that under 

certain conditions the number of iterations required grows only linearly with respect 

to the number of variables.  The main challenge associated with implementing PAS is 

the difficulty of generating a point in each iteration that is uniformly distributed in the 
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improving region.  Recently,  algorithms such as random ball walk Markov chain 

sampling have been used to generate nearly uniform points in a convex region [11].   

Uniform covering by probabilistic rejection [12]  is another algorithm that aims to 

realise PAS. Hesitant Adaptive Search (HAS) [13] is an extension of PAS that allows 

hesitation or pausing at the current level as the algorithm progresses.  HAS is capable 

of modelling random search algorithms such as simulated annealing better than PAS.   

 

3 Probabilistic Global Search Lausanne 
The Probabilistic Global Search Lausanne (PGSL) algorithm was developed starting 

from the observation that optimally directed solutions can be obtained efficiently 

through carefully sampling the search space without using special operators.  The 

principal assumption is that better points are likely to be found in the neighbourhood 

of families of good points.  Hence, search is intensified in regions containing good 

solutions.    

 

The search space is sampled by means of a probability density function (PDF) defined 

over the entire search space.  Each axis is divided into a fixed number of intervals and 

a uniform probability distribution is initially assumed.  As search progresses, intervals 

and probabilities are dynamically updated so that sets of points are generated with 

higher probability in regions containing good solutions. The search space is gradually 

narrowed down so that convergence is achieved. 

 

The algorithm includes four nested cycles: 
• Sampling cycle 

• Probability updating cycle 

• Focusing cycle 

• Subdomain cycle 

 

In the sampling cycle  (innermost cycle) a certain number of samples, NS, are 

generated randomly according to the current PDF.  Each point is evaluated by the 

user-defined objective function and the best point is selected.  In the next cycle, 

probabilities of regions containing good solutions are increased and probabilities 

decreased in regions containing less attractive solutions. In the third cycle, search is 
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focused on the interval containing the best solution after a number of probability 

updating cycles, by further subdivision of the interval. In the subdomain cycle, the 

search space is progressively narrowed by selecting a subdomain of smaller size 

centred on the best point after each focusing cycle.   

 

Each cycle serves a different purpose in the search for a global optimum.  The 

sampling cycle permits a more uniform and exhaustive search over the entire search 

space than other cycles.  Probability updating and focusing cycles refine search in the 

neighbourhood of good solutions.  Convergence is achieved by means of the 

subdomain cycle.   

 

3.1 Terminology 

The following definitions are used in the description of PGSL: 
 

Solution point: A point consists of a set of values for each variable.   

Search space: The set of all potential solution points. It is an N-dimensional space 

with an axis corresponding to each variable.  N denotes the total number of 

variables.  The user defines the minimum and maximum values along each 

axis. A subset of the search space is called a subdomain. 

Axis width: The difference between the minimum and the maximum along an axis of 

the search space or a subdomain. 

Cost function: A user-supplied function to evaluate a solution point.  The value of the 

cost function for a given point is called the cost or evaluation of the solution 

point.   

Probability density function, PDF: The PDF of a variable is defined in the form of a 

histogram.  The axis represented by the variable is discretised into a fixed 

number of intervals, NINTERVALS. Uniform probability distribution is 

assumed within each interval.  The cumulative distribution function (CDF) is 

obtained by integrating the PDF. 

 

Important parameters involved in the algorithm are listed below: 
 

Number of samples, NS: The number of samples evaluated in the sampling cycle. 
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Iterations in the probability updating cycle, NPUC:  The number of times the 

sampling cycle is repeated in a probability updating cycle. 

Iterations in the focusing cycle, NFC: The number of times the probability updating 

cycle is repeated in a focusing cycle. 

Iterations in the subdomain cycle, NSDC: The number of times the focusing cycle is 

repeated in a subdomain cycle. 

Subdomain scale factors, SDSF1, SDSF2 : The default factors for scaling down the 

axis width in the subdomain cycle. SDF1 is used when there is an 

improvement and SDF2 if there is no improvement. 

 

3.2 Algorithm details  

The algorithm is illustrated in the form of a flowchart in Figure 1 to Figure 3 and is 

explained in more detail next. 
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Figure 1. Flow chart for the PGSL algorithm 
The terminating condition for all cycles, except the sampling cycle, is the completion 
of the specified number of iterations or the value of the objective function becoming 
smaller than a user-defined threshold. 

Sub-domain cycle 

Choose the complete domain as the current sub-domain; Set current best 
solution, CBEST, to NULL 

Complete NFC iterations of the focusing cycle; select the best 
solution, SUBDOMAIN-BEST (Figure 2) 

If SUBDOMAIN-BEST < CBEST Then Update CBEST  

Choose a smaller sub-domain centered around CBEST as the 
current sub-domain  

Terminating condition 
Satisfied?  

Start 

End 
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Figure 2. Flow chart (continued). The focusing cycle 

Assume a uniform PDF throughout the current sub-domain, set 
SUBDOMAIN-BEST to NULL 

Complete NPUC iterations of the probability updating cycle; select 
the best solution, PUC-BEST (Figure 3). 

If PUC-BEST is better than SUBDOMAIN-BEST Then Update 
SUBDOMAIN-BEST 

Sub-divide the interval containing the PUC-BEST and redistribute 
probabilities according to an exponential decaying function  

Terminating condition 
Satisfied?  

Beginning of focusing cycle 

End of Focusing Cycle  
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Figure 3. Flow chart (continued). The probability updating cycle 

Set PUC-BEST to NULL 

Sampling cycle:  Evaluate NS samples.  Select the best,  
BEST-SAMPLE 

If BEST-SAMPLE is better than PUC- BEST, Update PUC-BEST 

Increment the probability of the interval containing the PUC-BEST  

Terminating condition 
Satisfied?  

Start of probability updating cycle 

End of Probability Updating Cycle  
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3.2.1 Initialisation 

The search space is defined by reading the minimum and maximum values for each 

variable given by the user.  The PDF of each variable is created by assuming a 

uniform distribution over the entire domain.  All PDFs have intervals  of constant 

width in the beginning. 

 

3.2.2 Sampling cycle 

NS points are generated randomly by generating a value for each variable according 

to its PDF.  This is similar to the sampling in the Monte Carlo technique.  Each point 

is evaluated and the point having the minimum cost, BS (Best Sample), is selected.   

 

3.2.3 Probability updating cycle 

The sampling cycle is invoked NPUC times.  After each iteration, the PDF of each 

variable is modified using the probability-updating algorithm.  This ensures that the 

sampling frequencies in regions containing good points are increased.  The evolution 

of the PDF for a variable after several sampling cycles is illustrated in Figure 4. 

 

 

 

 

 

 

 
Figure 4. Evolution of the PDF of a variable after several probability updating cycles 

3.2.4 Probability-updating algorithm 

The PDF of a variable is updated through these steps: 
Locate the interval containing the value of the variable in BS.   

Multiply the probability of the interval by a factor (greater than 1). 

Normalise the PDF 
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3.2.5 Focusing cycle 

The probability updating cycle is repeated NFC times.  After each iteration, the search 

is increasingly focused on the interval containing the current best point, CBEST.  This 

is done by subdividing the interval containing the value of each variable in CBEST.  

The evolution of the PDF after several probability updating cycles is illustrated in 

Figure 5.  

 

 

 

 

 

 

 
Figure 5. Evolution of the PDF of a variable after several focusing cycles 
 

3.2.6 Interval subdivision 

The following steps are used for subdividing intervals in the focusing cycle: 

Locate the interval (called BESTINTERVAL) containing the value of the variable in CBEST.   

Divide the interval into NDIV uniform subintervals.   

Assign 50% probability to BESTINTERVAL., (so that half of the points generated will be in 

this interval).  Divide this probability uniformly to its subintervals.   

Calculate the number of intervals into which the remainder of the domain should be divided so 

that the total number of intervals remain constant. 

Distribute the remaining probability to the region outside the BESTINTERVAL so that the 

PDF decays exponentially away from the BESTREGION.    

After subdivision, intervals no longer have the same width and probabilities are 

heavily concentrated near the current best.   

3.2.7 Subdomain cycle 

In the subdomain cycle, the focusing cycle is repeated NSDC times and at the end of 

each iteration,  the current search space is modified. In the beginning, the entire space 

(the global search space) is searched, but in subsequent iterations a subdomain is 
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selected for search. The size of the subdomain decreases gradually and the solution 

converges to a point. A subdomain is selected by changing the minimum and 

maximum of each variable.   

While choosing the next subdomain, certain precautionary measures are taken to 

avoid premature convergence. Firstly, a higher scale factor is used after an iteration 

that does not produce a better cost.  This avoids rapid reduction of the axis width after 

several unsuccessful iterations.  Secondly, the statistical variations of the values of the 

variable in previous iterations are considered in determining the new minimum and 

maximum. If the value of the variable fluctuates by a large amount the convergence is 

slowed down. 

The method to compute the new values of minimum and maximum for each variable 

is explained in pseudo-code below: 

Let XP = the value of the variable in CBEST 

Let DX = (Current Axis Width)/2  

Let GX1 = Minimum of the axis in the global search space 

Let GX2 = Maximum of the axis in the global search space 

Let STDEV be the standard deviation of the value of the variable (that is under consideration) 

in the previous 5 iterations 

If there has been an improvement in cost in the current iteration, Then the scale factor,  SCF = 

SDF1, else SCF = SDF2.   

The new half width, NDX  = DX * SCF. 

If NDX < STDEV NDX = STDEV 

The new minimum of the axis, X1 = XP-NDX.   

The new maximum of the axis X2 = XP+NDX.   

If X1 < GX1 then X1 = GX1 

If X2 > GX2 then X2 = GX2 

 

3.3 Choosing values for parameters  

Values of parameters that have been empirically found  to be insensitive to the 

problem-type are given below: 

Number of intervals in the PDF, NINTERVALS = 20 

The number of subintervals, NDIV = 6 

Subdomain scale factor SDSF2 = 0.96 

Subdomain scale factor, SDSF1  
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Problem dependent parameters include: 

• Number of samples, NS 

• Iterations in the probability updating cycle, NPUC. 

• Iterations in the focusing cycle, NFC 

• Iterations in the subdomain cycle, NSDC 

 

It is found that for reasonably smooth problems, the values of NS and NPUC can be 

taken as 2 and 1 respectively.  Increasing these values produces no improvement in 

most situations.  However, for very irregular domains higher values should be used.  

Best results are obtained when these values are proportional to the number of regular 

sub-regions within the space.  However, even for highly nonlinear problems, the 

default values of 2 and 1 work well; they were used in all the benchmark problems 

listed in the next section.   

The most effective values of NFC are between 10N and 20N, where, N is the number 

of variables in the problem.  Particularly hard problems require higher values of NFC.   

The value of SDSF1 should be between 0.5 and 0.99.  A lower value results in rapid 

reduction in the sizes of subdomains and may cause premature convergence.  A high 

value slows down convergence and it may take much longer to find the optimum. The 

following empirical formula is found to produce good results: 

SDSF1 = N(-1/N) 

The value of NSDC controls the precision of results and is dependent on the scale 

factors. A low value results in a large axis width of the subdomain after completing all 

iterations.  The length of search (the number of evaluations) can be modified by 

adjusting the values of SDSF1 and NSDC.   

 

3.4 Similarities with existing random search methods 

 

A common feature that PGSL shares with other random search methods such as 

adaptive random search (ARS) and controlled random search (CRS) is the use of a 

PDF (Probability Density Function).  However, this similarity is only superficial. The 

following is a list of important differences between PGSL and other random methods.   
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1. Most random methods follow a "creep" procedure similar to simulated 

annealing.  They aim for a point to point improvement by restricting search to 

a small region around the current point.  The PDF is used to search within the 

neighbourhood.  On the other hand, PGSL works by global sampling.  There is 

no point to point movement.   

2. The four nested cycles in PGSL have no similarities with characteristics of 

other algorithms.   

3. Representation of probabilities is different.  Other methods make use of a 

mathematical function with a single peak (eg. Gaussian) for the PDF.  PGSL 

uses a histogram - a discontinuous function with multiple peaks. This allows 

for fine control over probabilities in small regions by subdividing intervals.   

4. Probabilities are updated differently (more details in 3.4.1).  The primary 

mechanism for updating probabilities in other methods is to change the 

standard deviation.  In PGSL, the entire shape and form of the PDF can be 

changed by subdividing intervals as well as through directly increasing 

probabilities of intervals.   

In spite of the apparent similarities with other random search methods, there are 

significant differences in the performance of PGSL. There is no evidence that random 

search methods such as ARS and CRS perform as well as genetic algorithms or 

simulated annealing for large problems.  However, PGSL performs as well or better 

than these algorithms - results from the benchmark tests are presented in the next 

section  

 

3.4.1 Updating PDF in PGSL 

The most significant difference between PGSL and other random search methods is in 

the procedure used to update the PDF.  The objective of updating the PDF is to 

generate more points in the region containing the best point without totally excluding 

other regions.  The PDF is updated differently in the focusing cycle and the 

probability updating cycle.  Modifications made in the focusing cycle result in a 

predominantly single peak function.  Since 50% of the probability is assigned to the 

best interval, roughly 50% of variables of every point that is generated lies in the best 

interval.  Due to the exponential decay of probability, about 3% of variables lie in the 

farthest interval.  Minor variations to these probabilities are effected in the probability 
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updating cycle and might temporarily contain multiple peaks. This results in increased 

exploration of values of variables in previous best points.  

 

At the end of each iteration in the sub-domain cycle, the PDF tends to peak around a 

local optimum. The probability of finding a better local optimum increases as the sub-

domain is narrowed down (considerably reducing the search space).  The process of 

narrowing down is slowed if better points are found far away from the current best 

point (Section 3.2.7).  At the end of all iterations the PDF has its peak around a near 

global optimum. 

 

4 Comparison with other algorithms 

The performance of PGSL is evaluated using several benchmark problems.   Results 

are compared with those collected from two different sources in three series of tests.  

In the first series of tests, PGSL is compared with three versions of genetic 

algorithms: simple genetic algorithm (ESGAT), steady state genetic algorithm [14] 

(Genitor) and CHC [15].  CHC stands for Cross generational elitist selection, 

Heterogeneous recombination (by incest prevention) and Cataclysmic mutation.   In 

the second series of tests, results from three algorithms for global search are used to 

evaluate the performance of PGSL. In the third series of tests, a difficult global 

optimisation problem (Lennard-Jones cluster optimisation) is chosen to test whether 

PGSL is able to find reported global optima without the use of special heuristics or 

domain knowledge. 

 

4.1 Test suite 1 

De Jong [16] first proposed common test functions (F1-F5) with multiple optima to be 

used for evaluating genetic algorithms.  However, it has been shown that local search 

can identify global optima of some functions[8]. More difficult test functions have 

been proposed [17].  These have higher degrees of non-linearity than F1-F5 and can 

be scaled to a large number of variables. Some of these functions are used for testing 

the performance of the PGSL algorithm. A short description of the test functions that 

have been used in the benchmark studies are given below: 



 - 17 - 

 

F8 (Griewank's function):   

It is a scalable, nonlinear, and non-separable function given by 

∏∑
==

= −+=
N

i
i

N

i

x
Nii ixxf i

11
4000,1 ))/(cos(1)(

2

 

 

 

Expanded functions: 

Expanded functions [17] are constructed by starting with a primitive nonlinear 

function in two variables, F(x,y), and scaling to multiple variables using the formula, 
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The expanded functions are no longer separable and introduce non-linear interactions 

across multiple variables.  An example is the function EF10 which is created using the 

primitive function F10 shown below: 
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Composite functions: 

A composite function can be constructed from a primitive function F(x1, x2) and a 

transformation function T(x,y) using the formula 
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The composite function EF8avg is created from Griewank's function,  F8, using the 

transformation function T(x,y) = (x+y)/2 

 

The composite test function EF8F2 is created from Griewank's function,  F8 using the 

De Jong function F2 as the transformation function.  F2 is defined as  

)1()(100),(2 222 yyxyxF −+−=  
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The composite functions are known to be much harder than the primitive functions 

and are resistant to hill climbing [17]. 

 

4.1.1 Description of the tests  

Four test functions are used for comparison: F8, EF10, EF8AVG and EF8F2. All these 

test functions have a known optimum (minimum) of zero.  It is known that  local 

search techniques perform poorly in solving these problems [17]. Results from PGSL 

are compared with those reported for three programs based on genetic algorithms, 

namely, ESGAT, CHC and Genitor [17].  All versions of genetic algorithms used 22 

bit gray scale encoding.  For EF10, variables are in the range [-100,100].  For F8, 

EF8AVG and EF8F2 the variable range is [-512,511]. 

 

Results are summarised in Tables 1-4.  Thirty trial runs were performed for each 

problem using different seed values for random numbers.  In each trial., a maximum 

of 500,000 evaluations of the objective function is allowed.  Performance is compared 

using three criteria.   

1. Succ, the success rate (the number of trials in which the global optimum was 

found); 

2. The mean solution obtained in all the trials.  The closer the mean solution is to 

zero (the global optimum), the better the algorithm’s performance; 

3. The mean number of evaluations of the objective function required to obtain the 

global optimum (only for trials in which the optimum was found). 

4.1.1.1 Simple F8 test function 

Results for simple F8 test function are given in Table 1.  Thirty trial runs were 

performed on problems with 10, 20, 50 and 100 variables.  PGSL has a success rate of 

100% for 50 and 100 variables; no version of GA is able to match this.  (Surprisingly, 

the success rate is slightly lower for fewer variables.)  However, the mean number of 

evaluations to obtain the optimum is higher than CHC and Genitor for this problem. 
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4.1.1.2 EF10 test function  

Results for the extended function EF10 are summarised in Table 2. PGSL has a 

success rate of 27 out of 30 runs even for 50 variables.  For all criteria, PGSL 

performs better than all versions of GAs.   

 

4.1.1.3 EF8AVG  test function  

Results for the composite function EF8AVG are summarised in Table 3.  For 20 and 50 

variables, none of the algorithms is able to find the exact global optimum.  For 10 

variables the performance of CHC is comparable with that of PGSL.  In terms of the 

mean value of the optimum, PGSL outperforms all other algorithms.   

 

4.1.1.4 EF8F2  test function  

Results for the composite function EF8F2 are given in Table 4. None of the algorithms 

is able to find the global optimum for this problem.  However, in terms of the quality 

of the mean solution, PGSL fares better than the rest. 
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Number of variables 10 20 50 100 
Successes ESGAT 6 5 0 0 

CHC 30 30 29 20 
Genitor 25 17 21 21 
PGSL 28 29 30 30 

Mean  
solution 

ESGAT 0.0515 0.0622 0.0990 0.262 
CHC 0.0 0.0 0.00104 0.0145 
Genitor 0.00496 0.0240 0.0170 0.0195 
PGSL 0.0007 0.0002 0.0 0.0 

Mean number of 
evaluations. 

ESGAT 354422 405068   
CHC 51015 50509 182943 242633 
Genitor 92239 104975 219919 428321 
PGSL 283532 123641 243610 455961 

Table 1: Results for Simple F8 test function. PGSL is compared with results reported 
in [17].  The global minimum is 0.0 for all instances. 
 

 

Number of variables 10 20 50 
Successes ESGAT 25 2 0 

CHC 30 30 3 
Genitor 30 4 0 
PGSL 30 30 27 

Mean  
solution 

ESGAT 0.572 1.617 770.576 
CHC 0.0 0.0 7.463 
Genitor 0.0 3.349 294.519 
PGSL 0.0 0.0 0.509639 

Mean number of 
evaluations. 

ESGAT 282299 465875  
CHC 51946 139242 488966 
Genitor 136950 339727   
PGSL 61970 119058 348095 

Table 2:  Results for the extended function EF10. The global minimum is 0.0 for all 
instances. 
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Number of variables 10 20 50 
Successes ESGAT 0  

CHC 10 
Genitor 5 
PGSL 9 

Mean  
solution 

ESGAT 3.131 8.880 212.737 
CHC 1.283 8.157 83.737 
Genitor 1.292 12.161 145.362 
PGSL 0.0151 0.1400 1.4438 

Mean number of 
evaluations. 

ESGAT     
CHC 222933 
Genitor 151369 
PGSL 212311 

Table 3: Results for EF8AVG test function. The global minimum is 0.0 for all instances. 
 

 

 

Nb Var 10 20 50 
Mean  
solution 

ESGAT 4.077 47.998 527.1 
CHC 1.344 5.63 75.0995 
Genitor 4.365 21.452 398.12 
PGSL 0.123441 0.4139 1.6836 

Table 4:  Results for EF8F2 test function. The global minimum is 0.0 for all instances. 
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4.1.2 Summary of comparisons  

For the test functions F8 and EF10, PGSL enjoys a near 100% success rate in locating 

the global optimum even for large instances with more than 50 variables (Tables 1 

and 2).  No other algorithm is able to match this.  For the other two test functions 

(Tables 3 and 4), none of the algorithms is able to locate the global optima for 

instances larger than 20 variables.  However, mean value of the minima identified by 

PGSL is much less than those found by other algorithms.   

Among the three implementations of GAs considered in this section, CHC performs 

better than the rest. In most cases, the quality of results produced by PGSL is better 

than CHC in terms of success rate and mean value of optima.  However, PGSL 

requires a greater number of evaluations than CHC - especially for small problems. 

Therefore, the overall performance of PGSL is comparable to CHC. 

4.1.3 Effect of problem size 

An important criterion for evaluating the robustness of an algorithm is how well it 

performs when the number of variables is increased.  Deterministic algorithms 

perform well for small problems, but fail to provide reasonable solutions when the 

number of variables is increased.  Although stochastic algorithms perform well in 

higher dimensions, there is a wide variation in their relative performance.  In order to 

study the effect of problem size, the success rate is plotted against the number of 

variables in Figure 6.  The functions used for scaling up are described in 4.1.1. The 

performance of PGSL does not deteriorate as rapidly as other algorithms.  Another 

indication of performance degradation in higher dimensions is the mean number of 

evaluations required to find the global optimum.  This is plotted in Figure 7. The 

number of evaluations increases almost linearly with the number of variables. 
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Figure 6. Effect of problem size.  PGSL enjoys a high success rate in finding the global minimum 

even for 50 variables.  For other algorithms, the success rate drops drastically as the problem size 
is increased beyond 20 variables.   
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Figure 7. This figure shows the number of evaluations required to find the global minimum for 

different problem sizes.  With PGSL, the required number of evaluations grows more slowly than 
the increase observed for the other algorithms.   
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4.2 Test suite 2 

Mongeau et al. [18] have evaluated the performance of six public domain software 

implementations for global search.  Three that have given best results are used to 

evaluate the relative performance of PGSL.  These are  

• ADA: Adaptive Simulated Annealing 

• GAS: An implementation of genetic algorithm 

• INTGLOB: Integral global optimisation 

Six test problems belonging to two categories have been chosen.  They are a) Least 

Median of Squares and b) Multi-dimensional scaling.  Some problems involve non-

differentiable and discontinuous objective functions.  All have multiple local minima.  

A short description of these problems is given below.   

 

4.2.1 Problem descriptions 

 

Least median of squares:  The objective is to perform linear regression by 

minimising the median of errors (instead of the conventional root mean square error).  

This procedure ensures that at least half the points lie as close as possible to the 

resulting hyperplane.  The optimisation problem can be stated mathematically as: 

Minimize median of  ),(2 bri θ   

where ir is the error in each point given by, 

bxxybr pipiii −−−−= θθθ ..),( 11  
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and where b,θ are the coefficients to be estimated with (yi,xi) as the given set 

of points. 

Since there is no closed-form mathematical expression to compute the median, the 

objective function is non-differentiable. In the present study, regression has been 

performed on the following five sets of data: lms1a, lms1b, lms2, lms3 and lms5. 

These sets contain one to five variables. 

Multi-dimensional scaling: The objective is to compute the coordinates of n points 

such that their distances are as close as possible to specified values.  Mathematically, 

the problem can be stated as 

Minimise 2)( ji

n

ji
ijij xxw −−∑

<

δ  

where 
ijijw δ,  are the given sets of weights and distances between each pair of points 

having coordinates xi and xj respectively. One instance of this problem (ms2) 

involving 10 points in two dimensions (having a total of 20 variables) is considered in 

the present study.  

 

4.2.2 Results 

Results are summarised in Table 5. PGSL was able to find the  reported minimum 

point for all problem instances except lms5 and ms2.  In the case of ms2, the 

minimum found by PGSL is very close to that found by INTGLOB.  For small 

problems, PGSL takes more evaluations to find the minimum point.  However, for the 

20 variable problem, the number of evaluations taken by PGSL is much less than 

ASA and GAS.   
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Problem 
instance 

N Optimum found Evaluations required 

PGSL ASA GAS INTGLOB PGSL ASA GAS INTGLOB 

Least median of squares 

lms1a 1 0.0074 0.0074 0.0074 0.0074 369 190 700 300 

lms1b 1 0.00676 0.0068 0.0068 0.0068 1632 700 700 200 

lms2 2 0.576 0.576 0.591 0.576 1556 350 2000 2000 

lms3 3 0.145 0.15 0.15 0.14 2759 485 4000 1090 

lms5 5 0.033 0.02 0.045 0.034 11986 2580 14840 4260 

Multi-dimensional scaling 

ms2 20 11.82 12.16 12.7 11.73 10387 19918 25081 10000 

 Table 5: Results of comparison of test suite 2 
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4.3 Test suite 3: Lennard-Jones cluster optimisation 

The global optimisation of Lennard-Jones clusters is a very simple yet reasonably 

accurate mathematical model of a real physical system, namely that of low 

temperature micro-clusters of heavy rare gas atoms such as argon, krypton or xenon. 

The objective function is non-convex and the number of energetically distinct local 

optima is believed to grow at least exponentially with the number of atoms [19]. Also, 

multiple discontinuities exist in the domain since the energy tends to infinity when 

atoms approach each other. Many of the global optima have been found fairly recently 

[20],[21].  Most successful algorithms use domain specific knowledge (heuristics) to 

obtain reasonable performance.  For example, Wolf and Landman [20] use a version 

of GA in which the starting population consists of a special configuration of atoms 

and each offspring produced is relaxed to the nearest local minimum through 

conjugate-gradient minimisation.   

The configuration of atoms according to the Lennard-Jones model is determined by 

minimising the total energy of given by 

)(∑
<

n

ji
ijdr  

where dij is the distance between the atoms i and j.  The function 

 612 2)( −− −= sssr  

is the Lennard-Jones energetic model. The total energy can be evaluated if the 

coordinates of all atoms are known.  If there are n atoms, there are 3n unknown 

variables which are the x,y,z coordinates of each atom.  It is possible to reduce the 

number of variables to (3n-6) through defining the coordinate system using the 

positions of the first two atoms.  However, this has not been done in the PGSL 

implementation since there is no significant improvement. 

 

4.3.1 Evaluation using small instances 

In the first set of comparison, four instances of the problem are considered with the 

number of atoms ranging from 3 to 6.  These have been designated as pf3, pf4, pf5 

and pf6.  Results are compared with four global optimisation algorithm 
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implementations reported in [18]. Known values of global optima for these functions 

are –3,-6,-9.1 and –12.71. According to Mongeau et al. [18], ASA and GAS are 

unable to find the global optimum for pf4 and pf5.  INTGLOB is not able to find the 

global optimum for pf6.  PGSL is able to find the global minimum for all instances 

with the recommended values for parameters.  The best-so-far curves are shown in 

Figure 8 to Figure 11 in order to compare the performance of different algorithms. 

The y axis is the best value of the objective function found so far, and x axis is the 

number of function evaluations. 

 

4.3.2 Evaluation using larger instances 

Information related to the number of evaluations of the objective function required to 

find the global optima are not available for large problem sizes since most successful 

implementations use special heuristics for initial starting points and for subsequent 

exploration.  For example, Deaven and Ho [21],  Wolf and Landman [20], and Hartke  

[22] use special crossover and mutation operators that act on clusters in the 

configuration space.  These tailor-made operators produce best results for molecular 

cluster optimisation since they consider special characteristics of the problem. Most of 

the implementations combine global and local search methods through the use of 

gradients. Leary [19] applied a two stage descent procedure, an initial fixed length 

steepest descent followed by conjugate gradient descent. 

 

Our objective in this study is to examine whether PGSL is able to find the global 

optimum for large problem sizes without using any problem specific information and 

without computing gradients. The following procedure was followed: 
Start with default values of PGSL parameters, that is, NS=2, NPUC=1, NFC=20*N and 

NSDC=40. 

Execute PGSL, If the known global solution is found STOP.  Otherwise increase NSDC by 

one and repeat PGSL with a different random seed. 

Using this procedure1 (referred to as “PGSL alone” formulation), PGSL was executed 

for problems of size 7 atoms to 25 atoms ( 21 to 75 variables).  The cumulative total 

number of evaluations of the objective functions required to find the global optima 

                                                 
1 The executable for solving Lennard-Jones cluster optimisation problem using PGSL may be 

downloaded from http://imacwww.epfl.ch/TEAM/raphael/LJ/index.html (for independent evaluation). 

http://imacwww.epfl.ch/TEAM/raphael/LJ/index.html
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(including all restarts) are shown in Table 6.  These results show that PGSL is able to 

identify global minima for complex objective functions without any domain 

dependent information or the use of gradients. 

 

It is possible to improve the efficiency of PGSL by incorporating local search and 

domain dependent heuristics. In order to illustrate this point, two different 

formulations of the Lennard-Jones problem were used.  In the first formulation, the 

objective function of a point is evaluated as the energy value of the nearest local 

minimum.  A gradient descent is performed starting from the point to be evaluated.  In 

the second formulation, the global optimum is located in two stages as described 

below.   
Stage 1:  Perform a global search by treating all coordinates as variables.  Let the best point 

obtained be Pbest and the value of the objective function be ybest. 

Stage 2:  Perform a  sequence of optimisations l1, l2, .., li, with a limited number of variables.  

Only the coordinates of selected atoms from the current configuration, Pbest, are treated as 

search variables.    However, for the evaluation of the objective function,  a gradient descent is 

performed and the value of the nearest local minimum is chosen. For the gradient descent all 

atoms are allowed to move instead of the selected atoms. At the end of each optimisation, li, 

the minimum point obtained Pi is chosen as Pbest if its value is less than ybest.  Stage 2 

terminates when ybest becomes less than or equal to the known global minimum.   

In the second formulation, a special heuristic is used to select the atom to be moved.  

Atoms are ordered according to their contribution to the total potential energy.  The 

atom with the highest contribution is chosen in optimisation l1, two atoms with the 

highest potential are selected in l2 and so on.  The cycle starts again with a single 

atom, if either all atoms are completed or a better point is located.  (In most PGSL 

runs, improvements were obtained  within one or two trials). 

 

The use of gradients in the first formulation improves performance dramatically.  This 

is because the local minimum is located within about 10N evaluations, where N is the 

total number of variables.  PGSL alone requires many more evaluations to produce 

the same improvement because the direction of steepest descent is unknown.  

Consequently, the total number of evaluations required to locate the global minimum 

using gradients is reduced by about 90%.  This performance could be improved 

further through using better methods for local optimisation such as the quasi-Newton 

method employed by Hartke [22]. 
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The use of the heuristic in the second formulation improved performance further.  The 

improvements are significant mostly for larger problems. The improvements produced 

by formulations 1 and 2 over black-box formulation are shown in Figure 12.  The 

PGSL alone formulation was not attempted for problem sizes greater than 25 atoms 

due to the excessive computation time that was required.  Table 6a provides the 

number of evaluations required by the three formulations.  Table 6b contains results 

for larger problem sizes using the third formulation.  These larger problem sizes were 

not attempted using the second formulation.   

 

Conclusions: 

Results of PGSL alone optimisation of Lennard-Jones clusters provides empirical 

evidence of the convergence of the algorithm when applied to complex objective 

functions.  The global minima were located without the use of gradients for all 

instances up to 25. This is remarkable considering that there are about 1010  local 

optima for a cluster of 25 atoms [19].  The use of gradients and heuristics improved 

the performance significantly and shows that the algorithm can be combined 

effectively with local search techniques.   
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Figure 8. The best-so-far curves for Lennard-Jones cluster optimisation problem with 3 atoms  (9 

variables). PGSL converges to the global optimum faster than all other algorithms. 
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Figure 9. The best-so-far curves for Lennard-Jones cluster optimisation problem with 4 atoms 

(12 variables). PGSL converges to the global optimum faster than all other algorithms. 
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Figure 10. The best-so-far curves for Lennard-Jones cluster optimisation problem with 5 atoms 

(15 variables). ASA and GAS are unable to find the global optimum for this problem. 
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Figure 11. The best-so-far curves for Lennard-Jones cluster optimisation problem with 6 atoms 

(18 variables). ASA, GAS and INTGLOB are unable to find the global optimum for this problem. 
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Figure 12. The number of evaluations required by PGSL to find the global minima is reduced 

through incorporating local search (gradient descent) and domain dependent heuristics.   
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Number of atoms PGSL alone With gradients With heuristic 

7 114'236 1619 1689 

8 54'846 1711 1520 

9 162'286 1991 4012 

10 1'203'648 7130 5694 

11 487'174 13300 13301 

12 2'839'832 14094 2234 

13 1'992'400 6890 7065 

14 1'001'022 10936 2363 

15 2'589'100 4080 8841 

16 2'668'710 4713 6628 

17 6'834'472 14611 7677 

18 14'930'178 24149 39661 

19 2'224'158 12216 24546 

20 29'259'180 10565 22603 

21 248'825'344 31295 9573 

22 120'720'454 23264 11669 

23 755'164'120 57145 33198 

24 182'461'280 18137 29542 

25 803'003'156 44709 30024 

26  42246 52521 

27  40720 86035 

28  208294 473390 

29  802202 73812 

30  1037979 52178 

 

 
Table 6a.  Comparison of the number of evaluations of the objective functions taken 
by PGSL to locate the known global optima for different instances of the Lennard-
Jones cluster optimisation problem. The first column contains the number of atoms. 
The other columns contain the number of evaluations required to find the global 
optimum through the three formulations described in 4.3.2 . 
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Number of  Number of   Number of  Number of  

atoms evaluations  atoms evaluations 

31 1357167  53 231516 

32 265699  54 102923 

33 2193348  55 600293 

34 966694  56 1018556 

35 1798960  57 5417904 

36 712956  58 2338255 

37 254023  59 3541695 

38 1414625  60 7235486 

39 685584  61 837703 

40 689007  62 2320804 

41 702951  63 1369253 

42 1044466  64 492090 

43 411360  65 5259537 

44 4892627  66 913939 

45 1109894  67 891047 

46 2627503  68 154713 

47 773389  69 2071874 

48 644256  70 785968 

49 412756  71 1386307 

50 217830  72 218099 

51 1228811  73 4134284 

52 449893  74 1269815 

 

 

Table 6b:  Continued from table 6a.  The number of evaluations required by PGSL to 
find the global minima for problem sizes from 31 to 74 using Formulation 3 described 
in 4.3.2. 
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5 Practical applications of PGSL 
PGSL has already been applied to practical engineering tasks such as design, 

diagnosis and control.  Summaries of these applications are given below. 

 

5.1 Design of timber shear wall structures 

Shear-walls are the predominant method for resisting lateral forces in large timber 

houses, especially in the Nordic countries. The principle is to use boards connected to 

a timber frame by screws or nails in order to resist horizontal forces. Design of timber 

shear-walls involves deciding on a configuration of boards, studs and joists, as well as 

computing parameters such as screw distances.  There is no direct method for 

performing this computation and variables cannot be expressed using closed-form 

equations.  Solutions can only be generated and tested for the satisfaction of 

requirements.  

 

PGSL was used to find low cost timber shear wall designs by searching through the 

space of possibilities [23].  Design variables are wall types, screw distances, number 

of extra studs and the number of special devices to resist uplifting forces.  All 

variables including screw distances are treated as discrete.  In spite of several 

simplifications, there are about 210 variables for a relatively simple building.  The 

objective function consists of two parts.  a) the material and labour costs computed 

using a detailed procedure that was calibrated by industrial partners b) the penalty for 

violation of structural constraints. There is strong inter-relationship between variables 

since the form of the equations used in the objective function changes depending upon 

the values of variables such as wall types.   

 

In order to test the performance of PGSL, a full-scale test case was implemented. The 

actual multi-storey timber building is a completed project called Winter City 2000 and 

was built by the industrial partner Lindbäcks Bygg AB in Sweden.  This case 

involved 210 variables, out of which 34 variables take only two different values, 

others take between 5 and 17 distinct values. The most important and surprising result 

is that it is possible to lower the production cost in the factory for the shear-walls by 
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up to 7%. This is in spite of the fact that factory designs have been highly optimised 

over the years. Seven percent is equivalent to the average profit margin in this 

industry for such elements. 

 

5.2 Finding the right model for bridge diagnosis 

Millions of modelling possibilities exist for modelling full-scale civil engineering 

structures such as bridges due to the number of possible combinations of assumptions 

related to their behaviour. Finding good models for explaining a given set of 

observations is a difficult engineering task.  

 

PGSL was used to identify models of a full scale bridge in Switzerland [24]. Predicted 

behaviour using these models matched closely with measurement data.  The objective 

function used was the root mean square error between theoretical and measured 

deformations, support rotations and deflections. The search procedure involved 

identifying the right set of values of parameters within specific models and hence the 

number of independent variables were limited to a maximum of 5.   All variables are 

continuous having different ranges of values.  One variable (Young’s modulus of 

concrete) was allowed to vary from 20 to 50 (KN/mm2) whereas another variable 

(support rotation) varied from 0 to 1. The objective function involved complex non-

linear interactions between variables.  The objective function is not expressible as  a 

closed form mathematical equation since it involves a full-scale structural analysis for 

each combination of values of variables. 

 

Initial theoretical models that were constructed manually had errors up to 100% when 

compared to measured deformations.  However, through the use of PGSL it was 

possible to identify models that contained less than 5% root mean square error.  

Although from a mathematical point of view, this is a relatively small problem, it 

illustrates the successful application of PGSL to practical diagnostic tasks. 

 

5.3 Structural control 

Intelligent structural control involves computation of the right control movements in 

order to satisfy certain conditions such as stresses and deflections.  The tensegrity 
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structure constructed at EPFL - the Swiss Federal Institute of Technology in Lausanne 

- is equipped with actuators to tune the amount of stress in cables such that deflections 

are reduced.  The actuators are telescopic bars whose length can be adjusted.  The 

control task is to find out the right change in lengths of up to 15 telescopic bars.  All 

variables are treated as discrete since lengths may only be changed in steps of 0.25 

mm.  Each variable takes a maximum of 84 different values (allowing movements up 

to 21 mm).  Since changing the length of members affects the geometry of the 

structure as well as the pre-tension in cables, the problem is highly coupled and non-

linear [25]. 

 

The performance of PGSL was compared with that of simulated annealing [25].  For 

small control movements (a maximum of 3 mm), both algorithms performed equally 

well and produced fast convergence.  However, when larger movements were 

permitted (up to 21 mm.), thereby increasing the size of the solution space, PGSL 

produced higher quality solutions than simulated annealing.   

 

5.4 Travelling salesman problem 

The travelling salesman problem (TSP) is a difficult combinatorial optimisation 

problem for search methods such as  simulated annealing and genetic algorithms [26].  

Although PGSL was tested on several publicly available instances of the TSP, the 

results are only partially encouraging.  For problems consisting of up to 29 nodes, 

PGSL was able to find the known global optima quickly.  However, it could not find 

global optima for larger problems. Such poor performance is thought to be related to 

the assumption of neighbourhoods.  The PGSL algorithm is attracted towards regions 

that contain apparently good solutions while the global optimum for this problem 

exists in a different region altogether. In such situations, problem specific heuristics 

such as the Lin-Kernighan Heuristic [27] produce better results than generic methods. 

 

6 Conclusions 
Although probabilistic methods for global search have been in use for about half a 

century, it is only recently that they have attracted widespread attention in the 

engineering and scientific communities.  Considerable progress has been made in the 
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area of direct search during the last decades. For example, the development of genetic 

algorithms and simulated annealing have spawned much activity.  Genetic algorithms 

and simulated annealing are direct search methods and are well suited for practical 

applications where objective functions cannot be formulated as closed form 

mathematical expressions. PGSL is a new direct search algorithm. Its performance is 

comparable with, if not better than existing techniques in most situations.  Bench 

mark tests indicate that it performs well even when objective functions are highly 

non-linear.  Results are always better than the simple genetic algorithm and steady 

state genetic algorithm for the expanded test functions considered in this paper. 

Similar conclusions are drawn through tests comparing PGSL with other algorithms 

such as adaptive simulated annealing.  PGSL scales up extremely well both in terms 

of the number of evaluations required to find good solutions as well as the quality of 

solutions. Results of optimisation of Lennard-Jones clusters using PGSL provides 

empirical evidence of the convergence of the algorithm when applied to complex 

objective functions. A combination of PGSL with local search heuristics improves 

performance considerably, especially for hard optimisation problems such as the 

Lennard-Jones cluster optimisation. 
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