
The VLDB Journal (2008) 17:1465–1483
DOI 10.1007/s00778-007-0077-7

REGULAR PAPER

Disseminating streaming data in a dynamic environment: an adaptive
and cost-based approach

Yongluan Zhou · Beng Chin Ooi · Kian-Lee Tan

Received: 4 May 2006 / Revised: 20 January 2007 / Accepted: 9 August 2007 / Published online: 7 November 2007
© Springer-Verlag 2007

Abstract In a distributed stream processing system,
streaming data are continuously disseminated from the
sources to the distributed processing servers. To enhance
the dissemination efficiency, these servers are typically orga-
nized into one or more dissemination trees. In this paper,
we focus on the problem of constructing dissemination trees
to minimize the average loss of fidelity of the system. We
observe that existing heuristic-based approaches can only
explore a limited solution space and hence may lead to sub-
optimal solutions. On the contrary, we propose an adap-
tive and cost-based approach. Our cost model takes into
account both the processing cost and the communication cost.
Furthermore, as a distributed stream processing system is
vulnerable to inaccurate statistics, runtime fluctuations of
data characteristics, server workloads, and network
conditions, we have designed our scheme to be adaptive
to these situations: an operational dissemination tree may
be incrementally transformed to a more cost-effective one.
Our adaptive strategy employs distributed decisions made by
the distributed servers independently based on localized sta-
tistics collected by each server at runtime. For a relatively
static environment, we also propose two static tree construc-
tion algorithms relying on apriori system statistics. These

Y. Zhou (B)
Distributed Information Systems Laboratory,
School of Computer and Communication Sciences, EPFL,
EPFL-IC-LSIR, Bâtiment BC, Station14,
1015 Lausanne, Switzerland
e-mail: yongluan.zhou@epfl.ch

B. C. Ooi · K.-L. Tan
School of Computing, National University of Singapore,
Singapore, Singapore
e-mail: ooibc@comp.nus.edu.sg

K.-L. Tan
e-mail: tankl@comp.nus.edu.sg

static trees can also be used as initial trees in a dynamic
environment. We apply our schemes to both single- and multi-
object dissemination. Our extensive performance study
shows that the adaptive mechanisms are effective in a dyn-
amic context and the proposed static tree construction algo-
rithms perform close to optimal in a static environment.

Keywords Streaming data dissemination · Dissemination
trees · Distributed stream processing

1 Introduction

Distributed stream processing has been gaining increasing
research attentions in the recent years. In such a system, que-
ries submitted by the clients (e.g., continuous queries mon-
itoring the streams or ad hoc queries on the historical and
current status) would be distributed to the various process-
ing servers for processing. To evaluate the client queries, the
streaming data have to be disseminated from the sources to
the distributed servers. Due to the continuity and massive-
ness of the data, it is critical and challenging to design an
effective, efficient and scalable dissemination system.

In this paper, we look at the design of an adaptive dis-
tributed stream dissemination system, where a data source
continuously disseminates fast changing data objects (e.g.,
sensor data, stock prices and sport scores) to a number of
stream processing servers. Clients submit queries to the serv-
ers with their own preferences on data coherency require-
ments. Based on the requirements of the running queries,
each server would have its own interesting object set as
well as its coherency requirement of each interesting data
object. The servers are organized into one or more dissem-
ination trees (with the data source being the root node) so

123

1466 Y. Zhou et al.

that data/messages are transmitted to each server through
its ancestors in the dissemination tree. Each node of the
tree would selectively disseminate only interesting data to
its child nodes by filtering out the unnecessary ones.

The dissemination efficiency is evaluated using the met-
ric fidelity, which has been used in previous work [17,18].
It measures the portion of time that the values in the serv-
ers conform to their coherency requirements. While adopting
this metric, we extend it to accommodate generic data diver-
gence metrics, which will be further explained in Sect. 2.1.
In general, the loss of fidelity at each server is due to the dis-
semination delay of the update messages, which includes the
communication delay as well as the processing delay in its
ancestor servers. Interestingly, while it is important to design
optimal dissemination trees in this context, there is very little
study on this subject.

In this paper, we present a cost-based approach to adapt
dissemination trees in the midst of a dynamic changing envi-
ronment. Our contributions include:

– We formalize the problem by formally defining the metric
(fidelity) used to measure the effectiveness of the system
and the objective of the whole system (i.e., minimize the
average loss of fidelity over all the servers).

– We propose a novel and thorough cost model which con-
siders both the processing cost in the dissemination serv-
ers as well as the communication cost in the network
links. With the cost model, we can explore a larger solu-
tion space than existing methods do to achieve a more
cost-effective scheme.

– Based on the cost model, we propose an adaptive run-
time scheme that is robust to inaccurate statistics and
runtime changes in the data characteristics (e.g., data
arrival rates) and system parameters (e.g., workloads,
bandwidths, etc.). The proposed scheme enables nodes
to independently make decisions based on localized sta-
tistics collected from neighbouing nodes to transform a
dissemination tree from one form to a more cost-effective
one. Furthermore, we extend the cost model to incorpo-
rate the adaptation overhead. Given apriori statistics of
the system characteristics, we propose two static optimi-
zation algorithms to build a dissemination tree for rela-
tively static systems. These static trees can also be used
as initial trees in a dynamic environment.

– We apply the above schemes to both single object dissem-
ination and multiple object dissemination problems. For
multiple object dissemination, we study two approaches:
single-tree approach and multi-tree approach.

– We conducted an extensive performance study which
shows that the proposed tree construction scheme per-
forms close to optimal, and the adaptive scheme is also
robust to changing conditions at runtime.

source

Server

user

Server

Server

user

user

Server

Server

Server

Server

user

Fig. 1 The system architecture

A preliminary version of this paper appears in [21]. There,
we present our scheme for single object dissemination. This
paper extends the work in several ways. First, we extend
the work to disseminate multiple objects. In particular, we
propose two multiple object dissemination approaches. Sec-
ond, we extend the cost model to incorporate the adapta-
tion cost. Finally, we report results of additional performance
study done to evaluate the adaptation overhead, as well as the
multiple object dissemination strategies.

The rest of this paper is organized as follows. Section 2
presents the problem and motivations. In Sects. 3 and 4,
we present our solution to the single object dissemination
problem, and its extension to the multi-object dissemination
problem, respectively. A performance study is presented in
Sect. 5. We review related work in Sect. 6. Finally, we con-
clude in Sect. 7.

2 Problem formulation and motivations

In this section, we first formulate the problem by present-
ing the system model, the definition of the metric as well as
the formal problem statement. Then we motivate our work by
identifying the potential problems of the existing techniques.

2.1 Problem formulation

Figure 1 shows the overview of the architecture of our system
and Table 1 lists a number of major notations that would be
used frequently throughout the whole paper. In the system,
there is a data source s that stores a set of data objects O =
{o1, o2, . . . , o|O|}, a set of servers N = {n1, n2, . . . , n|N |},
and a large number of clients. Each server ni is a continuous

123

Disseminating streaming data in a dynamic environment 1467

Table 1 Notations

s The source node

N The set of server nodes

ni The i th node

ox The x th data object

L F(ni) The lost of fidelity of ni

Ci The set of child nodes of ni

Ti The subtree rooted at ni

GCi The set of grandchild nodes of ni

Oi The set of objects requested by ni

Om
i The set of objects requested by the subtree

rooted at ni

cri,x The coherency requirement of ni on ox

ri The rate of the update message meant for ni

rm
i The rate of the update message meant for

any node in the subtree rooted at ni

rc
i The sum of the update rate over all nodes in

the subtree rooted at ni

ri,x The rate of the update message from ox

meant for ni

rm
i,x The rate of the update message from ox

meant for any node in the subtree rooted at ni

d(ni , n j) The communication delay between ni and n j

D(s, ni) The total communication delay of the path

from s to ni in the tree

t p
i The time needed to perform filtering of

a message at ni

tc
i The time needed to perform transmission of

a message at ni

te
i The time needed to collect information at ni

td
i The time needed to compute the adaptation

benefit of a transformation at ni

ta
i The amortized adaptation cost at ni

ti The expected processing time at ni

g(ni) The processing delay of message in node ni

p(ni) The parent node of ni

ρi The workload of ni

stream processing system, such as TelegraphCQ, Aurora and
STREAM etc. Each client submits queries involving a subset
of data objects through a server (or the data source), and spec-
ifies a preference on the coherency on each data object. In this
paper, a user’s coherency requirement (cr) on a data object
is specified as the maximum tolerable divergence of the data
value from its exact value. Our approach does not restrict the
way in which the divergence is measured. The possible met-
rics include the number of changes since the last update, the
deviation of the values (for numerical data), the edit distance
(for string data) or the difference of the update time stamp.
Instead of just picking anyone of them, our system allows a

customizable divergence function. We denote the divergence
function as DIV(ox (ni , t), ox (n j , t)), where ox (ni , t) is the
version of data object ox cached in node ni at time t .

From the system’s point of view, each server ni can be
viewed as a super-client that requests a subset of data objects
Oi from the source, which should be the union of the objects
that are requested by the queries running on ni , and the coher-
ency requirement cri,x of ni on object ox is equal to the most
stringent requirement of its queries that involve ox . To deter-
mine whether an update message should be transferred to
the child node or a client, our system also employs a cus-
tomizable function match(m, ni), which returns either true
or f alse for a given message and a child node ni . An appli-
cation developer can design different functions for different
divergence functions. Shah [18] proposed such a function for
numerical data dissemination. We will not go into detail of
the design of this function and concentrate on the construc-
tion and adaptation of dissemination trees in this paper.

To ensure scalability, we model a generic dissemination
scheme as follows. The servers N together with the source
s compose an overlay network which can be modeled as a
directed complete graph G = (V, E), where V = N ∪ {s}
and E consists of the directed arcs connecting each pair of
nodes in V . To build an efficient dissemination scheme, the
nodes in V are organized into one or more overlay dissemina-
tion tree T . Each T is composed by s, a set of nodes V ′ ∈ N
and arcs E ′ ∈ E . The root of all the trees is the source s. Once
new values of the data objects at s arrive, s would initiate the
messages and disseminate only the necessary ones to each of
its child servers in all the dissemination trees. Upon receiv-
ing a message, a server would also selectively disseminate it
to its child servers. This process happens in each server until
the messages reach the leaf servers.

Since it is possible for a server’s coherency requirement
to be less stringent than that of its descendants, every server
ni has an effective coherency requirement crm

i,x on an object
ox which corresponds to the most stringent one among all
the cri,x s of the subtree rooted at ni . Again, a customizable
function is used to generate the crm

i,x . A parent performs the
filtering of messages based on the crm

i,x values of its children.
In addition to disseminating messages to the child servers,
a server that receives a message also has to check whether
any of its clients’ coherency requirements are violated. If so
it would update the results of the query submitted by those
clients. In this paper, we assume that clients are pre-allocated
to certain servers, and focus on the construction of dissem-
ination trees composed only by the servers and the source.
Henceforth we would use “server” and “node” interchange-
ably and would only consider the dissemination within the
dissemination trees.

Following [17,18], we adopt the notion of fidelity as a
measure of the performance of a dissemination system. Infor-
mally, the fidelity on a data object at a node during an

123

1468 Y. Zhou et al.

observation period is defined as the percentage of time that
the data value at that node conforms to the coherency require-
ment. To build our cost model, we formulate this metric in
a formal way as follows. Let the value of a data object ox at
time t at the source and a node ni be ox (s, t) and ox (ni , t)
respectively, and the coherency requirement of ni on ox be
cri,x . Then the fidelity of ni on data object ox at time t is
defined as:

f (ni , ox , t) =
{

1 : DIV(ox (s, t), ox (ni , t)) < cri,x

0 : DIV(ox (s, t), ox (ni , t)) ≥ cri,x .
(1)

And the fidelity of ni on ox during the observation period
[t1, t2] can be computed as

F(ni , ox , t1, t2) =
∫ t2

t1 f (ni , ox , t)

t2− t1
.

If our observation period is the whole life of the system, it can
be rewritten as F(ni , ox). Furthermore, the average fidelity
at node ni is computed as

F(ni) = 1

|Oi |
∑
∀ox∈Oi

F(ni , ox).

The loss of fidelity (LF) is defined as the complement of
fidelity, which is LF(ni) = 1 − F(ni). Our objective is to
minimize the average loss of fidelity over all nodes

AvgLF = 1

|N |
|N |∑
i=1

LF(ni).

Since the loss of fidelity is due to the delay of the messages,
we adopt an eager approach: the source node continuously
pushes update messages to child servers as soon as the cor-
responding coherency requirements are violated, and each
server, upon receiving any update messages, also pushes the
necessary ones to its children as soon as violations occur.

We define the Min-AvgLF problem formally as follows:
Given a source s, a set of data objects O, a set of servers
N, and the set of requesting data objects Oi of each server
ni as well as the coherency requirement cri,x of ni on each
ox ∈ Oi , construct/adapt one or more dissemination trees
T to minimize the average loss of fidelity (AvgL F) of the
system.

By the celebrated Cayley’s theorem, the number of span-
ning trees of a complete graph is |V ||V |−1, where |V | is the
number of nodes in the graph. This means that brute-force
searching is prohibitive even for a moderate number of nodes
(e.g., 16 nodes). Even worse, a more restrictive problem is
already NP-Hard [5].

2.2 Motivation

In view of the complexity of the problem, existing approaches
such as DiTA [17] adopt two heuristics: (a) the coherency

requirement of a parent node is at least as stringent as its
children; (b) each server has an apriori constraint on the
fanout, i.e., the maximum number of child servers is pre-
determined. However, under these restrictions, the resulting
dissemination tree would be far from optimal. This is because
they only explore a limited solution space and ignore the dif-
ferences of the servers in their capabilities as well as their
communication delays. For example, although a server has
a slow CPU, a long distance from the source, a low band-
width or a high workload, it would still be put at the upper
level of the tree as long as its coherency requirement is rel-
atively stringent. However, all its descendants would suffer
from the long processing delay in the slow server or the long
transmission delay. This would result in severe loss of fidel-
ity. Furthermore, multiple runs of trial and error is required
to obtain an optimal fanout constraint. This may impede the
deployment of the system. To handle these limits and find out
the trade-offs, we believe a cost-based approach that captures
both communication and processing cost is likely to lead to
a more cost-effective dissemination tree.

Yet another challenge is that the optimality of a dissemi-
nation scheme is dependent on the current system parameters
(such as data arrival rates, system workloads, etc.). However,
in a large scale distributed system, this information is hard
to estimate or collect beforehand. Moreover, these param-
eters would fluctuate over time. For example, users would
change their coherency requirements; a server’s workload
would change as the number of clients connected to it is
increased or decreased; or the message rate of each server
would also change due to the fluctuation of the data val-
ues. Since the dissemination system runs continuously, it
can experience these changes at runtime, which would make
the previously optimal scheme sub-optimal. The problem of
adapting to inaccurate statistics and system changes has been
extensively explored in other problems such as query pro-
cessing [2,15]. Unfortunately, few efforts have been devoted
to adapting the structure of a dissemination tree at runtime.
Moreover, a decentralized scheme is highly preferable due
to scalability and reliability problems.

3 Single object dissemination

In this section, we look at the scheme to construct a tree
T to disseminate a single data object. We note that T is a
spanning tree of the overlay graph G. We first present the
cost model to evaluate the LF of a tree T , then describe the
runtime adaptation scheme and finally, present the two static
tree construction schemes. All the algorithms proposed do
not place any restriction on the maximum fanout allowed;
neither do they require the internal nodes to be more strin-
gent in the coherency requirements than its child nodes.

123

Disseminating streaming data in a dynamic environment 1469

3.1 Cost model

In a cost-based approach, a cost function is used to evaluate
the goodness of a potential solution. In our case, we propose
a novel cost model to measure the LF of a dissemination tree.
In the cost model, we make the following assumptions and
simplifications:

1. A message sent from ni to n j incurs a communication
delay, whose expected value is denoted as d(ni , n j).

2. The messages received by a node are processed in a FIFO
manner. Upon receiving a message, ni would check every
child to see whether the message should be disseminated
to it. The processing order of the children is assumed to
be random. Let the time to perform the filtering be t p

i and
the time to perform the transmission be tc

i . tc
i includes

the time to package the message and the time to send out
the packages. The latter part is inversely proportional to
the available bandwidth of ni .

3. Each node would assign a portion of its resources (e.g.,
CPU, bandwidth, etc.) to perform the task of disseminat-
ing data to its child nodes. This portion of resources might
be adjusted periodically. However, within each period,
we assume it is fixed. Furthermore, the workload of a
node is defined as the fraction of time that the node is
busy.

Given these assumptions, now let us see how to estimate
the loss of fidelity of a node ni . The LF of ni arises because
of the delay of an update message. If the number of messages
per unit time (i.e., the average message arrival rate) for ni is
ri and the average delay of each update message is Di , then
the average LF of ni is L F(ni) = ri · Di . ri is related to
the data characteristics and the coherency requirement of ni .
Now we need to estimate Di . At a closer look, Di includes
the communication delay in all the links and the processing
delay in all the nodes along the path from the root to ni . To
compute the communication delay, we define D(n j , ni) as
the communication delay from n j to ni in the dissemination
tree T . It is obvious that D(n j , ni) is the sum of the commu-
nication delay of the overlay edges in the unique path from
n j to ni . Hence the total communication delay of a message
from s to ni is D(s, ni). In the following paragraphs, we
would present how to estimate the second part of the delay:
the processing delay.

The processing delay of a message for ni in each of its
ancestor nk can be divided into the queuing time and the
processing time. Let us estimate them one by one.

1. Queueing time. In our model, each node is a queuing
system. From basic queuing theory, the expected queuing
time of a message in a M/M/1 system is equal to ρ

1−ρ
t where

ρ is the workload of the system and t is the expected process-
ing time of a message. The workload of the system is equal to

the message arrival rate times the expected per-message pro-
cessing time t . Hence to estimate the queuing time, we have
to estimate the expected per-message processing time. Note
that our tree construction scheme does not require the coher-
ency requirement of a parent node to be more stringent than
that of its descendant nodes. Thus, every node has an effec-
tive coherency requirement crm

i , which should be the most
stringent cr within the subtree rooted at ni . Consequently,
there is an effective message arrival rate rm

i for ni , which
should be equal to the maximum message arrival rate within
the subtree rooted at ni , i.e., rm

i = max{r j |n j ∈ Ti }. For
each message arrived at a node nk , the probability that it is
sent to a child n j is rm

j /rm
k . Hence the expected processing

time of a message in nk for each of its children n j is

tk j = t p
k + tc

k

rm
j

rm
k

. (2)

Therefore, if we denote the set of child nodes of nk as Ck ,
then the expected processing time of a message in nk can be
estimated as:

tk =
∑

n j∈Ck

tk j . (3)

Given tk , the average processing time of a message, we can
derive that the workload of nk is ρk = rm

k tk . Hence the queu-
ing time of a message in node nk is ρk

1−ρk
tk . Note that this

covers both the queuing times for processing and transfer-
ring a message.

2. Processing time in nk for a message received by n j .
Since the children are processed in random order, before
checking a child node n j , there are on average (|Ck | − 1)/2
other children that have been processed. The expected length
of this time is equal to (1/2)(tk − tk j). Then it takes t p

k time
to check for n j and then takes another tc

k time to transmit the
message to n j . This means that the expected processing time
in nk for a message received by n j is (1/2)(tk− tk j)+ t p

k + tc
k .

Summing up the queuing time and the processing time, we
can derive the processing delay in nk for a message received
by n j as

g(nk, n j) = 1+ ρk

2(1− ρk)
tk + t p

k + tc
k −

1

2
tk j . (4)

This function can accurately estimate the processing delay.
However, it distinguishes the delays for different children,
which will bring higher cost in our algorithm. Hence we pro-
pose an approximation, where we use the average processing
delay over all the children, to approximate the delay for each
of them. We can derive, with simple calculations, that this

123

1470 Y. Zhou et al.

j

nk

ni ...

...

...

... nj

nk

ni

...

...

...

...

n

(a) Node Promotion

j

nk

ni

...

...

...

...

nj

nk

ni ...

...

...

...n

(b) Node Demotion

...

i

nj

nj

ni

...

...

...

...

...n

(c) Parent-Child Swap

h

ni

nk

ng

nj ...
...

...

...

...

...

nh

nj

nk

ng

ni ...
...

...

...

...

...

n

(d) Cousin Swap

h

nk

ng

ni ...

...

...
...

...

nh

nk

ng

ni

...

...

...
...

...

n

(e) Nephew Adoption

i

nk

ng

nh ...

...

...
...

...

nk

ng

ni

nh

...

...

...
...

...

n

(f) Uncle-Nephew Swap

Fig. 2 Local transformation rules

processing delay is

g(nk) = 1

|Ck |
∑

n j∈Ck

g(nk, n j)

= 1+ ρk

2(1− ρk)
tk + t p

k + tc
k −

1

2|Ck | tk . (5)

Now, we would derive the cost function to estimate the
loss of fidelity for a node ni as

L F(ni) = ri × [D(s, ni)+ g(p(ni))+ g(p(p(ni)))

+ · · · + g(s)] (6)

where p(ni) denotes the parent of ni .

3.2 Adaptive reorganization of dissemination tree

In this subsection, we present our runtime scheme that adap-
tively reorganizes a given dissemination tree to a more cost-
effective one. The algorithm is a distributed local search
scheme. At each state, distributed nodes would search the
neighbor states that can improve the current state. Neigh-
boring states are generated based on a set of transforma-
tion rules. In the following subsections, we first present the
local transformation rules that specify how the states could be
transformed and how to estimate the benefit of the transfor-
mations. Then we present how to efficiently make adaptation
decisions. Finally we summarize the set of information that
has to be collected at runtime to support the adaptive scheme
and present how to extend the cost model to incorporate the
adaptation cost.

3.2.1 Local transformation rules

In this section we define several local transformation rules
that transform a scheme into its neighbor schemes. We have
identified six rules.

1. Node promotion: Promote a node ni to its parent’s sib-
ling. All the nodes in the sub-tree rooted at ni are also moved
along with ni . Figure 2a shows an example of this transfor-
mation. In the example, ni is promoted to a sibling of its
previous parent n j . This transformation might be beneficial,
for example, when the workload of nk is reduced as a result of
a decrease in the number of its clients and hence more of its
resources are assigned to the dissemination task. Promoting
ni can reduce the communication delay of messages sent to ni

and all its descendants if d(nk, n j)+ d(n j , ni) > d(nk, ni).
This would also be helpful if we underestimate the capacity
of nk when building the initial dissemination tree.

2. Node demotion: Demote a node ni to a child of one of
its siblings. The children of ni would also be moved along
with ni . In the example shown in Fig. 2b, ni is demoted to
the child of its prior sibling n j . This transformation may be
beneficial, for example, when nk’s workload is increased and
hence less resources are assigned to the dissemination task.
Demoting ni can reduce the dissemination load of nk and
hence reduce the processing delay of messages to be sent
to the descendants of nk . In addition, it also helps to handle
any overestimation of the capacity of nk in the initial tree
building.

3. Parent–child swap: Swap the positions of ni and its
parent. Again all their other children would be brought along
with them. In Fig. 2c, the positions of ni and its parent n j

are swapped.
4. Cousin swap: Swap the position of two nodes ni and n j

which have the same grandparent nk . Their original children

123

Disseminating streaming data in a dynamic environment 1471

would still be connected with them. Figure 2d shows an
example.

5. Nephew adoption: A node nh adopts its nephew ni and
adds it as its own child. As shown in Fig. 2e, ni ’s grandparent
is the parent of nh . In this transformation, ni is added as a
child of nh . The children of ni are moved along with it.

6. Uncle–nephew swap: Swap the positions of nh with
its nephew ni . Again, their children are moved along with
them. Figure 2f depicts an example.

Actually the first two basic transformation rules are com-
plete, i.e., any other transformations can be composed based
on these two transformations. For example, Nephew Adop-
tion can be composed by first promoting ni and then demoting
it to a child of nh . However, using composite transforma-
tions directly may help avoid being stuck in a local opti-
mum. The four composite transformations presented above
are proposed based on this intuition. While the composite
transformations can be extended to involve arbitrary nodes,
we only consider these transformations to keep the runtime
adaptation scheme relatively simple and less costly.

Based on our cost model, we can recompute the cost of
the dissemination tree after the transformations, which will
take O(|N |) time. But since the transformations only affect
part of the tree, rather than computing the cost from scratch,
we can compute the change of the cost in constant time. Here
we would use Node Promotion to illustrate.

As depicted in Fig. 2a, node ni is to be promoted, and
n j and nk are the parent and grandparent of ni , respectively,
prior to the transformation. After the transformation, the mes-
sages to be sent to ni would no longer experience the trans-
mission delays d(nk, n j) and d(n j , ni), and the processing
delay in n j . However, it would experience the new trans-
mission delay d(nk, ni). This would also affect all the nodes
below ni . Hence this results in the change of AvgLF which is

∆AvgLF1 =
1

|N |r
c
i

× [
d(nk, ni)− d(nk, n j)− d(n j , ni)− g(n j)

]
,

where rc
i is the aggregated message rate over all nodes in the

subtree Ti rooted at ni , i.e., rc
i =

∑
n p∈Ti

r p. Furthermore,
the load in nk and n j would be changed after the transfor-
mation. Hence all the nodes below them would experience
the change of the cost due to the load changes. This results
in the change of AvgLF which is

∆AvgLF2 =
1

|N |
{
(rc

j − r j)[g′(n j)− g(n j)]

+(rc
k − rk)[g′(nk)− g(nk)]

}
,

where g′(n j) and g′(nk) denote the estimated new process-
ing delay in n j and nk , respectively, if the transformation is
to have taken place. ∆AvgLF is equal to the sum of ∆AvgLF1

and ∆AvgLF2. Other transformations can be analyzed
similarly.

3.2.2 Adaptation of dissemination tree

The adaptation scheme works as follows: periodically,
compute the benefit [i.e., (−1) · ∆AvgLF] of each possi-
ble transformation, and then perform those that have posi-
tive benefits. To implement this procedure, there are several
choices. In one extreme, we can select a server to act as
a centralized controller to make the adaptation decisions.
However, as discussed, this approach suffers from problems
of scalability and reliability. In another extreme, we can
design a totally distributed approach. In this approach, each
node makes the decisions independently and asynchronously.
However, this totally unstructured scheme would result in
(a) Conflicting decisions being made by different nodes,
e.g., ni may determine to promote itself and meanwhile its
parent may want to swap with it. Extra mechanisms have to
be employed to resolve this problem, potentially increasing
the complexity of such a scheme. (b) Wastage of computa-
tional resources as a result of multiple nodes arriving at the
same decisions, e.g., ni and its parent may determine to swap
with each other at the same time.

To alleviate these problems, we propose a more struc-
tured mechanism. The adaptation operates in rounds. The
root node initiates each round by creating a token. Only when
a node holds a token, could it make an adaptation attempt.
Algorithm 1 presents the operations to be executed in a node
that receives a token. Each node receives a token can make
its own decision independently without any synchroniza-
tion with the other nodes. Instead of allowing every node
to try all kinds of transformations, we restrict each node to
consider only the transformations involving its children and
grandchildren. These include promoting a grandchild (node
promotion), demoting a child (node demotion), swapping a
child and a grandchild (parent–child swap and uncle–nephew
swap), swapping two grandchildren (cousin swapping), and

Algorithm 1: AdaptationAttempt

begin
max Bene f i t ← 0; t ← NU L L;
for each possible transformations t1 involving the children
and grandchildren do

if max Bene f i t < Bene f i t (t1) then
max Bene f i t ← Bene f i t (t1);
t ← t1;

if t �= NU L L then Perform t ;
for each child n j do

if n j is not a leave node then
Send one copy of the token to n j ;

end

123

1472 Y. Zhou et al.

moving a grandchild from one child to another child (nephew
adoption). A node sends reorganization requests (if any) to
the involved descendants, e.g., n j in both Fig. 2a, b, ni and n j

in Fig. 2c, ng and nh in both Fig. 2d, e, ng in Fig. 2f. After the
adaptation (if any) has been carried out, a copy of the token
is sent to each of its non-leaf children. The next round of
adaptation would be initiated by the root node if the adapta-
tion interval is exceeded. If a node receives a token when it is
still doing an adaptation, it would just ignore the token. Fur-
thermore, if a node receives a reorganization request when
it is already holding a token, then it would also ignore the
reorganization request to avoid any contradictions.

In the midst of a tree transformation, data are disseminated
through the old path. After the new connections are created,
the old connections are dropped and the dissemination is
transferred to the new connections.

3.2.3 Information collection

Given the adaptation scheme described above, we now look
at what information should be collected at runtime. Since
each node would only consider transformations involving
its children and grandchildren, it would collect state infor-
mation from its children and grand-children. Hence a node
contains at most the information of O(C2) nodes, where C is
the maximum out-degree of all nodes. The information to be
collected has to enable us to calculate the benefit of the trans-
formations. Specifically, the information stored in a node ni

is as follows:

1. The overlay paths from ni to its children and grand-
children. This information is collected only once and
need not be collected again at runtime. This is because
any change in the structure in this part is determined by
ni itself and ni updates the information itself.

2. The values of rm
j , rc

j , as well as tc
j and t p

j of each of its
children and its grand-children.

3. The value of rc
i . Actually, rc

i can be computed based
on the rc

j value stored in each child node n j , i.e., rc
i =

(
∑

n j∈Ci
rc

j)+ ri .
4. The physical communication delay between ni and each

of its children or grand-children, and those between each
of its children and each of its grand-children.

The information collection scheme is also a window-based
scheme. Each node asynchronously maintains its own infor-
mation collection window. At the end of each window, a node
would measure the necessary information. If it detects that
the new value is increased to (1+τ) times or decreased to
1/(1+τ) times of its previous value, it would send the new
value to its parent. In our experiments, we set τ to be 0.2.

3.2.4 Modeling the adaptation cost

The adaptation scheme incurs runtime overhead, which
includes the cost of information collection and decision mak-
ing and depends on the fanout of the nodes. To keep the adap-
tation cost low, there are two approaches: (1) extend the cost
model to reflect the adaptation cost so that the tree construc-
tion would inherently restrict the fanout; (2) adopt a coarser-
grained cost model when fanout increases. We study the first
approach in this paper and defer the second one as our future
work. Let the set of grandchildren of nk be GCk . Assume the
time spent by nk to collect information for one node be te

k and
the time to consider each possible decision be td

k . Further-
more, the length of the information collection and decision
making period be Te and Td , respectively. To estimate the
adaptation overhead, we should estimate the number of nodes
to collect information and the number of possible decisions
to be considered. Obviously, the former number is equal to
|Ck | + |GCk |. To compute the latter one, we should add up
the possibilities of each transformation rules. For example, in
node promotion, there are |GCk | possible nodes to promote.
In node demotion, each child node can be considered for
demotion to the child of (|Ck |−1) nodes and hence there are
|Ck |·(|Ck |−1) possibilities. We can perform similar analysis
on other transformation rules and the amortized adaptation
cost ta

k can be estimated as:

ta
k =

te
k

Te
(|Ck | + |GCk |)+ td

k

Td
(|GCk | + |Ck | · (|Ck | − 1)

+
∑

n j∈Ck

|C j | · (|GCk | − |C j |)

+ 2
∑

n j∈Ck

(|GCk | − |C j |)). (7)

This cost can also be computed in constant time by storing
and performing incremental updates of some of the interme-
diate values. ta

k is added to g(nk) to extend our cost model to
factor in the adaptation overhead.

3.3 Static tree construction algorithms

In this subsection, we present two static tree construction
algorithms: a greedy algorithm and a randomized algorithm
based on Simulated Annealing [14]. Given apriori statistics
on the system parameters, the two algorithms can generate
a good dissemination tree. Such a tree can be used in envi-
ronments that are static and not subject to runtime changes.
For a highly dynamic environment, the algorithms provide a
good initial scheme (as compared to a randomly generated
dissemination tree) that can speed up the convergence to the
optimal scheme as dissemination trees are refined adaptively
based on the runtime characteristics.

123

Disseminating streaming data in a dynamic environment 1473

3.3.1 Greedy algorithm

The algorithm is presented in Algorithm 2. It adopts a greedy
heuristic. The algorithm sorts the nodes in ascending order
of d(s, ni) + t p

i + tc
i . Then it adds the nodes into the dis-

semination tree one by one in the sorted order. The partially
built dissemination tree T is represented as the set of nodes
and edges in the tree. For each new node N [i], it selects one
node n j within the partially built tree to act as the parent of
N [i] so that the average loss of fidelity AvgLF of the new tree
T ∪{N [i], e(n j , ni)} is minimized. The estimation of AvgLF
is based on Eqs. (3), (5) and (6). To save the computational
time, simple techniques can be employed to compute the new
AvgLF value incrementally based on the current AvgLF of
the partial tree. For brevity, we do not present the details here.
Given each potential parent, it takes log |N | time to estimate
the new AvgLF. Therefore, the computational complexity of
Algorithm 2 is O(|N |2 log |N |).

Algorithm 2: Greedy

begin
Add s to T ;
N [0] ← s;
N [1 · · · |N | − 1] ← Sort the other nodes in ascending order
of value d(s, ni)+ t p

i + tc
i ;

for i = 1; i < |N |; i ++ do
e← arg min0≤ j<i AvgL F(T ∪ {N [i], e(n j , ni)});
Add N [i] and e to T ;

return T;
end

The dissemination tree built by using this algorithm has
the following property:

Theorem 1 If the height of the tree is h, and the delay
between pairs of nodes satisfy the triangle inequality,1 then
the communication delay of a message received by ni is at
most 2di · h where di = d(s, ni)+ t p

i + tc
i . Further assume

that the fanout of each node is at most C and the maximum
message rate over all nodes is at most r , then the processing
delay of a message received by ni is at most

h

(
1+ r · C · di

2(1− r · C · di)
C · di + di

)
.

Proof Let us first look at the worst case communication delay
of the messages sent to a node ni . Because of the triangle
inequality, when ni is added to T , the transfer delay d(nk, ni)

between the parent nk and ni is less than d(s, nk)+ d(s, ni).
Because the nodes are added to T in ascending order of di ,
we can get d(s, nk)+ t p

k + tc
k < d(s, ni)+ t p

i + tc
i and hence

1 If every non-leaf node has at least two children, then h ≤ log |N |.
In addition, some studies [20] have shown that violations of triangle
inequality is not very frequent, which is only about 1.4− 6.7%.

d(s, nk) < d(s, ni) + t p
i + tc

i , i.e. d(s, nk) < di . We can
obtain the following expression:

d(nk, ni) < d(s, nk)+ d(s, ni)

d(s, nk) < di

d(s, ni) < di

⎫⎬
⎭⇒ d(nk, ni) < 2di .

We can also derive that the transfer delay of each edge in
the path from the root to ni is at most 2di . Because the height
of the tree is at most h, then the number of edges in the path
from the root to ni is at most h. That means the worst case
communication delay for ni is 2di · h.

Now we look at the worst case processing delay of mes-
sages sent to ni . Since t p

k + tc
k < di , we have tk < C(t p

k +
tc
k) < C · di [from Eqs. (3), (2)). Furthermore, from Eq. (4)

we have the following:

g(nk, ni) = 1+ rm
k · tk

2(1− rm
k · tk)

tk + t p
k + tc

k −
1

2
tki

<
1+ r · C · di

2(1− r · C · di)
C · di + di . (8)

This is the worst case processing delay in the parent nk . Since
for any ancestor n j , t p

j + tc
j < di is also true, in Eq. (8) is

also applicable to n j . Again, the number of ancestors of ni

is at most h. Hence we can derive that the worst case total
processing delay of a message sent to ni is at most h times
the worst case processing delay in each ancestor of ni .
�

3.3.2 Simulated annealing

Since the Min-AvgLF problem is NP-Hard, we use a proba-
bilistic approach, Simulated Annealing [14] (SA), to approx-
imate an optimal solution. This approach has been shown to
generate very efficient solutions for hard problems, such as
large join query optimizations [11]. The algorithm is illus-
trated in Algorithm 3. It starts from a random scheme S0 and
an initial temperature T0. In the inner loop, a new scheme
newS is chosen randomly from the neighbors of the cur-
rent scheme S. If the cost of newS is smaller than that of
S, the transition will happen. Otherwise, the transition will

Algorithm 3: Simulated Annealing

begin
S← S0; T ← T0; minS← S;
while !frozen do

while !equilibrium do
newS← Random Neighbor(S);
∆C ← cost (newS)− cost (S);
if ∆C ≤ 0 then S← newS;
else S← newS with probability e−∆C/T ;
if cost (S) < cost (minS) then minS← S;

T ← reduceT emp(T);
return minS;

end

123

1474 Y. Zhou et al.

take place with probability of e−∆C/T . (With the decrease
of T this probability would be reduced.) Meanwhile, it also
records the minimum-cost scheme that has been visited.
Whenever it exits the inner loop, the current temperature
would be reduced. Based on our experimental tuning and
past experiences [13,11], we select the parameters as fol-
lows: (1) T0: 2×cost (S0); (2) f rozen: T < 0.001 and minS
unchanged for 10 iterations; (3) equilibrium: 64×#nodes;
(4) reduceT emp: T ← 0.95T ; (5) Random Neighbor : ran-
domly choose one of the transformations listed in Sect. 3.2.1.
The cost of the new scheme can be computed using the incre-
mental cost computation presented in Sect. 3.2.1. Given a sta-
tic environment and accurate system parameters, we believe
this algorithm can derive the best dissemination scheme over
all the other algorithms. However, its optimization overhead
may be high. Moreover, such a centralized scheme will incur
too large a communication overhead in a dynamic context.

4 Multi-object dissemination

In the above discussion, we only consider single object dis-
semination. To disseminate multiple objects, there are two
possible solutions: (a) the single-tree approach (to build one
tree for multiple data objects), and (b) the multi-tree approach
(to build one dissemination tree for each data object). In the
following subsections, we will look into these two approaches
in detail.

4.1 The single-tree approach

In the single-tree approach, a single dissemination tree T is
built to disseminate a set of objects. Note that if an object
of interest to a child is not requested by the parent itself, the
parent’s requesting object set would be enlarged to include
this object. Hence there is an effective object set Om

i for a
node ni which is the union of all the interesting objects of
the nodes in the subtree rooted at ni . In this section, we first
develop the cost model for this approach, and then present
the dissemination tree construction scheme.

4.1.1 Cost model

The derivation process is similar to the single object case,
except that we have to deal with more than one object. The
delay of a message for a node ni can still be divided into
two parts: the transmission delay and the processing delay
in the path from the root to ni . The transmission delay is the
same as the single object case which is D(s, ni). Before esti-
mating the processing delay of a message in each node, we
extend some of the above notations as follows. The message
arrival rate of nk from object ox is rk,x and its correspond-
ing effective update arrival rate is rm

k,x . The sum of rm
k,x over

all objects is denoted as rm
k =

∑
ox∈Om

k
rm

k,x . We assume the
expected per-child filtering time and the transmission time
for a message in nk is equal over all of the objects, which are
still denoted as t p

k and tc
k , respectively.

Now we are ready to derive the cost function of the pro-
cessing delay. Recall that the delay is equal to the sum of the
queuing time and the processing time. For a message from
object ox , the expected processing time in nk for a child n j

interested in ox is

tk j,x = t p
k + tc

k

rm
j,x

rm
k,x

.

Hence the total processing time of a message from object ox

would be

tk,x =
∑

n j∈Ck,x

tk j,x .

The average processing time of a message from all the objects
in Om

k is

tk =
∑

ox∈Om
k

rm
k,x tk,x

rm
k

.

Then the workload of nk can be computed as ρk = rm
k · tk .

Therefore, the expected queuing time of a message would be
ρk

1−ρk
tk . Similar to the analysis in the single object case, the

message received by a child n j has to experience an average
processing time of 1

2 (tk,x − tk j,x)+ tc
k + t p

k . Summing up the
queuing time and the processing time, we have the expected
processing delay in nk of a message for one of its child n j

on object ox :

g(nk, n j , ox) = ρk

1− ρk
tk + 1

2
(tk,x − tk j,x)+ tc

k + t p
k . (9)

In Eq. (9), the cost function distinguishes the processing
cost on different objects. That means if the number of objects
is large, the computational cost of our algorithm would be
very large. Therefore, we provide an approximation on the
cost model as follows. First, we approximate tk j,x for all val-
ues of x by using

tk j =
∑

ox∈Om
j

rm
k,x tk j,x

rm
k

.

Then we use tk to approximate tk,x . In this way, we can
approximate Eq. (9) as follows:

g(nk, n j) = ρk

1− ρk
tk + 1

2
(tk − tk j)+ tc

k + t p
k

= 1+ ρk

2(1− ρk)
tk + tc

k + t p
k −

1

2
tk j . (10)

Note that this equation is of the same form as Eq. (4) in the
single object cost model. Similar to the approximation we
have done in the single object case, which uses the average

123

Disseminating streaming data in a dynamic environment 1475

processing delay over all the children to approximate that of
every child of nk , we have:

g(nk) = 1+ ρk

2(1− ρk)
tk + tc

k + t p
k −

1

2|Ck | tk . (11)

Hence we can calculate the expected LF of ni on object
ox , LF(ni , ok) and then the expected LF of ni averaging over
all its interesting objects, LF(ni).

LF(ni) = 1

|Oi |
∑

ox∈Oi

L F(ni , ox)

= ui [D(s, ni)+ g(p(ni))+ g(p(p(ni)))

+ · · · + g(s)] (12)

where

ui =
∑

ox∈Oi
ri,x

|Oi | .

Furthermore, the adaptation cost can be incorporated by
adding ta

k · |Om
k | to g(nk), where ta

k can be computed using
Eq. (7).

4.1.2 Dissemination tree construction

As in the single object case, we also need to design an adap-
tive scheme and a static scheme. For the adaptive scheme, the
transformation rules as well as the adaptation mechanism are
also the same as the single object case. However, we need to
extend the information collection strategy to include the new
information that are required by the new cost model. More
specifically, in the list in Sect. 3.2.3, the 1st and 4th points
remain unchanged, while the 2nd and 3rd points are revised
as follows:

– The values of Om
j , uc

j , rm
j,x , t p

j and tc
j of each of its chil-

dren or grandchildren n j for each object ox in n j ’s effec-
tive object set Om

j .
– The value of uc

i of node ni , where uc
i aggregated u j val-

ues of all the nodes in the subtree Ti rooted at ni , i.e.,
uc

i =
∑

n j∈Ti
u j .

Both the Greedy and SA Algorithm can be used here by
employing the new cost model. The complexity of Algo-
rithm 2 becomes O(|O| · |N |2 · log |N |). Theorem 1 can also
be applied to this scheme. Note that, in this case, the param-
eter r in the theorem would be the sum of the maximum
message rate among all the nodes for each data object.

4.2 The multi-tree approach

In this approach, one dissemination tree is created for each
data object, which is similar to DiTA. Each tree only covers
those servers that are interested in the corresponding data

object. By doing so, update messages of an object will not
be routed through the uninterested nodes.

The operations in each node is similar to the single-tree
approach. When an update message arrives, the node checks
the children that are involved and forward the message if nec-
essary. Therefore, the cost model is similar to the single-tree
approach.

Furthermore, we can perform the adaptive transforma-
tion of each tree independently and concurrently. Unfortu-
nately, these trees are not independent. Two trees are corre-
lated through those nodes that appear in both of them. Hence
the change of one tree may affect the other trees through
their common nodes. In particular, when a node ni is mak-
ing its adaptation decision for a tree, one of its children n j

may be performing the adaptation in another tree. Hence ni ’s
decision may not be based on the right information. Simply
sequencing the transformation of the trees would slow down
the adaptation.

To solve this problem, extra mechanism has to be incor-
porated. In our scheme, each node has three possible states:
IDLE, WAIT and HOLD. As in the single-tree approach, the
root node of each tree generates the token which is passed
around the tree in a top–down manner. Each node that receives
the token, before making the adaptation decision, sends out a
“hold” message to all its children and enters the WAIT state.
A child node that receives a hold message will reply with an
acknowledgement message and enter the HOLD state when
possible. The parent node that receives all the acknowledge-
ments from its children, will perform the adaptation as usual
if and only if it is not in the HOLD state. The details of this
mechanism are presented in Algorithms 4 and 5.

Algorithm 4: Process Message

begin1
while true do2

wait for a new message msg;3
HandleMsg(msg);4
if state = I DL E ||W AI T then5

for each wait ∈ Qready do6
wait ← Qready .Dequeue();7
PerformAdapt(wait.tree);8
send a token message to each node in9
Child[wait.tree];
continue;10

for each msg in Qtoken do11
remove msg from Qtoken ;12
HandleMsg(msg);13

for each msg in Qhold do14
remove msg from Qhold ;15
HandleMsg(msg);16
if state = H O L D then break;17

end18

123

1476 Y. Zhou et al.

Algorithm 5: Helper Functions

Function HandleMsg(msg)1
begin2

switch msg.t ype do3
case H O L D_M SG4

if state = H O L D then Qhold .Enqueue(msg);5
else if state = W AI T then6

if msg.num > NU M then7
PerformHold(msg.tree)8

/*deadlock prevention */
else Qhold .Enqueue(msg);9

else if state = I DL E then10
PerformHold(msg.tree)11

case T O K E N_M SG12
if state = H O L D then13

if msg.tree = hold.tree then state← W AI T14
/* this token unlocks the hold state */

else Qtoken .Enqueue(msg) /*put it in the15
token queue */

if state = I DL E ||W AI T then16
if ∃wait, wait.tree = msg.tree then break17

/* ignore this msg */
create a new object wait and put it into wait Pool;18
wait.tree← msg.tree /* initialize the wait19

object */
wait.count ← Child[msg.tree].length;20
state← W AI T ;21
create a new hold message hmsg;22
hmsg.num ← NU M ;23
send one copy of hmsg to each node in24
Child[msg.tree];

case AC K _M SG25
Look up wait in wait Pool s.t.26
wait.tree = msg.tree;
wait.count −−;27
if wait.count = 0 then28

wait Pool.Remove(wait);29
if state = W AI T ||I DL E then30

PerformAdapt(wait.tree);31
else Qready .Enqueue(wait);32

end33
Function PerformAdapt(tree)34
begin35

perform adaptation of tree;36
if wait Pool = φ then state← I DL E ;37
else state← W AI T ;38

end39
Function PerformHold(tree)40
begin41

send an ack message to msg.source;42
hold.tree← tree;43
state← H O L D;44

end45

Note that without careful considerations, the above algo-
rithm may incur deadlock. Consider two nodes ni and n j .
ni is the parent of n j in one tree while it is the child of
n j in another tree. It is possible that ni and n j will send
a “hold” message to each other at about the same time. If
they keep waiting for acknowledgement from each other,

deadlock occurs. Furthermore, they should not both enter
the HOLD state. To solve the deadlock problem, we assign a
unique integer number NUM to each node, which is imple-
mented by using the unique IP address of every node. When a
node in the WAIT state receives a hold message, it enters the
HOLD state only when its number is smaller than that of the
hold message’s origin. Lines 6–9 in Algorithm 5 implement
this scheme.

Now let us analyze the effectiveness of our algorithm in
solving the distributed deadlock problem. First, to model the
problem, a directed graph, called a parent–child graph (or
P–C graph), can be generated, where a vertex represents a
network node and a directed edge from ni to n j represents
the fact that n j is a child of ni in at least one dissemination
tree. Moreover, without any deadlock prevention scheme, a
deadlock would happen if there is a cycle, ni1 → ni2 →
· · · → ni p → ni1 , in the P–C graph and each node in the
cycle is kept waiting for the acknowledgement from its imme-
diate next node, i.e., ni1 waits for ni2 , ni2 waits for ni3 and
so on. By using our proposed scheme, we have the following
theorem:

Theorem 2 The system is deadlock-free.

Proof Without loss of generality, assume there is a cycle
ni1 → ni2 → · · · → ni p → ni1 in the P-C graph. If a dead-
lock happens in this cycle, then NUM1 < NUM2 < · · · <

NUMp < NUM1 has to be satisfied, where NUM j is the
NUM value of node ni j . Otherwise, if say NUM1 > NUM2

(note that NUM j is unique so NUM1 �= NUM2), then, when
ni2 receives a hold message from ni1 , ni2 will enter the HOLD
state and hence the dead lock will not happen. However
NUM1 < NUM2 < · · · < NUMp < NUM1 would not be
true at anytime. Therefore, deadlock will not exist.
�

In addition, when a node ni is ready to perform adapta-
tions, the workload statistics of a child n j may have changed
due to the adaptation of the other trees. In order to let ni make
decisions based on updated statistics, such statistics will pig-
gyback onto the acknowledgement message sent to ni . This
includes the change of the number of n j ’s children as well
as the change of the update rates of its children.

5 Experiments

In this section, we present a performance study of the pro-
posed techniques, and report our findings.

5.1 Experiment configurations

The simulator is implemented using ns-2, a popular discrete-
event simulator for networking research. The topology is gen-
erated using a power-law topology generator: inet [12]. We

123

Disseminating streaming data in a dynamic environment 1477

generate a network topology with 3,500 nodes, of which one
node is chosen as the source, 256 nodes are selected as the
dissemination servers, and the remaining nodes act as routers.
The average communication delay between any two servers
is about 20 ms.

The expected filtering time and transmission time of each
node is derived by using two respective uniform distribu-
tions. In our basic configuration, we set the average values
of these times as 5 and 1 ms, respectively (which may vary
in our experiments), and set the minimum values as 1ms and
0.125 ms respectively. The source server’s expected filtering
time and transmission time are always set to the minimum
value to model an enterprise class server. Given the expected
filtering time t p

i and transmission time tc
i for a node, the

exact filtering time and transmission time of each message
are drawn from two respective exponential random variable
with expected values as t p

i and tc
i , respectively. Recall that

each server in our system has to process local user queries
(probably complex queries) and disseminate data to the child
servers, and only a limited resource can be allocated for the
dissemination task. Hence we use a relatively long filtering
time and transmission time which capture the load of pro-
cessing user queries in the servers.

In addition, the adaptation interval of our adaptive scheme
is set to 200 s and the information update window is set to
50 s. These values are chosen such that the system would not
be over reactive to short term variances in our experimen-
tal setup. With higher data volumes, these intervals could be
set shorter. We model the time used to transmit the statistical
information to be the same as tc

i . All the experiments are con-
ducted in a Linux server with an Intel 2.8 GHz CPU. We also
implemented the optimization algorithms and the adaptation
functions in C to study their performance. The adaptation
overhead would be studied and modeled in the experiments.

To evaluate the performance of the proposed techniques,
we compare them with the following approaches:

1. DiTA [17]. In DiTA, a tree is constructed for each
data object. Fanout constraint is set for each server to avoid
overloading. In our experiments, this is done by trial-and-
error by repeatedly trying with different parameters and to
pick the set that gives the optimal performance. (We find that
this is the only way to find good fanout constraints and we
believe this is a disadvantage of schemes relying on predeter-
mined fanout constraints.) The servers are added to the trees
one by one. A server can serve another server only when
its coherency requirement is at least as stringent as that of
the other. A server ni is added to each tree for each of its
requesting data objects. Heuristics are applied to ensure that
the level of ni is as small as possible and secondarily the
communication delay between ni and its parent is also as
small as possible. However, since DiTA is a distributed algo-
rithm, these heuristics cannot guarantee the above objective.
Hence we use a centralized version of DiTA which has the

guarantees. Note that this is biased towards DiTA. It first sorts
the nodes in ascending order of the values of their coherency
requirements and then adds them one by one into the tree in
the sorted order. When adding a node ni , another node within
the partial tree, which has the smallest communication delay
to ni and still has available fanout degree, is selected to act
as the parent of ni .

2. Source-based approach. The distributed servers do
not cooperate and all the servers are connected to the source.
This provides a base line to evaluate all the schemes.

3. Random tree. The nodes are added in random order.
For each joining node, randomly select a node to act as its
parent. This scheme provides a base line to evaluate all the
tree-based schemes.

Furthermore, in the experiments, we use two types of data-
sets: synthetic data and real data. In the synthetic dataset, we
set a specific expected message rate ri,x for each node on
every object based on a uniform distribution. The source is
of the largest ri,x for all the objects. Given the rs,x of the
source, the interval of each update message is an exponen-
tial distributed variable with an average value of 1/rs,x . The
synthetic data set provides relatively steady message rates,
which offers opportunities for us to study the properties of
the different algorithms. For the real dataset, we continuously
poll stock traces from http://finance.yahoo.com. The polling
is done in an interval of 1 s. In the experiments, we use 100
traces as our basic dataset which would be varied.

5.2 Adaptation cost

In this section, we study the cost of performing adaptations
using our C implementation. To examine the cost of making
adaptation decisions, we use a node that serves 100 objects
and try estimating 100 possible decisions. We found that td

k ≈
0.6 µs for both the single-tree and multi-tree approaches. To
keep the adaptation cost affordable, we have to set an appro-
priate adaptation period Td . For example, if we can afford
5% of the CPU time for adaptation, we can set the adaptation
period of this testing node as shown in Fig. 3. For example,
if this node serves 10,000 objects, we have to set the adap-
tation period larger than or equal to 12 s. Therefore, to keep
the adaptation responsive, the number of objects served by
each server and the number of children and grandchildren
should be kept to a certain limit. Note that constructing the
tree using our extended cost model inherently considers this
effect. The cost of collecting information is analyzed simi-
larly. In the following experiments, we set both td

k and te
k as

1 µs in the cost model and the simulation.

5.3 Single object dissemination

In this subsection, we examine the algorithms in a single
object dissemination situation. We utilize the synthetic data-

123

http://finance.yahoo.com

1478 Y. Zhou et al.

0

2

4

6

8

 10

 12

10,0005,0001,000500100

A
da

pt
at

io
n

P
er

io
d

(s
ec

s)

#objects

Fig. 3 Adaptation period selection

set. The expected message rate of each node is selected from
a uniform distribution with the average value of 1 msgs/s
and a minimum value of 0.5 msgs/s. (Note that the message
rate models the coherency requirement at each node—a small
coherency requirement implies a high message rate, and vice
versa.)

5.3.1 Static environment

In the first experiment, we vary the average filtering time
and transmission time by multiplying them with a parame-
ter load. The parameter load ranges from one to five in our
simulation. The minimum values of filtering time and trans-
mission time are not changed. This models two effects: (1)
various load conditions of the whole system. When more cli-
ents are connected or more queries are submitted to a node,
its load would become higher and hence it takes a longer
time to disseminate messages to its child nodes. The filtering
and transmission times of these nodes would be increased. (2)
various degrees of heterogeneity of the system. With a higher
value of load, the filtering time and transmission time of the
nodes would differ to a higher degree. No matter which is

the case, nodes with higher filtering and transmission time
would be deemed as less capable nodes and hence a good
plan should be able to identify this kind of nodes and put
them at a lower level of the dissemination tree. We run each
algorithm for 20, 000 s and record the average AvgLF over
the whole simulation period as well as the values within every
1, 000 s time window. To ease the comparison, we normalize
the AvgLF values of all the other algorithms over that of the
SA algorithm, which is (as expected) the best dissemination
scheme.

Figure 4 shows the results of our experiment. From Fig. 4a,
we can see that when load = 1, Greedy and the adaptive
counter-part (Greedy + Adaptive) perform as well as SA,
while the adaptive algorithm slightly improves over the ini-
tial scheme. Due to the optimality of SA, the adaptive scheme
has few opportunities to further optimize the scheme. On the
other hand, DiTA has more than two times AvgLF than SA.
That is because it can neither differentiate the capabilities of
the different nodes nor utilize information of the communica-
tion delays between the nodes. The source-based algorithm
performs the worst. In this scheme, all nodes are connected
to the source node. Although the source node in our settings
is not overloaded, the messages would still experience very
long delay in the source node because of the high workload of
the source. The random tree algorithm on the contrary scat-
ters the workload randomly over all the nodes, and hence has
a smaller AvgLF value.

However, with the increase of the load parameter, we
can see from Fig. 4a that the relative performance of the
source-based scheme improves. This is because, in our study,
increasing the load parameter increases the processing time
of all the nodes except the source node. Since the source-
based approach disseminates the messages directly from the
source, it is not influenced by the load parameter. On the
contrary, all the tree-based schemes would suffer from the
increase of load. Furthermore, with the increase of load,
DiTA and the random tree scheme become much worse while
our static algorithms with/without adaptation scheme
remains effective. This is because our schemes can identify

1

2

3

4

5

54321

N
or

m
al

iz
ed

 A
vg

LF
 (

ov
er

 S
A

)

Load Factor

Greedy
Random

Source-Based
DiTA

Greedy+Adpative
SA+Adaptive

(a) Sensitivity to processing time

0

1

2

3

4

5

10080604020N
or

m
al

iz
ed

 A
vg

LF
 (

ov
er

 S
A

)

Time (units of adaptation period)

Random+Adaptive (load=5)
Greedy+Adaptive (load=5)

Random+Adaptive (load=1)
Greedy+Adaptive (load=1)

(b) Online improvement

0
1
2
3
4
5
6
7
8
9

 10

168421

N
or

m
al

iz
ed

 A
vg

LF
 (

ov
er

 S
A

)

Load Factor

Greedy
Random

Source-Based
DiTA

Greedy+Adaptive
SA+Adaptive

(c) Sensitivity to message rate

Fig. 4 Performance on single object dissemination in static environment

123

Disseminating streaming data in a dynamic environment 1479

the different capabilities of the nodes and reorganize them in
a more cost-effective way.

Although our static schemes work well as shown above,
they rely on accurate system statistics. To examine the per-
formance of our adaptive mechanisms without these statis-
tics, we use the random scheme to model an initial scheme
that would be generated without accurate statistics. Figure 4b
shows the result of this experiment. To ease viewing, we only
depict the results of load = 1 and load = 5 for the Random
+ Adaptive and Greedy + Adaptive algorithms. The curves
of the other load values would be between these two cases.
It can be seen that when there are accurate system statistics,
Greedy would result in a good dissemination scheme that
works as well as SA. Hence there are not many opportuni-
ties for the adaptation scheme to improve. On the contrary,
the random scheme works far worse than SA. Our adapta-
tion algorithm iteratively improves this initial scheme. After
about 30 adaptation periods, the random scheme has been
improved from more than 3 and 4 to only 1.3 times of the
performance of SA. And after more adaptation periods, the
random scheme is improved to the extent that it performs as
well as SA. This clearly shows the need for adaptive strategy,
as well as the effectiveness of our adaptive scheme.

Another type of load change of the system is the change
of message rates. With the increase of message rates, the
dissemination load of the system is increased. In this exper-
iment, we fix the processing time of each node to its basic
value and multiply each node’s basic message rate with the
load parameter. The results are depicted in Fig. 4c. With
increasing message rate, source-based deteriorates rapidly.
This is because with a high message rate, the workload of the
source node largely increases due to its large number of chil-
dren, and this incurs long queuing time for the messages in the
source node. On the other hand, the relative performances of
all the tree-based algorithms are not sensitive to message rate
changes. This is due to the moderate number of child nodes
in a tree-based scheme. Furthermore, our schemes steadily
outperform the others under various message rates.

5.3.2 Dynamic environment

In this subsection, we study our adaptive algorithm under
a dynamic environment. In the experiments, we study how
the algorithms perform when the workloads of servers are
changed. The first experiment studies the single object dis-
semination schemes using the synthetic dataset. The param-
eters are set as in the first experiment in the last subsection
where load = 1. Since source-based and random have been
shown to perform worse than the others in this situation, we
only examine the results of the other algorithms. We run the
system for 20, 000 ys, and at the 10, 000th s, we increase the
processing time of 10 nodes that are the first 10 nodes (except
the source node) in a breadth-first search of the dissemina-

0

2

4

6

8

 10

 12

 14

200015001000500

N
or

m
al

iz
ed

 A
vg

LF
 (

ov
er

 S
A

)

Time (seconds)

SA
SA+Adaptive

DiTA

Fig. 5 Performance on single object dissemination in dynamic envi-
ronment

tion tree. These nodes are at the top of the dissemination tree.
Their filtering time and transmission time are increased to ten
times of the previous values. This models the situation that
the workloads of some nodes at the higher level of the tree
increase as more clients are connected or more queries are
submitted.

The result is depicted in Fig. 5. In order to examine the
optimality of the algorithms before and after the state tran-
sitions, we also executed two special runs of the SA algo-
rithm: (a) run the SA algorithm based on statistics before the
change. Let the AvgLF value of this run be SA1. (b) Run
the SA algorithm based on statistics after the change. Let
the AvgLF value of this run be SA2. We then normalized
the AvgLF value of each algorithm under each condition by
the corresponding AvgLF of the SA algorithm. For exam-
ple, consider the DiTA scheme. Let the AvgLF be D. Then,
before the change, its normalized value will be D/SA1, and
after the change, its normalized value will be D/SA2. We
compute the average of the normalized AvgLF values over a
1, 000 s window and then report the 20 resulting values. In
Fig. 5, one can see that at the first 10, 000 s, SA and SA +
Adaptive perform as well as SA, while DiTA is two times
worse than them. After the 10, 000th s, the AvgLFs of both
DiTA and SA drastically increase. That is because the 10
nodes whose processing times are increased become the bot-
tleneck of the whole dissemination tree. Furthermore because
they are at the top of the tree, their processing delays dom-
inate the delays of the messages sent to all their descendant
nodes. On the other hand, our adaptive mechanism can detect
this change and hence reorganize the dissemination tree to
adapt to the new situation. Therefore, it only has a short term
increase in the AvgLF and then drops back to the original
state. That is because the highly loaded nodes have been put
to lower levels of the tree and then their high processing times
have little effect on the dissemination efficiency.

123

1480 Y. Zhou et al.

1

2

3

4

5

6

7

8

54321

N
or

m
al

iz
ed

 A
vg

LF
 (

ov
er

 S
A

)

Load Factor

Greedy
Random

Source-Based
DiTA

Greedy+Adaptive
SA+Adaptive

(a) Sensitivity to processing time

 1

 2

 3

 4

 5

 6

 7

 8

10080604020N
or

m
al

iz
ed

 A
vg

LF
 (

ov
er

 S
A

)

Time (units of adaptation period)

Greedy+Adaptive (load=1)
Random+Adaptive (load=1)
Greedy+Adaptive (load=5)

Random+Adaptive (load=5)

(b) Online improvement

0

2

4

6

8

 10

 12

500300200100N
or

m
al

iz
ed

 A
vg

LF
 (

ov
er

 S
A

)

#Objects

Random
Source-Based

Greedy
DiTA

Greedy+Adaptive
SA+Adaptive

(c) Sensitivity to number of objects

Fig. 6 Performance on multiple object dissemination

5.4 Multiple object dissemination

In the second set of experiments, we use our collected stock
traces to examine the efficiency of our multiple object dis-
semination scheme. For each object, a probability that it is
of interest to a server is set to 0.6, which will be varied in
the experiments. The cri,x values of each server ni on each
object ox is chosen using a uniform random variable between
0.1 and 0.01. 100 traces are used as our basic configuration.
For the ease of exposition, in the following experiments we
first compare our single-tree approach with other approaches
and then compare the single-tree approach with the multi-tree
approach.

5.4.1 Single-tree approach

In the first experiment, we use a parameter load to vary the
average filtering time and transmission time as we have done
in the single object experiments. Figure 6a shows the results
of this experiment. The relative performance of the algo-
rithms is similar to the single object case. All our techniques
perform as well as SA. Random and DiTA perform worse
with larger load due to their inability to differentiate the
capabilities of the various nodes. Source-based is insensitive
to the parameter load. Figure 6b again shows that our adap-
tive mechanism can improve a random tree, which models a
tree built on inaccurate statistics, to perform as well as SA.

In another experiment, we examine the sensitivity of the
algorithms to different number of data objects. We vary the
number of data objects to be disseminated from 100 to 500.
The results are depicted in Fig. 6c. With different number
of data objects, Greedy, Greedy + Adaptive and SA + Adap-
tive consistently outperform all the other algorithms. We can
also see that the relative performance of the source-based
algorithm deteriorates with increasing number of data
objects. This is because the source’s workload largely
increases with increasing number of data objects and hence
its processing delay increases. Furthermore, the absolute val-

ues of the AvgLFs of all the other tree-based algorithms
only increase by around 15% when the number of objects
is increased from 100 to 500. However, for the AvgLF of
source-based, the increase is around 200%. This shows that
the tree-based approaches have better scalability with respect
to the number of objects.

5.4.2 Multi-tree approach

Now we study our multi-tree approach. From the results in
the previous experiments, it is clear that our proposed sin-
gle-tree method is superior to other methods. Thus, we shall
only compare our multi-tree approach against our proposed
single-tree method. Furthermore, for conciseness, only the
results of SA for both approaches are presented. In the first
experiment, we use a parameter load to vary the average fil-
tering time and transmission time of the servers as we have
done in Sects. 5.3.1 and 5.4.1. Figure 7 shows the result.
It can be seen that the multi-tree approach outperforms the
single-tree approach consistently. Furthermore, with higher
server workload, their performance difference is larger. This
is because the update messages in the multi-tree approach are
transferred through fewer number of nodes and this benefit
is more obvious with larger server load.

In the second experiment, we fix the load parameter at
value eight. Instead, we vary the probability that a server is
interested in an object for each pair of server and object. We
refer to this probability as the degree of data interest. The
smaller the degree of interest, the fewer are the number of
objects of interest to each server. From the results shown
in Fig. 8, it is obvious that the multi-tree approach consis-
tently outperforms the single-tree approach. Moreover, when
each server has a smaller number of interesting objects, we
can achieve more benefit by using the multi-tree approach.
The reason is the number of nodes in each individual
dissemination tree is smaller and the update messages expe-
rience less processing delays in the servers. This effect is
more obvious with a larger number of objects.

123

Disseminating streaming data in a dynamic environment 1481

0

2

4

6

8

 10

 12

168421

A
vg

LF
 (

%
)

Load Factor

Single-Tree
Multi-Tree

(a) 100 Objects

0

2

4

6

8

 10

 12

168421

A
vg

LF
 (

%
)

Load Factor

Single-Tree
Multi-Tree

(b) 300 Objects

0

2

4

6

8

 10

 12

168421

A
vg

LF
 (

%
)

Load Factor

Single-Tree
Multi-Tree

(c) 500 Objects

Fig. 7 Sensitivity on system workload

2

4

6

8

0.60.480.360.24

A
vg

LF
 (

%
)

Degree of Interest

Single-Tree
Multi-Tree

(a) 100 Objects

2

4

6

8

0.60.480.360.24

A
vg

LF
 (

%
)

Degree of Interest

Single-Tree
Multi-Tree

(b) 300 Objects

2

4

6

8

0.60.480.360.24

A
vg

LF
 (

%
)

Degree of Interest

Single-ree
Multi-Tree

(c) 500 Objects

Fig. 8 Sensitivity on the number objects of interest to each server

5.4.3 Running time of SA and greedy

From the above experiment results, we can conclude that
in a static environment, Greedy and SA perform the best
among all the static algorithms given accurate statistics. In
this experiment, we evaluate their running time. We use two
sets of parameters of SA: (1) the parameters listed above and
(2) changing 64 × #nodes to 16 × #nodes and T < 0.001
to T < 0.0015. Since the running time of the single-tree and
the multi-tree approach is similar, only the results of the sin-
gle-tree approach is presented here. Figure 9 shows the run-
ning time of both algorithms with different number of objects.
Obviously, Greedy consistently outperforms SA in running
time for both sets of parameters of SA. However, SA with
parameters (2) comes with a plan whose cost is more than
two times of that of Greedy. SA with parameters (1) can
derive the best plan; however, the running time is signifi-
cantly increased. We also tested a lot of other parameters of
SA and cannot find a case that SA outperforms Greedy both
in runtime and tree cost. For a static environment, SA is supe-
rior to Greedy due to its ability and robustness to find a low
cost scheme. However, Greedy is more suitable for a dynamic
environment, because it provides a cheaper way to construct
a good initial tree and devoting more time to construct the
initial tree does not make much sense as a previously opti-
mal plan would become sub-optimal when the system state

0

 30

 60

 90

 120

 150

 180

 210

500300200100

T
im

e
(s

ec
on

ds
)

#Objects

Greedy
SA Parameter (1)
SA Parameter (2)

Fig. 9 Running time of greedy and SA

is changed. We can see this effect in Sect. 5.3.2 and the next
section.

5.4.4 Dynamic environment

This experiment is similar to the one in Sect. 5.3.2, except
that it is performed on multiple object dissemination. Since
DiTA builds one tree for each object and DiTA has been
shown above that it is not adaptable to system changes for

123

1482 Y. Zhou et al.

0

2

4

6

8

 10

 12

 14

12000100008000600040002000

N
or

m
al

iz
ed

 A
vg

LF
 (

ov
er

 S
A

)

Time (seconds)

SA
SA+Adaptive

Fig. 10 Performance on multi-object dissemination in dynamic envi-
ronment

any one of its dissemination trees, we only compare the SA
and SA + Adaptive in this experiment. The other settings are
similar to Sect. 5.3.2. At the 5, 000th s, we shift the filtering
time and transmission time of 10 nodes, which are at the top
of the dissemination tree, to 10 times of their original val-
ues. The result is reported in Fig. 10. We can see that before
the change, SA works slightly worse than Adaptive. At the
5, 000th s, both SA and SA + Adaptive increase in their Av-
gLFs. However, our adaptive mechanism successfully detects
the shift and then reorganizes the dissemination tree to adapt
to the new situation. Hence SA + Adaptive restores back to its
original state in terms of AvgLF while the poor performance
of SA persists. We also performed experiments on runtime
change of transmission delays and coherency requirements.
The results show that our adaptive scheme can also adapt to
these changes and re-optimize the scheme incrementally.

6 Related work

In [17,18], the authors introduced the problem of dissem-
inating streaming data to preserve their coherencies. Two
techniques were proposed to construct a dissemination tree:
LeLA (Level by Level Algorithm) [18] and DiTA (Data item
at a Time Algorithm) [17]. DiTA is reported to be much bet-
ter than LeLA. However, the authors do not provide a cost
model. Hence the factors that affect the system performance
is unclear and it is hard to measure the optimality of a con-
struction scheme. Moreover, adaptivity is not addressed in
DiTA. In addition [17], also proposed some fine-tuning tech-
niques to reduce the system loss of fidelity. However, they
are focused on divergence metrics that are measured by the
deviation of numerical data values. Hence they cannot be
applied in our system, where a generic divergence function
is allowed.

The recently proposed application-layer multicast is
shown to be much easier to deploy than IP layer multicast
with only little penalties in performance [9]. More recently,
optimization of application-layer multicast tree is studied in
a few pieces of work [4,6]. However, these systems assume
all data would be transferred to every node in the multicast
tree and the effect of filterings in the middle of the dissemi-
nations is not considered. As can be seen in our cost model,
the filtering has very significant effect on the cost of the dis-
semination tree. Ignoring the filtering effect will result in
a scheme far from optimal. Hence these techniques are not
adequate for our problem.

Authors in [10] presented the design of a large scale
distributed XML dissemination system. Distributed content-
based pub/sub systems have also been studied in the network-
ing community [1,3,7,8]. However, most of these efforts
focused on how to efficiently filter and route contents to the
clients based on the clients’ interests. They assume that there
is an efficient scheme to organize the distributed dissemi-
nation servers and employ the schemes of general multicast
systems. More recently, authors in [16] proposed a scheme
to assign the dissemination servers to different dissemination
channels based on the containment relationships of the user
profiles. However, this paper also does not focus on dissemi-
nation tree construction algorithms and does not address the
coherency problems.

7 Conclusion

In this paper, we reexamined the problem of designing a
scalable dissemination system. We proposed a cost-based
approach to construct dissemination trees to minimize the
average loss of fidelity of the system. Based on our cost model,
a novel adaptation scheme is proposed and is experimentally
shown to be able to adapt to inaccurate statistics and changes
of system states. Two static algorithms: Greedy and SA, have
also been proposed for relatively static environments and for
constructing initial trees under dynamic environments. The
Greedy algorithm is useful for dynamic environments due to
its faster speed to build a relatively good initial tree, while
SA is superior for static environments due to its robustness.
Furthermore, the multi-tree approach is shown to be more
robust to the number of objects, the degree of data interest as
well as system workload.

There are several directions which we would like to
explore further. First, although we have presented our
techniques in the context of streaming object dissemination,
they can be generalized to other streaming data dissemination
problems by revising the cost model. In particular, we plan to
examine how to generalize the system to support more com-
plex queries such as those in relational databases. Second, we
plan to study approximate cost model to keep the adaptation

123

Disseminating streaming data in a dynamic environment 1483

cost low. Finally, we also plan to study how failures of nodes
can be handled gracefully. While some work has been done
in this direction (e.g., [19]), these solutions are not designed
for correlated failures (where multiple nodes fail at the same
time).

Acknowledgments We would like to thank Feng Yu for his contri-
butions to the initial implementation of the simulation. This work is
partially supported by a university research grant R-252-000-237-112.

References

1. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra,
T.D.: Matching events in a content-based subscription system. In:
PODC, pp. 53–61 (1999)

2. Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.:
Adaptive ordering of pipelined stream filters. In: SIGMOD Con-
ference, pp. 407–418 (2004)

3. Banavar, G., Chandra, T.D., Mukherjee, B., Nagarajarao, J., Strom,
R.E., Sturman, D.C.: An efficient multicast protocol for con-
tent-based publish-subscribe systems. In: ICDCS, pp. 262–272
(1999)

4. Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, S., Khuller,
S.: Construction of an efficient overlay multicast infrastructure for
real-time applications. In: INFOCOM (2003)

5. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, W.R.,
Raghavan, P., Sudan, M.: The minimum latency problem. In:
STOC, pp. 163–171 (1994)

6. Brosh, E., Shavitt, Y.: Approximation and heuristic algorithms for
minimum delay application-layer multicast trees. In: IEEE INFO-
COM’04 (2004)

7. Carzaniga, A., Rutherford, M.J., Wolf, A.L.: A routing scheme for
content-based networking. In: INFOCOM (2004)

8. Carzaniga, A., Wolf, A.L.: Forwarding in a content-based network.
In: SIGCOMM, pp. 163–174 (2003)

9. Chu, Y.H., Rao, S.G., Zhang, H.: A case for end system multicast.
In: SIGMETRICS, pp. 1–12 (2000)

10. Diao, Y., Rizvi, S., Franklin, M.J.: Towards an internet-scale xml
dissemination service. In: VLDB, pp. 612–623 (2004)

11. Ioannidis, Y.E., Kang, Y.C.: Randomized algorithms for optimizing
large join queries. In: SIGMOD Conference, pp. 312–321 (1990)

12. Jin, C., Chen, Q., Jamin, S.: Inet: Internet topology generator.
Technical Report CSE-TR-433-00, University of Michigan at Ann
Arbor (2000)

13. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Opti-
mization by simulated annealing: an experimental evaluation. Part
I, graph partitioning. Oper. Res. 37(6), 865–892 (1989)

14. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simu-
lated annealing. Science 220(4598), 671–680 (1983)

15. Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Contin-
uously adaptive continuous queries over streams. In: SIGMOD
Conference, pp. 49–60 (2002)

16. Papaemmanouil, O., Çetintemel, U.: SemCast: Semantic multi-
cast for content-based data dissemination. In: ICDE, pp. 242–253
(2005)

17. Shah, S., Dharmarajan, S., Ramamritham, K.: An efficient and
resilient approach to filtering and disseminating streaming data.
In: VLDB, pp. 57–68 (2003)

18. Shah, S., Ramamritham, K., Shenoy, P.J.: Maintaining coherency
of dynamic data in cooperating repositories. In: VLDB, pp. 526–
537 (2002)

19. Shah, S., Ramamritham, K., Shenoy, P.J.: Resilient and coher-
ence preserving dissemination of dynamic data using cooperating
peers. IEEE Trans. Knowl. Data Eng. 16(7), 799–812 (2004)

20. Tang, L., Crovella, M.: Virtual landmarks for the internet. In: Inter-
net Measurement Comference, pp. 143–152 (2003)

21. Zhou, Y., Ooi, B.C., Tan, K.L., Yu, F.: Adaptive reorganization
of coherency-preserving dissemination tree for streaming data. In:
ICDE, p. 55 (2006)

123

	Disseminating streaming data in a dynamic environment: an adaptive and cost-based approach
	Abstract
	1 Introduction
	2 Problem formulation and motivations
	2.1 Problem formulation
	2.2 Motivation

	3 Single object dissemination
	3.1 Cost model
	3.2 Adaptive reorganization of dissemination tree
	3.3 Static tree construction algorithms

	4 Multi-object dissemination
	4.1 The single-tree approach
	4.2 The multi-tree approach

	5 Experiments
	5.1 Experiment configurations
	5.2 Adaptation cost
	5.3 Single object dissemination
	5.4 Multiple object dissemination

	6 Related work
	7 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

