
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007 1297

Timing-Error-Tolerant Network-on-Chip
Design Methodology

Rutuparna Tamhankar, Member, IEEE, Srinivasan Murali, Student Member, IEEE, Stergios Stergiou, Antonio Pullini,
Federico Angiolini, Luca Benini, Senior Member, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract—With technology scaling, the wire delay as a fraction
of the total delay is increasing, and the communication architec-
ture is becoming a major bottleneck for system performance in sys-
tems on chip (SoCs). A communication-centric design paradigm,
networks on chip (NoCs), has been proposed recently to address
the communication issues of SoCs. As the geometries of devices
approach the physical limits of operation, NoCs will be susceptible
to various noise sources such as crosstalk, coupling noise, process
variations, etc. Designing systems under such uncertain conditions
become a challenge, as it is harder to predict the timing behavior
of the system. The use of conservative design methodologies that
consider all possible delay variations due to the noise sources, tar-
geting safe system operation under all conditions will result in poor
system performance. An aggressive design approach that provides
resilience against such timing errors is required for maximizing
system performance. In this paper, we present T-error, which is
a timing-error-tolerant aggressive design method to design the
individual components of the NoC (such as switches, links, and
network interfaces), so that the communication subsystem can be
clocked at a much higher frequency than a traditional conservative
design (up to 1.5× increase in frequency). The NoC is designed
to tolerate timing errors that arise from overclocking without sub-
stantially affecting the latency for communication. We also present
a way to dynamically configure the NoC between the overclocked
mode and the normal mode, where the frequency of operation is
lower than or equal to the traditional design’s frequency, so that
the error recovery penalty is completely hidden under normal
operation. Experiments on several benchmark applications show
large performance improvement (up to 33% reduction in average
packet latency) for the proposed system when compared to tradi-
tional systems.

Index Terms—Aggressive design, networks on chip (NoCs),
systems on chip (SoCs), timing errors.

I. INTRODUCTION

DUE TO shrinking feature sizes and increasing transistor
densities, the number of processor/memory cores on a

Manuscript received July 26, 2005; revised April 16, 2006. This work was
supported in part by the U.S. National Science Foundation under Contract
CCR-0305718 and in part by a grant from STMicroelectronics to Dipartimento
di Elettronica, Informatica e Sistemistica (DEIS). This paper was recommended
by Associate Editor R. Gupta.

R. Tamhankar is with Marvell Semiconductors Inc., Santa Clara,
CA 95054 USA (e-mail: rutu@marvell.com).

S. Murali and S. Stergiou are with the Computer Systems Laboratory (CSL),
Stanford University, Stanford, CA 94305 USA (e-mail: smurali@stanford.edu;
utopcell@stanford.edu).

A. Pullini is with the Politecnico di Torino, 10129 Turin, Italy (e-mail:
apullini@deis.unibo.it).

F. Angiolini, and L. Benini are with the University of Bologna,
40136 Bologna, Italy (e-mail: fangiolini@deis.unibo.it; lbenini@deis.unibo.it).

G. De Micheli is with the École Polytechnique Fédérale de Lausanne
(EPFL), 1015 Lausanne, Switzerland (e-mail: giovanni.demicheli@epfl.ch).

Digital Object Identifier 10.1109/TCAD.2007.891371

Fig. 1. Example NoC system with pipelined links.

chip and their speed of operation are increasing. In future
systems on chip (SoCs), communication between the cores will
become a major bottleneck for system performance as current
bus-based communication architectures will be inefficient in
terms of throughput, latency, and power consumption [1]–[6].

Scaling of transistors is accompanied by a decrease in supply
voltage and an increase in clock rate. This makes wires unre-
liable as the effect of various noise sources (such as crosstalk
and coupling noise) increases. With technology scaling, the
wire delay as a fraction of the total delay is increasing. The
delay in crossing a chip diagonally for 45-nm technology is
around 6–10 cycles, with only a small fraction of chip area
(0.6%–1.4%) being reachable in a single clock cycle [7]. To
effectively design future SoCs, networks on chip (NoCs), a
communication-centric design paradigm to counter the delay
and reliability issues of wires, has been proposed [1]–[6].

A typical NoC consists of switches, links, and network
interfaces (NIs), as shown in Fig. 1. An NI connects a core
to the network and coordinates the transmission and reception
of packets from/to the core. A packet is usually segmented
into multiple flow-control units (flits). The switches and links
are used to connect the various cores and NIs together. To
tackle the delay of long NoC links, a latency-insensitive design
approach in which the links are pipelined can be utilized [8].
Link pipelining increases the link throughput and decouples the
cycle time of the communication system from the link length.

Another effect of the deep submicrometer (DSM) technology
is the significant delay variations across the wires. Wires are
becoming thicker and taller, but their widths are not increasing
proportionally, thereby increasing the effect of coupling capac-
itance on the delay of wires. As an example, the delay of a wire
can vary between τ and (1 + 4λ)τ (where τ is the delay of the
wire without any capacitive coupling, and λ is the ratio of the
coupling capacitance to the bulk capacitance) [32]. The wire

0278-0070/$25.00 © 2007 IEEE

1298 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

delay for data transfer on a communication bus depends on
the data patterns transferred on the bus. As presented in [17],
the data-dependent variations in wire delay can be as large
as 50% for the different switching patterns. With technology
scaling, the device characteristics fluctuate to a large extent
due to process variations and can cause significant variations
in wire delay [18]. Wire delay is also affected by other forms
of interference such as supply bounce, transmission line effects,
etc. [20], [21].

Current design methodologies are based on a worst case
design approach that considers all the delay variations that
can possibly occur due to the various noise sources and en-
vironmental effects and targets a safe operation of the system
under all conditions. The system state is considered safe if
there are no timing violations for all operating conditions and in
the presence of the various noise sources. Such a conservative
design approach targets timing-error-free operation of the sys-
tem. In Razor [10], [11], an aggressive better-than-worst-case
design approach was presented for processor pipelines. In such
a design, the voltage margins that traditional methodologies re-
quire are eliminated, and the system is designed to dynamically
detect and correct circuit timing errors that may occur when
the worst case noise variations occur. Dynamic voltage scaling
(DVS) is used along with the aggressive design methodology,
allowing the system to operate robustly with minimum power
consumption.

In this paper, we present timing-error-tolerant design meth-
ods (we refer to them as T-error) to aggressively design the
NoC components (switches, links, and NIs) to support higher
operating frequencies than designs based on conservative ap-
proaches. Aggressive design of the communication architec-
ture has several implications when compared to the design
of processor pipelines. First, the hardware overhead required
to recover from timing errors can be minimized by smart
utilization of the buffering resources available in the NoC.
Second, the error recovery penalty can be mostly hidden under
the network operation so that the large performance benefits can
be obtained. Finally, the switches and NIs should be redesigned
to handle errors, as they may receive a wrong piece of data
before the right one.

In many SoCs, dynamic frequency scaling (DFS) and dy-
namic power management (DPM) policies are used to reduce
the operating power of the SoC [41]. In such systems, at the
application level, the voltage and frequency of the components
are selected to match the performance level of the application.
The NoC can also be dynamically tuned at runtime. When a
communication-intensive application requires fast execution,
the NoC can be overclocked to higher operating frequencies.
When an application does not require a fast NoC, the frequency
of the NoC can be lowered to reduce the power consump-
tion of the system. Unlike many of the earlier works (refer
to Section III), where the system’s error rate is constantly
monitored to tune the voltage or frequency, we envision our
T-error-based NoCs to be utilized in systems with application-
level DFS/DPM policies. Thus, complex network error-rate
monitoring controllers are not needed in the design. Moreover,
the large delay incurred to change the frequency/voltage to
reduce errors is avoided. The required voltage and frequency

parameters of the network for the different applications can
be stored in programmable registers or memories and can be
accessed by the operating system upon task switches among
the applications that are running on the SoC.

In this context, we distinguish two possible operating modes
for the NoC: normal mode and overclocked mode. In normal
mode, the NoC operates at frequencies less than or equal to
the frequency of a conservative design. Under overclocked
mode, the frequency of operation can be higher than that of
the traditional design. The NoC under the overclocked mode
incurs some penalty for error resiliency even when there are no
errors in the system (this is explained in detail in Section VI-B).
Under normal mode, the NoC does not need to encounter
the additional error resiliency penalty, as it operates at a safe
operating frequency. To remove any additional overheads when
in normal mode, we present a way to dynamically configure the
NoC between the normal and overclocked modes of operation
at the application level.

The T-error scheme for an NoC link is presented in [33].
In this paper, we present two robust link design methods. In
the first scheme, link buffers are efficiently utilized, so that
error resiliency is achieved without much additional hardware
overhead. In the second scheme, more hardware resources are
used to achieve higher performance. The two link schemes
have the same timing relation and logic interpretation of control
signals from/to the switch. The two schemes can be used in a
plug-and-play fashion by the designer to suit the application
and NoC architecture characteristics. We integrate the link
designs with NoC flow control and present T-error schemes for
switches/NIs.

We developed cycle-accurate SystemC models of the
T-error-based switches, links, and NIs and integrated them onto
the ×pipes NoC architecture [19]. Functional SystemC simula-
tions on several benchmark applications have been carried out.
Detailed case studies of the T-error design and comparisons
with the traditional mechanisms are presented. Experiments
show large performance improvements (up to 33% reduction
in communication delay) for the benchmark applications for
the aggressive NoC design methodologies when compared to
traditional design methodologies. The application of DVS/DFS
techniques result in 57% reduction in the NoC power consump-
tion when compared to traditional design approaches.

II. DOUBLE SAMPLING TECHNIQUE

In most NoC realizations, when errors are detected, corrupted
packets are retransmitted. Unfortunately, retransmissions incur
significant performance penalties [26]. Moreover, timing de-
lay variations occurring due to higher operating frequencies
can potentially affect multiple data bits in a packet, requiring
complex multibit error-detecting/correcting codes that may be
impractical to use [26], [42].

To recover from timing errors in a digital system, double
data sampling techniques have been proposed and used by sev-
eral researchers [10]–[16]. In such double sampling schemes,
each pipeline flip-flop in the design (called main flip-flop) is
augmented with an additional latch/flip-flop (called delayed
flip-flop), as shown in Fig. 2. Both the main and the delayed

TAMHANKAR et al.: TIMING-ERROR-TOLERANT NETWORK-ON-CHIP DESIGN METHODOLOGY 1299

Fig. 2. Double data sampling technique.

Fig. 3. Phase shift between clocks.

flip-flops have the same frequency of operation. However, the
clock to the delayed flip-flop has a phase shift from the clock to
the main flip-flop, and it samples data at delayed clock edge, as
shown in Fig. 3.

Thus, the data sampled by the delayed flip-flop have more
time to settle compared to the main flip-flop. The delayed clock
is usually generated locally at the pipeline stage from the main
clock using an inverter chain (delay element). After the delayed
flip-flop has sampled data, the values of the two flip-flops are
compared through an EXOR gate; if there is any difference, the
data from the delayed flip-flop are assumed to be correct and
are resent through the main flip-flop in the next clock cycle. The
control circuitry also sends flow-control signals to the pipeline
stages before and after the stage where the error occurred, so
that they can recover from the error.

Let us consider a bit line of an NoC link with one pipeline
stage, where the pipeline flip-flop (main flip-flop) is augmented
with a delayed flip-flop. Let the maximum safe operating fre-
quency of the link for the original design (without using any
double sampling technique) be 1 GHz. If the double sampling
technique is used, we can have a higher frequency of operation,
as the link no longer needs to have a safe operation at the main
flip-flop. As an example, if the delay or phase shift between the
clocks to the main and delayed flip-flops [φ/(clock period) in
Fig. 3] is 50%, the delayed flip-flop will sample the right data
even when the link operates at 1.5 GHz. Even though the main
flip-flop may incur timing errors, we can recover the right data
from the delayed flip-flop.

Note that a higher operating frequency can also be achieved
by having a deeper pipeline in the NoC components. However,
there are several advantages in using the T-error-based design
than having a deeper pipeline.

1) When the NoC is operating in the normal mode, a deeper
pipeline depth will result in a fixed increase in latency
across the link, while in the T-error-based scheme, this
latency is avoided (in fact, T-error design can be viewed
as a way to dynamically change the pipeline depth of the
NoC components).

2) As the traditional design frequency is conservative, even
in the overclocked mode, the errors introduced due to

overclocking may not be substantial. Thus, the T-error de-
sign can achieve the same frequency of a deeply pipelined
design with a lower latency for the average case. This is
because, in the T-error design, the pipeline depth changes
dynamically according to the error rate, while the deeply
pipelined design always incurs a high latency.

3) Significant redesign, verification, and timing validation
of switches and NIs are needed to increase the pipeline
depth, while the T-error design can be incorporated with
lower design efforts. The normal first-in–first-out (FIFO)
buffers used in the links, switches, and NIs need to be
replaced by the T-error FIFOs, which can be designed and
used as library elements.

4) T-error can always be used as an add-on to a deeply
pipelined NoC system to improve the operating frequency
of the system.

In this paper, we present the methods that address only the
timing delay variations on the NoC that are introduced due to
overclocking. Coping with other kinds of errors (such as soft
errors, capacitive coupling-based crosstalk, data upsets, etc.)
is assumed to be done by means of existing techniques (such
as [22]–[31]). By operating the NoC at higher frequencies, the
effect of these errors on the system may vary, and we assume
that the techniques used to address them are designed to handle
the maximum overclocked frequency of operation.

III. PREVIOUS WORK

Several researchers have motivated the need for NoC-based
designs [1]–[6]. In order to cope with the long link delays,
a latency-insensitive design approach is presented in [8] and
[9]. The use of repeaters to store data in an asynchronous
link design is presented in [35]. The buffering mechanism on
the wires in the scheme is asynchronously controlled by the
receiver and is not integrated with the switches of the NoC. The
use of FIFOs for data queuing is widely spread in many glob-
ally asynchronous, locally synchronous design methodologies
such as [36].

Reliability and tolerance against timing errors on on-chip
buses and NoCs have been addressed by many research works.
The use of routing algorithms that decrease the probability of
system failures has been explored in [37] and [39]. The use of
coding techniques for detecting and correcting on-chip commu-
nication errors has been analyzed in [22]–[26]. In most of these
coding schemes, once an error is detected, retransmission of the
data is required. Worm et al. [38] present a method to monitor
the error rate on the links to dynamically vary the supply
voltage and reduce power dissipation. Li et al. [28] monitor the
data bus to detect adverse switching patterns (that increase the
wire delay) and change the clock timing to avoid timing errors
on the bus. Many low-power bus-encoding techniques have
been presented to reduce the power consumption of buses [27].
The use of bus encoding to reduce crosstalk between wires
and avoid adversarial switching patterns on the bus has been
presented in [29]–[31]. These works complement the work
presented in this paper.

There have been several approaches in the design space
to detect and correct timing errors. The use of double data

1300 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

Fig. 4. Input-queued switch.

sampling techniques has been shown in self-checking testing
circuits [13] and for clock recovery in digital systems [16].
Recently, these techniques have been used for online timing
and soft error recovery in systems. The TEAtime [12] architec-
ture tracks logic delay variations and dynamically adjusts the
clock frequency to accommodate the changes in logic delay. In
Razor [10], [11], an aggressive better-than-worst-case design
approach is presented for processor pipelines. In this paper,
double sampling of data is used to control the supply voltage
(and hence power consumption) by monitoring the error rate.
Favalli and Metra [13] assume an encoded data signal which is
checked by a small decoder present at the input of each flip-
flop. In case of an error, the clock is delayed for 1 cycle until
the correct value of data settles. Mousetrap [14] is a high-speed
asynchronous pipeline which ensures correct data availability
to consecutive stages. The Iroc [15] design uses a latch with
delayed clock to detect transient faults due to soft errors.

IV. USING LINKS AS A STORAGE MEDIUM

Flow control is needed in networks to support full throughput
operation. Specifically, it is needed to ensure that enough
buffering is available at each switch to store the incoming data,
and the available buffers are utilized efficiently. In traditional
designs, queuing buffers are either located at the inputs (input-
queued switches) or at the outputs (output-queued switches).
In some switches, the buffers can be located at both the inputs
and the outputs to improve the performance of the NoC [34]. A
credit-based or on/off flow-control mechanism is typically used
to manage the input buffers of the switch. In such designs, for
maximum network throughput, the number of queuing buffers
needed at each input of the switch should be at least 2N + 1
flits [34], where N is the number of cycles needed to cross
the link between adjacent switches. This is because, in credit-
based flow control, it takes at least 1 cycle to generate a credit,
N cycles for the credit to reach the preceding switch, and
N cycles for a flit to reach the switch from the preceding
switch [34]. To support link pipelining, there need to be N − 1
pipeline buffers on each bit line of the link connecting the
switches. Thus, effectively, we need 3N flit buffers for each
input of the switch/link (Fig. 4).

In [8] and [9], the use of relay stations and link-level flow
control has been presented. In such a scheme, each pipeline
flip-flop on the link is replaced by a two-entry FIFO, and a link-
level flow control is used to ensure full throughput operation.
We utilize such links for our NoC architecture. In our NoC
architecture, the switch input buffers are also replaced by a
two-entry FIFO. Fig. 5 shows a three-stage link pipeline using

Fig. 5. Modified link design with three stages.

Fig. 6. Entry 3 buffered in secondary flip-flop.

Fig. 7. Stall signal propagated to previous stage.

Fig. 8. Two-entry FIFO. The control circuit is common for all the bit lines.

two-entry FIFO at each pipeline stage (N = 4, as it takes
1 more cycle to reach the receiver from the last pipeline stage of
the link). The scheme has two control signals (stall and valid)
transmitted between sender, receiver, and the link pipeline
stages. The stall signal is sent by the receiver and flows in the
opposite direction to that of the data, while the valid signal is
driven by the sender, and it flows in the same direction as that
of the data. The sender or receiver may be a switch or an NI.
The receiver generates a stall signal when its storage capacity
is full or if it receives a stall request from the following stage.
The valid signal informs that the data which were received in
the previous cycle (at the previous rising edge of clock ck)
is valid. During normal operation (i.e., when there is no stall
request), only one of the flip-flops in the two-entry FIFO is
used, as shown in Fig. 5. When a stall signal is received by the
two-entry FIFO (shown in Fig. 6), the data on the output of
the main flip-flop are stalled, and new data are received by
the secondary flip-flop. The stall signal is propagated to the
previous stage, as shown in Fig. 7. The schematic of the two-
entry FIFO is shown in Fig. 8.

This flow-control mechanism ensures full throughput op-
eration with performance similar to that of the input-queued
switches with credit-based or ON/OFF flow control. As previ-
ously shown, in traditional input-queued schemes (Fig. 4), the
total number of buffers needed for maximum throughput is
3N , as compared to only 2N buffers [2 × (N − 1) along the
link and two at the switch input] in this scheme (Fig. 9). The
traditional input-queued design has one flip-flop at each link

TAMHANKAR et al.: TIMING-ERROR-TOLERANT NETWORK-ON-CHIP DESIGN METHODOLOGY 1301

Fig. 9. Modified link and switch design.

pipeline stage. In the stall/valid protocol, it takes 1 clock cycle
for the stall signal to reach the preceding pipeline stage. During
this time, the data which are in transit from the preceding
pipeline stage cannot be stored when it reaches the current
pipeline stage. Thus, for full throughput operation in such a
scheme, the link flip-flops are not used for queuing data and,
instead, the data are queued at the input of the next switch.
By augmenting the link pipeline stage with one more flip-flop,
the full throughput operation is achieved. As we also utilize
the pipeline flip-flops, the scheme leads to reduced buffering
requirements. As the link buffering scheme can be viewed as
merely spreading the FIFO buffers of the switch inputs onto the
links, it maintains the same deadlock and livelock properties
of a design with input-queued switches. Moreover, as all the
inputs of a switch have the same buffer count in the link-
buffer scheme, the switch design becomes more modular when
compared to the traditional switch design. Note that the control
circuit used at a link pipeline stage in this scheme is common
for all the w data bits in a flit of the NoC, and thus the overall
cost of the control circuit is negligible.

V. T-Error LINK DESIGNS

In this section, we present two link designs to support timing-
error-tolerant operation needed for overclocking the links. The
first design reuses the link FIFO for error recovery with very
little hardware overhead (the overhead is only for the control
circuitry). This scheme, in the worst case, can incur a 1-cycle
penalty for each error occurrence at a pipeline stage. In the
second link design scheme, the two-entry FIFOs are augmented
with an additional flip-flop. The resulting design is a high-
performance link that incurs a 1-cycle penalty only for the first
occurrence of an error for a continuous stream of data at each
pipeline stage. The design is such that all subsequent errors are
automatically resolved.

A. Scheme 1: Low Overhead T-Error Links

In the T-error scheme, the two-entry FIFOs along the links
are modified to support timing-error-tolerant operation. The
modified FIFO structure is shown in Fig. 10. The second flip-
flop of the FIFO is clocked at a delayed clock (ckd) compared to
the clock ck of the main flip-flop. ckd and ck, however, feature
the same period. The phase shift among them is configured
after proper delay analysis, as will be discussed later.

The incoming data are sampled twice: once by the main flip-
flop (at time instant t0 in Fig. 11) and then by the delayed flip-
flop (at time instant t1). There are two modes of operation at

Fig. 10. Low overhead T-error buffer.

Fig. 11. Waveforms for scheme 1.

Fig. 12. Control circuit for scheme 1 (presented in Fig. 10).

each pipeline stage of the link: main mode and delayed mode.
Initially, all the pipeline FIFOs are set to the main mode, and
data transmission begins. In every cycle, at the clock edge ck,
the main flip-flop captures and transmits the incoming data. At
clock edge ckd, the delayed flip-flop captures the incoming data,
and the error-detection control circuit checks whether there
is any difference between the main and the delayed flip-flop
values. As shown in Fig. 10, an EXOR gate is connected to the
outputs of the main flip-flop and delayed flip-flop to detect a
timing error. The err signals of all w bits of the flit (vertically
across the width of the link) at a pipeline stage are ORed and
fed as an input to the control circuit. Thus, a timing error
in any bit of the flit causes the entire flit to be resampled at
the pipeline stage. The control circuit at each pipeline stage,
which is common for all the bit lines of the link, is presented
in Fig. 12.

If there is an error in the data sampled by the main flip-flop,
the data that were transmitted at clock edge CK are incorrect.
The correct data from the delayed flip-flop are sent at the next
clock edge (at time instant t2). Whenever a timing error occurs
(i.e., err signal is set to one), a stall signal is sent to the previous
stage such that the previous stage is stalled for 1 cycle. Also, a

1302 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

Fig. 13. Network operation without congestion. The data in the FIFOs at time instances t and (t + 1) are presented in (a) and (b).

Fig. 14. Network operation under congestion. The data in the FIFOs at time
instances t and (t + 1) are presented in (a) and (b).

valid signal is sent to the following stage, informing that the
data sent in the previous cycle were nonvalid.

A FIFO at a pipeline stage of the link enters the delayed
mode when a stall signal from the next stage causes queuing
of data at the FIFO. The stall signal can be issued to handle
regular congestion, that is as a flow-control wire, or to let the
downstream stage sort out an error condition. When a FIFO is
in a delayed mode, all timing errors are automatically avoided,
as the incoming data are always sampled through the delayed
flip-flop. Thus, in networks with severe congestion, most timing
errors are automatically avoided. Examples of operation of the
FIFOs for a network with no congestion and with congestion
are presented in Figs. 13 and 14. In the network with no
congestion, at each pipeline stage, the data are always directly
sampled by the main flip-flop and sent out by it. In the network
with congestion, the data from the preceding pipeline stage is
always captured by the delayed flip-flop at the current pipeline
stage and later sent out by the main flip-flop. Since the data are
always sent at ck from the preceding stage and sampled at ckd
in the current stage, the wire transitions have more than one
clock period to settle and, thus, timing errors are automatically
avoided. In the worst case, if the FIFO always operates in the
main mode, each timing error occurrence will incur one clock
cycle penalty for recovery.

However, in the worst case, when there is no congestion and
the FIFO always tries to operate in main mode, each timing
error occurrence incurs one clock cycle penalty for recovery.
The link stage switches from main mode to delayed mode and
back for each faulty piece of data. Detailed performance analy-
sis of this scheme and comparison with the next link design
scheme for several benchmark applications are presented in
Section VIII-F.

The amount of timing delay that is tolerated by the T-error
design depends on the phase shift between the clocks of
the main and the delayed flip-flops. This shift should be as
large as possible, so that the delayed flip-flop is guaranteed to
sample the right data and to provide correct system operation.
However, the maximum shift is constrained by internal repeater
delays (the error-detection logic must operate between a ckd
edge and the following ck edge). Detailed timing analysis and
SPICE simulations (for a link size of 32 bs) showed that clock
ckd can be delayed by 53.3% of the clock period with respect
to ck. In this paper, we assume that a maximum delay of 50%
of the clock is tolerable with a T-error-enabled system. Thus,
the delayed clock ckd is just the inverted value of the main
clock, and the delay chains are not needed to generate it. At the
same time, the maximum delay which is tolerated on a wire is
150% of the clock period, providing ample margin for timing
error correction. In the T-error scheme, metastability condi-
tions may occur and are corrected using efficient transistor-
level implementation of the FIFO circuit, which are presented
in [33]. The control lines (stall and valid) that need to have
error-free operation can be made robust using a variety of meth-
ods (such as using wider metal lines and shielding). We refer
the interested reader to [33] for transistor-level implementation
details, timing analysis, and SPICE simulation results of the
T-error scheme.

B. Scheme 2: High-Performance T-Error Links

The performance of the above link design can be improved
by having an additional flip-flop to store incoming data when-
ever a stall is encountered. A three-entry FIFO, instead of the
two-entry FIFO previously described, is used in this scheme
(refer to Figs. 15 and 16). The third flip-flop, called auxiliary

TAMHANKAR et al.: TIMING-ERROR-TOLERANT NETWORK-ON-CHIP DESIGN METHODOLOGY 1303

Fig. 15. Schematic for scheme 2.

Fig. 16. Control circuit for scheme 2 (presented in Fig. 15).

flip-flop, is added in series to the delayed and main flip-flops;
it also samples data on rising edges of the delayed clock ckd.
The operation is similar to the above design, except that for a
continuous stream of data, even if all incoming pieces of data
were to be corrupted, only a single 1-cycle penalty would be
incurred to correct timing errors at a pipeline stage. This is
because the FIFO enters the delayed mode upon the first error
occurrence; once in this mode, all subsequent pieces of data are
sampled through the delayed and auxiliary flip-flops, making
them automatically error free. The presence of the auxiliary
flip-flop lets the link stage continue operating even upon fault
occurrences; the sender does not perceive any interruption in
the data flow. Only at the end of the whole data stream, the
stage empties and switches back to main mode. An example
is presented in Fig. 17. Note that even in the absence of
timing errors, the auxiliary flip-flops can still improve general
system performance, as they also behave as queuing buffers to
minimize congestion-related penalties.

VI. AGGRESSIVE SWITCH/NI DESIGN

We assume that the basic design of the switches and NIs
is based on the ×pipes building blocks [19]. In this section,
we describe the changes needed in the basic architecture to
support the overclocked mode of operation. The ×pipes NI
are composed of two modules: a front-end interface with the
cores and a back-end interface with the switches and links.
The NI back-end is the only part that needs to support NoC
overclocking. Since its architecture is similar to that of the
switches, we describe only the changes required in the switches.

There are two changes required in the switches to support
NoC overclocking. The first is that the switches should also be
able to operate at higher frequencies to utilize the faster links.
The other is that the switches should be able to handle the data
from the links that may have timing errors. An NoC switch, as
shown in Fig. 9, consists of input buffers, allocator/arbiter,
crossbar, and output buffers. In our link-based flow-control,

there is a two-entry FIFO at the input of the switch, which can
be made timing-error tolerant, similar to the link FIFO T-error
schemes presented in the previous section. The switch design
changes will now be presented.

A. Output Buffer Changes

In an input-queued switch, normally, a single register is used
at each output to store data before sending the data onto the
links. Note that in some designs, the output buffer can be taken
to be part of the link design, depending on the targeted oper-
ating frequency of the switch. In some other cases, more than
one buffer may be used at each output, so that the performance
of the NoC can be improved. In the ×pipes architecture, the
number of buffers at the output is a parameter that can be
configured by the user according to his or her application needs.

As a starting point, the architecture of a ×pipes switch with
a single output buffer is shown in Fig. 9. The ×pipes switch
already supports distributed buffering along the links. In this
architecture, the switch has a latency of 2 cycles for data
transfers. There are two sets of flip-flops in the switch that
may cause timing violations when overclocked: output buffers
and flip-flops that are used to maintain the allocator/arbiter
states. From synthesis of the ×pipes architecture, we found
the operating frequency of the original switch to be 1 GHz.
The path from the input of the switch to the state flip-flops
was 0.4 ns, while the critical path was from the input to
the output (which also samples the arbiter/allocator states).
With overclocking, we target a 1.5× increase in frequency
(i.e., 1.5-GHz operating frequency) of the switches. Therefore,
we found that the state flip-flops are safe even under over-
clocking, since the available cycle time is 0.66 ns, and that
only the output buffers need to be made timing-error tolerant.
Note that in other switch architectures, if the state flip-flops are
not safe when overclocked, they should be T-error enabled as
well. Otherwise, the amount of overclocking will be limited by
them. Also, if the switch has more pipeline stages, the T-error
principle needs to be applied to each pipeline stage.

In order to overclock the switch, we apply the T-error design
to the head flip-flop of the output FIFO, and the other flip-flops
in the output FIFO are made to sample data at ckd. Fig. 18
shows the changes in the output buffer of the switch. Note
that errors can occur only when the data are sampled through
the head of the FIFO and when the NoC operates in the over-
clocked mode.

B. Input Buffer Changes

When timing errors occur at a link pipeline stage, wrong data
can reach the switch input before the correct data are received.
If the switch samples wrong data, several complications can
arise. As an example, timing errors on the routing fields of
the header flit may result in misrouting a packet. In order for
the switch to handle data errors, there are several cases to be
considered, and recovering the switch state from such cases
requires complex hardware and control circuits [34]. Another
way to detect wrong data at the switch input is to use some
error-detecting code (such as cyclic redundancy check) for each

1304 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

Fig. 17. Example of three-entry FIFO operation, where for a continuous stream of data, an error occurrence at a pipeline stage causes further errors to be
automatically avoided at that stage. (a) At time instant t, clock edge ckd. (b) At time instant (t + 1), clock edge ckd.

Fig. 18. Overclocked switch design with output and input buffer changes.

flit of the packet. However, in the overclocked mode, all the bits
of the data could encounter timing errors, and such schemes
may be inefficient. Thus, to simplify the switch hardware, we
use a look-ahead stage at the input of the switch that ensures
that correct data are always fed to the internal switch logic
(see again Fig. 18). The look-ahead stage stores an incoming flit
for 1 clock cycle, i.e., until the valid line indicates whether the
received data were correct or not. In case of a correct reception,
data are fed to the switch arbiter/allocator. Otherwise, it is
discarded by the look-ahead stage. Note that even when there
are no errors occurring in the system, a latency penalty could
arise from insertion of the look-ahead buffers, unless properly
tackled, as explained in the next section.

VII. DYNAMIC CONFIGURATION OF THE NOC

When the frequency of the NoC is varied based upon
DFS/DPM techniques, the NoC may operate at frequencies
lower than or equal to the conservative design frequency. In
such a normal operating mode, the error resiliency penalty
due to T-error needs to be completely hidden. The T-error
mechanism at the link FIFO and the switch/NI output buffers
incur error resilience penalty only when an error occurs. Thus,
they dynamically adjust to the errors happening in the system.
However, the look-ahead stage at the input of the switch incurs
a 1-cycle penalty even under the normal operating mode. To
avoid this 1-cycle penalty in the normal mode, we use a global

Fig. 19. Look-ahead stage at the switch input.

BOOST signal that is issued at the application level by the (one
or more) processing cores. A value of BOOST = 1 indicates
that the NoC is in overclocked mode, while BOOST = 0
indicates normal mode of operation. The BOOST signal may
take several clock cycles (tens of cycles) to spread to all the
switches and NIs in the NoC. The actual transition between the
normal and overclocked modes occurs after the BOOST signal
is completely spread around the NoC.

The input buffer control logic is modified such that the look-
ahead stage is used only when BOOST = 1, as shown in
Fig. 19. The transition from the normal mode to overclocked
mode is smooth in the design, as the look-ahead is started
when the BOOST signal is spread. However, transition from
the overclocked mode to the normal mode requires special care,
as there may be some residual errors in the NoC. To make
a smooth transition dynamically (i.e., without flushing all the
data in the network), we use the following design change. In
the T-error NoC, all residual errors are maintained on the links
between the switches, as the switches always receive the right
data due to the look-ahead mechanism. When a transition to
the normal mode occurs, the look-ahead stage is bypassed only
when there are no incoming data from the link. Thus, any
data from the output buffer of the switch or the link that may
have residual errors goes through the look-ahead stage, which
ensures that the right data are fed to the switch inputs. As the
transitions between normal and overclocked modes occur at the
application level (which may occur every tens of thousands of

TAMHANKAR et al.: TIMING-ERROR-TOLERANT NETWORK-ON-CHIP DESIGN METHODOLOGY 1305

Fig. 20. Mesh and custom-topology mappings and comparison of traditional schemes with T-error. (a) Mesh topology. (b) Custom topology. (c) Mesh topology
results.

cycles), the performance overhead incurred due to this dynamic
configuration is negligible.

VIII. EXPERIMENTAL RESULTS

In this section, we present the simulation case studies for the
T-error designs.

A. Simulation Platform

The simulation platform consists of cycle-accurate SystemC
models of the T-error designs for the switches, links, and NIs
incorporated on the ×pipes architecture. We use the MPARM
simulation environment [40], which allows several interconnect
structures (such as advanced microcontroller bus architecture,
STBus, and ×pipes) to be utilized to connect processor/memory
cores and which has support for a variety of benchmark appli-
cations. Functional SystemC simulations were carried out on a
variety of application benchmarks.

B. Experiments on a Multimedia Benchmark

We plugged three ARM7 processors, three private memories
(one for each processor), and three shared memories for in-
terprocessor communication on the MPARM platform. We ran
functional benchmarks modeling multimedia processing on the
general-purpose cores. The benchmarks include heavy synchro-
nization activity through the shared memories, since they model
producer/consumer pipelines of multimedia processing. The
benchmarks create a large number of connections (around 30)
between the various cores. We hand-mapped the application
onto two topologies [Fig. 20(a) and (b)]: a 3 × 2 mesh topology
with the processors connected to their private memories using
a single switch and a custom topology with two switches. The
mappings were performed such that the most demanding traffic
flows traverse fewer switches in the NoC.

We assume the size of each predesigned processor and mem-
ory core to be 2 × 2 mm, typical of today’s small processors
and on-chip memories. From the approximate floorplans of the
topologies, we conservatively assume that the links of the mesh

topology have one pipeline stage, while those of the custom
topology have two pipeline stages.

We perform experiments on three schemes: a traditional con-
servative (CONS) design approach, a general double-sampling
(GDS) scheme that is not integrated with the network flow con-
trol (such as those presented in the earlier works in Section III),
and the T-error scheme with three-stage FIFO presented in this
paper. From synthesis of the original ×pipes architecture, the
conservative NoC’s maximum operating frequency is found to
be 1 GHz. With 50% delay between the clocks to the main
and delayed flip-flops, the GDS and T-error designs’ maximum
frequency (under overclocked mode) is assumed to be 1.5 GHz.
To evaluate the designs, we define a new metric: potential error
rate (PER). The PER represents the percentage chance that a flit
reaching a FIFO incurs one or more timing errors if sampled
directly on a ck edge. Note that even if the PER is 100%, the
actual errors happening at the T-error FIFO can be very few, as
most of the errors after the first are automatically avoided by the
design. This is because, in most scenarios, the data are sampled
first by the delayed flip-flop and only afterward sent out by the
main flip-flop, avoiding all potential errors. For an overclocked
system, the PER value depends on how much the system
is overclocked, the actual operating conditions of the system
(such as effect of process variations on the FIFO, operating
temperature, and other noise effects), actual data patterns on
the link, etc. As an example, if the bus-encoding techniques
are not used to reduce the effects of capacitive crosstalk, the
conservative design is capable of operating with the worst case
data patterns on the links. In such a case, even at the highest
frequency in the overclocked mode, if the adversarial switching
patterns do not occur on the link, the PER can be 0%. The
T-error design dynamically adapts to all these effects and
operates under the entire range of PER values. For simulations,
we vary the PER values, and we inject potential errors at each
T-error FIFO randomly based on the chosen PER value.

The average packet latency for the mesh and custom topolo-
gies for the various schemes for different PER values are
presented in Figs. 20(c) and 21. As we overclock only the
communication architecture, we compare the schemes based
on the average packet latency for communication, instead of
comparing the total application run time. When compared to

1306 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

Fig. 21. Custom-topology results.

Fig. 22. Effect of pipeline depth.

the traditional CONS design, the T-error design results in
significant performance improvements. Latency is reduced by
33.33% in the best case (0% PER) and by 23.42% in the worst
case (100% PER). When compared to the general GDS scheme,
the T-error scheme still shows up to 21.2% reduction in latency,
as much of the error recover penalty is hidden under the net-
work operation. When compared to the GDS technique applied
to input-queued switches, the T-error scheme (with three-stage
FIFOs at the links) also results in 30% reduction in the number
of queuing buffers used. In fact, the three-entry T-error FIFO
scheme utilizes 3 × (N − 1) buffers on each link (where N
is the number of cycles needed to traverse the link) and two
buffers at the switch input, while the input queued switches with
the general double sampling technique need 2N + 1 buffers at
the input of the switch and 2 × (N − 1) buffers on the links
(refer to Section IV, where results for the two-entry FIFOs are
presented).

To see the impact of the length of the links on the T-error
scheme, we simulated the design mapped onto the custom
topology with varying number of pipeline stages on the links.
As shown in Fig. 22, even on significantly long links, the
T-error scheme gives a large improvement in performance when
compared to the conservative design approach.

Fig. 23. Effect of DPM policies.

C. Effect of Application-Level Power Management

We conducted experiments on our multimedia benchmarks
to show the usefulness of the application-level DPM policies.
We model four different application scenarios in the platform:
standard-definition (SD) video decoding and display, high-
definition (HD) video decoding and display, picture-in-picture
standard definition (PiP-SD), and picture-in-picture high def-
inition (PiP-HD). The voltage and frequency of operation of
the network was tuned individually for each application. The
power consumption of the network for the various applications
when the DPM policies are used, normalized with respect to
that of the base system (where no DPM policy is used), is
presented in Fig. 23. The use of application-level DPM policies
results in an average of 57% reduction in power consumption of
the NoC. The T-error scheme can be integrated into the work
presented in [41], where several application modes are defined
for industrial SoC designs, and where the NoC operating fre-
quency and voltage are tuned individually for each application
mode in the design.

D. Experiments on Other Benchmarks

We performed experiments on the conservative and T-error
designs on several other benchmarks which are as follows:

1) matrix multiplication benchmark suite without shared
memory (MAT1);

2) matrix multiplication benchmark suite with shared
memory (MAT2);

3) fast Fourier transform benchmark suite using fixed point
arithmetic (FFT); and

4) quick sort benchmark suite (Qsort).

Many of these benchmarks are application kernels that can
be used to inject different traffic rates onto the NoC and test
various aspects of the NoC. We assume the delay to traverse
the links in the NoC to be 2 cycles, i.e., the links have
two pipeline stages. We conducted experiments varying the
number of processor/memory cores used by the applications
(application partitioning) and topologies of the NoC. For all the
experiments, except for those presented in Section VIII-F, we
use the three-entry T-error FIFO design. In Section VIII-F, we
compare the performance of the two T-error link designs.

TAMHANKAR et al.: TIMING-ERROR-TOLERANT NETWORK-ON-CHIP DESIGN METHODOLOGY 1307

Fig. 24. Performance comparison of conservative and T-error designs for different PER values for read and write transactions. (a) MAT2: read transactions.
(b) MAT2: write transactions. (c) Topology effects: read transactions.

Fig. 25. (a) and (b) Performance comparison for various topologies and benchmarks. (c) Effect of dynamic NoC configuration.

In Fig. 24(a) and (b), the average packet latency (in nanosec-
ond) observed for the conservative and T-error design for the
MAT2 benchmark for read [Fig. 24(a)] and write transactions
[Fig. 24(b)] is presented. The read transactions require two-way
data transfer on the network: a request is sent by the processor,
and a response with the data item is sent back by the memory.
The write transactions require only one-way data transfer: The
processor sends the data to be written to the memory. We
denote the entire transaction latency for each data word by
the average packet latency metric. Thus, the read transactions
incur a higher latency for communication. As shown in the
figures, for the MAT2 benchmark, the T-error design results in
a significant performance improvement, with the best case of
28.5% reduction in read latency (for 0% PER) and worst case of
19.6% (for 100% PER). For the write transactions, the average
reduction in latency for the T-error designs varies from 32.5%
(for 0% PER) to 31.1% (for 100% PER). Note that the increase
in latency due to the higher PER values is not overly significant,
showing that the T-error scheme effectively hides much of the
error recovery penalty under the network operation.

The performances of the T-error system for various topolo-
gies for the MAT2 benchmark for read and write transactions
are presented in Figs. 24(c) and 25(a). The designs compared

vary from small seven-core NoCs to 51-core NoCs with differ-
ent application partitioning. The topologies vary from regular
(like mesh) to custom, which are manually developed ones.
As shown in the figures, for all the topologies for both read
and write transactions, the T-error design results in significant
performance improvement over the conservative design. In
Fig. 25(b), we present the average packet latencies (averaged
across both read and write transactions) for the designs for
several benchmark applications. The average reduction in the
latency for the benchmarks for the T-error designs varies from
25.7% (for 0% PER) to 12.7% (for 100% PER).

E. Effect of NoC Configuration

Dynamic configuration of the NoC is designed to avoid any
latency penalty for the switch look-ahead mechanism under the
normal mode, where the frequency of operation is ≤ 1 GHz.
In Figs. 25(c) and 26(a), we present the packet latencies for
the NoC with and without the configuration mechanism for
various topologies and benchmarks. The configuration mech-
anism results in significant reduction in the packet latency (up
to 13.8%) for the applications. This reduction is attributed to
two reasons: One is the reduction in the pipeline depth of the

1308 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

Fig. 26. (a) NoC configuration. (b) Choice of link design schemes.

NoC (i.e., reduction in the number of cycles needed to transfer
a packet under zero load conditions), and the other is the fact
that congestion in the NoC reduces as the packets spend less
time in the network.

F. Choice of Link Design Schemes

In Section V, we presented two link design schemes with
scheme 1 having very little hardware overhead and scheme 2
having higher performance. The efficiency of the schemes
depends on the congestion levels in the NoC and the appli-
cation’s traffic patterns. For heavily congested NoCs, most of
the traffic would be sampled through the delayed flip-flops in
both schemes, resulting in similar performance. For uncon-
gested networks supporting bursty application traffic, scheme 2
has much higher performance than the scheme 1 design. These
effects are illustrated in Fig. 26(b), where the average packet
latencies in a mesh network using scheme 1 design are pre-
sented. The latency values are normalized with respect to the
latency incurred by the scheme 2 design for an uncongested
NoC. The traffic pattern is such that each core injects bursty
traffic onto the NoC. For such a bursty traffic pattern, scheme 2
design has minimum overhead for all congestion levels, while
the performance of the scheme 1 design depends on the par-
ticular congestion level. We varied the congestion in the net-
work, which is represented in Fig. 26(b), by the percentage of
time data sampled by the delayed flip-flop. As shown, as the
congestion in the network starts to increase, the performance
of scheme 1 design approaches that of the scheme 2 design.
The different link design schemes can be used in different parts
of the same NoC if needed, as they have the same interface
to the switches/NIs. Thus, particular links that need higher
performance can be designed using scheme 2.

G. Synthesis Results

Using Synopsys Design Compiler, we synthesized the
T-error schemes to get area estimates of the proposed schemes.
For synthesis, we use a United Microelectronics Corporation
0.13µ technology library, a base NoC operating frequency of
1 GHz, and an operating voltage of 1.2 V. Table I shows the

TABLE I
AREA OVERHEAD

area overhead for the different T-error schemes for 32-b flit-
size for a 5 × 5 mesh NoC. The base NoC area is the sum of
the areas of switches, links, and NIs without the T-error design
changes. As shown in Table I, the schemes incur only a modest
increase in area (around 4% increase in the base NoC area).

IX. CONCLUSION

The use of conservative methods to design NoCs that tar-
get safe operation under all conditions leads to suboptimal
system performance. In this paper, we have presented aggres-
sive timing-error-tolerant (T-error) design methodologies for
designing the switches, links, and NIs of NoCs. The NoC
in the T-error system is designed aggressively to operate at
frequencies higher than conservative designs and to recover
from the resulting timing errors in an efficient manner. The error
recovery mechanism is integrated with a new link-based flow-
control mechanism, so that most of the error recovery penalty
is hidden under the network operation. Experiments show large
performance improvements (up to 1.5×) for the communication
architecture in the proposed system when compared to tradi-
tional conservative designs. In the future, we plan to analyze
the power consumption of the T-error methods and to extend
them for aggressively designing processor architectures.

REFERENCES

[1] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vencentelli, “Addressing the system-on-a-chip inter-
connect woes through communication-based design,” in Proc. DAC,
Jun. 2001, pp. 667–672.

[2] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J. Soininen, M. Forsell,
K. Tiensyrja, and A. Hemani, “A network on chip architecture and design
methodology,” in Proc. ISVLSI, Apr. 2002, pp. 117–122.

[3] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-
switched interconnections,” in Proc. DATE, Mar. 2000, pp. 250–256.

TAMHANKAR et al.: TIMING-ERROR-TOLERANT NETWORK-ON-CHIP DESIGN METHODOLOGY 1309

[4] K. Goossens, J. Dielissen, and A. Radulescu, “The Aethereal network
on chip: Concepts, architectures, and implementations,” IEEE Des. Test
Comput., vol. 22, no. 5, pp. 21–31, Sep./Oct. 2005.

[5] L. Benini and G. De Micheli, “Networks on chips: A new SoC paradigm,”
Computers, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[6] W. Dally and B. Towles, “Route packets, not wires: On-chip interconnec-
tion networks,” in Proc. DAC, Jun. 2001, pp. 684–689.

[7] R. Ho, K. Mai, and M. Horowitz, “The future of wires,” Proc. IEEE,
vol. 89, no. 4, pp. 490–504, Apr. 2001.

[8] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli, “Theory of
latency-insensitive design,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 20, no. 9, pp. 1059–1076, Sep. 2001.

[9] L. Carloni and A. Sangiovanni-Vincentelli, “Coping with latency in SoC
design,” IEEE Micro, vol. 22, no. 5, pp. 24–35, Sep./Oct. 2002.

[10] D. Ernst, N. S. Kim, S. Pant, S. Das, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power
pipeline based on circuit-level timing speculation,” in Proc. Int. Symp.
Microarchitecture, Dec. 2003, pp. 7–18.

[11] T. Austin, D. Blaauw, T. Mudge, and K. Flautner, “Making typical silicon
matter with razor,” Computer, vol. 37, no. 3, pp. 57–65, Mar. 2004.

[12] A. Uht, “Going beyond worst-case specs with TEAtime,” Computer,
vol. 37, no. 3, pp. 51–56, Mar. 2004.

[13] M. Favalli and C. Metra, “Low-level error recovery mechanism for self-
checking sequential circuit,” in Proc. DFT, Oct. 1997, pp. 234–242.

[14] M. Singh and S. M. Nowick, “MOUSETRAP: Ultra-high-speed transition
signaling asynchronous pipelines,” in Proc. ICCD, Sep. 2001, pp. 9–17.

[15] E. Dupont, M. Nicolaidis, and P. Rohr, “Embedded robustness IPs
for transient error free ICs,” IEEE Des. Test Comput., vol. 19, no. 3,
pp. 56–70, May 2002.

[16] W. J. Dally and J. W. Poulton, Digital Systems Engineering. Cambridge,
U.K.: Cambridge Univ. Press, 1998.

[17] Y. Eo, S. Shin, W. Eisenstadt, and J. Shim, “A decoupling technique
for efficient timing analysis of VLSI interconnects with dynamic current
switching,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 23, no. 9, pp. 1321–1337, Sep. 2004.

[18] D. Wang and W. McNall, “A statistical model based ASIC skew selection
method,” in Proc. IEEE Workshop Microelectron. and Electron Devices,
2004, pp. 64–66.

[19] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, and
G. De Micheli, “Xpipes lite: A synthesis oriented design library for
networks on chips,” in Proc. DATE, Mar. 2005, pp. 1188–1193.

[20] L. Chen, M. Marek-Sadowska, and F. Brewer, “Coping with buffer
delay change due to power and ground noise,” in Proc. DAC, Jun. 2002,
pp. 860–865.

[21] P. J. Restle, K. A. Jenkins, A. Deutsch, and P. W. Cook, “Measurement
and modeling of on-chip transmission line effects in a 400 MHz mi-
croprocessor,” IEEE J. Solid-State Circuits, vol. 33, no. 4, pp. 662–665,
Apr. 1998.

[22] R. Hegde and N. R. Shanbhag, “Toward achieving energy efficiency in
presence of deep submicron noise,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 8, no. 4, pp. 379–391, Aug. 2000.

[23] D. Bertozzi, L. Benini, and G. De Micheli, “Low power error-
resilient encoding for on-chip data buses,” in Proc. DATE, Mar. 2002,
pp. 102–109.

[24] P. Vellanki, N. Banerjee, and K. Chatha, “Quality-of-service and error
control techniques for network on chip architectures,” in Proc. GLSVLSI,
Apr. 2004, pp. 45–50.

[25] H. Zimmer and A. Jantsch, “A fault model notation and error-control
scheme for switch-to-switch buses in a network-on-chip,” in Proc.
ISSS/CODES, Sep. 2003, pp. 188–193.

[26] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L. Benini,
and G. De Micheli, “Analysis of error recovery schemes for networks-
on-chips,” IEEE Des. Test Comput., vol. 22, no. 5, pp. 434–442,
Sep./Oct. 2005.

[27] M. R. Stan and W. P. Burleson, “Bus-invert coding for lowpower
I/O,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3, no. 1,
pp. 49–58, Mar. 1995.

[28] L. Li, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “A cross-talk
aware interconnect with variable cycle transmission,” in Proc. DATE,
Feb. 2004, pp. 1012–1017.

[29] K. Patel and I. Markov, “Error-correction and cross-talk avoidance in
DSM busses,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12,
no. 10, pp. 1076–1080, Oct. 2004.

[30] S. Srinivas and N. Shanbag, “Coding for system-on-chip networks: A
unified framework,” in Proc. DAC, Jun. 2004, pp. 103–106.

[31] K. Hirose and H. Yasuura, “A bus delay reduction technique considering
cross-talk,” in Proc. DATE, Mar. 2000, pp. 441–445.

[32] P. Sotiriadis, “Interconnect modeling and optimization in deep sub-
micron technologies,” Ph.D. dissertation, Massachusetts Inst. Technol.,
Cambridge, MA, 2002.

[33] R. Tamhankar, S. Murali, and G. De Micheli, “Performance driven
reliable link design for networks on chips,” in Proc. ASPDAC, Jan. 2005,
pp. 749–754.

[34] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Mateo, CA: Morgan Kaufmann, Dec. 2003.

[35] M. Mizuno, W. J. Dally, and H. Onishi, “Elastic interconnects: Repeater-
inserted long wiring capable of compressing and decompressing data,”
in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2001, pp. 346–347.

[36] V. Chandra, H. Schmit, A. Xu, and L. Pileggi, “A power aware system
level interconnect design methodology for latency insensitive systems,”
in Proc. ICCAD, Nov. 2004, pp. 275–282.

[37] R. Marculescu, “Networks-on-chip: The quest for on-chip fault-tolerant
communication,” in Proc. IEEE ISVLSI, Feb. 2003, pp. 8–12.

[38] F. Worm, P. Ienne, P. Thiran, and G. De Micheli, “A robust self-calibrating
transmission scheme for on-chip networks,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 13, no. 1, pp. 126–139, Jan. 2005.

[39] M. Pirretti, G. Link, R. Brooks, N. Vijaykrishnan, M. Kandemir, and
M. J. Irwin, “Fault tolerant algorithms for network-on-chip interconnect,”
in Proc. ISVLSI, Feb. 2004, pp. 46–51.

[40] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon, “Analyz-
ing on-chip communication in a MPSoC environment,” in Proc. DATE,
Feb. 2004, pp. 752–757.

[41] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli,
“A methodology for mapping multiple use-cases on to networks on chip,”
in Proc. DATE, Mar. 2006, pp. 1–6.

[42] A. Pullini, F. Angiolini, D. Bertozzi, and L. Benini, “Fault tolerance
overhead in network-on-chip flow control schemes,” in Proc. SBCCI,
Sep. 2005, pp. 224–229.

Rutuparna Tamhankar (M’06) received the
Bachelor of Electronics Engineering degree from
the University of Pune, Pune, India, in 1999, the
Master of Science degree in electrical engineering
from the West Virginia University, Morgantown,
in 2001, and the Engineer’s degree in electrical
engineering from Stanford University, Stanford,
CA, in 2005. His thesis at Stanford University
was related to performance-driven link design for
networks-on-chip.

Currently, he is with the Circuit Design Group,
Marvell Semiconductors Inc., Santa Clara, CA.

Srinivasan Murali (S’02) received the Bachelor of
Computer Science and Engineering degree (with a
gold medal) from the University of Madras, Chennai,
India, in 2002. He is currently working toward the
Ph.D. degree in electrical engineering at Stanford
University, Stanford, CA.

His research interests include reliable and efficient
design methods for networks-on-chip and systems-
on-chip.

Mr. Murali won a Best Paper Award at the Design,
Automation and Test in Europe (DATE) Conference
in 2005.

Stergios Stergiou received the B.S. degree from
the University of Athens, Athens, Greece, and the
M.S. degree in computer science from the University
of Patras, Patras, Greece. He is currently working
toward the Ph.D. degree in electrical engineering at
Stanford University, Stanford, CA.

His research interests comprise all aspects of
computer-aided design of digital circuits.

1310 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

Antonio Pullini received the M.S. degree in elec-
tronics engineering from the University of Bologna,
Bologna, Italy, in 2005.

He is currently a Research Assistant with the
Politecnico di Torino, Turin, Italy. His research inter-
ests include low-power digital design and networks-
on-chip.

Federico Angiolini received the M.S. degree
(summa cum laude) in electrical engineering from
the University of Bologna, Bologna, Italy, in 2003,
where he is currently working toward the Ph.D. de-
gree in the Department of Electronics and Computer
Science.

His research is mostly focused on memory hierar-
chies, multiprocessor-embedded systems, networks-
on-chip, and nanotechnologies.

Luca Benini (S’94–M’97–SM’04) received the
Ph.D. degree in electrical engineering from Stanford
University, Stanford, CA, in 1997.

He is a Professor with the University of Bologna,
Bologna, Italy. He also holds a Visiting Faculty
position with the Ecole Polytecnique Federale de
Lausanne. His research interests are in the design of
systems for ambient intelligence, from multiproces-
sor systems-on-chip/networks-on-chip to energy-
efficient smart sensors, and sensor networks. He has
published more than 250 papers in peer-reviewed

international journals and conference proceedings, three books, several book
chapters, and two patents.

Dr. Benini has been Program Chair and Vice-Chair of the Design, Au-
tomation and Test in Europe Conference. He was a member of the 2003
MEDEA+ EDA roadmap committee 2003. He is a member of the IST Em-
bedded System Technology Platform Initiative (ARTEMIS): working group
on design methodologies, a member of the Strategic Management Board of
the ARTIST2 Network of Excellence on Embedded System, and a member
of the Advisory Group on Computing Systems of the IST Embedded Sys-
tems Unit. He has been a member of the technical program committees and
organizing committees of several technical conferences, including the Design
Automation Conference, International Symposium on Low Power Design, and
the Symposium on Hardware 100-Software Codesign. He is Associate Editor of
the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED
CIRCUITS AND SYSTEMS and of the ACM Journal on Emerging Technologies
in Computing Systems.

Giovanni De Micheli (S’82–M’83–SM’89–F’94)
received the B.Sc. degree in nuclear engineering
from Politecnico di Milano, Milan, Italy, in 1979,
and the M.S. and Ph.D. degrees in electrical engi-
neering and computer science from the University of
California, Berkeley, in 1980 and 1983, respectively.

He is currently a Professor and Director of
the Integrated Systems Center, École Polytech-
nique Fédérale, Lausanne, Switzerland, and Presi-
dent of the Scientific Committee of Centre Suisse
d’Electronique et de Microtechnique (CSEM),

Neuchatel, Switzerland. His research interests include several aspects of design
technologies for integrated circuits and systems, with particular emphasis on
synthesis, system-level design, hardware/software codesign, and low-power
design. He is the author of Synthesis and Optimization of Digital Circuits
(McGraw-Hill, 1994), and coauthor and/or coeditor of six other books and of
over 300 technical articles. He has been a member of the technical advisory
board of several companies including Magma Design Automation, Coware,
Aplus Design Technologies, Ambit Design Systems, and STMicroelectronics.

Dr. De Micheli was the recipient of the 2003 IEEE Emanuel Piore Award for
contributions to computer-aided synthesis of digital systems. He is a Fellow of
ACM. He received the Golden Jubilee Medal for outstanding contributions to
the IEEE Circuits and Systems (CAS) Society in 2000, the 1987 D. Pederson
Award for the best paper in the IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, two Best Paper Awards at
the Design Automation Conference, in 1983 and 1993, and a Best Paper Award
at the DATE Conference in 2005. He was President of the IEEE CAS Society in
2003, and is currently President Elect of the IEEE Council on Electronic Design
Automation (EDA) and chairing of the IEEE Product Package Committee. He
was Program Chair of the pHealth and VLSI SOC conferences in 2006. He was
Editor-in-Chief of the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN
OF 1084 INTEGRATED CIRCUITS AND SYSTEMS in 1987–2001, and he was
the Program Chair and General Chair of the Design Automation Conference in
1996–1997 and 2000, respectively.

