Constraint Solving and Preference Activation
for Interactive Design

Claudio Lottaz™, Ruth Stalker®* and Ian Smith**,
* Al Lab (LTA), Computer Science Department,
** Institute of Structural Engineering and Mechanics
(ISS-IMAC), Department of Civil Engineering,
Swiss Federal Institute of Technology (EPFL),
CH-1015 Lausanne, Switzerland

Abstract

This paper contains a description of a constraint solver which de-
termines complete solution spaces. These spaces are defined by sets
of constraints in continuous variables. Interactive design is supported
through improvements to existing algorithms that have increased sys-
tem performance. In addition, heuristics for activating the best set of
preferred constraints for a design task are presented, and two ways are
proposed for interactively exploring design alternatives. IDIOM is an
application framework which has successfully tested these algorithms
for interactive apartment layout design.
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1 Introduction

Computer aided design (CAD) systems have the potential to support de-
signers, particularly during revision of drawings. Although iterative design
using these systems is more convenient than manual modification, preserving
consistency remains a difficult task. Indeed, traditional CAD systems do not
provide sufficient support for maintaining design consistency.

The knowledge involved in a design task originates from sources such as struc-
tural requirements, laws, guidelines and personal preferences. Constraints
on geometrical parameters of designs can be used to formalize parts of this
knowledge. This is an approach which has already been applied to spatial
configuration [24, 1, 2, 8, 36, 25], case-based design [29, 11, 23, 1], and im-
age understanding [15]. However, not all knowledge can be transformed into
mathematical forms. For example, social and political issues often depend
on many contextual aspects and therefore, complete models are not possi-
ble. As a result, research into providing facilities for adaptation, combination
and exploration of design solutions have been undertaken [5, 21, 28]. Design
tools need to provide facilities to explore feasible design alternatives since
the designer must ultimately decide which solution is the best for a specific
task.

A CAD tool which uses constraints to represent knowledge and allows for
the interactive exploration of solutions requires :

e Globally consistent and complete solution spaces.
e Fast algorithms for interactive use.

e Facilities for interactive adaptation of solutions.

In order to satisfy the first two requirements, we focus upon linear constraints
and we have developed techniques for approximating non-linear relationships.
For linear systems of constraints, linear programming algorithms such as sim-
plex [33] have been developed and applied to spatial layout. However, they
require linear objective functions. Such objective functions are rarely able
to model domain knowledge completely and furthermore, they cannot sup-
port interactive adaptation. Systems using non-linear programming methods
provide a more powerful means to specify objectives but still cannot support
interactive adaptation [19, 25]. Other approaches using local consistency al-
gorithms [2, 23] are unreliable, because they may supply globally inconsistent
solutions [31].
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Moreover, most of the currently proposed systems for spatial layout cannot
accomodate continuous variables. Instead, they are limited to discretized
parameters [24, 37, 11]. This is partially understandable since until recently,
designers employed standard components having standard sizes to save costs.
However today, this is no longer adequate since modern computer integrated
manufacturing techniques allow the production of custom-sized parts at no
extra cost and therefore, standard components no longer provide an economic
advantage. This has lead to a trend away from grid-based approaches such
as those proposed in [11, 1, 12]. Recent testing with practicing designers has
confirmed this trend [34].

Although hard constraints are appropriate for structural requirements and
laws, they are not useful for representing knowledge such as guidelines which
should be followed but may be disregarded if the design is over-constrained.
In such instances we use preferences, i.e. constraints which are deactivated
when they are in conflict with other requirements. Although preferences
can be deactivated, they are not lost; they are kept in memory and reac-
tivated when possible. Similar approaches have been proposed which use
assumption-based truth maintenance [20] for discrete variables. Borning [3]
used hierarchies of constraint sets (equalities only) in order to resolve con-
tradictions in an interactive drawing system. Preferences have also been
employed for complex Pareto optimality problems [4]. In WRIGHT, Baykan
and Fox allow for constraint weakening in over-constrained situations [2] and
Fox discussed relaxation of constraints in scheduling [10]. PRIDE is another
system which incorporates relaxable constraints but its authors recognize the
difficulty to automatically determine which constraints should be relaxed [26].

IDIOM is a case-based application framework for interactive spatial configu-
ration of rectangular spaces, employing constraint solving, preference activa-
tion and domain models to provide active design support [34]. Tts name is an
acronym for Interactive Design using Intelligent Objects and Models. The
system uses linear constraints and piecewise linear, convex approximations
of non-linear constraints. Disjunctive constraints can be handled through a
collection of preferences.

Apartment design is used to test and validate the system. Using IDIOM, a
designer incrementally chooses objects such as rooms from a case library and
interactively composes them within a new site. Constraints and preferences
on the new apartment are thereby activated according to the new design
context and designer preferences. Moreover, a designer may change values of
continuous parameters as well as priorities on preferences. Throughout the
design process, IDIOM maintains design consistency.
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This paper focuses on the algorithmic aspects of IDIOM. Section 2 contains a
description of the algorithms employed for constraint solving. The algorithm
which was implemented to determine the set of preferences to be activated is
presented in Section 3 and the exploration of design alternatives is shown in
Section 4. Detailed technical reports about IDIOM are available in [35] and
[22].

2 Finding Solution Spaces

IDIOM is based on two algebraic methods for solving imposed constraint
sets. Dimensionality reduction [13] solves systems of equalities and prepares
inequalities for Fourier-Motzkin elimination [9, 33], which then provides the
solution spaces. Although these algorithms find sound solutions, Fourier-
Motzkin elimination is often not fast enough for interactive applications.
Through reducing redundancy of generated constraints (Section 2.2.2) and
through an efficient strategy to eliminate the variables (Section 2.2.3) per-
formance is greatly improved.

2.1 Dimensionality Reduction

Equalities in the constraint set reduce the degrees of freedom of design spaces.
This approach has been used in statistics [17] as well as in image recogni-
tion [32] and was proposed for case-based design in [7]. Further research
demonstrated that equalities can be used to reduce the number of variables
occuring in inequalities [13, 14].

IDIOM builds on this work through employing Gauss-Jordan elimination to
perform dimensionality reduction and to identify dependent and independent
variables. Dependent variables are substituted by independent variables as
illustrated in the following example:

Figure 1 shows a small example of an arrangement of two rectangular rooms.
The following constraints are present, all dimensions are given in cm:

e Both rooms have a minimum width and length of 200cm.
e The width of the second room is fixed to 250cm.

e A neighborhood relationship defines how the rooms are joined, aligns
the south walls and maintains the north wall of object 1 more to the
north than the north wall of object 2.
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e The rooms must stay within a triangular site with corners at (300,500),
(1300,500) and (300,1500).

L LR
Mbpad 7

™

Figure 1: Simple example for a design, two neighboring objects within a
triangular site

The constraint system contains 8 variables. (z£”, y?°*) is the position of the

ith room’s south-west corner, z5*¢ and y;"** give the size of room i. This
leads to the following equations:

ysee = 250 (1)
w1+ = (2)
weo= g (3)

Equation (1) comes from the constraint that fixes the width of object 2, while
the equations (2) and (3) are introduced by the neighborhood relationship.
The following inequalities are generated in this example:

ziize > 200
yize > 200
m;ize 2 200 (4)
g3 > 200
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PS> 300
Y > 500
pos
zh% > 300
.’E?OS—F@/?OS‘F«TTZ:ZB"’,UTZ:ZB = 1760
xgos+ygos+x§zze+y§zze — 1760
P 2 g

(6)

The inequalities (4) are the constraints requiring that the two rooms have a
minimal length and width. Inequalities (5) express that the rooms remain
on the site and inequality (6) is due to the neighborhood relationship that
maintains the north wall of object 1 to be further north than the north wall
of object 2.

The result of the Gauss-Jordan elimination for the equalities in the example
is given below:

gos _:E?OS _xiize — 0
A i = 0 (7)
Yy = 250

The second step of the dimensionality reduction then substitutes variables
25 yb* and y5'¢ into all inequalities. The result of this substitution is

expressed in terms of inequalities (8).

7'7/,;’1228 S —200
J);ize —|—.’L’€OS +yf05 _‘_m?ize < 1510
pos < 300
?os _xiize < —300
T e 4y <1760 (8)
—yPo < =500
—yPo < =500
—gie < =200
_yfize S —200
_yfize S —9250

Inequalities (8) no longer involve the 8 variables given in (4), (5) and (6);
only 5 parameters are present. Furthermore one constraint is transformed to
0 < 50 and then removed from the system since it is always satisfied.

Gauss-Jordan elimination has been proved to be a polynomial time method
for exact calculus [33], while for floating-point arithmetic its complexity is
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O(n?). In IDIOM, the algorithm is implemented using sparse matrices, thus
improving efficiency significantly because more than 90% of the coefficients
in typical problems for IDIOM are zero.

2.2 Treatment of Inequalities

After dimensionality reduction has been performed, a system of inequalities
remains to be solved. In order to find valid values for parameters, Recursive
transformation (RT) of all unsatisfied inequalities into equalities is proposed
in a previous system [13]. This method may omit correct solutions as shown
in [34]. IDIOM avoids this by using the Fourier-Motzkin elimination method
which is an algebraic algorithm for solving inequality-systems [9, 27, 33].

The method suggested by Fourier eliminates variables one by one, keeping
all information in the newly generated inequality set, so that each solution of
the new set can be extended to a solution of the original set. Geometrically,
this is equivalent to projecting the original set along the axis of the variable
being eliminated. Elimination of all but one variable leads to a simple set
of inequalities that contains only one variable and can be used to determine
the whole interval of values for the remaining variable that can be extended
to a solution for the whole system.

Linear inequality systems can be written in the form Ax < b, where x is
the vector of variables involved, A is the matrix of coefficients and b is a
vector of constants in . The system has n, variables and n; inequalities. In
order to eliminate x; from the original system, the inequalities are normalized
through dividing each inequality with a non-zero coefficient ¢ for z; by |c|.
After reordering this yields the following set of inequalities:

Ny

=2

—ri 4+ Y g, < by (G=nj+1...n)) (10)
=2
=2

Using (9) and (10) the following interval of valid values can be determined
for x;.

Ny Ny

max ,(Z ai;r; —b;) <xy < min (b; — Zai’jxi) (12)

Jj=ni+1..n} i—9 Jj=1..n} i—9
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To ensure that a set of values for z5 ...z, allows a consistent value for z,
the interval described in (12) must not be empty. This is true if the following
constraints on x5, ...z, hold:

Ny Ny

. ! ! "
Zaiykmi—bk < bjizai,jmi (j:1777,k:777+1777)
1=2 1=2

Combining this with the inequalities set mentioned at (11) a new inequality

set containing n, — 1 variables and n}“" inequalities is:

i

e = pl(n! —nl) +n; —nl (13)

nZ ) 7

Any solution of this new set of inequalities can be extended to a solution of
the original set by choosing x; within the interval given by (12). After this
method has been performed for all but one variables, an interval for x; which
only depends on the values of the variables z;...2,, can be determined
similar to (12). For z,, the method provides an interval in ® given by
constants.

In order to eliminate x5*¢ from (8), the first two lines of the set have to be
combined in the described manner and replaced by this combination. (14)
shows the new set of inequalities, where the first inequality is the only one
generated by this elimination step:

Ay e < 1310

.’E?OS +y€ms +-’Eiwe +yislze S 1760

—.’E?OS < =300

7./?05 7.,1/.-;7326 < —300
e < 500 (14)

s < 500

_‘,Eiize < =200

_yfl:ze < =200

7yfzze S —250

Table 1 contains the inequalities that are calculated by Fourier-Motzkin elim-
ination in this example. The second column contains the constraints gener-
ated to determine the minimum value for the variable mentioned in its first
column, the third column contains the constraints used to find its maximum
value.

In general, this algorithm generates an exponential number of inequalities, for
example see [33]. However, it can be shown that for binary constraints, i.e. if
each inequality involves only two variables, the Fourier-Motzkin elimination
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has a complexity of O(mn(Qlo-"”*:")logn). Unfortunately, most inequalities in

IDIOM cannot be restricted in this way. Nevertheless, the use of sparse
matrices, redundancy reduction and variable ordering as shown in Sections
2.2.2 and 2.2.3 improve this method’s performance significantly for problems
treated by IDIOM.

2.2.1 Refine Variable Domains

The redundancy reduction described in the next section uses bounds on vari-
ables and depends upon the precision of these bounds; the better they esti-
mate the real interval of feasible values the better the detection of redundancy
works. Therefore these bounds are refined during the process of elimination
whenever possible. They are initialized according to the site where the design
is to be placed, and after each elimination step all constraints are used to
refine the domains of the variables.

Figure 2 shows the algorithm as it is employed in IDIOM to refine bounds
according to one constraint C', e.g. > ", a;,x; < b. To refine a bound for
variable z; the algorithm uses the following fact: If a; is positive, C' can be

written as:
— Zi;l..:n a;x; + b
.’E] < i#£]
< 0
J

Thus using the appropriate bounds as shown in Figure 2, a better upper
bound for z; might be found. Lower bounds can be improved for variables
with a negative coefficient, C' is then written as

Zi:l...n a;xr; — b

i#£j <z
T

Consider the constraint 2§ 4+ 7 + 2§%¢ + y§*¢ < 1760 taken from Table 1.
The bounds for 27 were initialized with [300, 1300], those for y7* to [500,
1500] and those for the sizes to [200, 1000] due to the size of the construction
site and the minimum size constraints on both rooms. The constraint above
can be rewritten as

o <1760 — Yy — a3t — yirEe

and the upper bound of 27°* can be calculated using the lower bounds of y**,
23 and y$*¢. The new upper bound for 27 is 860. In a similar way the

domains of all variables involved here can be refined to [300, 860] for z7°’,

[500, 1060] for y7°* and [200, 760] for sizes.
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proc refine_intervals(C) =
while bounds change do
for each variable z; with a; # 0 do
limit = 0.0;
for each variable z; with a; #0A 7 # j do
if a; > 0

then limit = limit — lower_bound(z;)*

i) ap
else limit = limit — upper_bound(xj)z—-:; fi

od

limit = limit — =

ifa; >0

then if limit < upper_bound(x;)
then upper_bound(x;) = limit; fi
else if limit > lower_bound(z;)
then lower_bound(x;) = limit; fi

fi

od

od

Figure 2: Algorithm to refine bounds, C' represents the constraint >, a;x; < b.
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2.2.2 Redundancy Reduction

The standard method for Fourier-Motzkin elimination is known to generate
an exponential number of inequalities in the general case [33]. However, it
is also known that this elimination method produces many redundant con-
straints. Lassez et al. [18] propose techniques to eliminate redundancy from
large systems of linear constraints. However, these methods involve solving
linear programming problems and therefore are inappropriate for use dur-
ing the elimination process. Techniques presented in [16] helped inspire the
methods used in IDIOM. Using bounds on variables, as described here, the
redundancy in the systems of inequalities that are generated by the elimina-
tion process can by reduced with little cost resulting in considerable gains in
speed. Two types of redundancy are detected:

e Type 1: A constraint is implied by the bounds on variable values.

e Type 2: A constraint is implied by bounds and another constraint.

Any constraint is considered redundant if it is implied by the bounds on
its variables or if it is implied by another constraint and the bounds on
variables. After each elimination step, redundancy in the remaining system
of inequalities is reduced by removing every constraint which is found to be
redundant.

Detecting constraints that are implied by bounds is accomplished by checking
if a constraint remains satisfied when variables are substituted by the worst-
case-values. When Y, a;x; < b is the constraint to be checked, worst-case-
values are lower bounds for all z; with a; < 0 and upper bounds for all x;
with a; > 0. Figure 3 shows an example for such a case in two dimensions.
The grey rectangular area shows the valid values defined by bounds on the
involved variables and the grey bar along the constraint C' shows which half-
plane contains the valid solutions according to C'. In the example shown in
Figure 3 this half-plane entirely contains the area defined by the bounds of
the involved variables, and therefore C' is implied by these bounds.

Refinement of bounds on variable values and elimination of type 1 redun-
dancy are performed before each elimination step. Therefore the inequality
system in (8) is reduced to the following before the elimination process be-
gins:

Ty +ah yl agie 1510
pos pos

<
i " i 4y <1760
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Figure 3: Example of Type 1 redundancy, C' is implied by bounds on x and
Y

All constraints that contain only one variable are used to refine bounds and
are then eliminated. The constraint —z7”" — 25*¢ < 0 is eliminated because
2i” and x3*¢ have only positive domains and finally inequalities which do

not involve variables are removed.

In order to detect whether one of two constraints C'; and Cs is redundant,
the difference D = C; — (5 is analyzed. When D is implied by the bounds
of the involved variables, C is implied by C5 and these bounds because
C7 = D+ Cy. An illustration for this in two dimensions is given in Figure 4.

The detection of redundancy that occurs when a constraint is implied by
another within the bounds of other variable is illustrated in the following
example:

—120
—120

r—z <
<

rT+y—=z

where bounds are [0, 545] for x, [200, 745] for y and [400, 865] for z. Subtract-
ing the second constraint from the first gives —y < 0 which is always true
because the lower bound on ¥ is 200. Therefore x — 2 < —120 is redundant.

This method of reducing redundancy removes many constraints. However,
it is important to note that in order not to lose information, IDIOM must
also consider the bounds imposed on each variable to be constraints. Never-
theless, this type of reduction improves the performance of Fourier-Motzkin
elimination. Table 2 shows the decrease in generated constraints when using



Constraint Solving and Preference Activation 13

¥
k
ymm
c 1
_—q_h____h‘“——_h
C,
Vi

X i X max

Figure 4: Example of Type 2 redundancy, C; is implied by C and bounds
on x and y

redundancy reduction for a few examples. The rows “Generated w/o rr”
and “Generated with rr” give the number of constraints that are generated
during Fourier-Motzkin elimination, the rows “Stored w/o rr” and “Stored
with rr” list how many constraints that are kept in memory. Without redun-
dancy reduction, only those constraints which do not involve variables are
eliminated, whereas with redundancy reduction other redundant constraints
are also discarded. The execution times given refer to a Silicon Graphics
workstation using an R4600 processor.

2.2.3 Variable Elimination Order

When solutions to discrete constraint satisfaction problems are enumerated
through backtracking, the order in which variables are instantiated is an
important issue. Selecting the most difficult variables first for instantiation
is likely to avoid building partial solutions that cannot be completed later
and therefore often improves performance. Heuristics to find these variables
are suggested and evaluated in several contexts [30, 6]. IDIOM improves the
performance of Fourier-Motzkin elimination in a similar manner.

Variable ordering schemes proposed for discrete constraint satisfaction prob-
lems usually first select variables that are named in several constraints for
instantiation. In contrast, IDIOM reduces combinatorial effects in Fourier-
Motzkin elimination through first eliminating variables that are named in few
constraints. For example, if we eliminate z5* from (8), two constraints are
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replaced by one, so the number of constraints can decrease when eliminating
variables. While the variables that do not cause the combinatorial problems
are eliminated, the system collects information about bounds on variables
and thus improves the detection of redundancy. Often, combinatorial effects
can be avoided altogether.

At each step during Fourier-Motzkin elimination, the variable which gener-
ates the smallest number of constraints is treated. The number n}**(z) of

new constraints generated by elimination of some variable x can be calculated
according to (13) as follows :

nnew(x) — npos(x)*n?eg(l")

2 7

where n!”*(x) is the number of constraints in which variable x has a positive
coefficient and n;“(x) denotes the number of constraints in which z has a
negative coefficient. At each elimination step, IDIOM eliminates a variable
with minimal n}*"(z).

In (14) this method would eliminate y{**® instead of 21°* because this elimi-
nation only generates 2 instead of 4 constraints and results in the inequality-

system (15).

% 4 4atize <1310

m{os +yf05 _‘_T;wze S 1560

o 7 4ase <1510

nos < =300

1 ~

imZ]?OS 7miize S 0 (15)

P < —500

pos
— o} < 500
zsize < =900

The benefit of choosing the variables to be eliminated in this way can only be
illustrated together with redundancy reduction in larger examples; otherwise,
the combinatorial explosion is just delayed, not avoided. In the next elimi-
nation step in (15), at least six new constraints would be generated and the
number of inequalities generated in subsequent steps would rapidly increase.
Table 3 illustrates the effects of reordering the variables in Fourier-Motzkin
elimination for three more complex examples which among other constraints
contain approximations of minimum area requirements on most of the rooms.
For all numbers given in Table 3, redundancy reduction was used. The sec-
ond example in Table 3 shows that the algorithm becomes more predictable
when variables are reordered. Although Example 1 is a subset of Example
2, the algorithm without variable reordering solves Example 2 faster than
Example 1. This effect disappears when variables are ordered.
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2.3 Choose a Solution with Minimal Change

The methods described in the previous sections define a solution space for a
constraint system. This process is performed whenever the set of constraints
is manipulated or the number of parameters is changed by adding or remov-
ing objects. Prior to interactive adaptation, the system proposes an initial
solution. Since objects are based on cases of good solutions this new solution
should involve the least change with respect to the original case. In addition,
any changes the designer has introduced before need to be maintained where
possible.

Similar to (12), the Fourier-Motzkin elimination provides inequalities for ev-
ery x; as follows:

Ny Ny
cmax (> apyme —by) <a; < min (b — D ag wk) (16)
g=n Ly S =1 k=i+1

The inequalities in (16) allow the solver to calculate an interval of possi-
ble values for variable x; the bounds of which depend only on x; ;... 2,,,
where the interval for z,, is given by constants. To find a solution for the
inequalities, the solver starts by choosing a value for x,,,. If this value is cho-
sen within the interval for xz,, the Fourier-Motzkin elimination guarantees
that, for x,, 1, a non-empty interval of possible values can also be found.
Therefore, the solver can recursively determine values for all variables.

Using intervals of possible values, it is easy to find a solution which is as
near to the current solution as possible. The solver chooses a value for a
variable by checking its interval of possible values. If the current value of
the variable is within the interval, the solver will use this value. If the value
is outside it will be set to the nearest interval boundary. When all values
for free variables are determined in this way, the results of the Gauss-Jordan
elimination are used to find values for the dependent variables.

2.4 Non-Linear Constraints

Important constraints are often non-linear. A limitation to linear constraints
is therefore too restrictive. In order to make our solver powerful enough
for real-world applications, some non-linear constraints are approximated
through formulation of a set of linear constraints.

Consider the constraint, xy > A,,;,, where x and y are the length and width
of an object and A,,;, is the minimum area imposed by the constraint (illus-
trated in Figure 5). Using the minimum sizes that all variables must have,
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together with the above constraint, a maximum value for z is determined as

follows:
Amin

xmam -

If values of x are larger than x,,,,, then the constraint defining a minimum on
y implies that there are always acceptable values for xy. Thus, it is sufficient
to approximate zy > A, in the interval [Zmin, Tmaz]-

IDIOM employs the following relationship to determine the points x; where
piecewise linear approximation intersects the curve to be approximated. When
approximating xy > A,,;, using n linear constraints, x; is calculated as fol-
lows:

xp = \faltai (i=1...n—1)

min“mazx

ymin \ ‘

Xmin X1 X2 Xmax

Figure 5: Linear approximation of zy > A,,;,

The approximation shown in Figure 5 never underestimates zy, such that
the constraint is always fulfilled. Figure 6 shows the accuracy of this ap-
proximation through a worst-case overestimation with respect to the given
Tmin fOr an approximation using 3, 4 and 5 constraints. It is assumed that
Ymin = Tmin and Ay, = 14m? for this figure.

Constraints of the form zy > A,,;, occur in IDIOM when a room must have a
minimum area. Figure 6 shows that such a minimum area constraint can be
approximated with small errors when high minimum constraints are given
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Figure 6: Worst-case overestimation by the approximation of zy > 14m?
using n linear constraints

on width and length of the room. In the example given in the figure the
error is below 5% using only 3 constraints if the minimum width and length
are at least 200cm. This value decreases when a smaller A,,;, is needed. In
practical applications a minimum width and length of 200cm is reasonable to
ensure the usefulness of most rooms. Therefore it can be expected that this
approximation is sufficiently accurate for architectural tasks when 3 linear
approximations are employed.

3 Activating Preferences

Constraints in IDIOM may be fixed or preferred, hereafter referred to as
fixed constraints and preferences respectively. Preferences have a priority
and may be deactivated if they are in conflict with other preferences or fixed
constraints. Each preference has a priority and several preferences may have
equal priority.

3.1 Activation Behavior

The following rules summarize how IDIOM activates preferences:

e A preference that conflicts with fixed constraints is deactivated.
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e If two preferences with different priorities conflict, the higher priority
preference is activated.

e If two preferences with the same priority conflict, IDIOM activates the
preference which conflicts with fewer lower priority preferences.

e IDIOM re-activates preferences whenever possible.

3.1.1 Conflicts Between a Preference and a Fixed Constraint

When a preference conflicts with fixed constraints, it will be deactivated by
IDIOM and remain deactivated as long as the conflicting fixed constraints
remain in the system. However, IDIOM reactivates preferences whenever
possible. For example, if a designer prefers a hall width of 140cm, whereas
the site and minimum areas imposed on other rooms make such a wide hall
impossible, the preference will remain deactivated until the designer removes
all conflicting fixed constraints.

3.1.2 Conflicts Between Preferences having Different Priorities

An example of conflicting preferences having different priorities is shown in
Figure 7. A designer has introduced high priority-preferences asking for a
minimum area of 16m? on both single rooms and a low-priority preference for
aligning north walls of the single rooms. Not all preferences can be fulfilled
due to other constraints. IDIOM activates the more important minimum
area preferences and then discovers that the aligning preference cannot be

activated.
™

Figure 7: The preference to align northern walls of single rooms remains
deactivated due to other constraints restrictions
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3.1.3 Conflicts Between Preferences with Same Priority

The most complex situation occurs when two conflicting preferences have
the same priority. IDIOM evaluates both possibilities until the preference
which allows the activation of the most of the other preferences is found.
In the example illustrated in Figure 7, if only one of the two minimal area
preferences can be active, IDIOM chooses which one to activate. Now let
us assume that on the right room there is a less important minimal %%
preference which is in conflict with the minimal area preference on the left
room. IDIOM activates the minimal area preference on the right room in
order to have the minimal 2°%*¢ preference active as well.

3.1.4 Reactivation of Preferences

Reactivation of preferences is carried out in several ways. After changes in
the set of constraints and preferences, IDIOM starts the algorithm described
below to find the best combination of preferences that can be active at the
same time. Therefore each time that a constraint or preference is removed,
added or given another priority, IDIOM may change the set of active prefer-
ences.

3.2 Preference Activation Algorithm

When IDIOM searches for the best set of preferences to activate it treats
preferences in groups having the same priority. It proceeds in decreasing
order of priority, evaluating opportunities to activate as many preferences
as possible. All possibilities to activate the highest number of preferences
are considered in the next activation step in order to find the best set of
non-conflicting preferences. Activating a preference in this context means to
add a preference to a set of constraints and preferences, and is only possible
if this action does not cause any conflicts.

The method activate_preferences (see Figure 8) controls the activation
of preferences. It takes the set of fixed constraints with no preferences active
cs, and a list of preferences for every priority level (prefs[]) as inputs and
generates a list of active preferences according to the guidelines described
in Section 3.1. As a temporary structure, a list of sets of non-conflicting
preferences new_bests is used to store all found sets of preferences with best
quality according to Section 3.1.

The procedure activate_level adds recursively as many preferences as pos-
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funct activate_preferences(cs, prefs|]) =

new_bests := {cs}; old_bests := (;

for priority := 0 to nb_priority_levels do
old_bests := new_bests;
for each preference_set in old_bests do

call activate_level(prefs[priority], preference_set, new_bests);

od

od

return first(new_bests);

Figure 8: Pseudo-Code for activation of preferences

20

sible from the list it receives to the constraint set. It writes the output
into new_bests. The sets of preferences stored in new_bests are replaced
when better ones are found (see Section 3.1). If activate_level only finds
sets which are of equal quality (see Section 3.1) as those that are already in
new_bests the procedure appends the new sets. If no better sets of prefer-
ences are found, new_bests remains unchanged. Figure 9 shows an initial

implementation of this algorithm.

proc activate_level(prefs, current_set, new_bests) =
if prefs = () then exit fi;
p:= first(prefs); add p to current_set; old_bests := new_bests;
if activation of p was successful
then
if |current_set| > |first(new_bests)| then new_bests := (); fi
if |current_set| > |first(new_bests)|
then add current_set to new _bests fi
call activate_level(prefs - p, current_set, new_bests); fi
call activate_level(prefs - p, current_set - p, old_bests);

Figure 9: Pseudo-Code for activation of preferences on one priority level,

without pruning

The procedure activates the first preference p in the list of preferences it
receives as a parameter. If p is not in conflict with any fixed constraints



Constraint Solving and Preference Activation 21

and preferences in current_set, the algorithm checks if better sets of active
preferences can be found with p active. In all cases it searches for better
sets of active preferences with p inactive. During this process it maintains
new_bests, which always contains the best combinations encountered during
the search.

The algorithm shown in Figure 9 uses backtracking to search through all sets
of active preferences in order to find the best set for the current priority level.
However, large portions of this search are futile and are pruned by IDIOM’s
preference activation algorithm. The algorithm shown in Figure 10 improves
the initial implementation of the preference activation algorithm through the
following:

e Recalculation of any combination of preferences that contains a known
contradiction is avoided.

e As soon as IDIOM detects that no solution with at least equal quality
as those in new_bests can be found, even if all remaining preferences
are activated, it stops backtracking.

proc activate_level(prefs, current_set, new_bests) =

if prefs = () then exit fi;
if [prefs| + active(current_set) < active(new_bests) then exit fi;
p = first(prefs); add p to current_set; old_bests := new_bests;
if 3z|x C current_set A x € known_contradictions then exit fi;
if activation of p failed

then add current_set to known_contradictions;
else

if |current_set| > |first(new_bests)| then new_bests := (); fi

if |current_set| > |first(new_bests)|

then add current_set to new _bests fi
call activate_level([|prefs - p, current_set, new_bests); fi
call activate_level(prefs - p, current_set - p, old_bests);

Figure 10: Pseudo-Code for activation of preferences on one priority level,
with pruning
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3.3 [Efficiency

Since this algorithm uses binary backtracking, performance may not be ad-
equate in all cases. However, pruning large parts of the search space helps
to keep the task feasible. Pruning performs well when only a few or almost
all preferences are active. Nevertheless, combinatorial explosion can not be
avoided when many preferences have the same priority. Users of IDIOM
are not expected to create such situations since this complicates a rational
exploration of design alternatives.

4 Exploring Design Alternatives

One of the most important aspects of IDIOM is its interactivity. IDIOM
provides two facilities for supporting designers during exploration of design
alternatives: interactive adaptation of parameters and strengthening and
weakening of preferences.

4.1 Interactive Adaption of Parameters

Since IDIOM manipulates values for continuous variables, there is rarely only
one solution; often there is an infinite number. Designers need to explore
spaces of solutions in order to let them introduce knowledge that cannot be
modeled in IDTOM.

In IDIOM designers can modify a solution proposed by the system through
interactively adapting parameters. Adaptable parameters are positions of
walls and elements. Adaptation consists of the following steps:

1. The designer chooses a parameter to adapt by clicking on a wall or an
element.

2. IDIOM calculates the current range of valid values for the parameter
and shows this range to the designer, if requested.

3. The designer adapts the parameter by moving the mouse while IDIOM
keeps track of all changes in the design and continuously shows the
adapted solution.

Figure 11 shows an example an adaptation. In the left figure the user clicks
on the left wall, which is shared by a double room and the living/dining
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room. Arrows appear to indicate the range of feasible adaptations. The user
then moves the mouse to the right to obtain the configuration by the right
hand figure. The apartment contains minimum area constraints on both the
double room and the living/dining room to the lower left, and this is why
parts of the apartment move towards the north during adaptation.

"

Figure 11: Adaptation of a wall position

4.1.1 Determine Range of Valid Values

When the designer chooses to adapt a particular parameter p by clicking
on a wall or an element, IDIOM calculates a range of possible values for p.
Since all parameters available for adaptation in IDIOM have a geometrical
meaning, the system shows this range with an arrow as illustrated in Figure
11.

The range of feasible values is calculated using the Fourier-Motzkin elimina-
tion algorithm. As shown in Section 2.3, this algorithm provides an interval
of feasible values for every variable x; which depends in variables z;,; ...z,
only (see Equation 16) and the interval for the last variable eliminated is
given by constants. Prior to adaptation of parameter p, IDIOM performs
the Fourier-Motzkin elimination, eliminating all variables except for p, thus
calculating the largest interval of feasible values for p.
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This method ensures that the interval given for a parameter includes all
possible values. An earlier approach to interactive adaptation [14] is based
on the premise that only one free variable at a time is changed. In IDIOM,
the interval given includes all feasible values for p, even those that imply
the adjustment of several free parameters. The designer can be sure that no
value outside the given range can be reached as long as all current constraints
remain active.

The method described above can only be used if the chosen parameter is
free. If dimensionality reduction determines p to be a dependent variable, it
is eliminated from the set of inequalities and does not occur in the Fourier-
Motzkin elimination at all. In this situation, IDIOM searches a free variable
q on which p depends and makes ¢ a dependent variable. This is done by
dividing the equality that defined the value of p before by ¢’s coefficient,
swapping columns p and ¢, and by substituting ¢ in all equalities and in-
equalities. Now ¢ is a dependent variable while p is free and can be used for
adaptation. After adaptation, these actions are reversed to come back to the
original system of constraints. When IDIOM cannot find any free variable
which p depends upon, the chosen parameter cannot be adapted because the
constraints have bound it to a fixed value.

4.1.2 Choose a Solution with Minimal Change during Adaptation

During adaptation, IDIOM repeatedly calculates and shows solutions accord-
ing to the parameter that was chosen to be adapted and the position of the
mouse-pointer. The choice of these solutions is performed as described in
Section 2.3 except that the parameter p is set as close as possible to the
value indicated by the mouse-position.

All other variables are chosen to be as near as possible to the design prior
to adaptation. As a result, IDIOM’s behavior while adapting is analogous
to tearing at an elastic model of the design. If the designer drags the chosen
parameter to an extreme value and then comes back, the original situation
is resumed.

Figure 11 shows an example of many parameters involved in adaptation,
although the designer modifies the value of only one variable.
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4.1.3 Adapting Two Parameters at a Time

When a designer clicks on an element which is not attached to a wall, two
variables, x and y positions, can be changed. For example, when moving a
piece of furniture, a designer expects the system to allow movement of the
element in both x and y directions. The same need arises when:

e Moving corners of rooms.
e Moving rooms as a whole.

e Moving elements attached to a wall, thus influencing the position of
the wall to which they are attached.

Since the constraint system is linear, the range of possible values for the
adaptation of two parameters p; and ps has the form of a convex polygon
and thus cannot be shown using arrows. However, the calculation of the
range of feasible values and the choice of a solution used in adaptation of one
parameter can be extended to the adaptation of two parameters.

Instead of delaying elimination of only one parameter to the end, both pa-
rameters to be adapted have to be eliminated after all other variables. For
the parameter eliminated last, e.g. p;, the interval of valid values is given
by constants and found by the Fourier-Motzkin elimination algorithm. To
approximate the polygon of feasible combinations of the two parameters, we
use the fact that Fourier-Motzkin elimination gives us intervals for p, which
only depend on p;. The resulting algorithm shown in Figure 12 therefore
approximates the polygon of feasible combinations.

maz1()—mini () d

for p; := min,() to max;() step o
add (py, mins(p1) to polygon
add (py, maxs(p1) to polygon

od

Figure 12: Determine the range of feasible values for adaptation of two vari-
ables. min;() and maz;() define the feasible interval for p;. miny(p;) and
mazxsy(pr) define the feasible interval for p, with respect to p;

The choice of a solution with minimal change to the current solution is per-
formed exactly in the same manner as described in Section 4.1.2, except that
values of two parameters, p; and p, are influenced by the designer.
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4.2 Strengthening and Weakening Preferences

IDIOM attributes a priority to each preference. Nevertheless, a designer can
interactively change these priorities. The increasing of a preference’s priority
is called strengthening and the decreasing of a preference’s priority weakening.

Each time strengthening or weakening is performed, the algorithm described
in Section 3.2 is called to find the best set of preferences to be active. It
resets the set of active preferences to empty every time it is launched and
therefore preferences which were active before can become inactive and vice
versa. This is deactivation and activation. A preference may be reactivated,
i.e., it is first active and after being deactivated becomes active again. This
may happen when a conflict between two preferences deactivates one of them.
If the now active preference is deactivated by some new fixed constraint or
more important preferences, the formerly deactivated preference may become
active again.

Deactivation and activation is illustrated using the example situation shown
in Figure 13. Suppose a luxury apartment with simple facades and a large
hall is desired. Two single bedrooms, a bathroom and a hall are already
introduced into the site. Furthermore a preferred minimum area is imposed
on each single room with priority 4, an alignment preference for the northern
walls of both single rooms has priority 8 and the designer has posted a pref-
erence of priority 9 on the minimum width of the hall. Since the site is large
enough to meet all these requirements, IDIOM activates all preferences.

In order to satisfy plumbing requirements, the south-west corner of the bath-
room has to be fixed where it appears in Figure 14. The preference activation
algorithm is started when this new constraint is introduced and detects that
there is no way to activate all preferences present. As it can still activate
both preferences on priority-level 4, it does so but then deactivates the sim-
ple facade preference. Nevertheless, the constraint on the width of the hall
remains active.

Suppose that the designer does not agree with the configuration of Figure 14
because it contains a very narrow single room with a width of only 280cm
and therefore posts a preferred minimum width of 300cm at priority 2. This
results in several changes as shown in Figure 15. As the preference activation
algorithm makes its way through the priority-levels, the following actions
occur:

e The high-priority preference on the width of single room 1 is activated.

e The minimum area preference on single room 1 is kept active but the
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algorithm detects that the minimum area on single room 2 is in conflict
with the more important preference on the width of single room 1 and
therefore must be deactivated.

e The simple facade preference is reactivated because single room 2 can
shrink to align with single room 1, now that the preference on its area
is inactive.

e Finally the preferred minimum width on the hall is in conflict with the
minimum width constraints and preferences on the bathroom and the
single room 1, and thus becomes inactive.

Supposing that the designer now wants the minimum width preference on
the hall to become more important and therefore strengthens it to the same
priority as the preferred minimum width on single room 1. These two pref-
erences are in conflict and IDIOM chooses one of them. First it follows
both possibilities but on priority-level 4 it detects that using the preferred
minimum width on the hall allows activating both preferences on minimum
areas while the preferred minimum on single room 1 allows only the preferred
minimum area on single room 1 to be activated. Thus, IDIOM chooses the
combination of active preferences shown in Figure 16.

Pr. | Description Act.

2
areasingle_Room_1 2 16m
2
areasingle_Room _2 Z 16m

4
4

Single_Room_1
8 Faca’deSingle_Room_Q
9

T_Si12€mqy > 140cm

L

Figure 13: Example for strengthening and weakening preferences (Pr. means
priority, Act. the condition of activity)
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280 x579
16.3m?2

28

Pr. | Description Act.
4 aredgingle_Room_1 > 16’”]2 \/
4 af’rea‘Singlfz_Room_Q 2 16’”]2 \/
8 | Facadegi o rooms -
9 | z_sizemyy > 140cm V

Figure 14: Simple facade preference deactivated

330 x 350 300 x 579
m2

Pr.

Description

Act.

O 00 = &= N

'7/‘—57:2€Single_Room_1 > 300cm

2

areasingle_Room_1 Z 16m

2

areasingle_Room _2 Z 16m
Single_Room_1
Faca’desmgle_Room_2
T_Sizegqa > 140cm

IS N

Figure 15: Simple facade preference reactivated
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™

Room 1 Pr. | Description Act.
280 x 579 -

T_S12€3ingle_Room _1 > 300cm
T_Stzegqa > 140cm

2
areasingle_Room_1 Z 16m
2
areasingle_Room _2 Z 16m

Single_Room._1
Faca’desmqle_Room_2 -

L

0O = = N DN

Figure 16: Strengthening a preference

5 Conclusions

This research describes a novel approach for spatial constraint solving. The
combination of Gauss-Jordan elimination with an improved Fourier-Motzkin
elimination algorithm solves constraint sets which correspond to spatial con-
figuration problems involving rectangular shapes and continuous parameters.
Linear constraints and piecewise linear, convex approximations of non-linear
constraints are treated. The Fourier-Motzkin elimination method has been
improved in such a way that the system can be used interactively. Moreover,
these two algorithms provide a consistent description of the complete solu-
tion space of such constraint sets. This is useful for interactive adaptation
and for investigating dependencies between parameters.

In addition, preferences (defined as constraints which may be deactivated and
reactivated automatically) are included, as well as an algorithm for approxi-
mating the optimal set of active preferences. This algorithm accommodates
preferences of different priorities and preferences having equal importance
while avoiding unnecessary backtracking. Finally, interactive adaptation of
priorities related to preferences offers another means for identifying design
opportunities and for exploration of design solutions.
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Var. Constraints for minimum | Constraints for maximum
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N yPO aie <1010 P <500
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.,I/..iize + yfize S 960
xizze T + 2%729 i 2(138 m?zze < -200
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size yfize S 960 yfize S -200
Y yfize S 760 yfize S -250
yize <760
Table 1: All constraints generated by the classical Fourier-Motzkin elimina-
tion
Example 1 2 3
Configuration
]
Variables 8 20 73
Equalities 3 7 39
Inequalities 11 41 174
Generated w/o rr 36 72157 >500000
Generated with rr 17 119 255
Stored w/o rr 23 7357 >50000
Stored with rr 6 42 58
Time used w/o rr [s] 0.01 27.99 >5000
Time used with rr [s] 0.01 0.02 0.08

Table 2: Comparison of performance of Fourier-Motzkin

and without redundancy reduction (rr)

elimination with
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Example 1 2 3
Configuration ] — E

% L I'T T |
Variables 61 73 180
Equalities 29 39 92
Inequalities 141 183 403
Generated w/o vr 692 486 29593
Generated with vr 326 356 736
Stored w/o vr 198 135 3616
Stored with vr 88 106 193
Time used w/o vr [s] 0.21 0.20 157.05
Time used with vr [s] 0.09 0.16 1.30

Table 3: Comparison of performance of Fourier-Motzkin elimination with

and without variable reordering (vr)



