
 - 1 -

A direct stochastic algorithm for global search

B. Raphael and I.F.C. Smith

IMAC, EPFL-Federal Institute of Technology

CH-1015 Lausanne

Switzerland

Benny.Raphael@epfl.ch, Ian.Smith@epfl.ch

Raphael, B. and Smith, I.F.C. "A direct stochastic algorithm for global search", J of

Applied Mathematics and Computation, Vol 146, No 2-3, 2003, pp 729-758.

Doi 10.1016/S0096-3003(02)00629-X

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License

mailto:Ian.Smith@epfl.ch

 - 2 -

A direct stochastic algorithm for global search

ABSTRACT

This paper presents a new algorithm called PGSL - Probabilistic Global Search

Lausanne. PGSL is founded on the assumption that optimal solutions can be identified

through focusing search around sets of good solutions. Tests on benchmark problems

having multi-parameter non-linear objective functions revealed that PGSL performs

better than genetic algorithms and advanced algorithms for simulated annealing in 19

out of 23 cases studied. Furthermore as problem sizes increase, PGSL performs

increasingly better than these other approaches. Empirical evidence of the

convergence of PGSL is provided through its application to Lennard-Jones cluster

optimisation problem. Finally, PGSL has already proved to be valuable for

engineering tasks in areas of design, diagnosis and control

Keywords: Global Optimisation, Stochastic Search, Random Search.

1 Introduction
Search methods are gaining interest with the increase in activities related to modelling

complex systems. Although many methods have been proposed, difficulties related to

computation time and reliability remain. Often methods do not scale up well when

applied to full scale practical applications.

Probabilistic methods have been successfully applied to complex engineering and

scientific tasks where near optimal solutions are sufficient. Well known methods that

have been applied to complex tasks include

• Simulated annealing

• Genetic algorithms

• Adaptive random search

• Multiple random starts with local search

Methods that make use of gradients are not included in this list since most practical

applications involve objective functions which cannot be expressed in explicit

mathematical forms and their derivatives cannot be easily computed. Similarly

 - 3 -

methods that approximate objective functions using surrogate models are also

excluded since these approximations work only in ideal conditions.

We are interested in direct search methods [1] as defined below:

A direct method for numerical optimisation is any algorithm that depends on

the objective function only through ranking a countable set of function values.

Direct methods do not compute or approximate values of derivatives. They use the

value of the objective function only to determine whether a point ranks higher than

other points.

This paper proposes a new direct search method that performs better than others for

difficult bench mark problems that have been published from 1995 to 2000. Section 2

contains a review of existing search techniques. The following section describes the

details of the PGSL algorithm. In Section 4, performance is compared with other

algorithms. Finally, Section 5 contains a discussion of limitations and practical

applications where improved performance has already been achieved.

2 Existing search techniques
The most widely used search methods in engineering applications are simulated

annealing [2] and genetic algorithms [3]. Since these are well known, they are not

described here. The following paragraphs contain brief summaries of selected search

methods.

Adaptive Random Search: Pure random search procedures have been used for

optimization problems as early as 1958 [4]. These techniques are attractive due to

their simplicity. However, they converge extremely slowly to a global optimum in

parameter spaces of many dimensions. In order to improve convergence, "random

creep" procedures are used in which exploratory steps are limited to a hyper-sphere

centred about the latest successful point. Masri and Beki [5] have proposed an

algorithm called Adaptive Random Search in which the step size of the random

search procedure is optimized periodically throughout the search process. Controlled

 - 4 -

Random Search (CRS) [6],[7] is another search method that samples points in the

neighbourhood of the current point through the use of a probability density function.

Multiple random starts with local search: Local search techniques involve

iteratively improving upon a solution point by searching in its neighbourhood for

better solutions. If better solutions are not found, the process terminates; the current

point is taken as a locally optimal solution. Since local search performs poorly when

there are multiple local optima, a modification to this technique has been suggested in

which local search is repeated several times using randomly selected starting points.

This process is computationally expensive because after every iteration, the search re-

starts from a point possibly far away from the optimum. Also search might converge

to the same point obtained in a previous iteration. Furthermore, no information that

has been obtained from previous iterations is reused. Random Bit Climbing (RBC)

[8] is a form of local search in which neighbouring points are randomly evaluated and

the first move producing an improvement is accepted for the next stage.

Improving hit and run: The basic structure of Improving Hit and Run (IHR) [9] is

to generate a random direction followed by a candidate point that is along a random

step in that direction. A positive definite matrix H in the algorithm controls the

direction distribution. If the matrix H is the identity matrix, then the direction

distribution is uniform on a hyper-sphere. In practice, H is locally estimated in a

similar way to derivative-based local search procedures.

IHR has polynomial complexity with respect to the number of variables for the class

of elliptical programs. This complexity is attainable for strictly convex quadratic

programs by choosing H to be the Hessian of the objective function. IHR is an

approximation of pure adaptive search (PAS). PAS is an idealistic procedure used to

model realistic algorithms and to analyse their complexity (Hendrix and Klepper,

2000). PAS involves generating a sequence of improving points in the feasible region

with the property that each point is uniformly distributed in the level set

corresponding to its predecessor. Zabinsky and Smith [10] have shown that under

certain conditions the number of iterations required grows only linearly with respect

to the number of variables. The main challenge associated with implementing PAS is

the difficulty of generating a point in each iteration that is uniformly distributed in the

 - 5 -

improving region. Recently, algorithms such as random ball walk Markov chain

sampling have been used to generate nearly uniform points in a convex region [11].

Uniform covering by probabilistic rejection [12] is another algorithm that aims to

realise PAS. Hesitant Adaptive Search (HAS) [13] is an extension of PAS that allows

hesitation or pausing at the current level as the algorithm progresses. HAS is capable

of modelling random search algorithms such as simulated annealing better than PAS.

3 Probabilistic Global Search Lausanne
The Probabilistic Global Search Lausanne (PGSL) algorithm was developed starting

from the observation that optimally directed solutions can be obtained efficiently

through carefully sampling the search space without using special operators. The

principal assumption is that better points are likely to be found in the neighbourhood

of families of good points. Hence, search is intensified in regions containing good

solutions.

The search space is sampled by means of a probability density function (PDF) defined

over the entire search space. Each axis is divided into a fixed number of intervals and

a uniform probability distribution is initially assumed. As search progresses, intervals

and probabilities are dynamically updated so that sets of points are generated with

higher probability in regions containing good solutions. The search space is gradually

narrowed down so that convergence is achieved.

The algorithm includes four nested cycles:
• Sampling cycle

• Probability updating cycle

• Focusing cycle

• Subdomain cycle

In the sampling cycle (innermost cycle) a certain number of samples, NS, are

generated randomly according to the current PDF. Each point is evaluated by the

user-defined objective function and the best point is selected. In the next cycle,

probabilities of regions containing good solutions are increased and probabilities

decreased in regions containing less attractive solutions. In the third cycle, search is

 - 6 -

focused on the interval containing the best solution after a number of probability

updating cycles, by further subdivision of the interval. In the subdomain cycle, the

search space is progressively narrowed by selecting a subdomain of smaller size

centred on the best point after each focusing cycle.

Each cycle serves a different purpose in the search for a global optimum. The

sampling cycle permits a more uniform and exhaustive search over the entire search

space than other cycles. Probability updating and focusing cycles refine search in the

neighbourhood of good solutions. Convergence is achieved by means of the

subdomain cycle.

3.1 Terminology

The following definitions are used in the description of PGSL:

Solution point: A point consists of a set of values for each variable.

Search space: The set of all potential solution points. It is an N-dimensional space

with an axis corresponding to each variable. N denotes the total number of

variables. The user defines the minimum and maximum values along each

axis. A subset of the search space is called a subdomain.

Axis width: The difference between the minimum and the maximum along an axis of

the search space or a subdomain.

Cost function: A user-supplied function to evaluate a solution point. The value of the

cost function for a given point is called the cost or evaluation of the solution

point.

Probability density function, PDF: The PDF of a variable is defined in the form of a

histogram. The axis represented by the variable is discretised into a fixed

number of intervals, NINTERVALS. Uniform probability distribution is

assumed within each interval. The cumulative distribution function (CDF) is

obtained by integrating the PDF.

Important parameters involved in the algorithm are listed below:

Number of samples, NS: The number of samples evaluated in the sampling cycle.

 - 7 -

Iterations in the probability updating cycle, NPUC: The number of times the

sampling cycle is repeated in a probability updating cycle.

Iterations in the focusing cycle, NFC: The number of times the probability updating

cycle is repeated in a focusing cycle.

Iterations in the subdomain cycle, NSDC: The number of times the focusing cycle is

repeated in a subdomain cycle.

Subdomain scale factors, SDSF1, SDSF2 : The default factors for scaling down the

axis width in the subdomain cycle. SDF1 is used when there is an

improvement and SDF2 if there is no improvement.

3.2 Algorithm details

The algorithm is illustrated in the form of a flowchart in Figure 1 to Figure 3 and is

explained in more detail next.

 - 8 -

Figure 1. Flow chart for the PGSL algorithm
The terminating condition for all cycles, except the sampling cycle, is the completion
of the specified number of iterations or the value of the objective function becoming
smaller than a user-defined threshold.

Sub-domain cycle

Choose the complete domain as the current sub-domain; Set current best
solution, CBEST, to NULL

Complete NFC iterations of the focusing cycle; select the best
solution, SUBDOMAIN-BEST (Figure 2)

If SUBDOMAIN-BEST < CBEST Then Update CBEST

Choose a smaller sub-domain centered around CBEST as the
current sub-domain

Terminating condition
Satisfied?

Start

End

 - 9 -

Figure 2. Flow chart (continued). The focusing cycle

Assume a uniform PDF throughout the current sub-domain, set
SUBDOMAIN-BEST to NULL

Complete NPUC iterations of the probability updating cycle; select
the best solution, PUC-BEST (Figure 3).

If PUC-BEST is better than SUBDOMAIN-BEST Then Update
SUBDOMAIN-BEST

Sub-divide the interval containing the PUC-BEST and redistribute
probabilities according to an exponential decaying function

Terminating condition
Satisfied?

Beginning of focusing cycle

End of Focusing Cycle

 - 10 -

Figure 3. Flow chart (continued). The probability updating cycle

Set PUC-BEST to NULL

Sampling cycle: Evaluate NS samples. Select the best,
BEST-SAMPLE

If BEST-SAMPLE is better than PUC- BEST, Update PUC-BEST

Increment the probability of the interval containing the PUC-BEST

Terminating condition
Satisfied?

Start of probability updating cycle

End of Probability Updating Cycle

 - 11 -

3.2.1 Initialisation

The search space is defined by reading the minimum and maximum values for each

variable given by the user. The PDF of each variable is created by assuming a

uniform distribution over the entire domain. All PDFs have intervals of constant

width in the beginning.

3.2.2 Sampling cycle

NS points are generated randomly by generating a value for each variable according

to its PDF. This is similar to the sampling in the Monte Carlo technique. Each point

is evaluated and the point having the minimum cost, BS (Best Sample), is selected.

3.2.3 Probability updating cycle

The sampling cycle is invoked NPUC times. After each iteration, the PDF of each

variable is modified using the probability-updating algorithm. This ensures that the

sampling frequencies in regions containing good points are increased. The evolution

of the PDF for a variable after several sampling cycles is illustrated in Figure 4.

Figure 4. Evolution of the PDF of a variable after several probability updating cycles

3.2.4 Probability-updating algorithm

The PDF of a variable is updated through these steps:
Locate the interval containing the value of the variable in BS.

Multiply the probability of the interval by a factor (greater than 1).

Normalise the PDF

 - 12 -

3.2.5 Focusing cycle

The probability updating cycle is repeated NFC times. After each iteration, the search

is increasingly focused on the interval containing the current best point, CBEST. This

is done by subdividing the interval containing the value of each variable in CBEST.

The evolution of the PDF after several probability updating cycles is illustrated in

Figure 5.

Figure 5. Evolution of the PDF of a variable after several focusing cycles

3.2.6 Interval subdivision

The following steps are used for subdividing intervals in the focusing cycle:

Locate the interval (called BESTINTERVAL) containing the value of the variable in CBEST.

Divide the interval into NDIV uniform subintervals.

Assign 50% probability to BESTINTERVAL., (so that half of the points generated will be in

this interval). Divide this probability uniformly to its subintervals.

Calculate the number of intervals into which the remainder of the domain should be divided so

that the total number of intervals remain constant.

Distribute the remaining probability to the region outside the BESTINTERVAL so that the

PDF decays exponentially away from the BESTREGION.

After subdivision, intervals no longer have the same width and probabilities are

heavily concentrated near the current best.

3.2.7 Subdomain cycle

In the subdomain cycle, the focusing cycle is repeated NSDC times and at the end of

each iteration, the current search space is modified. In the beginning, the entire space

(the global search space) is searched, but in subsequent iterations a subdomain is

 - 13 -

selected for search. The size of the subdomain decreases gradually and the solution

converges to a point. A subdomain is selected by changing the minimum and

maximum of each variable.

While choosing the next subdomain, certain precautionary measures are taken to

avoid premature convergence. Firstly, a higher scale factor is used after an iteration

that does not produce a better cost. This avoids rapid reduction of the axis width after

several unsuccessful iterations. Secondly, the statistical variations of the values of the

variable in previous iterations are considered in determining the new minimum and

maximum. If the value of the variable fluctuates by a large amount the convergence is

slowed down.

The method to compute the new values of minimum and maximum for each variable

is explained in pseudo-code below:

Let XP = the value of the variable in CBEST

Let DX = (Current Axis Width)/2

Let GX1 = Minimum of the axis in the global search space

Let GX2 = Maximum of the axis in the global search space

Let STDEV be the standard deviation of the value of the variable (that is under consideration)

in the previous 5 iterations

If there has been an improvement in cost in the current iteration, Then the scale factor, SCF =

SDF1, else SCF = SDF2.

The new half width, NDX = DX * SCF.

If NDX < STDEV NDX = STDEV

The new minimum of the axis, X1 = XP-NDX.

The new maximum of the axis X2 = XP+NDX.

If X1 < GX1 then X1 = GX1

If X2 > GX2 then X2 = GX2

3.3 Choosing values for parameters

Values of parameters that have been empirically found to be insensitive to the

problem-type are given below:

Number of intervals in the PDF, NINTERVALS = 20

The number of subintervals, NDIV = 6

Subdomain scale factor SDSF2 = 0.96

Subdomain scale factor, SDSF1

 - 14 -

Problem dependent parameters include:

• Number of samples, NS

• Iterations in the probability updating cycle, NPUC.

• Iterations in the focusing cycle, NFC

• Iterations in the subdomain cycle, NSDC

It is found that for reasonably smooth problems, the values of NS and NPUC can be

taken as 2 and 1 respectively. Increasing these values produces no improvement in

most situations. However, for very irregular domains higher values should be used.

Best results are obtained when these values are proportional to the number of regular

sub-regions within the space. However, even for highly nonlinear problems, the

default values of 2 and 1 work well; they were used in all the benchmark problems

listed in the next section.

The most effective values of NFC are between 10N and 20N, where, N is the number

of variables in the problem. Particularly hard problems require higher values of NFC.

The value of SDSF1 should be between 0.5 and 0.99. A lower value results in rapid

reduction in the sizes of subdomains and may cause premature convergence. A high

value slows down convergence and it may take much longer to find the optimum. The

following empirical formula is found to produce good results:

SDSF1 = N(-1/N)

The value of NSDC controls the precision of results and is dependent on the scale

factors. A low value results in a large axis width of the subdomain after completing all

iterations. The length of search (the number of evaluations) can be modified by

adjusting the values of SDSF1 and NSDC.

3.4 Similarities with existing random search methods

A common feature that PGSL shares with other random search methods such as

adaptive random search (ARS) and controlled random search (CRS) is the use of a

PDF (Probability Density Function). However, this similarity is only superficial. The

following is a list of important differences between PGSL and other random methods.

 - 15 -

1. Most random methods follow a "creep" procedure similar to simulated

annealing. They aim for a point to point improvement by restricting search to

a small region around the current point. The PDF is used to search within the

neighbourhood. On the other hand, PGSL works by global sampling. There is

no point to point movement.

2. The four nested cycles in PGSL have no similarities with characteristics of

other algorithms.

3. Representation of probabilities is different. Other methods make use of a

mathematical function with a single peak (eg. Gaussian) for the PDF. PGSL

uses a histogram - a discontinuous function with multiple peaks. This allows

for fine control over probabilities in small regions by subdividing intervals.

4. Probabilities are updated differently (more details in 3.4.1). The primary

mechanism for updating probabilities in other methods is to change the

standard deviation. In PGSL, the entire shape and form of the PDF can be

changed by subdividing intervals as well as through directly increasing

probabilities of intervals.

In spite of the apparent similarities with other random search methods, there are

significant differences in the performance of PGSL. There is no evidence that random

search methods such as ARS and CRS perform as well as genetic algorithms or

simulated annealing for large problems. However, PGSL performs as well or better

than these algorithms - results from the benchmark tests are presented in the next

section

3.4.1 Updating PDF in PGSL

The most significant difference between PGSL and other random search methods is in

the procedure used to update the PDF. The objective of updating the PDF is to

generate more points in the region containing the best point without totally excluding

other regions. The PDF is updated differently in the focusing cycle and the

probability updating cycle. Modifications made in the focusing cycle result in a

predominantly single peak function. Since 50% of the probability is assigned to the

best interval, roughly 50% of variables of every point that is generated lies in the best

interval. Due to the exponential decay of probability, about 3% of variables lie in the

farthest interval. Minor variations to these probabilities are effected in the probability

 - 16 -

updating cycle and might temporarily contain multiple peaks. This results in increased

exploration of values of variables in previous best points.

At the end of each iteration in the sub-domain cycle, the PDF tends to peak around a

local optimum. The probability of finding a better local optimum increases as the sub-

domain is narrowed down (considerably reducing the search space). The process of

narrowing down is slowed if better points are found far away from the current best

point (Section 3.2.7). At the end of all iterations the PDF has its peak around a near

global optimum.

4 Comparison with other algorithms

The performance of PGSL is evaluated using several benchmark problems. Results

are compared with those collected from two different sources in three series of tests.

In the first series of tests, PGSL is compared with three versions of genetic

algorithms: simple genetic algorithm (ESGAT), steady state genetic algorithm [14]

(Genitor) and CHC [15]. CHC stands for Cross generational elitist selection,

Heterogeneous recombination (by incest prevention) and Cataclysmic mutation. In

the second series of tests, results from three algorithms for global search are used to

evaluate the performance of PGSL. In the third series of tests, a difficult global

optimisation problem (Lennard-Jones cluster optimisation) is chosen to test whether

PGSL is able to find reported global optima without the use of special heuristics or

domain knowledge.

4.1 Test suite 1

De Jong [16] first proposed common test functions (F1-F5) with multiple optima to be

used for evaluating genetic algorithms. However, it has been shown that local search

can identify global optima of some functions[8]. More difficult test functions have

been proposed [17]. These have higher degrees of non-linearity than F1-F5 and can

be scaled to a large number of variables. Some of these functions are used for testing

the performance of the PGSL algorithm. A short description of the test functions that

have been used in the benchmark studies are given below:

 - 17 -

F8 (Griewank's function):

It is a scalable, nonlinear, and non-separable function given by

∏∑
==

= −+=
N

i
i

N

i

x
Nii ixxf i

11
4000,1))/(cos(1)(

2

Expanded functions:

Expanded functions [17] are constructed by starting with a primitive nonlinear

function in two variables, F(x,y), and scaling to multiple variables using the formula,

∑∑
= =

= =
N

j

N

i
jiNii xxFxEF

1 1
,1),()(

The expanded functions are no longer separable and introduce non-linear interactions

across multiple variables. An example is the function EF10 which is created using the

primitive function F10 shown below:

[]1))(50(sin)(),(10 1.022225.022 +++= yxyxyxF

Composite functions:

A composite function can be constructed from a primitive function F(x1, x2) and a

transformation function T(x,y) using the formula

∑
−

=
+= +=

1

1
11,1)),(()),(()(

N

i
iinNii xxTFxxTFxEF

The composite function EF8avg is created from Griewank's function, F8, using the

transformation function T(x,y) = (x+y)/2

The composite test function EF8F2 is created from Griewank's function, F8 using the

De Jong function F2 as the transformation function. F2 is defined as

)1()(100),(2 222 yyxyxF −+−=

 - 18 -

The composite functions are known to be much harder than the primitive functions

and are resistant to hill climbing [17].

4.1.1 Description of the tests

Four test functions are used for comparison: F8, EF10, EF8AVG and EF8F2. All these

test functions have a known optimum (minimum) of zero. It is known that local

search techniques perform poorly in solving these problems [17]. Results from PGSL

are compared with those reported for three programs based on genetic algorithms,

namely, ESGAT, CHC and Genitor [17]. All versions of genetic algorithms used 22

bit gray scale encoding. For EF10, variables are in the range [-100,100]. For F8,

EF8AVG and EF8F2 the variable range is [-512,511].

Results are summarised in Tables 1-4. Thirty trial runs were performed for each

problem using different seed values for random numbers. In each trial., a maximum

of 500,000 evaluations of the objective function is allowed. Performance is compared

using three criteria.

1. Succ, the success rate (the number of trials in which the global optimum was

found);

2. The mean solution obtained in all the trials. The closer the mean solution is to

zero (the global optimum), the better the algorithm’s performance;

3. The mean number of evaluations of the objective function required to obtain the

global optimum (only for trials in which the optimum was found).

4.1.1.1 Simple F8 test function

Results for simple F8 test function are given in Table 1. Thirty trial runs were

performed on problems with 10, 20, 50 and 100 variables. PGSL has a success rate of

100% for 50 and 100 variables; no version of GA is able to match this. (Surprisingly,

the success rate is slightly lower for fewer variables.) However, the mean number of

evaluations to obtain the optimum is higher than CHC and Genitor for this problem.

 - 19 -

4.1.1.2 EF10 test function

Results for the extended function EF10 are summarised in Table 2. PGSL has a

success rate of 27 out of 30 runs even for 50 variables. For all criteria, PGSL

performs better than all versions of GAs.

4.1.1.3 EF8AVG test function

Results for the composite function EF8AVG are summarised in Table 3. For 20 and 50

variables, none of the algorithms is able to find the exact global optimum. For 10

variables the performance of CHC is comparable with that of PGSL. In terms of the

mean value of the optimum, PGSL outperforms all other algorithms.

4.1.1.4 EF8F2 test function

Results for the composite function EF8F2 are given in Table 4. None of the algorithms

is able to find the global optimum for this problem. However, in terms of the quality

of the mean solution, PGSL fares better than the rest.

 - 20 -

Number of variables 10 20 50 100
Successes ESGAT 6 5 0 0

CHC 30 30 29 20
Genitor 25 17 21 21
PGSL 28 29 30 30

Mean
solution

ESGAT 0.0515 0.0622 0.0990 0.262
CHC 0.0 0.0 0.00104 0.0145
Genitor 0.00496 0.0240 0.0170 0.0195
PGSL 0.0007 0.0002 0.0 0.0

Mean number of
evaluations.

ESGAT 354422 405068
CHC 51015 50509 182943 242633
Genitor 92239 104975 219919 428321
PGSL 283532 123641 243610 455961

Table 1: Results for Simple F8 test function. PGSL is compared with results reported
in [17]. The global minimum is 0.0 for all instances.

Number of variables 10 20 50
Successes ESGAT 25 2 0

CHC 30 30 3
Genitor 30 4 0
PGSL 30 30 27

Mean
solution

ESGAT 0.572 1.617 770.576
CHC 0.0 0.0 7.463
Genitor 0.0 3.349 294.519
PGSL 0.0 0.0 0.509639

Mean number of
evaluations.

ESGAT 282299 465875
CHC 51946 139242 488966
Genitor 136950 339727
PGSL 61970 119058 348095

Table 2: Results for the extended function EF10. The global minimum is 0.0 for all
instances.

 - 21 -

Number of variables 10 20 50
Successes ESGAT 0

CHC 10
Genitor 5
PGSL 9

Mean
solution

ESGAT 3.131 8.880 212.737
CHC 1.283 8.157 83.737
Genitor 1.292 12.161 145.362
PGSL 0.0151 0.1400 1.4438

Mean number of
evaluations.

ESGAT
CHC 222933
Genitor 151369
PGSL 212311

Table 3: Results for EF8AVG test function. The global minimum is 0.0 for all instances.

Nb Var 10 20 50
Mean
solution

ESGAT 4.077 47.998 527.1
CHC 1.344 5.63 75.0995
Genitor 4.365 21.452 398.12
PGSL 0.123441 0.4139 1.6836

Table 4: Results for EF8F2 test function. The global minimum is 0.0 for all instances.

 - 22 -

4.1.2 Summary of comparisons

For the test functions F8 and EF10, PGSL enjoys a near 100% success rate in locating

the global optimum even for large instances with more than 50 variables (Tables 1

and 2). No other algorithm is able to match this. For the other two test functions

(Tables 3 and 4), none of the algorithms is able to locate the global optima for

instances larger than 20 variables. However, mean value of the minima identified by

PGSL is much less than those found by other algorithms.

Among the three implementations of GAs considered in this section, CHC performs

better than the rest. In most cases, the quality of results produced by PGSL is better

than CHC in terms of success rate and mean value of optima. However, PGSL

requires a greater number of evaluations than CHC - especially for small problems.

Therefore, the overall performance of PGSL is comparable to CHC.

4.1.3 Effect of problem size

An important criterion for evaluating the robustness of an algorithm is how well it

performs when the number of variables is increased. Deterministic algorithms

perform well for small problems, but fail to provide reasonable solutions when the

number of variables is increased. Although stochastic algorithms perform well in

higher dimensions, there is a wide variation in their relative performance. In order to

study the effect of problem size, the success rate is plotted against the number of

variables in Figure 6. The functions used for scaling up are described in 4.1.1. The

performance of PGSL does not deteriorate as rapidly as other algorithms. Another

indication of performance degradation in higher dimensions is the mean number of

evaluations required to find the global optimum. This is plotted in Figure 7. The

number of evaluations increases almost linearly with the number of variables.

 - 23 -

Success rate vs. Number of variables

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

Number of variables

Su
cc

es
s

ra
te

 (o
ut

 o
f 3

0)

PGSL
CHC
Genitor
ESGAT

Figure 6. Effect of problem size. PGSL enjoys a high success rate in finding the global minimum

even for 50 variables. For other algorithms, the success rate drops drastically as the problem size
is increased beyond 20 variables.

 - 24 -

Number of evaluations vs. Number of variables

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

Number of variables

N
um

be
r o

f e
va

lu
at

io
ns

PGSL
CHC
Genitor
ESGAT

Figure 7. This figure shows the number of evaluations required to find the global minimum for

different problem sizes. With PGSL, the required number of evaluations grows more slowly than
the increase observed for the other algorithms.

 - 25 -

4.2 Test suite 2

Mongeau et al. [18] have evaluated the performance of six public domain software

implementations for global search. Three that have given best results are used to

evaluate the relative performance of PGSL. These are

• ADA: Adaptive Simulated Annealing

• GAS: An implementation of genetic algorithm

• INTGLOB: Integral global optimisation

Six test problems belonging to two categories have been chosen. They are a) Least

Median of Squares and b) Multi-dimensional scaling. Some problems involve non-

differentiable and discontinuous objective functions. All have multiple local minima.

A short description of these problems is given below.

4.2.1 Problem descriptions

Least median of squares: The objective is to perform linear regression by

minimising the median of errors (instead of the conventional root mean square error).

This procedure ensures that at least half the points lie as close as possible to the

resulting hyperplane. The optimisation problem can be stated mathematically as:

Minimize median of),(2 bri θ

where ir is the error in each point given by,

bxxybr pipiii −−−−= θθθ ..),(11

 - 26 -

and where b,θ are the coefficients to be estimated with (yi,xi) as the given set

of points.

Since there is no closed-form mathematical expression to compute the median, the

objective function is non-differentiable. In the present study, regression has been

performed on the following five sets of data: lms1a, lms1b, lms2, lms3 and lms5.

These sets contain one to five variables.

Multi-dimensional scaling: The objective is to compute the coordinates of n points

such that their distances are as close as possible to specified values. Mathematically,

the problem can be stated as

Minimise 2)(ji

n

ji
ijij xxw −−∑

<

δ

where
ijijw δ, are the given sets of weights and distances between each pair of points

having coordinates xi and xj respectively. One instance of this problem (ms2)

involving 10 points in two dimensions (having a total of 20 variables) is considered in

the present study.

4.2.2 Results

Results are summarised in Table 5. PGSL was able to find the reported minimum

point for all problem instances except lms5 and ms2. In the case of ms2, the

minimum found by PGSL is very close to that found by INTGLOB. For small

problems, PGSL takes more evaluations to find the minimum point. However, for the

20 variable problem, the number of evaluations taken by PGSL is much less than

ASA and GAS.

 - 27 -

Problem
instance

N Optimum found Evaluations required

PGSL ASA GAS INTGLOB PGSL ASA GAS INTGLOB

Least median of squares

lms1a 1 0.0074 0.0074 0.0074 0.0074 369 190 700 300

lms1b 1 0.00676 0.0068 0.0068 0.0068 1632 700 700 200

lms2 2 0.576 0.576 0.591 0.576 1556 350 2000 2000

lms3 3 0.145 0.15 0.15 0.14 2759 485 4000 1090

lms5 5 0.033 0.02 0.045 0.034 11986 2580 14840 4260

Multi-dimensional scaling

ms2 20 11.82 12.16 12.7 11.73 10387 19918 25081 10000

 Table 5: Results of comparison of test suite 2

 - 28 -

4.3 Test suite 3: Lennard-Jones cluster optimisation

The global optimisation of Lennard-Jones clusters is a very simple yet reasonably

accurate mathematical model of a real physical system, namely that of low

temperature micro-clusters of heavy rare gas atoms such as argon, krypton or xenon.

The objective function is non-convex and the number of energetically distinct local

optima is believed to grow at least exponentially with the number of atoms [19]. Also,

multiple discontinuities exist in the domain since the energy tends to infinity when

atoms approach each other. Many of the global optima have been found fairly recently

[20],[21]. Most successful algorithms use domain specific knowledge (heuristics) to

obtain reasonable performance. For example, Wolf and Landman [20] use a version

of GA in which the starting population consists of a special configuration of atoms

and each offspring produced is relaxed to the nearest local minimum through

conjugate-gradient minimisation.

The configuration of atoms according to the Lennard-Jones model is determined by

minimising the total energy of given by

)(∑
<

n

ji
ijdr

where dij is the distance between the atoms i and j. The function

 612 2)(−− −= sssr

is the Lennard-Jones energetic model. The total energy can be evaluated if the

coordinates of all atoms are known. If there are n atoms, there are 3n unknown

variables which are the x,y,z coordinates of each atom. It is possible to reduce the

number of variables to (3n-6) through defining the coordinate system using the

positions of the first two atoms. However, this has not been done in the PGSL

implementation since there is no significant improvement.

4.3.1 Evaluation using small instances

In the first set of comparison, four instances of the problem are considered with the

number of atoms ranging from 3 to 6. These have been designated as pf3, pf4, pf5

and pf6. Results are compared with four global optimisation algorithm

 - 29 -

implementations reported in [18]. Known values of global optima for these functions

are –3,-6,-9.1 and –12.71. According to Mongeau et al. [18], ASA and GAS are

unable to find the global optimum for pf4 and pf5. INTGLOB is not able to find the

global optimum for pf6. PGSL is able to find the global minimum for all instances

with the recommended values for parameters. The best-so-far curves are shown in

Figure 8 to Figure 11 in order to compare the performance of different algorithms.

The y axis is the best value of the objective function found so far, and x axis is the

number of function evaluations.

4.3.2 Evaluation using larger instances

Information related to the number of evaluations of the objective function required to

find the global optima are not available for large problem sizes since most successful

implementations use special heuristics for initial starting points and for subsequent

exploration. For example, Deaven and Ho [21], Wolf and Landman [20], and Hartke

[22] use special crossover and mutation operators that act on clusters in the

configuration space. These tailor-made operators produce best results for molecular

cluster optimisation since they consider special characteristics of the problem. Most of

the implementations combine global and local search methods through the use of

gradients. Leary [19] applied a two stage descent procedure, an initial fixed length

steepest descent followed by conjugate gradient descent.

Our objective in this study is to examine whether PGSL is able to find the global

optimum for large problem sizes without using any problem specific information and

without computing gradients. The following procedure was followed:
Start with default values of PGSL parameters, that is, NS=2, NPUC=1, NFC=20*N and

NSDC=40.

Execute PGSL, If the known global solution is found STOP. Otherwise increase NSDC by

one and repeat PGSL with a different random seed.

Using this procedure1 (referred to as “PGSL alone” formulation), PGSL was executed

for problems of size 7 atoms to 25 atoms (21 to 75 variables). The cumulative total

number of evaluations of the objective functions required to find the global optima

1 The executable for solving Lennard-Jones cluster optimisation problem using PGSL may be

downloaded from http://imacwww.epfl.ch/TEAM/raphael/LJ/index.html (for independent evaluation).

http://imacwww.epfl.ch/TEAM/raphael/LJ/index.html

 - 30 -

(including all restarts) are shown in Table 6. These results show that PGSL is able to

identify global minima for complex objective functions without any domain

dependent information or the use of gradients.

It is possible to improve the efficiency of PGSL by incorporating local search and

domain dependent heuristics. In order to illustrate this point, two different

formulations of the Lennard-Jones problem were used. In the first formulation, the

objective function of a point is evaluated as the energy value of the nearest local

minimum. A gradient descent is performed starting from the point to be evaluated. In

the second formulation, the global optimum is located in two stages as described

below.
Stage 1: Perform a global search by treating all coordinates as variables. Let the best point

obtained be Pbest and the value of the objective function be ybest.

Stage 2: Perform a sequence of optimisations l1, l2, .., li, with a limited number of variables.

Only the coordinates of selected atoms from the current configuration, Pbest, are treated as

search variables. However, for the evaluation of the objective function, a gradient descent is

performed and the value of the nearest local minimum is chosen. For the gradient descent all

atoms are allowed to move instead of the selected atoms. At the end of each optimisation, li,

the minimum point obtained Pi is chosen as Pbest if its value is less than ybest. Stage 2

terminates when ybest becomes less than or equal to the known global minimum.

In the second formulation, a special heuristic is used to select the atom to be moved.

Atoms are ordered according to their contribution to the total potential energy. The

atom with the highest contribution is chosen in optimisation l1, two atoms with the

highest potential are selected in l2 and so on. The cycle starts again with a single

atom, if either all atoms are completed or a better point is located. (In most PGSL

runs, improvements were obtained within one or two trials).

The use of gradients in the first formulation improves performance dramatically. This

is because the local minimum is located within about 10N evaluations, where N is the

total number of variables. PGSL alone requires many more evaluations to produce

the same improvement because the direction of steepest descent is unknown.

Consequently, the total number of evaluations required to locate the global minimum

using gradients is reduced by about 90%. This performance could be improved

further through using better methods for local optimisation such as the quasi-Newton

method employed by Hartke [22].

 - 31 -

The use of the heuristic in the second formulation improved performance further. The

improvements are significant mostly for larger problems. The improvements produced

by formulations 1 and 2 over black-box formulation are shown in Figure 12. The

PGSL alone formulation was not attempted for problem sizes greater than 25 atoms

due to the excessive computation time that was required. Table 6a provides the

number of evaluations required by the three formulations. Table 6b contains results

for larger problem sizes using the third formulation. These larger problem sizes were

not attempted using the second formulation.

Conclusions:

Results of PGSL alone optimisation of Lennard-Jones clusters provides empirical

evidence of the convergence of the algorithm when applied to complex objective

functions. The global minima were located without the use of gradients for all

instances up to 25. This is remarkable considering that there are about 1010 local

optima for a cluster of 25 atoms [19]. The use of gradients and heuristics improved

the performance significantly and shows that the algorithm can be combined

effectively with local search techniques.

 - 32 -

PF3

-3.1

-2.9

-2.7

-2.5

-2.3

-2.1

-1.9

-1.7

-1.5

0 1000 2000 3000 4000 5000 6000

Evaluations

C
os

t

PGSL

ASA

GAS

INTGLOB

Figure 8. The best-so-far curves for Lennard-Jones cluster optimisation problem with 3 atoms (9

variables). PGSL converges to the global optimum faster than all other algorithms.

 - 33 -

PF4

-6.2

-6.1

-6

-5.9

-5.8

-5.7

-5.6

-5.5

-5.4

-5.3

-5.2

0 2000 4000 6000 8000 10000 12000

Evaluations

C
os

t PGSL

INTGLOB

GAS

Figure 9. The best-so-far curves for Lennard-Jones cluster optimisation problem with 4 atoms

(12 variables). PGSL converges to the global optimum faster than all other algorithms.

 - 34 -

PF5

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

0 2000 4000 6000 8000 10000 12000 14000

Evaluations

C
os

t

PGSL

ASA

GAS

INTGLOB

Figure 10. The best-so-far curves for Lennard-Jones cluster optimisation problem with 5 atoms

(15 variables). ASA and GAS are unable to find the global optimum for this problem.

 - 35 -

PF6

-13

-12

-11

-10

-9

-8

-7

-6

0 5000 10000 15000 20000 25000

Evaluations

C
os

t

PGSL

ASA

INTGLOB

GAS

Figure 11. The best-so-far curves for Lennard-Jones cluster optimisation problem with 6 atoms

(18 variables). ASA, GAS and INTGLOB are unable to find the global optimum for this problem.

 - 36 -

Comparison of problem formulations using PGSL

1

10

100

1'000

10'000

100'000

1'000'000

10'000'000

100'000'000

1'000'000'000

0 20 40 60 80

Number of atoms

N
um

be
r o

f e
va

lu
at

io
ns

 (l
og

)

PGSL alone

With gradients

Using heuristic

Figure 12. The number of evaluations required by PGSL to find the global minima is reduced

through incorporating local search (gradient descent) and domain dependent heuristics.

 - 37 -

Number of atoms PGSL alone With gradients With heuristic

7 114'236 1619 1689

8 54'846 1711 1520

9 162'286 1991 4012

10 1'203'648 7130 5694

11 487'174 13300 13301

12 2'839'832 14094 2234

13 1'992'400 6890 7065

14 1'001'022 10936 2363

15 2'589'100 4080 8841

16 2'668'710 4713 6628

17 6'834'472 14611 7677

18 14'930'178 24149 39661

19 2'224'158 12216 24546

20 29'259'180 10565 22603

21 248'825'344 31295 9573

22 120'720'454 23264 11669

23 755'164'120 57145 33198

24 182'461'280 18137 29542

25 803'003'156 44709 30024

26 42246 52521

27 40720 86035

28 208294 473390

29 802202 73812

30 1037979 52178

Table 6a. Comparison of the number of evaluations of the objective functions taken
by PGSL to locate the known global optima for different instances of the Lennard-
Jones cluster optimisation problem. The first column contains the number of atoms.
The other columns contain the number of evaluations required to find the global
optimum through the three formulations described in 4.3.2 .

 - 38 -

Number of Number of Number of Number of

atoms evaluations atoms evaluations

31 1357167 53 231516

32 265699 54 102923

33 2193348 55 600293

34 966694 56 1018556

35 1798960 57 5417904

36 712956 58 2338255

37 254023 59 3541695

38 1414625 60 7235486

39 685584 61 837703

40 689007 62 2320804

41 702951 63 1369253

42 1044466 64 492090

43 411360 65 5259537

44 4892627 66 913939

45 1109894 67 891047

46 2627503 68 154713

47 773389 69 2071874

48 644256 70 785968

49 412756 71 1386307

50 217830 72 218099

51 1228811 73 4134284

52 449893 74 1269815

Table 6b: Continued from table 6a. The number of evaluations required by PGSL to
find the global minima for problem sizes from 31 to 74 using Formulation 3 described
in 4.3.2.

 - 39 -

5 Practical applications of PGSL
PGSL has already been applied to practical engineering tasks such as design,

diagnosis and control. Summaries of these applications are given below.

5.1 Design of timber shear wall structures

Shear-walls are the predominant method for resisting lateral forces in large timber

houses, especially in the Nordic countries. The principle is to use boards connected to

a timber frame by screws or nails in order to resist horizontal forces. Design of timber

shear-walls involves deciding on a configuration of boards, studs and joists, as well as

computing parameters such as screw distances. There is no direct method for

performing this computation and variables cannot be expressed using closed-form

equations. Solutions can only be generated and tested for the satisfaction of

requirements.

PGSL was used to find low cost timber shear wall designs by searching through the

space of possibilities [23]. Design variables are wall types, screw distances, number

of extra studs and the number of special devices to resist uplifting forces. All

variables including screw distances are treated as discrete. In spite of several

simplifications, there are about 210 variables for a relatively simple building. The

objective function consists of two parts. a) the material and labour costs computed

using a detailed procedure that was calibrated by industrial partners b) the penalty for

violation of structural constraints. There is strong inter-relationship between variables

since the form of the equations used in the objective function changes depending upon

the values of variables such as wall types.

In order to test the performance of PGSL, a full-scale test case was implemented. The

actual multi-storey timber building is a completed project called Winter City 2000 and

was built by the industrial partner Lindbäcks Bygg AB in Sweden. This case

involved 210 variables, out of which 34 variables take only two different values,

others take between 5 and 17 distinct values. The most important and surprising result

is that it is possible to lower the production cost in the factory for the shear-walls by

 - 40 -

up to 7%. This is in spite of the fact that factory designs have been highly optimised

over the years. Seven percent is equivalent to the average profit margin in this

industry for such elements.

5.2 Finding the right model for bridge diagnosis

Millions of modelling possibilities exist for modelling full-scale civil engineering

structures such as bridges due to the number of possible combinations of assumptions

related to their behaviour. Finding good models for explaining a given set of

observations is a difficult engineering task.

PGSL was used to identify models of a full scale bridge in Switzerland [24]. Predicted

behaviour using these models matched closely with measurement data. The objective

function used was the root mean square error between theoretical and measured

deformations, support rotations and deflections. The search procedure involved

identifying the right set of values of parameters within specific models and hence the

number of independent variables were limited to a maximum of 5. All variables are

continuous having different ranges of values. One variable (Young’s modulus of

concrete) was allowed to vary from 20 to 50 (KN/mm2) whereas another variable

(support rotation) varied from 0 to 1. The objective function involved complex non-

linear interactions between variables. The objective function is not expressible as a

closed form mathematical equation since it involves a full-scale structural analysis for

each combination of values of variables.

Initial theoretical models that were constructed manually had errors up to 100% when

compared to measured deformations. However, through the use of PGSL it was

possible to identify models that contained less than 5% root mean square error.

Although from a mathematical point of view, this is a relatively small problem, it

illustrates the successful application of PGSL to practical diagnostic tasks.

5.3 Structural control

Intelligent structural control involves computation of the right control movements in

order to satisfy certain conditions such as stresses and deflections. The tensegrity

 - 41 -

structure constructed at EPFL - the Swiss Federal Institute of Technology in Lausanne

- is equipped with actuators to tune the amount of stress in cables such that deflections

are reduced. The actuators are telescopic bars whose length can be adjusted. The

control task is to find out the right change in lengths of up to 15 telescopic bars. All

variables are treated as discrete since lengths may only be changed in steps of 0.25

mm. Each variable takes a maximum of 84 different values (allowing movements up

to 21 mm). Since changing the length of members affects the geometry of the

structure as well as the pre-tension in cables, the problem is highly coupled and non-

linear [25].

The performance of PGSL was compared with that of simulated annealing [25]. For

small control movements (a maximum of 3 mm), both algorithms performed equally

well and produced fast convergence. However, when larger movements were

permitted (up to 21 mm.), thereby increasing the size of the solution space, PGSL

produced higher quality solutions than simulated annealing.

5.4 Travelling salesman problem

The travelling salesman problem (TSP) is a difficult combinatorial optimisation

problem for search methods such as simulated annealing and genetic algorithms [26].

Although PGSL was tested on several publicly available instances of the TSP, the

results are only partially encouraging. For problems consisting of up to 29 nodes,

PGSL was able to find the known global optima quickly. However, it could not find

global optima for larger problems. Such poor performance is thought to be related to

the assumption of neighbourhoods. The PGSL algorithm is attracted towards regions

that contain apparently good solutions while the global optimum for this problem

exists in a different region altogether. In such situations, problem specific heuristics

such as the Lin-Kernighan Heuristic [27] produce better results than generic methods.

6 Conclusions
Although probabilistic methods for global search have been in use for about half a

century, it is only recently that they have attracted widespread attention in the

engineering and scientific communities. Considerable progress has been made in the

 - 42 -

area of direct search during the last decades. For example, the development of genetic

algorithms and simulated annealing have spawned much activity. Genetic algorithms

and simulated annealing are direct search methods and are well suited for practical

applications where objective functions cannot be formulated as closed form

mathematical expressions. PGSL is a new direct search algorithm. Its performance is

comparable with, if not better than existing techniques in most situations. Bench

mark tests indicate that it performs well even when objective functions are highly

non-linear. Results are always better than the simple genetic algorithm and steady

state genetic algorithm for the expanded test functions considered in this paper.

Similar conclusions are drawn through tests comparing PGSL with other algorithms

such as adaptive simulated annealing. PGSL scales up extremely well both in terms

of the number of evaluations required to find good solutions as well as the quality of

solutions. Results of optimisation of Lennard-Jones clusters using PGSL provides

empirical evidence of the convergence of the algorithm when applied to complex

objective functions. A combination of PGSL with local search heuristics improves

performance considerably, especially for hard optimisation problems such as the

Lennard-Jones cluster optimisation.

ACKNOWLEDGEMENTS

This research is funded by the Swiss National Science Foundation (NSF) and the

Commission for Technology and Innovation (CTI). We would like to thank K. De

Jong and K. Shea for valuable comments and suggestions. We would also like to

thank Logitech SA and Silicon Graphics Incorporated for supporting this research.

REFERENCES

[1] M. W. Trosset, I Know It When I See It: Toward a Definition of Direct

Search Methods, SIAG/OPT Views-and-News, No. 9, pp. 7-10, (Fall 1997).

[2] S. Kirkpatrick, C.Gelatt and M. Vecchi, Optimisation by simulated

annealing, Science. pp. 220:673, (1983).

[3] J. Holland, Adaptation in natural artificial systems, University of Michigan

Press (1975).

 - 43 -

[4] S. H. Brooks, Discussion of random methods for locating surface maxima,

Operations Research. 6:244-251 (1958).

[5] S. F. Masri, and G. A. Bekey, A global optimization algorithm using

adaptive random search, Applied mathematics and computation, Elsevier

North Holland, Inc., Vol 7, pp. 353-375, (1980).

[6] W. L. Price, A controlled random search procedure for global optimization,

in Towards Global Optimization 2, L.C.W.Dixon and G.P.Szego (eds.), North-

Holland, Amsterdam (1978).

[7] P. Brachetti, M. F. Ciccoli, G. Pillo, and S. Lucidi, A new version of Price’s

algorithm for global optimisation, Journal of Global optimisation, 10, pp. 165-

184 (1997).

[8] L. Davis, Bit-climbing, representational bias and test suite design, In

Proceedings of the 4th international conference on GAs (L.Booker and

R.Belew, eds.), Morgan Kauffman (1991).

[9] Z. B. Zabinsky, R. L. Smith, J. F. Mcdonald, H. E. Romeijn and D. E.

Kaufman, Improving hit-and-run for global optimisation, Journal of Global

Optimization 3:171-192 (1993).

[10] Z. B. Zabinsky, R. L. Smith, Pure adaptive search in global optimisation,

Mathematical programming 53: pp. 323-338 (1992).

[11] D. J. Reaume, H. E. Romeijn, and R. L. Smith, Implementing pure adaptive

search for global optimisation using Markov chain sampling, Journal of

Global Optimization, 20: 33-47 (2001).

[12] E.M.T. Hendrix, and O. Klepper, On uniform covering, adaptive random

search and raspberries, Journal of Global Optimization, 18, pp. 143-163

(2000).

[13] D.W. Bulger, and G.R. Wood, Hesitant adaptive search for global

optimisation, Mathematical Programming 81: 89-102 (1998)

[14] G. Syswerda, A study of reproduction in generational and steady-state

genetic algorithms, Foundations of Genetic algorithms, (G.Rawlins, editor),

Morgan-Kaufmann. pp.94-101 (1991).

[15] L. Eshelman, The CHC adaptive search algorithm. Foundations of genetic

algorithms, G.Rawlins (editor), Morgan-Kaufmann. Pp. 256-283, (1991).

[16] K. De Jong, Analyis of the behaviour of a class of genetic adaptive systems.

Ph.D. thesis, Univerisity of Michigan, Ann Arbor. (1975).

 - 44 -

[17] D. Whiltley, Building better test functions, In Proceedings of the 6th

international conference on GAs (L. Eshelman, editor), Morgan Kauffman

(1995).

[18] M. Mongeau, H. Karsenty, V. Rouzé and J.-B. Hiriart-Urruty, Comparison of

public-domain software for black box global optimization. Optimization

Methods & Software 13(3):203-226 (2000).

[19] R.L. Leary, Global optima of Lennard-Jones clusters, Journal of Global

Optimization, 11: 35-53 (1997)

[20] M.D. Wolf, U. Landman, Journal of Physical Chemistry A, American

Chemical Society, pp. 6129-6137 (1998).

[21] D.M. Deaven and K.M. Ho, Physical Review Letters, 75(2):288-291 (1995).

[22] B. Hartke, Global cluster geometry optimization by a phenotype algorithm

with niches: Location of elusive minima, and low-order scaling with cluster

size, Journal of computational chemistry, Vol. 20, No. 16, John Wiley and

sons Inc. pp. 1752-1759 (1999).

[23] P. Svarerudh, B. Raphael and I.F.C Smith, Lowering costs of timber shear-

wall design using global search, Accepted for publication in the Journal of

Structural Engineering, ASCE, (2000).

[24] Y. Robert-Nicoud, B. Raphael, I.F.C. Smith, Decision support through

multiple models and probabilistic search, In Proceedings of Construction

Information Technology 2000, Iceland building research institute (2000).

[25] B. Domer, B. Raphael, K. Shea and I.F.C. Smith, Comparing two stochastic

search techniques for structural control, Accepted for publication in the

Journal of Computing in Civil Engineering, ASCE (2002)

[26] O. Martin, Combining simulated annealing with local search heuristics,

Metaheuristics in combinatoric optimization, (G.Laporte and I.Osman editors)

(1995).

[27] S. Lin, B. Kernighan, An effective heuristic for the travelling salesman

problem, Operations research, 21:498 (1971).

 - 45 -

	1 Introduction
	2 Existing search techniques
	3 Probabilistic Global Search Lausanne
	3.1 Terminology
	3.2 Algorithm details
	3.2.1 Initialisation
	3.2.2 Sampling cycle
	3.2.3 Probability updating cycle
	3.2.4 Probability-updating algorithm
	3.2.5 Focusing cycle
	3.2.6 Interval subdivision
	3.2.7 Subdomain cycle

	3.3 Choosing values for parameters
	3.4 Similarities with existing random search methods
	3.4.1 Updating PDF in PGSL

	4 Comparison with other algorithms
	4.1 Test suite 1
	4.1.1 Description of the tests
	4.1.1.1 Simple F8 test function
	4.1.1.2 EF10 test function
	4.1.1.3 EF8AVG test function
	4.1.1.4 EF8F2 test function

	4.1.2 Summary of comparisons
	4.1.3 Effect of problem size

	4.2 Test suite 2
	4.2.1 Problem descriptions

	and where are the coefficients to be estimated with (yi,xi) as the given set of points.
	Since there is no closed-form mathematical expression to compute the median, the objective function is non-differentiable. In the present study, regression has been performed on the following five sets of data: lms1a, lms1b, lms2, lms3 and lms5. These...
	Multi-dimensional scaling: The objective is to compute the coordinates of n points such that their distances are as close as possible to specified values. Mathematically, the problem can be stated as
	Minimise
	where are the given sets of weights and distances between each pair of points having coordinates xi and xj respectively. One instance of this problem (ms2) involving 10 points in two dimensions (having a total of 20 variables) is considered in the pr...
	4.2.2 Results

	4.3 Test suite 3: Lennard-Jones cluster optimisation
	The configuration of atoms according to the Lennard-Jones model is determined by minimising the total energy of given by
	4.3.1 Evaluation using small instances
	4.3.2 Evaluation using larger instances

	5 Practical applications of PGSL
	5.1 Design of timber shear wall structures
	5.2 Finding the right model for bridge diagnosis
	5.3 Structural control
	5.4 Travelling salesman problem

	6 Conclusions

