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Abstra
t
With the latest developments in video 
oding te
hnology and fast deployment of end-user broad-band internet 
onne
tions, real-time media appli
ations be
ome in
reasingly interesting for bothprivate users and businesses. However, the internet remains a best-e�ort servi
e network un-able to guarantee the stringent requirements of the media appli
ation, in terms of high, 
onstantbandwidth, low pa
ket loss rate and transmission delay. Therefore, e�
ient adaptation me
ha-nisms must be derived in order to bridge the appli
ation requirements with the transport medium
hara
teristi
s.Lately, di�erent network ar
hite
tures, e.g., peer-to-peer networks, 
ontent distribution net-works, parallel wireless servi
es, emerge as potential solutions for redu
ing the 
ost of 
ommuni
a-tion or infrastru
ture, and possibly improve the appli
ation performan
e. In this thesis, we startfrom the path diversity 
hara
teristi
 of these ar
hite
tures, in order to build a new framework,spe
i�
 for media streaming in multipath networks. Within this framework we address importantissues related to an e�
ient streaming pro
ess, namely path sele
tion and rate allo
ation, forwarderror 
orre
tion and pa
ket s
heduling over multiple transmission paths.First we 
onsider a network graph between the streaming server and the 
lient, o�ering multiplepossible transmission paths to the media appli
ation. We are interested in �nding the optimalsubset of paths employed for data transmission, and the optimal rate allo
ation on these paths,in order to optimize a video distortion metri
. Our in-depth analysis of the proposed s
enarioeventually leads to the derivation of three important theorems, whi
h, in turn represent the basisfor an optimal, linear time algorithm that �nds the solution to our optimization problem. At thesame time, we provide distributed proto
ols whi
h 
ompute the optimal solution in a distributedway, suitable for large s
ale network graphs, where a 
entralized solution is too expensive.Next, we address the problem of forward error 
orre
tion for s
alable media streaming overmultiple network paths. We propose various algorithms for error prote
tion in a multipath s
enario,and we assess the opportunity of in-network error 
orre
tion. Our analysis stresses the advantageof being �exible in the s
heduling and error 
orre
tion pro
ess on multiple network paths, andemphasizes the limitations of possible real systems implementations, where appli
ation 
hoi
es arelimited. Finally, we observe the improvements brought by in-network pro
essing of transmittedmedia �ows, in the 
ase of heterogeneous networks, when link parameters vary greatly.On
e the rate allo
ation and error 
orre
tion issues are addressed, we dis
uss the pa
kets
heduling problem over multiple transmission paths. We rely on a s
alable bitstream pa
ketmodel inspired from the media 
oding pro
ess, where media pa
kets have di�erent priorities anddependen
ies. Based on the 
on
ept of data pre-fet
h, and on a stri
t time analysis of the trans-mission pro
ess, we propose fast algorithms for e�
ient pa
ket s
heduling over multiple paths.We ensure media gra
eful degradation at the 
lient in adverse network 
onditions by 
areful loadbalan
ing among transmission paths, and by 
onservative s
heduling whi
h transparently absorbundete
ted network variations, or network estimation errors.The �nal part of this thesis presents a possible system for media streaming where our proposedme
hanisms and proto
ols 
an be straightforwardly implemented. We des
ribe a wireless setupwhere 
lients 
an a

ess various appli
ations over possibly multiple wireless servi
es. In this setup,vii



viiiwe solve the rate allo
ation problem with the �nal goal of maximizing the overall system perfor-man
e. To this end, we propose a unifying quality metri
 whi
h maps the individual performan
eof ea
h appli
ation (in
luding streaming) to a 
ommon value, later used in the optimization pro-
ess. We propose a fast algorithm for 
omputing a 
lose to optimal solution to this problem andwe show that 
ompared to other traditional methods, we a
hieve a more fair performan
e, betteradaptable to 
hanging network environments.Keywords: multipath networks, rate allo
ation, path sele
tion, load balan
ing, pa
ket s
hedul-ing, forward error 
orre
tion, network variability, network inter-operability.



Résumé
Les derniers développements en 
odage vidéo et le déploiement rapide des 
onne
tions internet
lient à haut débit rendent les appli
ations vidéo en temps-réel de plus en plus attra
tives tantpour les usages privés que professionnels. Cependant, internet, qui est un reseau faillible, se révèletoujours in
apable de garantir les 
onditions stri
tes requises par les appli
ations vidéo, que 
esoit en terme de 
onstan
e pour les haut débits, de perte de paquets ou de délais de transmission.Par 
onséquen
e, des mé
anismes e�
a
es adaptatifs doivent être mis en pla
e a�n de mettre enadèquation les 
ara
téristiques médium et les besoins propres de l'appli
ation.Depuis peu, di�érentes ar
hite
tures de réseau, telles que les réseaux 
leint-à-
lient, les réseauxde distributions de 
ontenus, ou en
ore les servi
es sans-�l parallèles apparaissent 
omme desmoyens potentiels de réduire les 
oûts de 
ommuni
ation ou d'infrastru
ture, ou en
ore d'améliorerles performan
e de l'appli
ation. Cette thèse exploite les 
ara
téristiques de 
heminement diverspropre à 
es ar
hite
tures a�n de développer un nouveau 
adre spé
i�que pour la transmissionvidéo en réseaux à voies multiples. Dans 
e nouveau 
adre, nous abordons d'importantes questionsliées à l'e�
a
ité du pro
essus de transmission vidéo, à savoir le 
hoix du 
heminement, l'allo
ationde taux, la 
orre
tion des erreurs, et la plani�
ation de la transmission des paquets au travers devoies multiples.Nous 
onsidérons d'abord une reprsentation du réseau qui o�re la possibilités de voies multiplesentre le serveur vidéo et le 
lient. L'intérêt est de trouver le meilleur sous-ensemble de voies utiliséspour transmettre les données ainsi que le taux d'allo
ation optimal 
orrespondant, a�n d'optimiserune métrique de distortion vidéo. Nous nous sommes livrés à une analyse en profondeur du s
énarioproposé qui a 
onduit à l'énon
é de trois théorèmes importants. Ces derniers forment les basesd'un algorithme linéair optimal résolvant notre problème d'optimisation. Dans le même temps,nous proposons des proto
oles distribués 
al
ulant la solution optimale, adaptée au 
as de réseauxgrande é
helle pour lesquels une solution 
entralisée serait trop 
oûteuse.Nous abordons ensuite le problème de la 
orre
tion d'erreurs pour la transmission de videosredimensionnables à travers des réseaux à voies multiples. Di�érents algorithmes sont proposéspour la prote
tion 
ontre les erreurs dans un s
enario à voies multiples. L'opportunité d'une
orre
tion d'erreurs insérée au réseau est aussi établie. Notre analyse souligne l'avantage de la�exibilité dans la gestion du pro
essus de 
orre
tion d'erreurs et de la plani�
ation de transmis-sion de paquets dans les réseaux à voies multiples. Notre analyse met en avant les limites liées àl'implémentation de systémes réels pour lesquels les 
hoix d'appli
ation sont 
ontraints. Finale-ment, nous observons les améliorations apportées par le traitement de paquets inséré aux reseauxhétérogenes 
hara
térisés par des variations inportantes de leurs parametres.Une fois abordées les questions d'allo
ation de taux et de 
orre
tion d'erreurs, nous dis
utonsdu problème de la plani�
ation de transmission de paquets au travers de réseaux à voies multiples.Notre appro
he repose sur un modèle de paquets vidéo redimensionnable inspiré du pro
essus de
odage vidéo, pour lequel les paquets vidéo ont di�érents priorités et dépendan
es. Nous proposonsun algorithm rapide de plani�
ation de transmission e�
a
e des paquets au travers des réseaux àvoies multiples, basé sur le 
on
ept de pré-apport des données, et sur une analyse temporelle stri
tedu pro
essus de transmission. Une dégradation vidée lente est assurée au 
lient dans des 
onditionsix



xde réseau défavorables, en veillant à 
harger les voies de transmission de manière équilibrée et enassurant une plani�
ation de transmission 
onservatri
e qui absorbe de manière transparente lesvariations indé
elables du réseau.Dans la dernière partie, 
ette thèse propose un système destiné à la transmission vidéo où lesmé
anismes et proto
oles proposés peuvent être dire
tement implémentés. Nous dé
rivons une
on�guration sans-�l permettant aux 
lients d'a

éder à de multiples appli
ations par divers ser-vi
es sans-�l. Dans 
ette 
on�guration, le problème du taux d'allo
ation est résolu en visant unemaximisation des performan
e globales du système. Pour 
e faire, nous proposons une métriquede qualité uni�ante qui reporte les performan
es individuelles de 
haque appli
ation (in
luant latransmission vidéo) en une valeur 
ommune utilisée ultérieurement dans le système d'optimisation.Une solution presque optimale est trouvée par un algorithme rapide. Nous démontrons que lesperforman
es ainsi obtenues sont plus équitables que 
elles obtenues par diverses méthodes tradi-tionnelles, le système s'adaptant mieux aux environnements réseau 
hangeants.Mots-
lefs: réseaux à voies multiples, allo
ation de taux, séle
tion de 
heminement, équili-brage de 
harge, plani�
ation de transmission de paquets, 
orre
tion d'erreurs, variabilité réseau,inter-opérabilité du réseau.
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Chapter 1Introdu
tion
1.1 Streaming over the InternetWith the advan
es in audio-visual en
oding standards and broadband a

ess networks, multimedia
ommuni
ations are be
oming in
reasingly popular. The 
ontinuing expansion of the Internet fur-ther stimulates the demand for multimedia servi
es and appli
ations. Standardization bodies (e.g.,ITU-T), 
ontinuously work towards a
hieving better media en
oding standards, whi
h fa
ilitate amore rapid penetration of media appli
ations in the internet 
ommunity. In the same time, newnetworking systems and solutions, like peer-to-peer networks or wireless servi
es inter-operability,o�er the end 
lients support for new, thrilling internet appli
ations.Media streaming appli
ations over the internet are be
oming popular, as they represent a fastand real-time method for delivering the desired remote 
ontent to the end 
lient. In the generalone-way streaming s
enario, as represented in Figure 1.1, a streaming server must send storedor live media to the 
lient. The information 
an be pre-en
oded, or en
oded in real-time into abitstream, whi
h is transmitted over the internet to the end user/
lient. The 
lient must be ableto 
onsume the re
eived media after an initial playba
k delay, without su�ering interruptions orsevere quality degradation.The real-time nature of the streaming appli
ations opens some questions whose answers lieat the interse
tion of networking and signal pro
essing analysis. On one hand, the internet, as atransport medium only o�ers a best-e�ort forwarding of the data pa
kets traversing it, withoutguaranteeing any quality of servi
e. Only re
ently, me
hanisms and proto
ols have been derivedfor the implementation of tra�
 priority, and a

ommodation of real-time tra�
. However, su
hme
hanisms are denied large s
ale deployment over the internet, due to high implementation 
ostsand infrastru
ture failures. On the other hand, the media appli
ation requires fast and timelydelivery of the media data, from the 
ontent server to the end 
lient. Its stringent quality ofservi
e requirements ( e.g., high bandwidth, low delays and loses, servi
e stability and 
ontinuityduring the 
lient play-out time) 
an hardly be mat
hed today by the available transport medium.In this thesis, we present our novel approa
hes and solutions to these issues. We leverage on an

Streaming Server Client

Internet

Best-effort Network

Intermediate routers

Figure 1.1: General Media Streaming S
enario over the Internet.1



2 CHAPTER 1. INTRODUCTIONindepth analysis of the media en
oding spe
i�
s and network 
hara
teristi
s in order to proposea new framework for media streaming appli
ations over unreliable transport mediums. As pathdiversity is an inherent 
hara
teristi
 of the latest emerging network s
enarios, (e.g., peer-to-peernetworks, 
ontent distribution networks, wireless servi
e inter-operability), we 
on
entrate in ourwork on e�
ient streaming me
hanisms for multipath networks.1.2 Multipath Media StreamingPeer-to-peer ar
hite
tures, 
ontent distribution networks and inter-operable wireless networks aresome of the latest ar
hite
tures designed to either redu
e the 
ost of the network infrastru
ture,enhan
e the appli
ation servi
e guarantees, or in
rease user rea
hability. They rely on multipleavailable data transmission paths between sour
es and 
lients, in order to avoid some of the 
lassi
single path transmission s
enario limitations. The bene�ts of these network ar
hite
tures in
ludeaggregated bandwidth for resour
e-greedy appli
ations, redu
ed laten
y for real-time appli
ations,or extended network 
overage for wireless users. In this 
ontext, multipath media streamingemerges as a natural resear
h framework whi
h o�ers the hope to over
ome some of the lossyinternet path limitations [1�3℄. It allows for an in
rease in streaming bandwidth, by balan
ing theload over multiple network paths between the media server and the 
lient. It also provides meansto limit pa
ket loss e�e
ts, when 
ombined with error resilient streaming strategies and s
alableen
oding 
apabilities of the latest en
oding standards [4�7℄, or redu
e transmission delays.However, this streaming framework requires extra e�orts and resour
es for its management.Parallel route dis
overy and maintenan
e, sour
es 
oordination and e�
ient data s
heduling, ro-bustness in dynami
 network 
onditions are just some of the issues that must be addresses in asu

essful multipath setup. Solutions to these problems have been proposed by the networking
ommunity. They usually adapt existing network algorithms and proto
ols to the new frame-work, with the �nal goal of optimizing the network performan
e. However, these solutions ingeneral do not take into a

ount the 
hara
teristi
s of the spe
i�
 appli
ations using the networkinfrastru
ture, possibly indu
ing a poor appli
ation performan
e [8℄.While the streaming resear
h 
ommunity has given 
onsiderable attention to the modelling ofthe streaming appli
ation behavior in a multipath setup, it has mainly fo
used on the streamingpro
ess itself (media 
a
hing and s
heduling aspe
ts), starting from a given, �xed network s
e-nario, failing to address the above-mentioned issues. Very little attention has been given to theidea of 
reating a joint appli
ation-network aware framework, optimal from the user perspe
tive.Hen
e, important problems 
on
erning the optimal 
onstru
tion and 
hoi
e of transmission pathsfrom a media perspe
tive, pa
ket error 
orre
tion and s
heduling on multiple paths, or streamingrobustness in dynami
 networks have not been thoroughly addressed so far.In our thesis, we address the above mentioned issues from the perspe
tive of a media streamingappli
ation. Our proposed framework for multipath media streaming o�ers solutions that take intoa

ount the spe
i�
ity of the 
onsidered media appli
ation, along the underlying network 
ontext,in order to deliver optimal streaming performan
e as seen by the end 
lient. We o�er our ideas andsolutions for media-aware path 
onstru
tion and sele
tion, pa
ket error 
orre
tion and s
heduling,and transmission robustness in multipath environments.1.3 Problem Statement and ContributionsE�
ient streaming solutions over the internet need to satisfy the stringent requirements of themedia appli
ation, e.g., generally high transmission bandwidth, low pa
ket delays, and networklosses, low network variability and dynami
s during medium to long periods of time, stable routesavailability throughout the transmission pro
ess. However, even with the steady pa
e of internetexpansion, and improved ar
hite
tural design, the transport medium remains best-e�ort, in
apableof o�ering any servi
e guarantees to the traversing appli
ations. Hen
e, adaptive te
hniques andalgorithms must be derived in order to bridge the gap between the internet o�ered servi
es and the



1.3. PROBLEM STATEMENT AND CONTRIBUTIONS 3media appli
ation requirements, in order to improve the re
eived media quality at the end 
lient.In this thesis, we rely on the path diversity 
hara
teristi
 of the latest network ar
hite
tures,in order to propose a new multipath framework for the analysis of media streaming appli
ations.Within this framework, we o�er an in-depth dis
ussion of the most important issues 
on
erning theenvisioned streaming setup, whi
h, in turn, allows us to derive novel me
hanisms and algorithmsfor a more e�
ient streaming pro
ess. In parti
ular, we address important issues like path sele
tionand rate allo
ation, forward error 
orre
tion and pa
ket s
heduling for video streaming in multipathtransmission environments. We o�er a theoreti
al analysis of the problems, we present and measurethe performan
e of our proposed me
hanisms and algorithms, and we dis
uss the system aspe
tsrelated to possible implementations of our proposed tools in real systems.Within a general network graph s
enario, we �rst address the problem of optimal pathsele
tion and rate allo
ation for a media appli
ation. We de�ne an optimization problemthat relies on a media distortion metri
 in the optimization pro
ess. Our �nal goal is to sele
tan optimal subset of transmission paths used by the appli
ation, along with the optimal rateallo
ation on these paths, in order to minimized the per
eived media distortion at the 
lient.Our theoreti
al analysis of the proposed general distortion metri
 �nally leads to three importanttheorems whi
h fa
ilitate the 
hoi
e of optimal transmission paths, and allows for the derivationof a fast path sele
tion and rate allo
ation algorithm. We show that using the available networkpaths in in
reasing order of their loss probabilities is always optimal. The trade-o� betweenadding extra bandwidth to the transmission/en
oding pro
ess, hen
e in
reasing the streamingquality, and adding extra pa
ket erasures by using network paths with higher loss probability,hen
e degrading the media re
onstru
ted quality, o�er a natural 
onvergen
e point for our pathsele
tion algorithm. In the same time, we 
on
lude, that, 
ontrary to the 
ommon belief, utilizingall available network paths for media streaming is not ne
essarily optimal. Furthermore, we providedistributed proto
ols for path 
onstru
tion and sele
tion in large s
ale network s
enarios, basedonly on the lo
al network information available at the 
lient.Next, we address the problem of media forward error 
orre
tion in multipath networks.In a joint sour
e-
hannel rate allo
ation framework, we investigate di�erent FEC strategies ands
heduling paradigms. Our analysis eventually leads to interesting insights on the optimal distri-bution of data and redundant pa
kets over the multiple transmission paths, and our proposed algo-rithms 
ompute e�
ient FEC rate allo
ation solutions in network environments with 
onstrainedresour
es. We show that �exible s
heduling and FEC strategies 
an enhan
e the streaming pro-
ess by better prote
ting the most important media pa
kets, and by sending them over networkpaths a�e
ted by lower loss probabilities. We also asses the opportunity of in-network media �owpro
essing in the 
ase of a
tive networks, where intermediate nodes 
an perform basi
 operationson the passing data �ows, e.g., FEC de
oding/re-en
oding. We evidentiate the trade-o� betweentransmission delays in
urred due to intermediate node �ow pro
essing, and improved performan
e,and we show that in network s
enarios with heterogeneous link parameters, su
h operations provebene�
ial.Media pa
ket s
heduling over multiple transmission paths is addressed next in our thesis.Based on the knowledge of media pa
kets weights and dependen
ies in the bitstream, as generatedby the media en
oder, we propose a novel pa
ket s
heduling algorithm for e�
ient pa
ket trans-mission over multiple network paths. Considering the total re
eived media quality as dependenton the number and importan
e of the 
orre
tly re
eived media pa
kets, our algorithm proposesa load balan
ing te
hnique over more network paths, whi
h prioritizes the data pa
kets that aremore important for media re
onstru
tion at the 
lient. Furthermore, we in
rease the robustnessof our algorithm to network variations, by a 
onservative timing analysis during the s
hedulingpro
ess. Compared to existing solutions, our approa
h adapts better to network rate variations,insuring a smooth quality degradation of the media in the 
ase of adverse network 
onditions.Finally, we des
ribe a possible real system where our proposed me
hanisms and 
on
lusions
an be applied in a straightforward manner. We envision a setup where multiple 
lients 
an a

essmultiple data appli
ations, in
luding media streaming, over more available wireless servi
es. Withthe help of a unifying quality metri
, we map the performan
e of ea
h type of appli
ations as afun
tion of allo
ated network resour
es. �nally, we propose and solve an optimization problem



4 CHAPTER 1. INTRODUCTIONwhose goal is to maximize the overall system performan
e. Our algorithm for network sele
tion andrate allo
ation is performed iteratively in order to a

ount for network variability and dynami
s,and insures a more fair and adaptive behavior 
ompared to other traditional methods.Compared to previous work in streaming over multipath networks we bring the following im-portant 
ontributions:
• We de�ne a general theoreti
al framework for the analysis of streaming media over multipathnetworks, in whi
h we address several key issues of an e�
ient streaming system, e.g., pathsele
tion and rate allo
ation, forward error 
orre
tion and pa
ket s
heduling;
• We provide optimization metri
s based on both network 
hara
teristi
s and streaming se-quen
e parameters. The metri
s are later used in the de�ned optimization problems in orderto a
hieve optimal solutions that maximize the end user per
eived media quality;
• We address the issue of sele
ting an optimal subset of network paths out of an availableset, and 
ompute the optimal rate allo
ation on these paths, in order to optimize the 
lientre
eived media quality. Out theoreti
al analysis leads to the implementation of fast, op-timal algorithms for the ele
tion of suitable transmission paths, along with their allo
atedtransmission rate. For large s
ale media appli
ations, we provide distributed algorithms forthe 
omputation of the optimal subset of end-to-end transmission paths, along with their
orresponding rate allo
ation, based only on lo
al views on the network, available at ea
hintermediate node.
• We study the e�e
t of forward error 
orre
tion on multipath media streaming. We iden-tify and 
ompare di�erent s
heduling and FEC me
hanisms for multipath error 
orre
tion,and we provide fast algorithms that for the 
omputation of suitable forward error 
orre
-tion strategies. We also analyze the opportunity of in-network media �ow pro
essing, byexamining the advantages and disadvantages of intermediate nodes FEC operations. Weidentify the streaming s
enarios where intermediate nodes FEC operations on the passingmedia �ows in
reases the performan
e of the end-to-end streaming appli
ation;
• We address the problem of media pa
ket s
heduling on multipath networks. We leverage onthe knowledge of the di�erent pa
ket weights and dependen
ies inside the media bitstreamin order to provide fast s
heduling algorithms whi
h balan
e the data load over multipletransmission paths. Our algorithm a
hieves gra
eful media degradation at the 
lient, in the
ase of adverse network 
onditions. We also study the robustness of our s
heduling algorithmin the 
ase of variable network s
enarios. We provide an e�
ient s
heduling method, based ona 
onservative timing analysis inside the s
heduler, whi
h transparently absorbs short-time,unpredi
table network variations;
• We design a potential pra
ti
al appli
ation s
enario, where our proposed methods and te
h-niques for e�
ient multipath streaming 
an straightforwardly be deployed. We envision asetup where multiple 
lients 
an a

ess various appli
ations over more available wireless ser-vi
es. In this setup, we formulate and solve an optimization problem whose �nal goal is tomaximize the overall system's performan
e by a smart network sele
tion and rate allo
ationfor ea
h individual 
lient.1.4 Road Tra
kWe start by presenting an overview of the existing literature in multipath video streaming inChapter 2. We dis
uss the relevant approa
hes and we position our ideas in front of these worksand we emphasize the novelty brought by our approa
hes.Next, we formulate our main path sele
tion and optimization problem for media streamingover multipath networks in Chapter 3. Starting from a general video distortion model and a �ownetwork ar
hite
ture, we o�er an in-depth theoreti
al analysis that allows us to derive some low
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omplexity rules guiding an e�
ient network resour
e allo
ation. We dis
uss pra
ti
al implemen-tation issues and distributed proto
ols for the path sele
tion and rate allo
ation problem in larges
ale networks in Chapter 4.We re�ne our distortion and network model for spe
i�
 s
alable streaming appli
ations, and wedis
uss optimal ways for video pa
ket prote
tion in the fa
e of transmission erasures, in Chapter5. We identify a series of di�erent FEC s
hemes and s
heduling me
hanisms that allow us todevelop solutions for the optimal joint allo
ation of sour
e rate 
hannel prote
tion rate in resour
e
onstrained multipath networks. Our approa
h to pa
ket s
heduling over multiple network pathsis presented in Chapter 6. A 
areful timing analysis of the streaming pro
ess allows us to derivefast s
heduling algorithms that take into a

ount the network paths parameters along the 
hara
-teristi
s of the en
oded media stream. Furthermore, we present s
heduling robustness me
hanismsin front of unpredi
table network variations in Chapter 7.Finally, Chapter 8 dis
usses a possible pra
ti
al system where our me
hanisms 
ould be de-ployed in a bene�
ial manner. We present a 
omplete wireless system where 
lients 
an aggregatethe resour
es of multiple wireless systems, and where streaming appli
ations share the same trans-mission medium as other appli
ations like voi
e 
onversations or data downloading. Our 
on
ludingremarks are given in Chapter 9.
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Chapter 2State of the Art
2.1 Introdu
tionWith the advan
es in audio-visual en
oding standards and broadband a

ess networks, multimedia
ommuni
ations (MMC) is be
oming quite popular. The 
ontinuing expansion of the Internetfurther stimulates the demand for MMC servi
es. The existen
e of a multitude of 
lients for videostreaming, e.g., Windows Media Player, Qui
ktime Player, or Real Player, and the in
reasingsu

ess of media internet servi
es like Youtube, show the interest of the internet 
ommunity fornew video servi
es and appli
ations. However, as the transport medium for the media pa
ketsremains "best e�ort", these appli
ations 
annot guarantee any quality of servi
e to their endusers. Variable network rates and delays, pa
ket loss and 
ongestion, network re
on�guration andnode dynami
s are just some of the problems that must be addressed in order to provide optimalstreaming servi
es in today's internet [9℄. The main 
on
ern of the streaming resear
h 
ommunityresides in providing e�
ient te
hniques and me
hanisms for bridging the gap between the stringentand greedy QoS requirements of the multimedia appli
ation and the s
ar
e available networkresour
es. To this end, both appli
ation level (in the domain of video 
oding and 
ompression),and transport and network level solutions are investigated.In this 
hapter we make an overview of the e�orts made by both the multimedia networkingand 
oding 
ommunities to address the aforementioned problems. We start by presenting thenetworking proposals and advan
ements towards insuring some levels of servi
e guarantee over the
urrent best-e�ort internet. Then we present the main 
hara
teristi
s of the media appli
ations(video), as resulting from the information en
oding pro
ess. Finally, we address the re
ent worksdeveloped by the streaming 
ommunity, with a spe
ial emphasis on the problems related to theissues addressed by our 
urrent work. We position our solutions in the 
ontext of previous works,and we dis
uss the novelty of our approa
hes throughout this 
hapter.2.2 Networking Approa
h2.2.1 Network Design and MonitoringThe networking 
ommunity is spending a lot of e�ort in understanding and modeling the internet,with the goal of providing some ne
essary tools for the analysis of its performan
e. Based onthese tools, further proto
ols and me
hanisms 
an be implemented in order to go one step forwardtowards providing some guaranteed quality of servi
e for the traversing appli
ations.A �rst framework for network modeling and analysis based on deterministi
 queuing theoryis presented in [10℄. The authors model the intera
tion between the appli
ation requirementsand network servi
es into a 
omplete mathemati
al framework based on tra�
 �ows. Within thisframework, network elements are further analyzed and modeled in isolation for more a

ura
y [11℄.7



8 CHAPTER 2. STATE OF THE ARTSpe
i�
 network modeling for real-time multimedia appli
ations appears in [12℄. The authorsmodel the network pa
ket loss and delay and their e�e
ts on multimedia transmission, while in [13℄,the authors dis
uss di�erent pa
ket loss metri
s based on the behavior of the network in terms ofloss burst length. Finally, [14℄ introdu
es a new network framework based on utility fun
tions. Theauthor dis
usses the trade-o� between the additional bene�t of allo
ating extra network resour
esto one appli
ation and the overall system performan
e based on a limited amount of resour
es.The above-mentioned frameworks and modeling de
isions 
an provide e�
ient means for ap-pli
ation adaptation as long as they provide meaningful metri
s. Values to these metri
s 
anbe obtained in real-time by e�
ient network monitoring, along with estimation and predi
tionme
hanisms. An e�
ient method for robust monitoring of link delays and faults in IP networks ispresented in [15℄, while the authors of [16℄ dis
uss a new and fast end-to-end bandwidth predi
tionproto
ol. Dete
ting shared 
ongestion of �ows via end-to-end measurements is addressed in [17℄,while [18℄ o�ers an example of a system for network tra�
 predi
tion. Internet path performan
eestimation from an appli
ation perspe
tive is presented in [19℄.2.2.2 Network Level RoutingBased on the monitoring of network metri
s, e�
ient routing algorithms are derived in orderto �nd suitable network paths for appli
ation data transmission. Regular optimization metri
sfor routing optimization refer to the number of hops to the destination, link delay, end-to-endbandwidth or loss probability. Depending on the appli
ation, one or more of these metri
s arerelevant in the routing pro
ess.Numerous routing algorithms have been proposed to optimize a given network QoS metri
 [20℄.More generally, routing with multiple metri
s is the target of many works in QoS routing. But QoSrouting with multiple 
onstraints is, in general, an NP hard problem. An initial proof, for the 
aseof at least two additive metri
s is given in [21℄. The authors propose heuristi
 algorithms for bothsour
e routing, and hop-by-hop routing, whi
h �nd one path satisfying the QoS requirements ofmultimedia appli
ations. Re
ent works in multi-
onstrained routing optimize a meaningful linear[22℄, respe
tively non-linear [23℄ relations between 
onstraints, using low 
omplexity algorithms.Another way to improve the QoS of internet appli
ations is to utilize multiple available networkpaths for data transmissions. Earlier e�orts on using multiple transmission paths 
on
entrate onaggregating the available bandwidths on di�erent parallel pa
ket routes between a server and a
lient. An overview of network striping te
hniques is presented in [24℄, while the authors of [25℄provide a literature survey on tra�
 dispersion. More re
ently, the authors of [26℄ present adistan
e-ve
tor algorithm for �nding multiple paths, while the authors of [27℄ present a multi-path extension of Dire
t Sour
e Routing for wireless ad-ho
 environments. The purpose of thealgorithms is to a
hieve load balan
ing over multiple paths [28℄, and to simultaneously minimizedelays. Algorithms for survivable networks 
onstru
tion are presented in [29℄.Similarly, fun
tions built on multiple path metri
s are used in [30,31℄ to �nd multiple networkpaths for streaming. The authors of [32℄ dis
uss the problem of �nding disjoint paths in single anddual link 
ost networks, while stability 
onditions for joint routing and rate 
ontrol are derivedin [33℄. A theoreti
al study of loop-free 
onditions for multipath routing that should improvenetwork performan
e is presented in [34℄, while [35℄ dis
usses the sele
tion of paths for multipathnetwork setting.Data tra�
 distribution over multiple network transmission paths is optimized by solvingpa
ket s
heduling and �ow assignment problems. [36℄ presents an opportunisti
 tra�
 s
hedul-ing me
hanism that works over multiple network paths, while tra�
 engineering for 
onstrainedmultipath routing is addressed in [37, 38℄. Flow assignment problems have been addressed in [39℄and [40℄. The authors of the �rst paper are 
on
erned with optimally splitting the data on multi-ple disjoint paths in order to avoid pa
ket re-sequen
ing at the 
lient. The se
ond paper presentsan algorithm that minimizes the end-to-end delay of data transmission while 
omplying with anaggregated bandwidth 
onstraint. The optimization of the network resour
e allo
ation in overlaymulti
ast is dis
ussed in [41, 42℄, and pa
ket splitting s
hedules for internet broad
ast 
ommuni-
ations are introdu
ed in [43℄.



2.2. NETWORKING APPROACH 9Finally, network servi
es 
an be enhan
ed by the a
tive impli
ation of some network elements inthe transmission pro
ess. Adaptive bu�er management, along with pa
ket forward error te
hniqueare presented in [44, 45℄. Nodes 
an a
tively parti
ipate to a more robust pa
ket transmission inthe framework of network 
oding [46℄ while new 
ongestion 
ontrol me
hanisms [47℄ and adaptivesliding window strategies [48℄ o�er better appli
ation quality and fairness in the network resour
esdistribution. A survey of a
tive network resear
h is presented in [49℄. QoS and multipath routinge�orts have a dire
t appli
ability in wireless systems where the wireless medium o�ers the 
han
eof nodes inter
onne
tion, or in peer-to-peer systems, when 
lient peers 
onne
t to multiple sour
esin order to obtain the desired information.2.2.3 Wireless Proto
ols and Advan
ementsAs wireless te
hnologies 
an o�er the multipath network framework envisioned in our thesis, wedis
uss latest proto
ol advan
ements, espe
ially towards inter
onne
ting available wireless ser-vi
es. An overview of wireless 
ommuni
ation and transmission prin
iples is presented in [50℄, andspe
i�
 3G system spe
i�
ations are detailed in [51�53℄. [54�56℄ present me
hanisms for 
apa
ityimprovements to 
urrent wireless standards. Important statisti
s of a fading/shadowing 
hannelfor network performan
e analysis are analyzed in [57, 58℄. The works explore the limitations of
urrent wireless te
hnologies, and o�er possible dire
tions of improvement.The multipath advantage of ad-ho
 wireless networks is dis
ussed in [59℄. The authors proposea 
ooperative pa
ket 
a
hing and shortest multipath routing algorithm, while the authors of [60℄present a slight modi�
ation to the network proto
ol sta
k in order to fa
ilitate the 
onne
tionof one WiFi wireless 
ard to multiple home networks. Besides these servi
e spe
i�
 solutions,interworking several wireless servi
es for multipath a

ess is slowly emerging as a viable 
om-mer
ial solution in order to a
hieve a better end-user appli
ation quality, over unreliable wirelesstransmission mediums. While initial 
ommer
ial produ
ts that manage multiple wireless servi
e
onne
tivity already exist [61℄, standardization e�orts are paving the way towards more advan
edprodu
ts and servi
es [62, 63℄. The authors of [64℄ present handover possibilities between WLANand 
ellular wireless systems and dis
uss the possible issues and problems. The possibility offuture wireless network inter-
onne
tion for the provision of 
lient multiple a

ess is dis
ussedin [65℄. Also, future wireless network paradigms of trying to 
ombine heterogeneous networks,both 
ellular, wireless hot spots and sensor networks are dis
ussed in [63℄, while [66℄ dis
ussespossible internet proto
ol properties for wireless servi
es integration.2.2.4 PositioningWhile all these e�orts are en
ouraging for the multimedia streaming 
ommunity, as they o�erthe basis of network analysis and servi
e guarantee provisioning, they do not expli
itly addressthe appli
ation 
hara
teristi
s. Transport me
hanisms are optimized mainly with the �nal goalof a
hieving better network utilization; they rely on algorithms that �nd the best transmissionstrategies given some established network metri
s. While this may be optimal in terms of networkutilization, it is however suboptimal from the point of view of the quality of servi
e for the mediastreaming appli
ation. In 30-80% of the 
ases, the best paths found by 
lassi
 routing algorithmsare suboptimal from a media perspe
tive [8℄.In our work we derive me
hanisms adapted to the spe
i�
 streaming appli
ations 
onsidered.Carefully looking at the media en
oding spe
i�
s, we derive quality metri
s that we later use asoptimization metri
s in our algorithms. Hen
e, we provide proto
ols for multipath sele
tion andrate allo
ation, along with s
heduling and error robustness me
hanisms, starting from the needs ofthe streaming appli
ation, and we optimize the routing and pa
ket s
heduling a

ordingly. As welater show, the improvement brought by our methods for the streaming appli
ation is 
onsiderable,and justi�es their use in the su

essful integration of media appli
ations in future network systems.



10 CHAPTER 2. STATE OF THE ART2.3 Video Coding and Error Prote
tion2.3.1 Video En
oding StandardsThe signal pro
essing 
ommunity is 
onstantly dire
ting its e�orts towards 
reating new videoen
oding standards whi
h a
hieve better 
ompression of the media information, and o�er a higherdegree of s
alability and robustness, helpful for transmission over an unreliable medium. Thefeatures of the latest video en
oding standards like MPEG-4 [7℄ and H.264 [6℄ 
an be used by thestreaming appli
ation in order to better 
ope with variable network 
onditions. Overviews of the
oding prin
iples laying at the foundation of these standards 
an be found in [67, 68℄.Multiple works present an overview of video 
oding te
hniques that help the media appli
ationbetter 
ope with errors. Error resilient video en
oding [69℄ and error 
on
ealment strategies atthe 
lient side [70, 71℄ are detailed. Error 
ontrol me
hanisms for video 
ommuni
ation over theinternet are presented in [72℄, while the spe
i�
 prin
iples behind the video redundan
y 
oding inthe H.263+ standard is presented in [73℄. Further te
hniques for pa
ket loss resilien
e based onvideo 
oding with optimal inter/intra mode swit
hing appear in [74℄.At the same time, appli
ation �exibility to network rate variations 
an be insured by s
alableen
oding of the video data. Spatial, temporal, SNR s
alability, or any 
ombination of the above,permits the appli
ation to adapt the streaming rate to the available network resour
es. Coarseen
oding s
alability 
an be obtained by en
oding multiple video layers [75℄, or multiple des
riptions(MDC) [76℄ of the same video sequen
e. In the 
ase of video layers, the en
oded video data ishierar
hi
ally organized into one base layer and a multitude of enhan
ement layers, su
h that ea
hadditional video layer brings a quality improvement to the previous, already de
oded layers. Onthe other hand, MDC en
oding 
reates multiple di�erent, independent des
riptions of the videodata. Ea
h des
ription 
an be independently de
oded, o�ering a basi
 re
onstru
ted quality of thevideo sequen
e, while aggregating multiple des
riptions results in improved quality. One possiblete
hnique for the 
reation of multiple des
riptions via forward error 
orre
tion is presented in [77℄.Finer grained adaptation of the en
oded stream to 
hanging network 
onditions has beeninvestigated as an extension of the existing, non-s
alable video 
oding standards. In this 
ase,the video data is en
oded in one base layer, and one or more FGS layers that 
an be trunkatedat byte level during the transmission pro
ess. The appli
ation 
an 
hoose the optimal en
odingrate or s
ale down the rate of a preexisting en
oded sequen
e, a

ording to network 
onditions,by maximizing a video quality metri
 [78℄. The nonlinear representation of the total appli
ationquality as a fun
tion of total en
oding rate is de�ned as a rate-distortion 
urve. An example ofsu
h a representation for s
alable video en
oding 
an be found in [79℄.2.3.2 Error Corre
tion in Video StreamingWhile media en
oding with redundan
y and error robustness/
on
ealment features at the en-
oder/de
oder o�er some prote
tion for the appli
ation against transmission failures, further pro-te
tion me
hanisms 
an be employed for appli
ation robustness against network errors.Network-layer error robustness strategies 
an be rea
tive or proa
tive [80�82℄. In the 
ase ofrea
tive strategies, the system rea
ts to a dis
overed pa
ket loss, usually by retransmission (ARQ).While being bandwidth e�
ient, su
h strategies in
ur large delays, as they require feedba
k fromthe media 
lient to the transmission server. In the 
ase of real-time multimedia appli
ations,or streaming sessions where the 
lient imposed playba
k delay is small, proa
tive strategies forerror robustness are advisable, as they are mu
h faster. Forward error 
orre
tion (FEC) is themain te
hnique to provide a more reliable pa
ket transmission in erasure networks. FEC usuallyprovides additional redundant pa
kets, whi
h are sent along the data pa
kets to the 
lient. Aslong as the 
lient re
eives enough data and redundant pa
kets, it is able to re
onstru
t all originaldata pa
kets.FEC strategies lower the error probability for the transmitted pa
kets, at the expense of ad-ditional network resour
es. Depending on the model for network losses [83℄, the appli
ation 
anadapt the FEC strategy [84℄. Su
h a
tion 
an be modeled as a joint sour
e 
hannel 
oding op-



2.4. ADAPTIVE VIDEO STREAMING OVER THE INTERNET 11timization problem, whose purpose is to optimally allo
ate the network resour
es among mediaand redundant pa
kets, so that the re
onstru
ted quality of the media at the 
lient is maximized.The authors of [85℄ deal with the optimal allo
ation of MPEG-2 en
oding and media-independentforward error 
orre
tion rates under the total given bandwidth. They de�ne optimality in termsof minimum per
eptual distortion given a set of video and network parameters. They 
omputethe network error parameters after FEC de
oding, and they derive the global set of equations thatlead to the optimal dynami
 rate allo
ation. A similar analysis is performed in [86℄. An optimalpartitioning between byte-level FEC and pa
ket level FEC in the 
ase of video multi
ast overwired and wireless networks is presented [87℄.All these works 
onsider the network 
onditions as known a priori (e.g., 
hannel rate, proba-bility loss rate and average burst length). They 
an be further extended to a more general JSCC(rate allo
ation) problem that takes into a

ount intermediate a
tive nodes or multiple existingpaths between the server and the 
lient. With this respe
t, intermediate peer nodes 
an be usedby a streaming appli
ation to perform spe
i�
 tasks on the passing �ow in order to improve thestreaming pro
ess. The authors of [88℄ present a multi
ast streaming ar
hite
ture in whi
h inter-mediate nodes perform FEC operations on the stream in order to better 
ope with pa
ket losseson the network links. A s
heme for overlay multihop FEC for video streaming over peer-to-peernetworks 
an be found in [89℄.Finally, making a distin
tion among the media pa
kets that need to be prote
ted, more ad-van
ed FEC strategies will add more redundan
y for the most important pa
kets of the stream,and less for the rest. Unequal error prote
tion (UEP) has been proved to better utilize networkresour
es, enhan
ing thus the per
eived quality of the multimedia appli
ation. Network adaptiveerror 
ontrol s
hemes for video streaming using hierar
hi
al FEC are present in [90, 91℄.2.3.3 PositioningWhile these me
hanisms o�er the �exibility needed in order to 
ope with network 
hannel errorsand variations, their design is based on the knowledge of network parameters. Their fun
tionalitydepends to some extent on the a

ura
y of the 
hannel estimation, hen
e when these estimationsare inexa
t, they are sus
eptible to failure. Intelligent s
heduling on a pa
ket level and adaptiverate allo
ation / error 
orre
tion de
isions 
an adapt the media streaming de
isions in 
ase ofnetwork parameter variability, and add an extra layer of �exibility in the wake of adverse network
onditions (e.g., bandwidth shortage, or variable transmission delays and jitter).In our work we present a study of di�erent forward error 
orre
tion te
hniques for multimediastreaming. We dis
uss the FEC te
hnique in the 
ase of s
alable media streaming over multipathnetworks. We 
ompare various algorithms that bring optimal results in a joint sour
e 
hannel
oding framework, by exploiting the s
alable media 
oding paradigm and error 
orre
tion ands
heduling �exibility. At the same time, we explore the trade-o� between 
omputational 
om-plexity and optimality of results, and propose simple and e�
ient algorithms for our optimizationproblem. We also explore the possible appli
ation of FEC 
odes in real systems where the 
hoi
eof FEC modes is limited to a given set. Finally, we 
onsider the 
ase of in-network FEC pro
ess-ing, where intermediate nodes have de
oding 
apabilities on the passing �ows. We 
ompare theend-to-end optimal FEC allo
ation problem, with the per-hop FEC allo
ation, and we identifythe network s
enarios where intermediate node pro
essing of the passing �ows brings a noti
eableimprovement for the overall streaming pro
ess.2.4 Adaptive Video Streaming over the Internet2.4.1 Adaptation Me
hanismsThe �exibility o�ered by the appli
ation en
oding and 
ompression is exploited in the derivationof e�
ient transport and network me
hanisms and proto
ols for media delivery. An overview ofthe main tenden
ies in network adaptive video streaming is presented in [92℄. These tenden
ies
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lude robust transmission of media pa
kets via error 
orre
tion te
hniques, pa
ket s
heduling foroptimal 
lient re
eived media quality and rate adaptation and path sele
tion for the transmissionpro
ess based on available network resour
es.A �rst te
hnique for the rate adaptation of smoothed variable bitrate video transmission ispresented in [93℄. The authors develop e�
ient te
hniques for transmitting video between twonetwork nodes. They minimize the network bandwidth requirements by 
hara
terizing how thepeak transmission rate varies as a fun
tion of the playba
k delay and the bu�er allo
ation at thetwo nodes. A di�erent approa
h is presented in [94℄, where the authors apply network 
al
ulus toobtain optimal multimedia smoothing in a deterministi
 framework.Furthermore, adaptation between appli
ation requirements and network resour
es 
an be per-formed with the help of network elements, e.g., server, 
lient or intermediate node bu�ers, or proxyuse. The problem of bu�er management and dimensioning in the 
ase of parallel video serversis ta
kled in [95℄. Using a generi
 bu�er-pool model with worst 
ase analysis, the author derivesupper bounds on the server bu�er requirements for a parallel server design with multiple disks perserver. A system for proxy 
a
hing for media streaming over the internet is present in [96℄, whilelarge-s
ale personalized video streaming systems with program insertion proxies appear in [97℄.Network elements 
an fa
ilitate video transmission between a server and a 
lient, or 
an be helpfulfor in-network adaptation of the video stream, in order to mat
h di�erent 
lient 
hara
teristi
s.The spe
ial 
ase of video delivery from a streaming server to one or multiple 
lients through aproxy is presented in [98℄. The authors address the problem of e�
iently streaming a set of hetero-geneous video streams from a remote server through a proxy to multiple asyn
hronous 
lients sothat they 
an experien
e playba
k with low startup delays. S
alable proxy 
a
hing of video understorage 
onstraints is also studied in [99℄. The authors propose two di�erent sele
tive 
a
hing al-gorithms, appropriate for two di�erent network s
enarios, in order to in
rease the relevant overallperforman
e metri
s in ea
h of the two 
ases.2.4.2 Multipath Video StreamingWireless or peer-to-peer network systems inherently o�er the media 
lient multiple 
hoi
es interms of network streaming paths and streaming sour
es. The �exibility and advantages o�eredby multipath streaming 
ome however at the expense of more 
omplex me
hanisms for pathsele
tion and rate allo
ation, pa
ket s
heduling and streaming robustness.The bene�ts of multipath routing in multipath media streaming are presented in [100℄ and [1℄.Among the main bene�ts of using multiple paths between a media server and a 
lient we enumerate:(i) the redu
tion in 
orrelation between pa
ket losses, (ii) in
reased throughput, and (iii) abilityto adjust to variations of 
ongestion patterns on di�erent parts of the network.An overview of video streaming te
hniques for path diversity is presented in [101℄, while [102℄dis
usses optimization and evaluation 
riterions for multimedia appli
ations over multiple trans-mission paths. The authors of [103℄ implement and 
ompare multipath streaming solutions atthe transport and appli
ation layer. Multiple s
hemes are 
ompared and the advantages anddisadvantages of ea
h one of them is presented.Ongoing resear
h is dire
ted towards solving problems asso
iated with multipath streamings
enarios, as presented in [5℄. E�
ient streaming me
hanisms usually rely on s
alable mediadelivery over multipath topologies. The authors of [3℄ address the problem of multiple des
riptionstreaming over 
ontent delivery networks. They partially dis
uss the in�uen
e of joint and disjointnetwork paths between the server and the 
lient, and o�er general rules for e�
ient streaming. Atthe same time, the authors of [104℄ analyze a multiple path streaming s
enario for the transmissionof a video sequen
es en
oded in multiple des
riptions. They minimize an additive distortion metri
,
omputed as the sum of the individual distortions of ea
h of the independent des
riptions. For
omplexity reasons, their analysis is redu
ed to a s
enario 
omprising two en
oded des
riptionsand two transmission paths.Spe
i�
 multipath streaming solutions for wireless WiFi networks are provided in [105�107℄,while the authors of [108℄ solve an optimization s
heduling problem spe
i�
 for wireless networks,using a partially observable MDP. Furthermore, multiple transmission paths 
an be used in 
ellular
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e media streaming appli
ations [109℄. The authors of [110℄present a resour
e allo
ation framework based on servi
e di�erentiation and analyze the 
apa
itybene�t a
hieved through servi
e prioritization and dynami
 rate adaptation.2.4.3 Rate Allo
ation and Path Sele
tionThe rate allo
ation and adaptation problem has been studied in simple one path streaming s
e-narios. The authors of [4℄ propose a novel rate allo
ation s
heme to be used with FEC in order tominimize the probability of pa
ket loss 
ongested networks. They present a proto
ol suite (Trans-port Proto
ol, Loss and Bandwidth Estimation, Rate Allo
ation Algorithm and Pa
ket PartitionAlgorithm) and 
ompute the optimal rate allo
ation for the proposed distributed streaming modelwith FEC. Their work is later 
ontinued in [111℄ and [112℄.Other server-driven strategies have been proposed to adapt to 
hannel rate �u
tuations. Framedis
ard strategies have been proposed in [113, 114℄. These works address a network s
enario
onsisting of a single path between the server and the 
lient. When the available bandwidth isnot su�
ient, the streaming server �nds the frames that 
an be dis
arded, in order to limit thedegradation of the video quality. Bran
h and bound strategies for rate adaptation and pa
ketsele
tion have been re
ently proposed in [115℄ and [116℄. The authors extend the work of [117℄ byproviding faster algorithms for the analyzed rate-distortion optimization problem. Other pa
ketsele
tion algorithms for adaptive transmission of smoothed video 
an be found in [118℄ whileadvan
es in e�
ient resour
e allo
ation for pa
ket-based real-time video streaming are reviewedin [119℄.Furthermore, rate allo
ation problems in multipath network environments are addressed in the
urrent literature. The advantage of user-level 
hannel diversity is studied in [120℄ in terms ofperforman
e, fairness, robustness and 
ost. The authors of [121℄ solve the problem of �nding theoptimal set of network paths between the server and the 
lient, whi
h ensures a minimum startupdelay. This work gives a detailed analysis of the multipath routing problem from the networkingpoint of view. However, the authors do not take into a

ount the spe
i�
 
hara
teristi
s of theenvisioned appli
ation. The work presented in [122℄ addresses a similar problem of 
hoosing thebest path from a media perspe
tive. However, the authors only address the question of pathswit
hing e�
ien
y from the media appli
ation point of view, and do not investigate the bene�tsof multipath streaming.2.4.4 Pa
ket S
heduling in Video StreamingSpe
i�
 pa
ket s
heduling algorithms for streaming appli
ations 
an serve as rate adaptationme
hanisms inside the network, when nodes 
an de
ide to drop/forward the in
oming pa
kets asa fun
tion of the network status. At the same time they represent an e�
ient transmission tool,in the 
ase of multipath streaming, when the s
heduler de
ides whi
h media pa
ket is forwardedon ea
h of the available paths, or a robustness me
hanism against transmission errors, when themost important pa
kets 
an be s
heduled for transmission multiple times.Pa
ket s
heduling de
isions for multimedia streaming take into a

ount the available networkresour
es and the spe
i�
 en
oding of the media stream. Due to the predi
tive and s
alablefeatures of the en
oder, di�erent media pa
kets have di�erent weights in the re
onstru
tion of there
eived bitstream. Hen
e, optimal s
heduling strategies must take into a

ount this feature inthe transmission pro
ess. A simulation study of pa
ket path diversity for media transport overthe internet 
an be found in [123℄, while an optimal pa
ket s
heduling me
hanism for multipledes
ription 
oded video over lossy networks is presented in [124℄.Informed s
heduling de
isions optimize the re
eived media quality under network resour
es 
on-straints. Spe
i�
 s
heduling algorithms for multimedia tra�
 either model the available network
hannel in a sto
hasti
 way, or rely on network information provided by estimation me
hanisms.In the Rate-Distortion framework (RaDiO) presented in [117℄, the s
heduling algorithm takes anoptimal de
ision (transmission poli
y) for ea
h media pa
ket/set of pa
kets, based on the sto
has-ti
 parameters of the 
hannel model. The optimal s
heduling solution 
omes at the expense of
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omplex 
omputations and large delays [125℄, [126℄. More re
ent RaDiO works address the pa
kets
heduling problem in distributed setups, where intermediate nodes 
an take independent de
i-sions on pa
ket droping/forwarding [127℄. The framework 
an be extended to streaming s
enarioswith multiple available transmission paths [128℄, an example of whi
h being ad-ho
 wireless s
e-narios [129, 130℄. Robustness to model ina

ura
ies 
an be obtained by repeated transmissionsof the most important pa
kets in the bitstream. More re
ently, work has been dire
ted towards�nding e�
ient video pa
ket s
heduling models in the RaDiO framework for multipath transmis-sions. Media pa
ket s
heduling with path diversity or server diversity is addressed in [131, 132℄.Their sender-driven s
heme enables the 
lient to de
ide whi
h pa
ket to request at whi
h instan
eof time and on whi
h path/from whi
h server, on a rate-distortion optimized way. The model isapplied to other parti
ular streaming setups in [133,134℄.On the other hand, [135,136℄ base the pa
ket s
heduling de
isions on prior information aboutthe network obtained from network estimation algorithms. The multipath EDPF algorithmfrom [135℄ solves the pa
ket s
heduling problem by 
omputing the earliest delivery time for ea
hpa
ket, on ea
h of the available network paths. By sending ea
h pa
ket on the path that ensuresthe earliest delivery at the 
lient, the authors minimize the pa
ket reordering 
ost. Later, the sameauthors improve their algorithm with a sele
tive frame dis
ard strategy that drops less importantframes in 
ase the 
hannel bandwidth is smaller than the en
oded video rate [137℄. While thesealgorithms are less 
omplex and perform faster, they are vulnerable to 
hannel predi
tion errors.Previous works [138℄, [139℄ enhan
e the robustness to 
hannel predi
tion errors, by designing a news
heduling model, in whi
h the pa
kets/frames in a bitstream are rearranged. The most importantparts of the bitstream are advan
ed ahead of the less important ones, so that they are s
heduledfor transmission with higher priority. [140℄ presents a delay-optimized robust transmission s
hemefor images, over multiple 
hannels. Su
h me
hanisms in
rease the probability of su

essful trans-mission of information ne
essary for 
orre
t de
oding, however, they 
ome at the expense of extradelays and o

upied bu�er spa
e.2.4.5 Wireless Streaming and Cross-layer DesignWireless systems, be
ause of their parallel presen
e and inter-operability possibilities represent afuture platform for multipath streaming appli
ations. The overview work of [141℄ gives a 
ompletepresentation of potential streaming systems in wireless networks and dis
usses the standardizatione�orts. Re
ent advan
es in wireless media delivery are presented in [142℄, while spe
i�
 streamingappli
ations for WiFi networks are dis
ussed in [143℄. The authors des
ribe the general issuesinvolved in integrating multiple des
ription 
oding with layered video 
oding within a wirelessmultipath network environment and they 
ompare the performan
e of the two en
oding te
hniquesunder di�erent path 
onditions. At the same time, e�
ient te
hniques for streaming over wirelessnetworks that o�er some QoS guarantees (e.g., UMTS networks [144℄) are presented in [145℄.Here, 
hannel e�
ien
y is improved by using the 
ommon UMTS 
hannel for streaming, alongwith proa
tive hybrid ARQ proto
ols.The 
ross layer design (CLD) paradigm emerged lately as a more e�
ient way to optimize theperforman
e of multimedia appli
ations over unreliable networks. It involves the 
ommuni
ationand 
ooperation between the standard network layers in order to take informed appli
ation trans-mission de
isions. To this end, the optimizer relies on the knowledge of system parameters fromdi�erent layers of the network ar
hite
ture when taking the optimal de
ision.The authors of [146, 147℄ address the issue of 
ross-layer networking, where the physi
al andMAC layer knowledge of the wireless medium is shared with higher layers, in order to providee�
ient methods of allo
ating network resour
es and appli
ations over the internet. They providean overview of the main 
hallenges in mat
hing the instantaneous radio 
hannel 
onditions and
apa
ity needs with the tra�
 and 
ongestion 
onditions found over the pa
ket-based world ofthe Internet. Relevant te
hni
al 
hallenges of 
ross-layer design with a fo
us on video streamingover wireless networks are also present in [148℄. They also address the impa
t the 
ross layeroptimization strategy deployed at one 
lient has on the multimedia performan
e of other stations.
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ross-layer design te
hniques is to adapt the streaming appli
ation parame-ters based on information taken for the wireless medium. A dynami
 OFDMA-FDMA transmissionsystem delivering MPEG4 video streams is presented in [149℄. The authors of [147℄ propose a jointoptimization of the appli
ation layer together with the data-link and physi
al layer of the proto
olsta
k, using an appli
ation oriented obje
tive fun
tion in order to maximize user satisfa
tion inHyperlan systems. IEEE 802.11 based networks are dis
ussed in [150℄. The authors evaluate dif-ferent error 
ontrol and adaptation me
hanisms available for robust video transmission, in di�erentlayers of the network ar
hite
ture. Finally, the authors of [151℄ propose a 
ross layer design for thereal time streaming of prere
orded video with prefet
hing to 
lients in wireless CDMA networks,while [152℄ address the same problem in UMTS systems.While some of the required parameters from the di�erent network layers do not have a dire
tmeaning or equivalent in other layers, it is 
ru
ial for an e�e
tive system to 
onstru
t realisti
abstra
tions of these parameters. [153, 154℄ present a possible ar
hite
ture for video delivery in amulti-user wireless environment, based on parameter abstra
tion at the physi
al, data link andappli
ation layer. Similar systems are presented in [155,156℄, while [157℄ uses the 
ross layer designparadigm in the 
ontext of multi-user, multi-appli
ation wireless networks. Finally more systemor prototyping issues are raised in [158,159℄.A 
autionary perspe
tive on 
ross-layer design is o�ered in [160℄. The authors 
ontend thata good ar
hite
tural design leads to proliferation and longevity, and explain this by means ofexamples. They also evidentiate the risk of unintended 
ross-layer intera
tions, with undesirable
onsequen
es on overall system performan
e, in the 
ase of 
ross layer optimization.2.4.6 Appli
ations and Systems of Multipath StreamingDepending on the envisioned appli
ation setup, more streaming s
enarios 
an be 
onsidered. One-to-one network s
enarios refer to the 
ase of a single stream transmission between a server anda 
lient. In one-to-many network s
enarios more 
lients want to have a

ess to the same 
on-tent, leading to multi
ast systems as presented in [161℄ or [162℄, or tree-based peer-to-peer net-works [163, 164℄. Many-to-one and many-to-many s
enarios refer to larger setups where one ormore 
lients have a

ess to di�erent sour
es. Prominent examples of su
h s
enarios are ContentDistribution Networks (CDN) [165℄, large-s
ale peer-to-peer networks (multiple trees or mesh ar-
hite
tures), and large-s
ale multimedia streaming deployment ar
hite
tures [166℄. Finally, thenetwork transport medium should be 
onsidered in all these s
enarios. Spe
ial me
hanisms arederived for the wireless networks, a

ording to the 
hara
teristi
s of this medium [2,167℄.Wireless streaming s
enarios and peer-to-peer streaming appli
ations are two of the mostprominent examples of appli
ation delivery setups with an inherent multipath topology. Peer-to-peer systems take advantage of the spe
i�
 network ar
hite
ture in order to o�er 
heap and robusttransmission of appli
ation pa
kets. An overview of design 
hoi
es when 
reating a new peer-to-peer system (mesh, tree or multiple trees ar
hite
tures) is presented in [168℄, while systems formulti-point to point 
ommuni
ations are dis
ussed in [169℄. Latest advan
es in peer-to-peer te
h-nology and systems seem to spark the attention of the multimedia streaming 
ommunity towardsdeveloping ri
h media streaming solutions on su
h distributed platforms. The latest su

ess of theSkype [170℄ and BitTorrent [171℄ proto
ols demonstrate that su
h systems 
an provide su�
ientaverage bandwidth for video streaming appli
ations and are suitable for real time 
ommuni
ation.Probably the �rst notable example of distributed video streaming is presented in [172℄. The au-thors 
onsider the 
ooperation between 
lients a

essing a resour
e, in order to alleviate the loadon the server. The work is set in the 
ontext of a traditional 
lient-server framework, but relieson peer 
ooperation to distribute 
ontent, instead of dedi
ated servers that are geographi
allydeployed (e.g., Content Distribution Networks [3℄). Peer-to-peer systems like the ones proposedin [173�176℄ already propose basi
 multimedia streaming solutions.Te
hniques for the optimization of multipath wireless ad-ho
 streaming appli
ations are dis-
ussed in [177℄. Multi-stream 
oding, 
ombined with multipath transmission, has been presentedin [178℄ as a solution to �ght against network errors in an ad-ho
 network environment. Otherworks in distributed video streaming [179�181℄ deal with resour
e allo
ation and s
heduling on
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hosen streaming paths, with the �nal goal of minimizing the overall distortionper
eived by the media 
lients. All these works rely on a given set of transmission paths, andtry to optimally exploit these network resour
es. However, none of them spe
i�
ally targets theoptimal 
hoi
e of the streaming paths and the 
orresponding rate allo
ation problem.2.4.7 PositioningWhile a lot of works 
on
entrate on the media streaming domain as presented above, we 
onsiderthat numerous issues still remain unsolved or just partially addressed. We fo
us on a one-to-onestreaming s
enario de�ned by the transmission of a s
alable en
oded media sequen
e over a beste�ort network 
omprising multiple available paths between the server and the 
lient. While thisframework is promising in terms of future media delivery appli
ations, 
onsidering the emergingnetwork ar
hite
tures, it also poses spe
i�
 problems not thoroughly investigated yet. For examplethe joint optimization of appli
ation sour
e rate, transmission path 
hoi
e and path rate allo
ationremains unaddressed. In this thesis, we propose a mathemati
al model for analyzing this problem.Our analysis leads to the derivation of general rules and algorithms for e�
ient streaming in both
entralized or distributed network s
enarios.At the same time, we shift the fo
us of our proposed solutions from the traditional optimizationof network metri
s towards appli
ation-oriented quality metri
s. Our joint 
onsideration of networkresour
es and 
onstraints on one side, and appli
ation-spe
i�
 requirements on the other side, givesus new leverage during the transmission de
ision pro
ess. From this point of view, in our workwe go one step beyond the state of the art solutions, in order to provide more e�
ient medias
heduling solutions, with in
reased robustness against network shortages. Our methods generallyguarantee smoother quality variations at the 
lient 
ompared to previous methods, while still beingsimple and requiring limited 
omputational resour
es.Finally, we provide a possible appli
ation s
enario where media appli
ations are integrated in ageneral servi
e network. By fully exploiting the s
alability properties of the latest media en
odingstandards, along with new appli
ation-oriented optimization metri
s, we a
hieve better and morefair 
lient per
eived results.



Chapter 3Media Flow Rate Allo
ation inMultipath Networks
3.1 Introdu
tionIn this 
hapter, we address the problem of joint path sele
tion and sour
e rate allo
ation in order tooptimize the media spe
i�
 quality of servi
e when streaming stored video sequen
es on multipathnetworks. An optimization problem is proposed in order to minimize the end-to-end distortion,whi
h depends on video sequen
e dependent parameters, and network properties. An in-depthanalysis of the media distortion 
hara
teristi
s allows us to de�ne a low 
omplexity algorithmfor an optimal �ow rate allo
ation in multipath network s
enarios. In parti
ular, we show that agreedy allo
ation of rate along paths with in
reasing error probability leads to an optimal solution.We argue that a network path shall not be 
hosen for transmission, unless all other available pathswith lower error probability have been 
hosen. Moreover, the 
hosen paths should be used attheir maximum available end-to-end bandwidth. Simulation results show that the optimal �owrate allo
ation 
arefully adapts the total streaming rate and the number of 
hosen paths to theend-to-end transmission error probability. In many s
enarios, the optimal rate allo
ation providesmore than 20% improvement in re
eived video quality, 
ompared to heuristi
-based algorithms.This motivates its use in multipath networks, where it optimizes media spe
i�
 quality of servi
e,and simultaneously saves network resour
es at the pri
e of a very low 
omputational 
omplexity.The main 
ontributions brought in this 
hapter 
an be brie�y summarized as follows:

• We propose a general framework for streaming of pre-en
oded media data in multipathnetworks, whi
h en
ompasses network and media aware metri
s;
• We perform the �rst theoreti
al media �ow analysis on the optimality of number, and 
hoi
eof network paths, in terms of end-to-end Quality of Servi
e;
• We provide a linear time media aware routing algorithm that outputs the optimal set ofnetwork paths to be used in streaming pre-en
oded video sequen
es, along with the 
orre-sponding �ow rate distribution.The 
hapter is organized as follows: Se
tion 3.2 presents the streaming framework and formu-lates our optimization problem. The theoreti
al analysis of the streaming pro
ess is developed inSe
tion 3.3 and Se
tion 3.4 presents the routing algorithm. We dis
uss pra
ti
al implementations
enarios and limitations in Se
tion 3.5 and present our main results in Se
tion 3.6. Finally we
on
lude in Se
tion 3.7. 17
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enario.3.2 Distortion Optimized Multipath Media Streaming3.2.1 Multipath Network ModelWe 
onsider a framework where the media streaming appli
ation uses a multipath network, whi
h
an be represented as follows. The available network between a media server S and a 
lient C ismodeled as a fully 
onne
ted dire
ted a
y
li
 graph G(V, E), where V = {Ni} is the set of nodes inthe network, and E is the set of links or segments (see Figure 4.11). Ea
h link Lu = (Ni, Nj) ∈ E
onne
ting nodes Ni and Nj has two asso
iated positive metri
s:
• the available bandwidth ρu > 0 expressed in some appropriate unit (e.g., kbps), and,
• the average loss probability θu ∈ [0, 1], assumed to be independent of the streaming rate.Let P = {P1, ..., Pn} denote the set of available loop-free paths between the server S andthe 
lient C in G, with n the total number of non-identi
al end-to-end paths. A path Pi =

(S, Ni, Nj, ..., C) is de�ned as an ordered list of nodes and their 
onne
ting links, su
h that no nodeappears more than on
e, and that ea
h link Lu between two 
onse
utive nodes in the path belongsto the set of segments E. Let further bi and pi denote respe
tively the end-to-end bandwidth andloss probability of path Pi. We de�ne the bandwidth of an individual path Pi as the minimum ofthe bandwidths among all links on the path (i.e., the �bottlene
k bandwidth"). Hen
e, we have
bi = min

Lu∈Pi

(ρu) . (3.1)Under the 
ommonly a

epted assumption that the loss pro
ess is independent on two 
on-se
utive network segments, and identi
ally distributed on two or more �ows traversing the samesegment, the end-to-end loss probability on path Pi be
omes a multipli
ative fun
tion of theindividual loss probabilities of all segments 
omposing the path. It 
an be written as:
pi = 1 −

∏

Lu∈Pi

(1 − θu) . (3.2)Finally, the media appli
ation sends data at rate ri on path Pi, with a 
ost ci. The 
ostrepresents the pri
e to be paid by the streaming appli
ation, for using path Pi. As, in general,the underlying transport medium should be transparent for the appli
ation, we de�ne the 
ostfun
tion as dependent only on the total �ow rate ri sent by the appli
ation on path Pi. A linear
ost relation is simply expressed as follows :
ci =

{

k · ri if Pi is used, with ri ≤ bi

0 if Pi is not used , (3.3)where k is a 
onstant (i.e., the 
ost fa
tor is identi
al for any path Pi ∈ P). In this networkmodel, e�
ient streaming strategies have to 
arefully allo
ate the rate between the di�erent net-work paths. The goal of the next se
tions is to get the best out of the multipath network, both interms of 
ost, and from a media-driven quality of servi
e perspe
tive.
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lient.3.2.2 From Network Graph to Flow TreeIn order to study the �ow rate allo
ation problem in multipath networks, we use a �ow treerepresentation of the network graph G. The media server be
omes the root of the tree, and ea
h�ow Fi represents the share of the overall media stream, whi
h is sent on a network path Pi. Themedia stream is the 
omposition of individual media �ows, and the 
lient is represented as a set ofleaf nodes, with one leaf per �ow. Note that several methods in graph theory have been proposedfor 
onstru
ting su
h trees, and we rather 
on
entrate in our work on the rate allo
ation problem,among the bran
hes of the tree. In this 
ase, the rate allo
ation be
omes a �ow assignmentproblem.Considering that there is (at most) one �ow for ea
h network path Pi, we 
an transform theoriginal network graph G into a �ow tree by dupli
ating any network edge and vertex that isshared by more than one network path, as represented in Figure 3.2. Sin
e the transformationfrom paths to �ows is bije
tive, ea
h �ow is 
hara
terized by a maximal end-to-end streaming rate,and an end-to-end loss probability, as 
omputed in Se
tion 3.2.1. The �ow Fi on path Pi uses astreaming rate ri ≤ bi, with a loss probability pi, and a 
ost ci = k · ri.Due to the assumption of rate independent loss pro
ess, any two �ows in the tree are inde-pendent in terms of loss probability. However, �ows may be dependent in terms of aggregatedbandwidth, sin
e they may share joint bottlene
k links. The �ow tree representation allows usto expli
it the 
onstraints imposed on a valid rate allo
ation. These 
onstraints are imposed bybandwidth limitation on the network links, and �ow 
onservation in the network nodes. The ne
-essary and su�
ient 
onditions for the �ow tree model to be a valid representation of the originalnetwork graph 
an �nally be grouped into single �ow, and multiple �ow 
onstraints and expressedas:1. Single Flow Constraints:
• path bandwidth limitations: ri ≤ bi, ∀Pi ∈ P ;
• �ow 
onservation at intermediate nodes: for every node Nj ∈ Pi, rin

i = rout
i = ri, where

rin
i and rout

i are the in
oming and respe
tively outgoing rates of Fi passing throughnode Nj.2. Multiple Flow Constraints:
• link bandwidth limitations:

∑

Pi:Lu∈Pi

ri ≤ ρu, ∀Lu ∈ E;
• �ow 
onservation at intermediate nodes: for every node Nj ∈ V :
∑

Pi

rin
i =

∑

Pi

rout
i =

∑

Pi

ri, ∀Pi : Nj ∈ Pi.



20 CHAPTER 3. MEDIA FLOW RATE ALLOCATION IN MULTIPATH NETWORKSWhile the transformation between the network graph and the �ow tree 
an be made for anytype of graph, the 
hoi
e of transmission paths in the �ow tree may a�e
t the total availableresour
es of the network. Let path Pi be o

upied by �ow Fi 
hara
terized by its rate ri, andlet G′ be the residual graph, after isolating �ow Fi. We de�ne f = maxflow(G(V, E)) as themaximum �ow rate sustained by the network graph G. For general network graphs the followingrelation is always true:
f ≥ ri + f ′, (3.4)where f ′ is the maximum �ow of the residual graph G′.We identify a spe
ial 
ategory of network graphs for whi
h the previous relation always yieldsan equality, independent of our 
hoi
e of Fi. We 
all this graphs as �ow-equivalent graphs.Flow-equivalent graphs 
ontain every possible network graph that exhibits a single joint networksegment, or multiple joint network segments belonging to independent network subgraphs. Moregeneral network graphs may also belong to the 
ategory of �ow-equivalent graphs, dependingon the network segment parameters. As �ow-equivalent graphs map most 
ommon streamings
enarios and o�er a simpli�ed analysis of our optimization problem, they will be used in the restof this 
hapter.3.2.3 Media-Driven Quality of Servi
eThe end-to-end distortion, as per
eived by the media 
lient, 
an generally be 
omputed as thesum of the sour
e distortion and the 
hannel distortion. In other words, the quality depends onboth the distortion due to a lossy en
oding of the media information, and the distortion due tolosses experien
ed in the network. The sour
e distortion DS is mostly driven by the sour
e orstreaming rate R and the media sequen
e 
ontent, whose 
hara
teristi
s in�uen
e the performan
eof the en
oder (e.g., for the same bit rate, the more 
omplex the sequen
e, the lower the quality).The sour
e distortion de
ays with in
reasing en
oding rate; the de
ay is quite steep for low bitrate values, but it be
omes very slow at high bit rate. The 
hannel distortion DL is dependent onthe average loss probability π, and the sequen
e 
hara
teristi
s. It is roughly proportional to thenumber of video entities (e.g., frames) that 
annot be de
oded 
orre
tly, and an in
rease in lossprobability augments the 
hannel distortion DL. Overall, the end-to-end distortion 
an thus bewritten as:

D = DS + DL = f(R, π, Γ) , (3.5)where Γ represents the set of parameters that des
ribe the media sequen
e. This generi
 distor-tion model is quite 
ommonly a

epted, as it 
an a

ommodate a variety of streaming s
enarios.For example, when error 
orre
tion is available, the total streaming rate has to be split betweenthe video sour
e rate that drives the sour
e distortion DS and the 
hannel rate, whi
h dire
tlyin�uen
es the video loss rate π [85℄.The total streaming rate R, and the end-to-end loss probability π dire
tly depend on thepath sele
tion and the �ow rate allo
ation. In the multipath s
enario des
ribed before, the mediaappli
ation uses rate allo
ation ~R = [r1, ...rn], where the �ow rate ri, with 0 ≤ ri ≤ bi, representsthe streaming rate on path Pi ∈ P . The total media streaming rate R is expressed as:
R =

n
∑

i=1

ri ≤
n
∑

i=1

bi . (3.6)The overall loss probability π experien
ed by the media appli
ation 
an be 
omputed as theaverage of the loss probabilities of the n paths:
π =

∑n
i=1 pi · ri
∑n

i=1 ri

. (3.7)



3.2. DISTORTION OPTIMIZED MULTIPATH MEDIA STREAMING 21The average end-to-end distortion model is a simple and general approximation, suitable formost 
ommon streaming strategies where the number of pa
kets per frame is independent of theen
oding rate. Note that the a
tual video loss pro
ess is likely to present a low 
orrelation, dueto the usage of multiple paths. Under the given network assumptions, the video distortion metri
be
omes quite insensitive to the a
tual link error model, and is mostly in�uen
ed by the averageloss probability on the given network segment.It is important to note that in
reasing R with the addition of a path redu
es the sour
e distor-tion. However, the addition of a path generally impa
ts the loss probability π, and may augmentthe 
hannel distortion. The optimal �ow rate allo
ation therefore results from a trade-o� betweenin
reasing the streaming rate, and 
ontrolling the end-to-end loss probability. Finally, sin
e pathsmay not be 
ompletely disjoint, ~R is a valid rate allo
ation on the network graph G, if and onlyif G 
an simultaneously a

ommodate the �ow rates on all paths in P . A ne
essary 
ondition forthe equality in the right-hand side of Eq. (3.6) to be veri�ed requires that all bottlene
k links ofthe n streaming paths are disjoint. Su�
ient 
onditions for valid rate allo
ation are analyzed inthe next se
tion.3.2.4 Multipath Rate Allo
ation: Problem FormulationWe 
onsider the problem of the optimal routing and rate allo
ation strategy, for a given videostream that 
an be split into �ows sent on di�erent network paths between the streaming server,and the media 
lient. The rate 
onstraints are dire
tly given by the network status, as shownbefore, and the overall streaming rate 
an be adapted by simple operations at the server (e.g.,pa
ket �ltering). We 
an formulate the optimal multipath rate allo
ation problem as follows.Given a network graph G, the optimization problem 
onsists in jointly �nding the optimalsending rate for a video pa
ket stream, along with the optimal subset of network paths to beused for transmission, su
h that the end-to-end distortion is minimized. Equivalently, using the�ow tree representation of the network graph proposed in Se
tion 3.2.2, the optimization problemtranslates into �nding the optimal rate allo
ation for ea
h of the �ows in the tree, su
h that thevideo distortion is minimized. It 
an be formulated as follows:Multimedia Rate Allo
ation Problem (MMR): Given the network graph G, the numberof di�erent paths or �ows n, the video sequen
e 
hara
teristi
s (Γ), and the total streaming budget
Q, �nd the optimal rate allo
ation ~R∗ = [r1, ...rn]∗ that minimizes the distortion metri
 D:

~R∗ = arg min
~R

D(r1, ...rn)

= arg min
~R

f(R, π, Γ) (3.8)where R =

n
∑

i=1

ri and π =

∑n
i=1 pi · ri
∑n

i=1 ri

, under the following 
onstraints:1. Budget Constraints: ∑n
i=1 ci ≤ Q;2. Single Flow Constraints;3. Multiple Flow Constraints.In the next se
tion, we present a detailed analysis of a typi
al distortion model for videosequen
es. While the non-
onvexity of the optimization metri
 does not permit an easy solutionby integration of the 
onstraints into a Lagrangian formulation, our analysis eventually allows usto de�ne a simple algorithm, able to �nd the optimal rate allo
ation for �ow-equivalent graphs,with linear time 
omplexity.
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tion of r2, for various �xed valuesof r1.3.3 Flow Rate Allo
ation Analysis3.3.1 End-to-end Distortion ModelWe introdu
e in this se
tion a quite generi
 distortion model, whi
h is able to 
apture the in�uen
eof the average en
oding rate on the sour
e distortion, as well as the impa
t of losses on the 
hanneldistortion. Re
all that our obje
tive is to �nd the best �ow rate allo
ation on a multipath networkwith known average statisti
s. Hen
e, we are looking for an average distortion model that is ableto estimate the video quality of servi
e in a stationary regime.In low to medium bit rate video streaming, it is 
ommonly a

epted that the sour
e distortion isa de
aying exponential fun
tion on the en
oding rate, while the 
hannel distortion is proportionalto the number of lost pa
kets (i.e., the pa
ket loss probability, when the number of pa
ket perframe is independent of the bit rate) [182℄. Hen
e, we 
an expli
itly formulate the Mean-SquareError distortion metri
 as:
D = α · Rξ + β · π (3.9)where α, β ∈ ℜ+ and −1 ≤ ξ ≤ 0 are parameters that depend on the video sequen
e. Thisdistortion model is a simple and general approximation that follows 
losely the behavior of moresophisti
ated distortion measures, su
h as those proposed in [183�185℄. Sin
e it is suitable formost 
ommon streaming strategies where the number of pa
kets per frame is independent of theen
oding rate, we use the model of Eq. (3.9) in the remainder of this 
hapter. It 
an be noted thatour simple model does not take into a

ount the exa
t 
hara
teristi
s of the loss pro
ess, and thatit mostly 
aptures the e�e
t of independent losses. We assume that bursts of losses on the videopa
ket stream are quite unlikely due to the partitioning in multiple �ows. Simple interleaving 
analso be applied to redu
e the e�e
ts of bursts, if delay permits it. Finally, we should stress outthat bursts of video pa
kets losses are in general less penalizing for the 
hannel distortion [83℄, sothat our model has the advantage to provide a worst 
ase estimate of the end-to-end distortion.Before going deeper in the analysis of �ow rate allo
ation, we propose a simple example toillustrate the behavior of the end-to-end video distortion in a multipath s
enario. We 
onsidera basi
 network s
enario 
onsisting of two disjoint network paths, P1 and P2, with bandwidth

b1 = b2 = 1000kbps, and loss probabilities p1 = 2% and p2 = 4%, respe
tively. Consider twoindependent �ows F1 and F2 
omposing the same video stream, and traversing the two networkpaths with streaming rates r1 ≤ b1, and r2 ≤ b2. The evolution of the distortion fun
tion given inEq. (3.9) is presented in Figure 3.3, for a test video sequen
e (i.e., Foreman CIF).As expe
ted, we observe that the de
rease in distortion is larger if we in
rease the rate of �ow
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F1, than if we equivalently in
rease the rate of �ow F2. This behavior is due to the lower lossprobability that a�e
ts the path followed by the �ow F1. At the same time, we observe that thedistortion metri
 is always de
reasing with the in
rease of r1, hen
e it is optimal to fully utilize thebandwidth of the path with the smallest loss probability. In this 
ase, for a given pa
ket loss rate,it is better to in
rease the quality of ea
h video frame by augmenting the rate r1, as expe
ted.More interestingly, Figure 3.4 shows that the behavior of the distortion as a fun
tion of the rate
r2, depends on the value of the rate r1. For high values of r1, the distortion 
an even in
rease withgrowing rate r2. Beyond a given value of the streaming rate on the most reliable network path,adding an extra �ow 
an degrade the end-to-end quality of the media appli
ation sin
e the pa
ketloss rate in
reases. In this 
ase, the negative in�uen
e of the error pro
ess on the se
ond networkpath is greater than the improvement brought by additional streaming rate. Su
h a behavior isthe key to explain why using all the paths to their full bandwidth does not ne
essarily result in ane�
ient strategy when streaming video data. Finally, the same type of behavior 
an be observedfor stored video pa
ket streams that are built on video pa
kets and error 
ontrol pa
kets (e.g.,Forward Error Corre
tion). In this 
ase, the sensitivity of the 
hannel distortion is obviously lowerfor low error rates, but rapidly in
reases when the 
hannel prote
tion be
omes insu�
ient.3.3.2 Maximum or Null FlowsWe now generalize the previous observations, and derive theorems that guide the design of anoptimal rate allo
ation strategy for a given video pa
ket stream in a �ow equivalent network. Thisse
tion shows that, in the optimal rate allo
ation, a �ow is either used at its full bandwidth, or notused at all. Furthermore, the optimal rate allo
ation always 
hooses the lowest loss probabilitypaths, i.e., a path shall not be sele
ted, unless all other paths with a lower loss probability havebeen pi
ked before. We start from an ideal streaming s
enario with unlimited budget and disjointnetwork paths, and eventually add budget and �ow 
onstraints, whi
h are however shown not toa�e
t the initial �ndings.Assume that the n disjoint network paths are represented into a tree of �ows as explained inSe
tion 3.2.2. Without loss of generality, we further assume that �ows Fi with 1 ≤ i ≤ n, arearranged in in
reasing order of the loss probability, i.e., p1 < p2 < ... < pn. We note that, fromthe distortion metri
 point of view, any two �ows Fi and Fj, with rates ri and rj and traversingpaths Pi and Pj with the same loss probability pi = pj , 
an be observed as a single �ow a�e
ted bythe same loss probability pi, and having an aggregated rate ri + rj . Under these generi
 settings,we �rst 
laim that the optimal rate allo
ation either uses a network path to its full bandwidth, ordoes not use it at all.Theorem 3.3.1 (On-O� Flows). Given a �ow tree with independent �ows Fi having rates ri ∈
[0, bi] and a distortion metri
 as de�ned in Eq. (3.9), the optimal solution of the MMR problemwhen all the paths are disjoint, lies at the margins of the value intervals for all ri. In other words,the optimal value of ri is either 0 or bi, ∀i : 1 ≤ i ≤ n.Proof. Deriving the distortion D given in Eq. (3.9) with respe
t to the rate ri, ∀i : 1 ≤ i ≤ n, weobtain:

∂D(r1, ...rn)

∂ri

= αξ(
∑

ri)
ξ−1 + β ·

pi

∑

rj −
∑

pjrj

(
∑

ri)2

= αξ(
∑

ri)
ξ−1 + β ·

∑

j rj · (pi − pj)

(
∑

ri)2Observe that the 
ondition for an extremum, ∂D(r1,...rn)
∂ri

= 0 for any ri, implies:
α · ξ · (ri + λ)ξ+1 + β · µ = 0where λ and µ stay 
onstant in our pro
eeding. Sin
e 0 ≤ ξ + 1 ≤ 1, the equation has a single�nite solution:
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r∗i = ξ+1

√

β · µ

−α · ξ
− λAt the same time, the derivative in any point ri < r∗i is positive, while to the right of theoptimal value, it is negative (sin
e ξ < 0, and all other terms are positive). Hen
e r∗i is a point oflo
al maximum for the distortion fun
tion D, whi
h means that only values at the margins of thevalue interval for ri 
an minimize the obje
tive fun
tion1.It 
an be further observed that, in the 
ase of r1, it holds that ∂D

∂r1
< 0, for any positive valueof r1 (sin
e ξ < 0, α, β > 0 and p1 − pj < 0, ∀j : 2 ≤ j ≤ n). Hen
e the value r1 = b1 alwaysminimizes the obje
tive fun
tion, and is part of the optimal solution.Corollary 3.3.1. Given a �ow tree with independent �ows Fi having rates ri ∈ [0, bi] and adistortion metri
 as de�ned in Eq. (3.9), the optimal solution of the MMR problem when all pathsare disjoint, allo
ates r1 = b1, where the path P1 is the path with the lowest loss probability.Theorem 3.3.1 greatly redu
es the sear
h spa
e for an optimal solution to the MMR optimiza-tion problem. Hen
e we 
an rewrite the optimal streaming solution as a ve
tor Φ of boolean values

φi for ea
h �ow Fi, where φi = 1 means that path Pi is used with full rate ri = bi, and φi = 0denotes the fa
t that the path Pi is not used by the streaming appli
ation. The previous 
orollaryfurther says that Φ = [φ1 = 1, φ2, ..., φn] is part of the optimal solution.For bounded intervals for all rates ri, 2n−1 
omputations are su�
ient for �nding the optimalsolution ve
tor. For pra
ti
al s
enarios, with a limited number of available network paths betweena server and a 
lient, this number of 
omputations is in general quite low. We 
an however further
onstrain the sear
h spa
e by 
onsidering that the optimal rate allo
ation always uses �rst thenetwork paths with the smallest loss probabilities.Theorem 3.3.2 (Parameter De
oupling). Given a �ow tree with independent, disjoint �ows Fihaving rates ri ∈ [0, bi] and a distortion metri
 as de�ned in Eq. (3.9), the stru
ture of the optimalrate allo
ation is Φ∗ = [1, 1, ..., 1, 0, 0, ...0].Proof. We prove the result by indu
tion. Re
all that the network paths/�ows are arranged inin
reasing order of their loss probabilities pi. We have already seen that Φ = [φ1 = 1, φ2, ..., φn] ispart of the optimal solution. Next we show that, for n ≥ 3, Φ = [φ1 = 1, φ2 = 0, φ3 = 1, φ4, ..., φn]
annot be part of the optimal solution.For the sake of 
larity, let us remove φi's with i > 3 from the notation, sin
e they stay
onstant in our proof. By 
ontradi
tion, assume that Φ is part of the optimal solution. It meansthat D(b1, 0, b3) < D(b1, 0, 0). Sin
e the paths are ordered with in
reasing values of the lossprobabilities and 
onsidered to be disjoint, we 
an always transfer part of the rate from F3 to F2,and improve the distortion. Let r2 = min(b2, b3), and r3 = [b3 − b2]
+. We have:

D(b1, r2, r3) < D(b1, 0, b3) < D(b1, 0, 0)The �rst inequality 
omes from the de�nition of the distortion metri
, the se
ond one from theassumption that Φ is part of the optimal solution. We 
an further distinguish two 
ases:
• b2 ≤ b3. Then, r2 = b2, and r3 ≥ 0. A

ording to Theorem 3.3.1, there exists a solution

D(b1, b2, b3 · φ∗
3) < D(b1, b2, r3) < D(b1, 0, b3), with φ∗

3 ∈ {0, 1}. Φ 
annot be part of theoptimal solution sin
e φ∗
2 = 1, whi
h 
ontradi
ts our assumption.

• b2 > b3. Then, r2 = b3 and r3 = 0, and we have D(b1, b3, 0) < D(b1, 0, b3) < D(b1, 0, 0).From Theorem 3.3.1, there exists an even better solution where r2 = b2, leading to Φ∗ =
[110], whi
h again 
ontradi
ts our assumption.1Sin
e r∗i is the only �nite solution, this statement is valid even if r∗i is not 
ontained in [0, bi].



3.3. FLOW RATE ALLOCATION ANALYSIS 25Next, we prove that Φ = [1...1, 0...0, 1...1, φm, ..., φn] 
annot be part of the optimal solution. Inother words, we prove that the optimal rate allo
ation Φ∗ 
an only be a series of 
onse
utive 1's,followed by a series of 
onse
utive 0's. Let φj = 0 and φk = 0, with j < m, k < m, be the startand end of the series of 
onse
utive 0's in Φ. Following the same reasoning as before, transferringrate from �ows Fi, with k + 1 < i < m − 1, to Fj 
an only improve the overall distortion. If
bj ≤

∑m−1
i=k+1 bi, it dire
tly leads to a solution with φj = 1 that is better than Φ. Otherwise,it leads to a solution where rj =

∑m−1
i=k+1 bi and φi = 0 for j < i < m, whi
h 
an further beimproved by 
hoosing either rj = bj or rj = 0 (from Theorem 3.3.1). Both 
ases ex
lude φj = 0and φi = 1 for j < i < m to be simultaneously part of the optimal solution. The proof 
an furtherbe extended to the 
omplete series of 
onse
utive 0's in Φ.The previous theorems show that we 
an �nd the optimal solution for our optimization problemby iteratively sear
hing all available network paths Pi, taken in as
ending order of their lossprobability pi. On
e we �nd a network path that 
an improve the overall distortion result, beforeusing it, we have to make sure that all other network paths with better loss parameters are alreadyused to their maximum available bandwidth. Hen
e, the sear
h spa
e is redu
ed to a maximumof n 
omputations.3.3.3 Non-Disjoint Network PathsWe now show that, relaxing the assumption on disjoint network paths in the original networkgraph does not 
hange the general form of the optimal solution, in the 
ase of �ow-equivalentgraphs. We assume that in the original �ow-equivalent network graph G, there is at least onebottlene
k link Lu, shared by at least two distin
t network paths. Let Bu = {Pk}, ∀k : Lu ∈ Pk,be the set of paths sharing the bottlene
k link Lu. In this parti
ular 
ase, while using any of thepaths Pk alone yields an available bandwidth bk ≤ ρu, using all of them in the same time results inan aggregated bandwidth ∑k bk ≥ ρu. Note that Lu may or may not be a bottlene
k link for anyof the paths Pk treated independently. The paths Pk in Bu are 
alled �joint paths". The followingtheorem regulates the sharing of bandwidth ρu among paths Pk:Theorem 3.3.3 (Bottlene
k Bandwidth Sharing). Let Lu be a bottlene
k link for the set of paths

Bu = {Pk} in the �ow-equivalent graph G, the bottlene
k link bandwidth ρu shall be shared amongpaths Pk in a greedy way, starting with the path a�e
ted by the lowest loss probability.Proof. As previously, let the paths Pk ∈ Bu be arranged in in
reasing order of their loss probabil-ities pk. Let further ~Ru = {rk}Pk∈Bu
denote a valid rate allo
ation among the non-disjoint paths.Re
all that a valid rate allo
ation has to satisfy the single �ow 
onstraints (i.e., rk ≤ bk, ∀k), andthe multiple �ow 
onstraints,∑

k

rk ≤ ρu. Let Pi be the path with the lowest loss probability in
Bu. If ri < bi in ~Ru, and∑k,k 6=i ri > 0, one 
an always �nd a better rate allo
ation by transferringrate from other �ows sharing the same bottlene
k link, to the �ow Fi. Sin
e the total rate stays
onstant, the rate transfer does not a�e
t the sour
e distortion, and does not violate the multiple�ow 
onstraints. It however redu
es the 
hannel distortion, resulting in improved overall perfor-man
e. By indu
tion, the proof 
an be extended to all non-disjoint paths in the �ow-equivalentnetwork. This shows that for any valid, but non-greedy rate allo
ation ~Ru = {rk}Pk∈Bu

, thereexists a better solution that uses in priority the lowest loss probability paths.Note that the previous theorem 
an easily be extended to any number of bottlene
k links in
G(V, E) and to paths that belong to di�erent sets Bu in the same time. The joint bottlene
klink rate allo
ation pro
edure stays optimal as long as G belongs to the 
lass of �ow-equivalentnetwork graphs. Theorem 3.3.3 permits to extend Theorem 3.3.2 to generi
 network graphs, withpotentially non-disjoint paths, as long as G is a �ow-equivalent graph. It results in the generalrule that paths should be taken in the in
reasing order of their loss probability, and that all the�ows should be used to their maximum 
apa
ity, whi
h 
an be limited by joint bottlene
k links,before 
onsidering an additional �ow. Interestingly, any �ow-equivalent network s
enario 
an thus
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Figure 3.5: In
lusion of budget or en
oding rate 
onstraints as a virtual network link in theoriginal network graph.be transformed into a disjoint �ow tree, by a greedy allo
ation of joint bottlene
k bandwidths to�ows a�e
ted by lower loss probabilities �rst. After this transformation, applying Theorem 3.3.1and Theorem 3.3.2 will yield the optimal rate allo
ation for the given streaming s
enario.Finally, we 
an relax the assumption of independent �ows in Theorem 3.3.1 by proper adap-tation of the maximal bandwidth of all non-disjoint paths.Corollary 3.3.2. Given a �ow-equivalent network with �ows Fi ordered in in
reasing order oftheir loss probability, and a distortion metri
 as de�ned in Eq. (3.9), the optimal solution of theMMR problem lies at the margins of the value intervals for all ri. In other words, the optimal valueof ri, ∀i : 1 ≤ i ≤ n, is either 0 or b′i = min(bi, wi), where wi = min
u:Lu∈Pi

{ρu −
∑

k:Lu∈Pk and pk<pi

b′k}.Finally, multipath streaming appli
ations may also have to respe
t a budget 
onstraint Q =
∑

i kri, or a maximal en
oding rate Rc in the 
ase of pre-en
oded media sequen
e. These 
on-straints 
an be modelled as an additional virtual bottlene
k link going out of the server. Figure 3.5shows su
h a transformation, where link L0 and node N0 are added to the topology in order toin
orporate the previous overall 
onstraints. Link L0 should not in�uen
e the loss pro
ess ofthe intermediate network, hen
e θ0 = 0. The bandwidth ρ0 is established at ρ0 = min(Q
k
, Rc),where Q and Rc are simply set to ∞ in the 
ase where there are no limitative fa
tors on the totalbandwidth. Applying Theorem 3.3.1, Theorem 3.3.2 and Theorem 3.3.3 on the new network graph

G
′

= (E, V, L0, N0) (whi
h remains a �ow-equivalent graph,a s long as G(V, E) is a �ow-equivalentgraph), yields an optimal rate allo
ation for a stored pa
ket stream, whi
h fully takes into a

ountthe budget and en
oding rate 
onstraints.3.4 Rate Allo
ation Algorithm3.4.1 Linear Complexity Sear
h AlgorithmThe analysis proposed in Se
tion 3.3 shows that a simple algorithm 
an �nd the optimal rate allo-
ation by parsing all available network paths in as
ending order of their loss probability. Denote
Φi = [φ1, ..., φn] a solution ve
tor with φj = 1, ∀j ≤ i and φj = 0 otherwise. R(Φi) =

i
∑

j=1

rjbe
omes the 
umulative rate of the �rst i �ows, whose individual rates have been 
hosen a

ord-ing to Corollary 3.3.2. The overall loss probability of the �rst i �ows, π(Φi), is then given by
π(Φi) =

∑i
j=1 pj · rj
∑i

j=1 rj

. The Sear
h Algorithm iteratively 
omputes D(R(Φi), π(Φi)), for 1 ≤ i ≤ n,and the optimal rate allo
ation is the poli
y Φ∗ that minimizes the distortion metri
:
Φ∗ = arg min

Φi,1≤i≤n

D(R(Φi), π(Φi)) (3.10)The algorithm will be able to �nd the global optimal rate allo
ation only after parsing allavailable network paths. From the previous theorems, the optimal rate allo
ation solution Φ∗
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onse
utive series of 1's, followed by a 
onse
utive series of 0's, hen
e requiringa maximum of n 
omputations. We propose below a few 
onditions for early termination, whi
hmay avoid to test all possible solutions, while still ensuring a global optimal solution. These
onditions represent an extra 
omplexity redu
tion of the optimum sear
h2.3.4.2 Conditions for Early TerminationThe sear
h algorithm has to iteratively 
ompute D(Φi), for in
reasing values of i. A full sear
hthrough n possible solutions may however be avoided, if any one of the following termination
onditions is veri�ed:1. Distortion Limitation: If D(Φi−1) ≤ β · pi, then the optimal rate allo
ation 
ontains φj = 0,
∀j ≥ i.It 
an be shown from the distortion fun
tion given in Eq. (4.1) that lim

bi→∞
D(Φi) = β · pi,when other rates bj stay un
hanged, ∀j 6= i. Hen
e, for a value of D(Φi−1) ≤ β · pi, addinganother �ow on path Pi will asymptoti
ally in
rease the overall distortion metri
 to β · pi.Therefore, for any positive value of bj , with j ≥ i, and pj ≥ pi, adding extra rate on path

Pj will only in
rease the distortion measure in this 
ase.2. Path Bandwidth Limitation: Solving the equation D(Φi−1) = D(Φi) for the variable rimay provide, ex
ept the trivial solution ri = 0, another positive, �nite value for ri, notedas r
′

i. This se
ond solution happens in the 
ase where D(Φi−1) ≥ β · pi and R(Φi−1) ≥

e
ln(−

β
α·ξ

(pi−π(Φi−1))

ξ . The later value is obtained by solving ∂D(Φi)

∂ri

|ri=0= 0. It representsthe minimum rate ri−1, after whi
h, adding an extra rate ri 
ould lead to an in
rease indistortion. In the 
ase where bj ≤ r
′

i, ∀Pj with j ≥ i, adding another �ow, will not de
reasethe overall distortion, sin
e unused bandwidth is not su�
ient anymore to 
ompensate forthe in
rease in loss probability in 
ase an extra �ow is added. In that 
ase, a

ording toTheorem 3.3.2 and to the de�nition of the distortion metri
, D(Φj) ≥ D(Φi−1, r
′

i), hen
e
D(Φj) ≥ D(Φi−1), ∀j ≥ i.Any of the above 
riteria represents a su�
ient 
ondition for sear
h termination from thetheoreti
al point of view, and 
an be applied at any stage of the optimal solution 
omputation.3.4.3 Rate Allo
ation AlgorithmThis se
tion presents a simple algorithm that 
omputes the optimal rate allo
ation for the opti-mization problem. The previous theorems and 
onditions for termination represent the keys for afast sear
h through the �ow tree. Assume that the server knows, or 
an predi
t the parametersof the intermediate network links, and the sequen
e-dependent distortion parameters. Initially,the network graph is transformed into a tree of �ows Fi, sorted along in
reasing values of the lossprobabilities pi, with greedy assignment of joint bottlene
k link bandwidths. In 
ase where twonetwork paths have the same end-to-end loss probability, they are 
onsidered as a single path withaggregated bandwidth. The sear
h for an optimal solution of the shape given by Theorem 3.3.2is performed iteratively. At ea
h step, the early termination 
onditions are veri�ed. On
e any ofthem is satis�ed, or when the algorithm �nishes the sear
h of all �ows, the algorithm stops andoutputs the optimal multipath rate allo
ation strategy. Algorithm 1 proposes a sket
h of the rateallo
ation algorithm.During the initialization pro
ess, Algorithm 1 must 
ompute all available paths between thestreaming server S and the 
lient C. This is a well-known problem in graph theory, and a solution2Please note that the problem in general 
an be solved in less than linear time (e.g., O(log(n)) 
omputations).However, due to the limited number of paths 
hosen for transmission, as re�e
ted by our simulation results, thelinear time algorithm that parses the available network paths in as
ending order of their loss probability, along withthe 
onditions for early termination, a
hieve the optimal solution even faster.



28 CHAPTER 3. MEDIA FLOW RATE ALLOCATION IN MULTIPATH NETWORKSAlgorithm 1 Optimal Streaming Rate Allo
ationInput:2: Server S, Client C, Available Flow-Equivalent Network Topology G(V, E), Budget Q, Maxi-mum En
oding Rate Rc;Output:4: Optimal Rate Allo
ation Poli
y Φ∗;Initialization:6: Initial Rate Allo
ation Φ = [φ1, φ2, ...φn] = [1, 0, ..., 0], a

ording to Theorem 3.3.1;Compute the set of available paths Pi ∈ P , with their individual bi and pi;8: Pro
edure RateAllo
ationAddress 
onstraints Q and Rc as in Se
tion 3.3.3;10: De
ouple joint paths a

ording to Theorem 3.3.3;Arrange the network paths is as
ending order of their loss probabilities pi and 
onstru
t theFlow Tree;12: for i = 1 to n doCompute D(Φi), where Φi represents a rate allo
ation with the �rst i �ows used at theirmaximum bandwidth, and the other �ows are omitted;14: if any of the termination 
onditions 'Distortion Limitation' or 'Path Bandwidth Limitation'is satis�ed thenbreak;16: end ifend for18: Output Φ∗ = arg min
Φi,1≤i≤n

D(R(Φi), π(Φi));
an be easily found by implementing a depth-�rst sear
h (DFS) [186℄, for example. The algorithmthen arranges the dis
overed network paths as a �ow tree in as
ending order of their end-to-endloss probabilities. Any sorting algorithm of 
omplexity O(n log(n)) 
an be used. After the �owtree is 
onstru
ted, the 
ore of the algorithm �nds the optimal rate allo
ation with a 
omplexity
O(n), at maximum.3.5 Dis
ussionIn this se
tion we dis
uss the pra
ti
al deployment of the me
hanisms proposed above, and someof their limitations. The problem formulation and the methodology for the optimal �ow rateallo
ation of a given video pa
ket stream over multipath networks, are valid for numerous en
odings
enarios, in
luding o�-line joint sour
e and 
hannel 
oding of media streams. We assume thatthe server is not able to perform 
omplex 
oding operations in real-time, mostly for 
omputational
omplexity and s
alability issues. In su
h a s
enario, adaptive streaming strategy mostly 
onsistin �nding the best routing strategy, and overall rate allo
ation, for the transmission of a givenpa
ket stream on a given multipath network. Additional bene�ts are o�ered when several versionsof the same stream are available at the server. Due to the low 
omplexity of our algorithm, theserver 
ould identify both the best transmission strategy, and the best stream to be sent, with anadditional 
omplexity that is only linear with the number of stored versions. Su
h a design 
hoi
eis also bene�
ial in broad
ast appli
ations, where several 
lients are a

essing the same stream.In su
h situations, �ne adaptation of the pa
ket stream to ea
h individual 
lient is impossible.Coupled with e�
ient pa
ket partitioning strategy, our �ow rate allo
ation solution however o�ersinteresting perspe
tives in these s
enarios.In typi
al network infrastru
tures, bandwidth and loss rate are quite dynami
. However, theyusually exhibit stable statisti
s on medium range times
ales (i.e., in the order of few hundredsof millise
onds, to se
onds). We assume that the server 
an estimate the average end-to-endbandwidth ri and loss probability pi of the available paths to the 
lient, for su
h timeframes.



3.5. DISCUSSION 29Additionally, we assume that ea
h path is 
hara
terized by a total end-to-end delay δi, imposedon all pa
kets traversing that path. Finally, the 
lient imposes a maximum tolerable payba
k delay
∆, after whi
h it starts playing the media �le. Given the estimated parameters ri, pi and δi, theserver 
hooses the optimal transmission strategy in order to maximize the re
eived media quality.While the fastest estimation me
hanisms on end-to-end s
enarios provide a

urate results on timeframes of a few se
onds [16℄, our rate allo
ation me
hanism 
onverges to the optimal solution ina very small number of 
omputations. Sin
e our algorithm has a low 
omplexity, it 
an be runperiodi
ally, with updated network parameter estimates. It ensures the best transmission strategyfor a stored video stream, given the a

ura
y of the periodi
 network parameter estimation.We identify a few typi
al s
enarios where optimal rate allo
ation between multiple streampaths 
an bring interesting bene�ts in terms of media quality. In ea
h of these examples, theappli
ation of the algorithm proposed above is straightforward.1. Wired Overlay Network S
enarios (e.g., Peer-to-Peer or Content Distribution Networks).The media information from a server/peer is forwarded towards the 
lient by multipleservers/peers belonging to the same overlay network. The 
lient 
onsumes the aggregatedmedia from multiple network paths, and the algorithm proposed above 
an be applied di-re
tly to �nd the optimal rate allo
ation.2. Wireless Network S
enarios (e.g., WiFi Networks). A wireless 
lient 
an aggregate the mediainformation transmitted on multiple wireless 
hannels. Interferen
e among transmission
hannels 
an be minimized by 
hoosing non-overlapping wireless 
hannels (e.g., there are 8non-overlapping 
hannels a

ording to the IEEE 802.11a standard spe
i�
ations), and byoptimizing the transmission s
hedule in the wireless network [187℄. The authors of [60℄ testa proto
ol sta
k that allows one wireless network 
ard to be simultaneously 
onne
ted to,and swit
h between, multiple networks in a transparent way for the appli
ation. In the sametime, the authors of [188℄ present a video system over WLANs that uses multiple antennasin order to aggregate the rate of multiple wireless 
hannels.3. Hybrid Network S
enarios (e.g., UMTS/GPRS/WiFi Networks). A mobile 
lient 
an simul-taneously bene�t from multiple wireless servi
es in order to retrieve the media informationfrom a server 
onne
ted to the internet ba
kbone. Existing 
ommer
ial produ
ts [61℄ 
analready maintain 
onne
tivity to multiple wireless servi
es (e.g., UMTS, EDGE/GPRS andWiFi hotspots), and transparently swit
h at any time to the servi
e that o�ers the best
hannel performan
e, for a �xed subs
ription pri
e. It is only a question of time beforesu
h 
ommer
ial produ
ts will be able to aggregate the resour
es of multiple su
h servi
esin order to enhan
e the user streaming experien
e, and tele
ommuni
ations operators area
tively working on su
h systems.All these appli
ations 
an be modelled a

ording to Se
tion 3.2.1, and the implementation ofthe proposed algorithm is generi
 and independent of any parti
ular bandwidth and loss model,as long as the media �ows 
an be 
onsidered independent in terms of losses. This assumption isvalid in any disjoint path network s
enario, sin
e the media �ows are independent in terms of bothrate and losses. In generi
 network s
enarios, our analysis still holds (namely the transformationbetween the network graph and the tree of �ows in Se
tion 3.2.2), as long as the predominantlosses a�e
ting the transmission pro
ess are independent among media �ows (e.g., s
enarios 2 and3). An analysis of the rate allo
ation problem in general networks 
hara
terized by a Gilbert lossmodel (where the transformation in Se
tion 3.2.2 
an only be 
onsidered as an approximation)
an be found towards the end of this 
hapter.It 
an be noted that the appli
ations mentioned above present in general a limited number ofavailable network paths between the streaming server and the 
lient. It is fairly easy for a serverto 
ontinuously monitor these paths and to estimate their parameters. Based on these parameters,the exe
ution of the proposed algorithm will output the optimal 
hoi
e of paths and rates in termsof average media quality at the 
lient. For very large network s
enarios, it 
an be noted that the
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R= 512 kbps, Th.(b) Loss Distortion ValidationFigure 3.6: Distortion Model Validation with Video Streaming Experiments using the H264en
oder.assumption of full knowledge about the network 
an be relaxed in setting up a distributed versionof the proposed algorithm as presented in the next 
hapter.Finally, the network path sele
tion and �ow rate allo
ation problem does not 
onsider mediapa
ketization and network s
heduling issues. These issues are typi
ally addressed at a lower and�ner level. The pa
ketized media stream 
an be split into pa
ket �ows 
orresponding to the 
hosennetwork paths, assuming a very simple s
heduling algorithm. Given the estimated rates and delayson all the network paths, the server adapts the streaming rate to the available network bandwidthby simple operations on stored video pa
ket stream. Then, it s
hedules the pa
kets on the di�erentpaths a

ording to the estimated arrival times at the 
lient [189℄. Network estimation errors andjitter 
an further be 
ompensated at the 
lient with the use of appli
ation dedi
ated bu�ers and
onservative playba
k delay. Interleaving may also be implemented to �ght against bursty losspro
esses when delays permits it.3.6 Simulation Results3.6.1 Simulation SetupWe test our optimal rate allo
ation algorithm in di�erent network s
enarios, and we 
ompareits performan
e to heuristi
 rate allo
ation algorithms. We use an H.264 en
oder, and the de-
oder implements a simple frame repetition error 
on
ealment strategy in 
ase of pa
ket loss. We
on
atenate the foreman_cif sequen
e to produ
e a 3000 frame-long video stream, en
oded at30 frames per se
ond. The en
oded bitstream is pa
ketized into a sequen
e of network pa
kets,ea
h pa
ket 
ontaining information related to one video frame. The pa
kets are sent through thenetwork on the 
hosen paths, in a FIFO order, following a simple earliest-deadline-�rst s
hedul-ing algorithm. We further 
onsider a typi
al video-on-demand (V oD) streaming s
enario, wherethe admissible playba
k delay is large enough (i.e., larger than the time required to transmit thebiggest pa
ket on the lowest bandwidth path). Hen
e, a video pa
ket is 
orre
tly de
oded at the
lient, unless it is lost during transmission due to the errors on the network links. Finally, sin
eany budget/
ost 
onstraints 
an be easily integrates in the network setup as proven earlier, we donot 
onsider them as a limiting fa
tor in the following simulations.Our simulations �rst validate the distortion metri
 proposed in Eq. (3.9). Then, the perfor-man
e of our optimal rate allo
ation algorithm is 
ompared to heuristi
 rate allo
ation algorithms,on a set of random network topologies. Finally, we 
arefully analyze the behavior of optimal rateallo
ation for a parti
ular network s
enario, and dis
uss optimal solutions.
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(c) Hybrid NetworkFigure 3.7: Three Network S
enarios.3.6.2 Distortion Model ValidationThe video sequen
e is en
oded at rates between 200kbps and 1Mbps, and the mean-square-error(MSE) between the original sequen
e and the de
oded one is 
omputed, in error-free s
enarios.Simulation results are 
ompared in Figure 3.6(a) to the distortion model values, whose parametershave been set to α = 1.7674 · 105, ξ = −0.65848, and β = 1750, respe
tively. We observe that themodel distortion 
urve 
losely follows the experimental data, whi
h validates the sour
e distortionmodel.In order to validate the loss distortion 
omponent DL, random errors are introdu
ed during thenetwork transmission pro
ess, where ea
h pa
ket is lost with an independent loss probability PLR.Simulations are performed with di�erent values of loss probabilities, and di�erent en
oding rates.We observe in Figure 3.6(b) that the theoreti
al model 
losely approximates the experimental data,where ea
h experimental point is averaged over 10 simulation runs. Even if it stays quite simple,the distortion model used in our work 
losely �ts the average behavior of lossy video streamings
enarios. Note that the sequen
e-dependent parameters may obviously have di�erent values forother en
oders or other video sequen
es. The evolution of the distortion fun
tion however staysthe same, independently of the exa
t values of these parameters.3.6.3 Rate Allo
ation Performan
eWe now present the performan
e of the proposed optimal rate allo
ation algorithm, in variousrandom network s
enarios. We simulate three di�erent 
ategories of network topologies:1. Wired network graphs, in whi
h the edges between nodes are 
hara
terized by high bandwidthand low error probability;2. Wireless network graphs, with low bandwidth and high error probability for the intermediatelinks;3. Hybrid network s
enarios, where the server is 
onne
ted to the wired infrastru
ture, and the
lient 
an a

ess the internet via multiple wireless links.The network s
enarios are presented in Figure 3.7. In ea
h of the three 
ases, we generate 500random graphs, where any two nodes are dire
tly 
onne
ted with a probability γ. The parametersfor ea
h edge are randomly 
hosen a

ording to a normal distribution, in the interval [ρmin, ρmax],for the bandwidth, and respe
tively [θmin, θmax] for the loss probability. The parameters for thewired and wireless s
enarios are presented in Table 3.1. The hybrid s
enario uses the parametersof both s
enarios.For ea
h of the three types of s
enarios, we 
ompute the average end-to-end distortion whenrates are optimally allo
ated, and we 
ompare it to the results obtained by other simple rateallo
ation algorithms, namely, (i) a single path transmission s
enario, whi
h sele
ts the best pathin terms of loss probability (DPLR), (ii) a single path transmission s
enario (DR), whi
h uses the



32 CHAPTER 3. MEDIA FLOW RATE ALLOCATION IN MULTIPATH NETWORKSTable 3.1: Parameters for Random Graph GenerationParameter Wired S
enario Wireless S
enarioNr. of Nodes 10 10Conne
tivity Probability γ 0.4 0.6
ρmin 106bps 105bps
ρmax 3 · 106bps 7 · 105bps
θmin 10−4 10−3

θmax 5 · 10−3 4 · 10−2Table 3.2: Average Distortion Results (MSE)S
enario Dopt DPLR DR D2R DMFWireless 91.2 99.74 122.861 143.79 108.52Wired 16.7 20.47 23.4 23.27 17.62Hybrid 63.4 73.809 83.97 92.533 72.57best path in terms of e�e
tive bandwidth or �goodput" 
omputed as bi (1 − pi), (iii) a multipathtransmission s
enario (D2R) that pi
ks the best two paths in terms of goodput, and (iv) a multipathtransmission s
enario that uses the maximum available number of �ows, denoted as DMF . Theresults, averaged over 500 random graphs are presented in Table 3.2.As expe
ted, our algorithm provides the best average performan
e in the three 
onsidereds
enarios. It has to be noted that, in ea
h individual run of simulation, our algorithm neverperforms worse than any of the heuristi
 s
hemes. Also, we observe that, in the wireless s
enario,the rate allo
ation that is the 
losest to the optimal strategy is the one o�ered by the use of thebest single path in terms of loss rate. This 
an be explained by the high loss probabilities of theintermediate links, whi
h 
annot be 
ompensated by extra rate added by subsequent �ows. On theother hand, in the wired s
enario, 
hara
terized by very small loss probabilities, the s
heme thatis the 
losest to the optimal solution is given by the greedy use of all available �ows. In this 
ase,the improvement brought by adding extra transmission rate outruns the losses su�ered throughoutthe transmission pro
ess. The results for the hybrid s
enario are situated, as expe
ted, betweenthe two extreme 
ases. The total streaming rates in the three s
enarios are in average, R = 4Mbpsfor the wired s
enario, R = 450kbps for the wireless s
enario, and respe
tively R = 800kbps forthe hybrid one.
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enar-ios.Table 3.3: Average Number of PathsS
enario Optimal Nr. Available Nr.Wireless 2.04 5.04Wired 3.049 4.856Hybrid 2.17 4.419Next, we study the bene�t o�ered by optimal rate allo
ation, as 
ompared to the simpleheuristi
 s
hemes. The relevan
e of the optimal solution is measured by 
ounting the number ofsimulation runs in whi
h the optimal rate allo
ation brings an improvement of [0−5%], [5−10%],
[10−20%] and above 20%, in terms of end-to-end video distortion, 
ompared to the other streamingstrategies. The results are presented in Figure 3.8, Figure 3.9, Figure 3.10.We observe that, in more than half of the 
ases, network �ooding represents a good approx-imation of the optimal solution in the wired s
enario where losses are rare. However, we arguethat it is still worth applying the proposed rate allo
ation algorithm, be
ause it is of very low
omplexity, and 
an still save network resour
es. In the wireless s
enario, the best approximationis presented in most of the 
ases by the lowest loss probability path streaming. Still, in almost 40%of the simulation runs, the optimal rate allo
ation improves the distortion result by more than10%. Finally, in the hybrid s
enario, the rate allo
ation algorithm provides signi�
ant qualityimprovements 
ompared to all other heuristi
 approa
hes. It is also interesting to observe that therate allo
ations based on the best goodput path, and best two goodput paths algorithms alwaysprovide the worst results.We also 
ompute the optimal average number of �ows used in ea
h simulation s
enario, 
om-pared to the average number of available paths. The results are presented in Table 3.3. Weobserve that the wireless s
enario uses the smallest number of �ows, while the wired one has anaverage of no more than three �ows, for a number of available paths that is far larger. Fromthe multipath streaming point of view, it interestingly shows that, using a very large number ofstreaming paths does not 
ontribute to an improvement of the video quality at the re
eiver. Thisis 
ertainly interesting for the design of pra
ti
al multipath streaming systems, where the numberof paths that have to be syn
hronized, stays limited. The distribution of the number of �ows usedper simulation run, is presented in more details in Figure 3.11.In summary, we observe that a small number of transmission �ows is su�
ient for an optimalvideo quality at the re
eiver, in all simulation s
enarios. Paths with lower error probability shouldbe preferred to higher bandwidth paths in wireless s
enarios, while in all-wired s
enarios with lowerror probability, adding high-rate �ows 
an improve the overall video quality. In hybrid s
enarios,a 
ompromise between the two tenden
ies is expe
ted to provide the best end-to-end distortion.



34 CHAPTER 3. MEDIA FLOW RATE ALLOCATION IN MULTIPATH NETWORKSTable 3.4: Parameter Values for the Links in G(V, E)Parameter L1 L2 L3 L4 L5 L6 L7

θi 0.02 0.01 0.035 0.01 0.015 0.035 0.01
ρu (kbps) 256 384 256 128 256 256 128

(a) Available Network Graph

(d) Optimal Flow Allocation(c) Best Goodput Path

(e) Best Goodput Two Paths (f) Maximum Flow Graph

(b) Best PLR Path
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enarios Compu-tation: Theoreti
al Distortion Model vs. Ex-perimentally Computed Distortion.3.6.4 A Case StudyThis se
tion proposes to analyze the performan
e of the optimal rate allo
ation algorithm in a givennetwork s
enario, illustrated in Figure 3.12. The network parameters are presented in Table 3.4.For ea
h of the �ve rate allo
ation algorithms, we 
ompute the distortion measure a

ording tothe theoreti
al distortion metri
, and we validate it against experimental values, obtained fromsimulations with video sequen
es. Ea
h experimental point is averaged over 10 simulation runs.Ea
h video pa
ket is s
heduled on the network paths 
hosen by the given rate allo
ation algorithm,a

ording to a simple �rst-available path �rst. In the same time, ea
h video pa
ket is a�e
ted bythe individual loss pro
ess of ea
h traversed network segment.TheR and π parameters, along with the model and experimental distortion values are presentedin Figure 3.13, for ea
h of the algorithms. It 
an be observed that the optimal rate allo
ationalgorithm outperforms all other heuristi
-based strategies. The optimal rate allo
ation rea
hes abalan
e between total used bandwidth, number of network paths, and error probability that a�e
tsthe streaming pro
ess. The example 
learly shows that it is not optimal to use only the best pathsin terms of rate. In the same time, the greedy use of all available network resour
es does notprovide better results. This 
learly motivates the implementation of the proposed rate allo
ationalgorithm, whi
h optimizes the re
eived video quality without wasting network resour
es. Finally,it 
an be noted again that the theoreti
al distortion model represents a very good approximationof the experimental setup.3.7 Con
lusionsIn this 
hapter, we propose to use a �ow model to analyze the opportunity of multipath mediastreaming over the internet. Based on an equivalent transformation between the available networkgraph and a tree of �ows, we jointly determine the network paths and the optimal rate allo
ation forgeneri
 streaming s
enarios represented by �ow-equivalent graphs. A media spe
i�
 performan
emetri
 is used, whi
h takes into a

ount the end-to-end network path parameters along with mediaaware parameters.An in-depth analysis of the end-to-end distortion behavior, in the given network s
enario,



3.7. CONCLUSIONS 35drives the design of a linear time algorithm for optimal rate allo
ation. The form of the optimalrate allo
ation solution follows a simple greedy rule that always uses the paths with the lowestloss probability �rst. In parti
ular, we show that extra network paths are either used at theirmaximum available bandwidth, if their value is large enough, or simply ignored. The overall rateallo
ation solution o�ers a 
areful trade-o� between extra transmission rate and in
rease in theend-to-end error pro
ess. Even for large network s
enarios, only a small number of paths shouldbe used for transmission, and moreover, they should be 
hosen among the lowest loss probability
hannels.The optimal rate allo
ation algorithm has been tested in various random network s
enarios,and it signi�
antly outperforms simpler s
hemes based on heuristi
 rate allo
ation strategies. Inmany 
ases, our algorithm even provides an end-to-end distortion improvement of more than20%. Due to its low 
omplexity, and important bene�ts in most streaming s
enarios, the optimalrate allo
ation algorithm provides a very interesting solution to e�
ient media streaming overresour
e-
onstrained networks.
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Chapter 4Distributed Media Rate Allo
ationin Multipath Networks
4.1 Introdu
tionThis 
hapter extends our work on media-spe
i�
 rate allo
ation and path sele
tion in multipathnetworks by 
onsidering pra
ti
al implementations based on distributed algorithms. In 
ommonpra
ti
al s
enarios, it is di�
ult for the server to have the full knowledge about the networkstatus. Therefore we propose here a distributed path sele
tion and rate allo
ation algorithm,where the network nodes parti
ipate to the optimized path sele
tion and rate allo
ation, basedon their lo
al view of the network. This eliminates the need for end-to-end network monitoring,and allows for the deployment of large s
ale rate allo
ation solutions. We design a distributedalgorithm for optimized rate allo
ation, where the media 
lient iteratively determines the bestset of streaming paths, based on information gathered by network nodes. A

ording to this rateallo
ation, ea
h intermediate node forwards in
oming media �ows on the outgoing paths, in adistributed manner. The proposed algorithm is shown to qui
kly 
onverge to the optimal rateallo
ation, and hen
e to lead to a stable solution. We also propose a distributed greedy algorithmthat a
hieves 
lose-to-optimal end-to-end distortion performan
e in a single pass. Both algorithmsare shown to outperform simple heuristi
-based rate allo
ation approa
hes for numerous randomnetwork topologies, and therefore o�er an interesting solution for media-spe
i�
 rate allo
ationover large s
ale multi-path networks.We build on the work presented in the previous 
hapter, whi
h provides a server-driven frame-work for the analysis of joint path and rate allo
ation in multipath streaming, based on media-spe
i�
 quality metri
s. We 
onsider a network model 
omposed of multiple �ows between the
lient and the streaming server, whi
h 
an moreover adapt the media sour
e rate (by trun
atingof s
alable streams, or pa
ket �ltering for example). The joint path sele
tion and rate allo
ationperforms iteratively, until all intermediate nodes 
onverge to a (unique) optimal solution. Initially,the intermediate network nodes together report the resour
es available for the streaming session.Based on this information, the 
lient determines the best path sele
tion and rate allo
ation, andgenerates �ow reservation requests to the intermediate network nodes and the streaming server.The 
lient-based �ow reservation is then a

ommodated within the network on a node-by-nodebasis.The rest of this 
hapter is organized as follows. Se
tion 4.2 des
ribes in detail the streamings
enario 
onsidered, and presents the rate allo
ation optimization problem. We present our dis-tributed solutions in Se
tion 4.3 and we analyze the 
hara
teristi
s of the proposed algorithms inSe
tion 4.4. Extensive simulation results are �nally presented in Se
tion 4.5, for numerous networktopologies, and for a pra
ti
al s
enario that is analyzed in details.37
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Local Network View 
At Node i

Node i

Lu(bu,pu)

Ii={Lu}

Oi={Lu}

Server S

Client CFigure 4.1: Multipath Network S
enario and Network View at Node Ni.4.2 The Multipath Rate Allo
ation Problem4.2.1 Network and Video ModelWe 
onsider that the media streaming appli
ation is deployed on a large s
ale network, modeledlike in the previous 
hapter, as a �ow-equivalent network graph G(V, E), between the streamingserver S and the 
lient C (Figure 4.1). V is the set of nodes in the network, and E is the set oflinks. Ea
h node Ni ∈ V has a lo
al view Ni = {Ii, Oi} of the network topology, where Ii ⊆ Eand Oi ⊆ E represent the sets of in
oming, and respe
tively outgoing network links to, and fromnode Ni. Ea
h link Lu ∈ E has two asso
iated positive metri
s: the available bandwidth ρu > 0,and the average pa
ket loss probability θu ∈ [0, 1).We de�ne P i
C , 1 ≤ i ≤ n, as an end-to-end path between S and C in G, with parameters bi

Cand pi
C being the end-to-end bandwidth and loss probability respe
tively, and n the total numberof distin
t paths. A �ow1 transmitted on path P i

C has a streaming rate ri
C ≤ bi

C = min
Lu∈P i

C

(ρu), andis a�e
ted by the loss probability pi
C = 1 −

∏

Lu∈P i
C

(1 − θu).We de�ne a similar video distortion model for the streaming appli
ation as in the previous
hapter, 
onsisting of the sum of the sour
e distortion DS and 
hannel distortion DL. The averageend-to-end distortion 
an thus be written as:
D = DS + DL = α · Rξ + β · π, (4.1)where α, β ∈ ℜ+ and ξ ∈ [−1, 0) are parameters that depend on the video sequen
e. In the abovemultipath streaming s
enario, the streaming rate 
an simply be written as the sum of the rates ofthe di�erent �ows :

R =
n
∑

i=1

ri
C .We assume that the streaming server 
an tune the media sour
e rate to the transmission
onditions (by s
alable 
oding, or trans
oding, for example). In the same time, when the losspro
esses on di�erent paths are independent, the overall loss probability be
omes :

π =

∑n
i=1 pi

C · ri
C

∑n
i=1 ri

C

.1Throughout this 
hapter, the terms �ow and end-to-end network path are used inter
hangeably.



4.3. DISTRIBUTED RATE ALLOCATION 39The remainder of this se
tion presents the distributed optimization problem, whose aim isto �nd the optimal �ow rate allo
ation in order to maximize the re
eived media quality at the
lient. We then present our solution to the optimization problem in the rest of the 
hapter. Theassumption on full network status knowledge at a given node 
an therefore be released, and theneed of end-to-end monitoring me
hanisms eliminated.4.2.2 Distributed Optimization ProblemWe now formalize the distributed path sele
tion and rate allo
ation problem addressed in this
hapter. When no single node Ni ∈ V (in
luding S), is aware of the entire network topology G,we want to �nd the optimal path sele
tion and �ow rate allo
ation that minimizes the overalldistortion D at the 
lient. Under the assumptions that the streaming rate 
an be 
ontrolled (e.g.,by s
alable en
oding, or pa
ket �ltering), and that pa
ket loss rate is independent of the streamingrate, the server S adapts the video en
oding rate to the aggregated rate of the available networkpaths used for streaming, and to the loss pro
ess experien
ed on these paths. The optimizationproblem 
an be formulated as follows:Distributed Multimedia Rate Allo
ation Problem (DMMR): Given the �ow-equivalent networkgraph G(V, E) whose links Lu have a maximal bandwidth ρu and an average loss ratio θu, given thenode lo
al views Ni, ∀Ni ∈ V and given the video sequen
e 
hara
teristi
s (Γ = (α, β, ξ)), �nd the
omplete set of end-to-end paths P i
C , 1 ≤ i ≤ n and the optimal rate allo
ation ~R∗ = [r1

C , ...rn
C ]∗that minimizes the distortion metri
 D:

~R∗ = arg min
~R

D = arg min
~R

(α · Rξ + β · π) , (4.2)under 
onstraints:
ri
C ≤ bi

C , ∀P i
C , 1 ≤ i ≤ n

∑

P i
C

:Lu∈P i
C

ri
C ≤ ρu, ∀u s.t. Lu ∈ Ewhere ~R represents the set of possible rate allo
ation on G(V, E), R =

n
∑

i=1

ri
C and π =

∑n
i=1 pi

C · ri
C

∑n
i=1 ri

C

.4.3 Distributed Rate Allo
ation4.3.1 Distributed Path ComputationWe present in this se
tion two algorithms for distributed path sele
tion and rate allo
ation. Thealgorithms di�er in the 
omputation of the paths between the server S and the 
lient C. Beforedes
ribing in detail the distributed path 
omputation and rate allo
ation strategies, we brie�yintrodu
e the notation and assumptions ne
essary to their presentation. Re
all that every node
Ni ∈ V has only a lo
al view of the network topology, denoted by Ni = {Ii, Oi}. Ii and Oi arethe sets of in
oming and respe
tively outgoing links to/from Ni. We assume that Ni possesses anestimate of the bandwidth ρu and loss probability θu on the outgoing links (i.e., ∀Lu ∈ Oi).Let P k

i denote a path 
onne
ting the node Ni to the server. In addition to maximal bandwidth
bk
i and loss probability pk

i , a path is 
hara
terized by two de
ision �ags that are used by thedistributed rate allo
ation algorithms. The �ag fk is a path reservation �ag that 
an only be setor reset by the 
lient C, respe
tively the server S, and the �ag dk is a de
ision �ag that 
an beupdated by any intermediate node on the path P k
i . While fk is used to advertise the network �ows
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lient C, dk is used to signal the feasibility of a requested �ow at an intermediatenode.We denote by Πi = {P k
i } the set of all distin
t paths between the server S and the node Ni.Note that two distin
t paths P k

i and P l
i may not ne
essarily be fully disjoint, as they may shareone or more network links. Without loss of generality, we assume that the paths in Πi are ordereda

ording to the in
reasing value of the path loss probabilities pk

i . Let �nally Πu
i ⊆ Πi be the setof distin
t paths between the server S and the node Ni, whi
h share the in
oming link Lu ∈ Ii.End-to-end paths between the server and the 
lient are then built in a distributed manner,sin
e no node has the full knowledge of the network status. These paths are 
omputed by pathextension, whi
h is performed independently at ea
h network node. We de�ne → as the pathextension operator that adds a link Lu ∈ Oi leaving node Ni, to an in
oming path P k

i ∈ Πi. Inother words, if link Lu 
onne
ts nodes Ni and Nj , we 
an write P l
j = P k

i → Lu, with P l
j ∈ Πu

jand P k
i ∈ Πi. We 
an 
ompute the bandwidth and loss probability parameters for the extendedpath P l
j = P k

i → Lu respe
tively as bl
j = min(bk

i , ρu), and pl
j = 1 − (1 − pk

i )(1 − θu).We propose two di�erent methods for distributed path 
omputation (employed by the twoproposed algorithms), whi
h respe
tively 
onstru
ts all the possible paths, or builds them in agreedy manner with respe
t to their loss pro
ess. Formally, the two path extension rules 
an bestated as follows.Rule 4.3.1. Ea
h in
oming path P k
i ∈ Πi at node Ni is extended towards all the outgoing links

Lu ∈ Oi.If the set of outgoing links dire
tly 
onne
t Ni to several nodes Nj, the set of extended paths atnode Ni 
an be written as Ωi = {P l
j = P k

i → Lu | P k
i ∈ Πi, Lu ∈ Oi}. The subset of the extendedpaths that borrow the parti
ular outgoing link Lu is written as Ωu

i = {P l
j = P k

i → Lu | P k
i ∈ Πi}.All paths with null bandwidth are obviously omitted. It is easy to see in this 
ase that |Ωu

i | =
|Πi|, and that |Ωi| = |Πi||Oi|, where |X | represents the 
ardinality of X . The size of the set ismultipli
ative in the number of in
oming �ows and in the number of outgoing links [190℄. It has tobe noted that resour
e allo
ation for �ows in Ω is 
onstrained by the available bandwidth on jointbottlene
k links, and that all the paths may not be used simultaneously at their full transmissionbandwidth.Rule 4.3.2. The in
oming paths P k

i ∈ Πi at node Ni, taken in order of in
reasing loss probability
pk

i are extended towards the outgoing links Lu ∈ Oi, taken in de
reasing order of reliability. Sim-ilarly to a water-�lling algorithm, the total outgoing bandwidth is greedily allo
ated to the set ofin
oming paths, until all the in
oming paths are extended, or until no more bandwidth is available.When the sets of outgoing links, and the in
oming paths are both ordered along in
reasingvalues of loss probability, the set of extended paths at node Ni 
an be written as:
Γi = {P l

j = P k
i → Lu |

u
∑

µ=1

ρµ >

k−1
∑

ν=1

bν
i and u−1

∑

µ=1

ρµ <

k
∑

ν=1

bν
i }.The subset of the paths in Γi that borrow the outgoing link Lu is denoted Γu

i . Note that inthis 
ase, simultaneous resour
e allo
ation for all �ows in Γi is feasible on G.Based on the distributed path 
omputation that follows either Rule 1, or Rule 2, we nowdes
ribe the rate allo
ation strategy and present the optimal and greedy algorithms for multipathmedia streaming.4.3.2 Distributed Path Sele
tion and Rate Allo
ationThe distributed path 
omputation and rate allo
ation algorithms pro
eed �rst by determining thepaths available between the server and 
lient, and then by reserving paths a

ording to the optimalallo
ation 
omputed by the 
lient. They pro
eed in two phases, the path dis
overy and the path
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A. Initiate Path
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B. 1. Aggregate incoming 
Path messages ;
2. Compute the rate allocation 
according to Rule 1 or Rule 2;
3. Update and forward Path
messages .

C. 1. Compute flow 
reservation;
2. Initiate Resv messages .

D. 1. Aggregate Resv 
messages ;
2. Make flow reservation ;
3. Update and forward 
Resv messages .

E. 1. Aggregate Resv messages ;
2. Compute flows;
3. Start streaming/Next iteration.

Path Message
Resv MessageFigure 4.2: Distributed path sele
tion and reservation.reservation phases, respe
tively. To this aim, 
ontrol messages are ex
hanged between the server

S and the 
lient C, and forwarded by the intermediate nodes, as illustrated in Fig. 4.2. We assumethe existen
e of a bidire
tional 
ontrol 
hannel between any two nodes in G that are 
onne
tedby a network segment Lu. In order to derive exa
t bounds on the performan
e of our algorithms,we assume that the 
ontrol 
hannel is reliable, and that nodes are syn
hronized, i.e., any nodere
eives all dedi
ated 
ontrol pa
kets in a bounded time interval. Note that these assumptions arenot 
ru
ial to the design of the proposed algorithms, whi
h 
an work with looser syn
hronization.Loose node syn
hronization 
an be a
hieved by employing separate syn
hronization proto
ols [191℄.Most works addressing de
entralized systems [168℄ generally assume loose node syn
hronizationin order to derive bounds on proto
ol performan
e.The server sends on all outgoing links path dis
overy messages, Pathu, whi
h are forwarded bythe intermediate nodes on the 
ontrol 
hannel asso
iated with link Lu. At ea
h intermediate node,the Path messages 
ontain the information bk
i and pk

i related to every possible �ow between theserver and node Ni, along with potential information related to previously su

essfully reserved�ows. The node then extends the path a

ording to Rule 1 or Rule 2 (in the 
ase of Algorithm 1 orAlgorithm 2 respe
tively), and forwards path dis
overy message Pathu that 
ontains informationabout the paths that borrow links Lu. Depending on the path extension strategy, the 
lient willeventually re
eive information about all possible paths, or only a subset of them that are 
omputedin a greedy manner, based on de
reasing reliability.Upon re
eption of path dis
overy messages, the 
lient C 
omputes the optimal path sele
tion
Π∗

C using the Theorems 3.3.1 to 3.3.3, and the information it gets from the nodes about end-to-end paths. It should be noted that these theorems greatly simplify the rate allo
ation, sin
e theystate that paths should be either used at their full bandwidth, or simply dropped. The 
lientthen initiates path reservation messages, Resvu, whi
h are forwarded by the network nodes tothe server, on the ba
kward 
ontrol 
hannel asso
iated with link2 Lu. A path reservation message
Resvu 
ontains information about the path(s) that should be reserved on link Lu for the streamingsession (e.g., requested rate bk

C , end-to-end loss probability pk
C and �ags fk and dk, whi
h areboth set to 1 by C). However, there is no guarantee that all paths in Π∗

C 
an be a

ommodatedsimultaneously. On
e all Resv messages are re
eived at node Ni (one for ea
h outgoing link), thenode Ni attempts to greedily allo
ate the bandwidth for the requested �ows (dk = fk = 1) on theoutgoing links, following the order of in
reasing loss probability pk
C . It eventually marks the �owsthat 
annot be reserved at the requested rate bi

C , by setting the �ag dk = 0. On
e a valid subsetof paths Π∗ ⊆ Π∗
C is su

essfully reserved by S (i.e., all dk �ags are set to 1), the nodes updatetheir lo
al view of the network, N ′

i = Ni \ Π∗, and new path dis
overy messages are issued. The2Due to pra
ti
al implementation 
onsiderations, an empty Resv message should be sent even on links that donot 
ontain any reserved �ow. Alternatively, timeouts should be implemented at ea
h intermediate node.
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tion and Rate Allo
ation Algorithmsserver S: node Ni:upon re
eive Resvu, ∀Lu ∈ OS : upon re
eive Resvu, ∀Lu ∈ Oi:1. 
ompute Π∗
C based on �ags fk; 1. ∀ paths P k

i ∈ {P k
i }|P

k
i → Lu ∈ Resvu \ Π∗:2. update Π∗ based on �ags dk; set dk = 0 if bk

C > ρ′u,3. if Π∗ = ∅ or Π∗ = Π∗
C , return Π∗. where the available output bandwidth ρ′u4. else update network view N ′

S is updated a

ording to a greedy allo
ation;send Pathu, ∀Lu ∈ OS . 2. send Resvv, ∀Lv ∈ Ii.node Ni: 
lient C:upon re
eive Pathu, ∀Lu ∈ Ii: upon re
eive Pathu, ∀Lu ∈ IC :1. update network graph N ′
i 1. 
ompute the set of available paths ΠC ;2. 
ompute available paths Πi a

ording to N ′

i ; 2. 
ompute the optimal allo
ation Π∗
C from ΠC ;3. 
ompute extended paths Ωi, resp. Γi, ∀Lv ∈ Oi, 3. ∀P k

C ∈ Π∗
C , set fk = dk = 1;a

. to Rule 1 (Alg. 1) or Rule 2 (Alg. 2)4. send dis
overy messages Pathv, ∀Lv ∈ Oi. 4. send reservation messages Resvv, ∀Lv ∈ IC .
lient aggregates information about the residual network resour
es, and updates the path sele
tion

Π∗
C a

ordingly. The pro
ess is iterated until 
onvergen
e to the optimal rate allo
ation, whi
h isrea
hed when all �ows reserved by C 
an be a

ommodated by the network at the requested rate

bk
C .The distributed path sele
tion and rate allo
ation algorithms illustrated in Fig. 4.2 are �nallysummarized in Algorithm 2, where the left-hand side, and right-hand side 
olumns respe
tively
orrespond to the path dis
overy, and path extensions phases. Initially, both algorithms start atthe server side, with Step 4. The algorithms di�er in the path extension rule (step 3 in the bottomleft blo
k). For the sake of 
larity, we 
all Algorithm 1, resp. Algorithm 2, the distributed pathallo
ation and rate allo
ation solutions that rely on Rule 1, resp. Rule 2 for path extension.The path extension rule dire
tly 
ontrols the 
onvergen
e to the stable rate allo
ation, butalso the quality of the rate allo
ation. Comprehensive information about end-to-end paths as
reated by Rule 1 allows to rea
h an optimal rate allo
ation, but at the expense of possibly severaliterations of the path reservation s
hemes. The algorithm however 
onverges in a small numberof rounds to a feasible solution, given the network graph G. The Rule 2 
onstru
ts only a limitedsubset of end-to-end network paths, given a greedy forwarding solution at ea
h intermediate node

Ni. It allows for a qui
ker 
omputation of the solution, whi
h may however be suboptimal. Bothalgorithms are analyzed in Se
tion 4.4 and their performan
e is 
ompared in Se
tion 4.5.4.4 Analysis and Dis
ussion4.4.1 PropertiesThis se
tion proposes an analysis of the path sele
tion and rate allo
ation algorithms introdu
ed inthe previous se
tion. Under the assumption that the network is stable during the exe
ution of ouralgorithms, we derive hard bounds on the 
onvergen
e of the rate allo
ation towards the optimizedsolution. Observe that one iteration of the algorithms requires one 
omplete message ex
hangebetween S and C, on the available paths. Hen
e, the time required by one round is in the order ofthe round trip time (RTT) of the slowest paths in the network. The 
omputations at intermediatenodes and at S and C are trivial and their duration 
an be negle
ted. The assumption about thestability of the network in terms of average bandwidth and loss probability of the network links istherefore generally valid sin
e the rate allo
ation algorithms 
onverge in a very small number ofsteps, as shown in the next se
tion. Sin
e the total number of paths is quite small in general [192℄,the algorithms rea
h a stable solution after a 
onvergen
e time that 
orresponds to only a fewRTTs, during whi
h the average link 
hara
teristi
s are likely to stay un
hanged.We 
onsider �rst the Algorithm 1, whi
h uses Rule 1 for path extension, so that the 
lient has
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omplete view of end-to-end paths to 
ompute the path sele
tion. We show that the Algorithm 1
onverges in one round if paths are disjoint. Then, we show that in the worst 
ase, one round of thealgorithm reserves at least the path with the lowest loss probability. Consequently, the Algorithm 1terminates in a �nite number of rounds. We now formally prove these three properties.Property 1. If the paths requested by C do not share any bottlene
k joint link Lu, Algorithm 1
onverges in one round.Proof. Let ΠC be the set of available paths between S and C dis
overed by Algorithm 1, andlet Π∗
C = {P 1

C . . . , Pm
C } be the optimal set of paths 
hosen by C for transmission, a

ordingto Theorems 1 to 3. If bk

C represents the available rate of on requested path P k
C ∈ Π∗

C , we have
bk
C ≤ ρu, ∀Lu ∈ P k

C . Sin
e, by hypothesis, the 
hosen paths P k
C do not 
ontain any joint bottlene
klink Lu, we have ρu ≥

∑

k:Lu∈P k
C

bk
C , ∀Lu ∈ P k

C and ∀P k
C ∈ Π∗

C . This means that any node Ni, uponthe re
eption of reservation pa
kets, Resv, 
an allo
ate the requested bandwidth on the outgoinglinks for all requested �ows. Therefore, no �ow is marked with dk = 0, and the server S 
an
ompute the optimal allo
ation Π∗ = Π∗
C , after one round of the proto
ol.Property 2. Let the network graph that 
orresponds to the available resour
es at one stage ofthe algorithm be denoted G

′

=
⋃

i:Ni∈V

N ′
i . During ea
h round, Algorithm 1 reserves in G′ at leastthe end-to-end �ow P i

C between S and C that is a�e
ted by the smallest loss probability pi
C .Proof. Let P i

C ∈ Π∗
C \Π∗ be the lowest loss probability path requested by C but not yet reservedby our algorithm. Observe that P i

C is the lowest loss probability path in the residual graph G′,and also in the lo
al view N ′
i observed by ea
h node Ni. Hen
e, at every node Ni traversed by

P i
C , the �ow P i

C will have priority during the greedy reservation phase of Algorithm 1.Indeed, from the path extension operation we have bi
C ≤ ρu, ∀Lu ∈ P i

C . Hen
e, P i
C is su

ess-fully reserved at ea
h intermediate node Ni on the path. Finally, the �ow P i

C rea
hes S with the
Resv pa
kets with both �ags di = f i = 1, hen
e the server S integrates the �ow into the set ofsu

essfully reserved paths: Π∗ = Π∗ ∪ P i

C .Property 3. Algorithm 1 
onverges and terminates in at most m rounds, where m is the numberof allo
ated �ows, whi
h is moreover not larger than the total number of available distin
t pathsin G.Proof. This result is a dire
t 
onsequen
e of Property 2. At ea
h round, the algorithm reservesat least one �ow, and the available rate of the links in the residual network de
reases. Hen
e, onsubsequent rounds of the algorithm, the 
lient C will not be able to request an in�nite number of�ows.The previous properties show that Algorithm 1 
onverges to the optimal path sele
tion in alimited number of rounds, no more than the total number of available end-to-end paths between
S and C. Moreover, in the 
ase of disjoint network paths, our proto
ol manages to reserve theoptimal set of �ows needed for transmission in a single round. And in general networks, thealgorithm se
ures at least one transmission �ow from the optimal allo
ation.We now 
on
entrate on the se
ond algorithm, and demonstrate that it 
onverges in a singleiteration. Moreover, we show that the solution o�ered by Algorithm 2 is a
tually identi
al to theoptimal solution provided by Algorithm 1 if ea
h network node has only one outgoing link.Property 4. Algorithm 2 
onverges after one round of path dis
overy and sele
tion phases.Proof. Let ΠC be the set of available paths between S and C, as dis
overed in the path dis
overyphase of Algorithm 2, based on path extension Rule 2. Let further Π∗

C = {P 1
C . . . , Pm

C } be theoptimal set of paths 
hosen by C for transmission a

ording to Theorems 3.3.1 to 3.3.3, basedon the information re
eived from the network nodes. Let �nally bk
C be the rate of the requestedpath P k

C ∈ Π∗
C , with bk

C ≤ ρu, ∀Lu ∈ P k
C . The greedy rate allo
ation in the path extension given



44CHAPTER 4. DISTRIBUTED MEDIA RATE ALLOCATION IN MULTIPATH NETWORKSby Rule 2 ensures that, at any node Ni, and ∀Lu ∈ Oi, we have ∑

k:Lu∈P k
C

bk
C ≤ ρu. This meansthat any node Ni, upon the re
eption of reservation pa
kets, 
an allo
ate the bandwidth on theoutgoing links for all requested �ows. Therefore, no �ow is marked with dk = 0, and the server S
an 
ompute the optimal allo
ation Π∗ = Π∗

C after one round of the proto
ol.Property 5. Algorithm 2 provides the same solution as Algorithm 1 if the outdegree of everyintermediate node Ni is equal to 1.Proof. In this parti
ular type of networks, we observe that the rate allo
ation operations duringpath extension in the path dis
overy phase be
omes identi
al for both Algorithms 1 and 2. Sin
ethe rest of the algorithms is totally identi
al, they will provide the exa
t same solution, whi
h ismoreover optimal.4.4.2 Pra
ti
al ImplementationWe dis
uss here the pra
ti
al implementation of the proposed algorithms, and propose a fewexamples for deployment in real network s
enarios. In large s
ale networks, monitoring end-to-end paths between any two given nodes be
omes highly 
omplex and 
ostly. Nor a
tive neitherpassive monitoring solutions s
ale well in terms of exe
ution time, a

ura
y and 
omplexity witha growing number of intermediate nodes and network segments [193℄. Sin
e full knowledge aboutnetwork status 
annot be a
hieved in large s
ale networks, distributed path 
omputation solutionsare 
ertainly advisable. They additionally allow to release the 
omputational burden of a singlenode/server, and distribute it among several intermediate nodes [190℄. Networking proto
ols havebeen proposed to organize large s
ale random network graphs into DAGs [38℄, or sets of multipleend-to-end paths [26℄ and even to ensure spe
ial network properties like path disjointness andsurvivability [29℄.In this 
hapter, we address the de
entralized path 
omputation and rate allo
ation problem,from the perspe
tive of a media streaming appli
ation. The forwarding de
isions are taken inorder to maximize the quality of servi
e of su
h spe
i�
 appli
ations, in parti
ular to minimizethe loss probability and aggregate enough transmission bandwidth. Our algorithms present a low
omplexity in terms of message passing and exe
ution time. In variable network s
enarios, wherethe link parameters 
hange slowly over time, our algorithms 
an be run periodi
ally in order toadapt the streaming pro
ess to a dynami
 network topology. Observe that the fastest networkparameter estimation algorithms o�er good results on times
ales of a few se
onds [16℄, whilethe exe
ution of our path-
omputation algorithms takes one, or a few round-trip times. Hen
e,running our algorithm periodi
ally, on times
ales equal to the network estimation intervals ensuresthe optimal transmission de
ision, with the latest estimation about the network state. Finally,the 
ontrol overhead 
an be limited to two pa
kets on ea
h link of the network, for ea
h iterationof the distributed algorithms. For most typi
al s
enarios, the overhead stays very low 
omparedto the streaming rate. It typi
ally depends on the periodi
ity 
hosen for the 
omputation of thedistributed rate allo
ation.Our framework for path sele
tion and rate allo
ation 
an be applied in a straightforwardmanner to a multitude of large s
ale network s
enarios, e.g., overlay network s
enarios (ContentDistribution Networks or Peer-to-peer networks), wireless network s
enarios, or hybrid interworkedwireless setups.For the 
ase of shared network resour
es in many-to-many setups, simple modi�
ations toour algorithms 
an yield good resour
e allo
ations among 
lients, given an optimization metri
.Consider Φ as the resour
e sharing poli
y implemented at an intermediate node i. Φ is designeda

ording to the �nal optimization metri
 of the overall system, e.g., maximizing system quality[79℄. Fairness and 
ongestion 
ontrol me
hanisms on the end-to-end dis
overed paths 
an alsobe su

essfully applied [47℄. Finally, simple distributed resour
e sharing and pa
ket prioritizations
hemes 
an be implemented based on the di�erent importan
e of the simultaneous sessions [127℄.Based on Φ, ea
h node i 
an take an appropriate de
ision on how to allo
ate its resour
es, (namely



4.5. SIMULATIONS 45the bandwidth of the outgoing links) among the 
on
urrent appli
ations, based on pre-de�nedutility fun
tions for example. While the design of truly fair distribution of resour
es between
on
urrent sessions is outside the s
ope of our work, our generi
 framework allows to limit thebandwidth o�ered to a single session, and therefore permits the implementation of independent
ongestion 
ontrol solutions.4.5 Simulations4.5.1 Simulation SetupWe analyze the performan
e of our path 
omputation algorithms in di�erent network s
enarios,and we 
ompare them to simple heuristi
-based rate allo
ation algorithms. Results are presentedin terms of 
onvergen
e time, and video quality performan
e. We �rst study the average behaviorof the algorithms in random network graphs, and we eventually dis
uss in details a spe
i�
, realisti
s
enario, implemented in ns2 [194℄ in the presen
e of 
ross tra�
.In all simulations, the test image sequen
e is built by 
on
atenation of the foreman sequen
e,in CIF format, in order to produ
e a 1500-frame video stream, en
oded in H.264 format at 30frames per se
ond (equivalent to 50 se
onds of video). The en
oded bitstream is pa
ketized intoa sequen
e of network pa
kets, where ea
h pa
ket 
ontains information related to at most onevideo frame. The size of the pa
kets is limited by the size of the maximum transmission unit(MTU) on the underlying network. The pa
kets are sent through the network on the 
hosenpaths, in a FIFO order, following a simple s
heduling algorithm [189℄. The video de
oder �nallyimplements a simple frame repetition error 
on
ealment strategy in 
ase of pa
ket loss. A videopa
ket is 
orre
tly de
oded at the 
lient, unless it is lost during transmission due to the errorson the network links, or unless it arrives at the 
lient past its de
oding deadline. We 
onsidertypi
al video-on-demand (V oD) streaming s
enarios, where the admissible playba
k delay is largeenough, i.e., larger than the time needed to transmit the biggest pa
ket on the lowest bandwidthpath.4.5.2 Random Network GraphsWe generate two types of network topologies: (i) typi
al Wireless network graphs, with low band-width and high error probability for the network links; and (ii) Hybrid network s
enarios, wherethe server is 
onne
ted to the wired infrastru
ture (high rate, low loss probability), and the 
lient
an a

ess the internet via multiple wireless links, whi
h have a redu
ed bandwidth, and a higherloss probability. For both s
enarios, we generate 500 random graphs, with 10 nodes ea
h. Anytwo nodes are dire
tly 
onne
ted with a probability γ. The parameters for ea
h link are randomly
hosen a

ording to a normal distribution, in the interval [Rmin, Rmax] for the bandwidth, andrespe
tively [pmin, pmax] for the loss probability. The parameters for the wired and wireless linksare presented in Table 4.1.Table 4.1: Parameters for Random Graph GenerationParameter Wired Links Wireless LinksConne
tivity Probability γ 0.4 0.6
Rmin 106bps 105bps
Rmax 3 · 106bps 7 · 105bps
pmin 10−4 10−3

pmax 5 · 10−3 4 · 10−2First we analyze the number of rounds in whi
h Algorithm 1 
onverges to the optimal rateallo
ation given by a 
entralized algorithm, as proposed in [192℄. The results for both networks
enarios are presented in Figure 4.3. We observe that the great majority of the 
ases require lessthan three iterations in order to rea
h the optimal rate allo
ation. This shows that our algorithm
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Figure 4.4: Convergen
e of Algorithm 1,measured in terms of video distortion (MSE)as 
ompared to the optimal solution.
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tionfor the improvement in quality o�ered by Al-gorithm 2 vs. a Heuristi
 Rate Allo
ationAlgorithm.performs very fast and needs only a very small number of 
ontrol messages to 
onverge to theoptimal rate allo
ation.Next, we propose to examine in Figure 4.4 the 
onvergen
e of Algorithm 1, 
omputed in termsof video distortion, as 
ompared to the quality of the stream a
hieved with the optimal rateallo
ation. We observe that the distortion due to Algorithm 1 rapidly de
reases, and that thepartial solutions are very 
lose to the optimal one, even after the �rst round of the iterative rateallo
ation strategy. It 
learly illustrates that the proposed distributed algorithm 
onverges veryfast to the optimal solution, and that the most 
riti
al paths in terms of video quality are alreadyallo
ated by the very initial rounds of the distributed solution.In both Figure 4.3 and Figure 4.4, we 
an observe that Algorithm 1 performs better in the

Hybrid network s
enario than in the Wireless 
ase. This is due to the fa
t that this networks
enario has in average less bottlene
k links. Please observe that in this simulated s
enario, thebottlene
k links are usually the wireless links, sin
e the rates of the wired links are mu
h higher.Therefore, Algorithm 1 is expe
ted to 
onverge faster to the optimal solution in the Hybrids
enario, where paths are less likely to share bottlene
k links. This is in a

ordan
e with theproperties of this algorithm presented in the previous se
tion.Then we analyze the performan
e of the proposed algorithm, in terms of video quality ob-tained with the rate allo
ation solution. We 
ompare the results obtained with Algorithm 1, to
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tionof the relative di�eren
e in quality, for Al-gorithm 1 limited to one iteration only, vsAlgorithm 2.the ones obtained by a simpler distributed heuristi
 whi
h forwards the in
oming network �ow atea
h intermediate node on the best outgoing link in terms of loss probability (e.g., single best-path streaming). We 
ompute the distribution of the penalty in quality su�ered by the heuristi
s
enario, for 500 di�erent network graphs. The 
umulative density fun
tion is represented in Fig-ure 4.5, whi
h illustrates the probability for the improvement in quality to be within a prede�nedrange [0, x]. We observe that, for both network s
enarios, our algorithm obtains signi�
antly bet-ter results in more that 70% of the 
ases. This motivates the extra 
ontrol overhead introdu
edby Algorithm 1, whi
h is needed to rea
h the optimal rate allo
ation. A similar behavior is shownin Figure 4.6, where we observe that Algorithm 2 also performs mu
h better than the single bestpath strategy in a large fra
tion of the 
ases 
onsidered, and for both network s
enarios.Algorithms 1 and 2 are 
ompared in Figure 4.7 and Figure 4.8. Figure 4.7 represents the
umulative density fun
tion of the di�eren
e in
urred by Algorithm 2, with respe
t to the optimalallo
ation o�ered by Algorithm 1. A similar representation is proposed in Figure 4.8, ex
eptthat the quality provided by Algorithm 1 is 
omputed based on the rate allo
ation obtainedafter the �rst round of the iterative algorithm, as opposed to the optimal allo
ation that is usedin Figure 4.7. From both �gures, we see that, for the Wireless s
enario, the performan
e ofthe greedy s
heme is equal to the optimal solution in almost 65% of the 
ases. Algorithm 2 iseven better, when 
ompared to the exe
ution of the optimal algorithm after the �rst round (70%of the 
ases providing equal or better results). This is due to the very small number of paths
hosen for transmission, and to the fa
t that link parameters in the Wireless s
enario are quitehomogeneous. In the pathologi
al 
ase where all network links would have the same parameters,the performan
e of the two algorithms would be identi
al. Good results are also observed for the

Hybrid network s
enario. However, in this 
ase we observe that the greedy algorithm o�ers badresults in a signi�
ant number of 
ases, sin
e quality attains only 50% of the optimal solution inalmost 20% of the 
ases. This is mainly due to the heterogeneity of the network links parametersin hybrid s
enarios.Finally, we 
ompare Algorithms 1 and 2 in terms of number of �ows 
hosen for the streamingappli
ation. The results for the Wireless and Hybrid network s
enarios are presented in Figure 4.9and Figure 4.10, respe
tively. We observe that in general Algorithm 2 uses a smaller number of�ows for transmission. This 
an be explained by the greedy allo
ation of paths, when Rule 2 is usedfor path extension. Similar results 
an be observed when the average streaming rate is 
omputedfor the solutions provided by both algorithms, for ea
h type of networks. Table 4.2 shows thatAlgorithm 2 generally results in a smaller transmission rate. However, the performan
e in termsof re
eived video quality is very 
lose to the optimal one, sin
e the paths with the lowest lossprobability are prioritized in both algorithms. In addition, the parti
ular network setup used in
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Figure 4.10: Average Number of Flowsused by Algorithms 1 and 2 in the HybridNetwork Case.Table 4.2: Average transmission rates 
hosen by Algorithms 1 and 2
Wireless HybridAlgorithm 1 531kbps 797kpbsAlgorithm 2 473kbps 591kpbsthe simulation allows for average streaming rates that already o�er a good en
oding quality, wherethe rate-distortion gradient is not very large.Overall, the previous results show that Algorithm 1 represents a fast path 
omputation solutionin most types of networks that present a low number of bottlene
k links. On the other side,Algorithm 2 o�ers a viable, lower 
omplexity alternative for very large network s
enarios withhomogeneous link parameters, where 
onvergen
e time is an issue (e.g., in networks 
hara
terizedby qui
kly varying parameters).4.5.3 Sample Network S
enarioWe now 
ompare the performan
e of the two path 
omputation algorithms presented, in a spe
i�
network s
enario that represents a pra
ti
al 
ase study. We send the foreman sequen
e, en
odedat 375kbps and 550kbps over a network as presented in Figure 4.11 (a). The network s
enariois reprodu
ed in the ns2 simulator, and the path 
omputation me
hanisms are implemented asextensions to the simulator. On ea
h of the network paths from the server to the 
lient, wesimulate 10 ba
kground �ows. These �ows are generated a

ording to an On/O� sour
e modelwith exponential distribution of staying time, and average rates between 100 and 300kbps. Theinstantaneous rate available to the streaming appli
ation is 
onsidered to be the di�eren
e betweenthe total link bandwidth, and the instantaneous rate of the aggregated ba
kground tra�
. Wegenerate two network 
ases, one with low average link rates and high transmission error probability
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4.5. SIMULATIONS 49Table 4.3: Parameter values for the network links in Figure 4.11
L1 L2 L3 L4 L5 L6 L7Case 1: Loss (%) 2.0 1.0 2.0 1.5 1.5 0.5 2.5Case 1: Rate (kbps) 325 225 225 225 325 225 225Case 2: Loss (%) 1.5 1.0 1.0 0.75 1.0 0.5 1.5Case 2: Rate (kbps) 450 300 300 300 450 300 300

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
25

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

27

Playback Delay (s)

PS
N

R
 (

db
)

Algorithm 1
Algorithm 2

Figure 4.12: Performan
e evaluation ofAlgorithms 1 and 2 as a fun
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Figure 4.13: Performan
e evaluation ofAlgorithms 1 and 2 as a fun
tion of playba
kdelay (Network Case 1, with FEC).(i.e., end-to-end loss probability higher than 6%), and a se
ond 
ase with higher average linkrates and average transmission error probability (i.e., end-to-end loss probability of about 3%).The average bandwidth, and loss probabilities are presented in Table 4.3, for the two 
ases under
onsideration. The network MTU is set to 1000 bytes worth of video data. Finally, we also 
onsider
ases where the video stream is sent along with forward error prote
tion. Overhead pa
kets aresent in addition to the video pa
kets for pa
ket loss re
overy. FEC blo
ks of 20 pa
kets are formedby adding two redundant pa
kets for ea
h set of 18 video pa
kets in the �rst network 
ase. Inthe se
ond 
ase, one FEC pa
ket is added to ea
h group of 19 video pa
kets. Therefore, all videopa
kets 
an be re
overed if at least 18, respe
tively 19 pa
kets are 
orre
tly re
eived in a blo
kof 20 pa
kets. Note that in this spe
i�
 s
enario, both strategies result in an overall streamingrate that is smaller than the average aggregated bandwidth available on the network. Distortionis mostly 
aused by pa
ket losses, or late arrival due to bandwidth �u
tuations.Figure 4.11 b) and 
) �rst show the path sele
tion provided by Algorithm 1 and 2, respe
tively.Both network 
ases result in the same allo
ation, and the appli
ation pa
kets and the 
ontrolmessages of our algorithms share the same network links. Simulations are then run a

ording tothese path allo
ations, and ea
h simulation point is averaged over 10 simulation runs. Figure 4.12and Figure 4.13 present the performan
e of Algorithms 1 and 2 as a fun
tion of the playba
k delayimposed by the 
lient, respe
tively in absen
e or presen
e of FEC prote
tion. Re
all that theserver performs a simple round-robin pa
ket s
heduling strategy, for a given set of streaming path.Hen
e, the playba
k delay in�uen
es the s
heduling performan
e, and larger playba
k delays allowsto pay smaller penalty due to the s
heduler 
hoi
es. The video distortion values in
orporate thesour
e distortion due to the low en
oding rate of the sequen
e, along with the loss distortion dueto pa
ket transmission losses, and late arrivals at the 
lient. We observe that, even if the 
hoi
eof transmission paths di�ers between the two algorithms, the performan
e is similar, sin
e theend-to-end paths are disjoint, and quite homogeneous in the network 
ase under study. It 
an benoted that the in�uen
e of the playba
k delay is similar for both s
hemes. In the same time, it 
anbe observed that using even a minimum error prote
tion strategy unsurprisingly improves the �nalresults, while using no transmission prote
tion at all greatly emphasizes the quality degradationdue to network losses in 
omparison to other streaming parameters, e.g., playba
k delay. Very
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Figure 4.14: Temporal evolution of thevideo quality (Network Case 2, no FEC). 0  10 20 30 40 50
22

24

26

28

30

32

34

36

38

Time (s)

PS
N

R
 (

db
)

Algorithm 1
Algorithm 2Figure 4.15: Temporal evolution of thevideo quality (Network Case 2, with FEC).similar results 
an be observed for the se
ond network 
ase with the 500 kbps video bitstream,but they are omitted here due to spa
e 
onstraints.Finally, we pi
k one of the simulation runs for ea
h algorithm, and analyze the temporalevolution of the quality. The re
onstru
ted video quality is measured at the re
eiver averaged forea
h group of 30 pi
tures, in the absen
e or presen
e of FEC, respe
tively. Results are presentedin Figure 4.14 and Figure 4.15 for the se
ond network 
ase, where the playba
k delay imposedby the 
lient is set to one se
ond. It 
an be seen that both algorithms again perform similarlyin the presen
e of network losses and 
ross tra�
. The quality �u
tuations are mostly due topa
ket losses, and basi
 FEC prote
tion already helps to improve the de
oded quality. It 
on�rmsthe results presented above, and positions both algorithms as e�
ient solutions for distributedmedia-spe
i�
 rate allo
ation in multipath networks.4.6 Con
lusionsThis 
hapter has addressed the problem of de
entralized path 
omputation for multimedia stream-ing appli
ations in large s
ale networks. When end-to-end monitoring at the media server be
omesintra
table and expensive, distributed me
hanisms need to be derived in order to optimize thestreaming pro
ess in terms of media quality. We present two su
h me
hanisms for path 
om-putation that di�er in the 
onstru
tion of available paths between the streaming server and the
lient on a node-by-node basis. The �rst algorithm provides a 
omprehensive view of the set ofend-to-end paths, whi
h leads to optimal rate allo
ation, at the pri
e of a small 
onvergen
e time.The se
ond algorithm only o�ers partial information about the available paths, whi
h results ina lower 
omplexity solution. However, thanks to a greedy allo
ation that favors the most reliablepaths, the performan
e of the se
ond algorithm stays 
lose to the optimal performan
e in most ofthe 
ases.In both algorithms, ea
h node is responsible for a rate allo
ation de
ision for all in
oming �ows,on the outgoing links. Hen
e, the available set of transmission paths to the 
lient is 
reated onlyfrom the original lo
al network views at ea
h individual intermediate node. It allows to release theassumption of full network knowledge at any single node in the network and eliminates the need forexpensive path monitoring me
hanisms. Both solutions therefore represent interesting alternativesfor media spe
i�
 path sele
tion in large s
ale networks. In parti
ular, extensive simulationsdemonstrate that the optimal algorithm 
onverges very fast, in parti
ular in networks that presenta small number of bottlene
k links. In the same time, the greedy algorithm represents a viableand low 
omplexity solution in very large network s
enarios with homogeneous link parameters,and stringent limitations on the 
onvergen
e time of the algorithm.



Chapter 5Forward Error Corre
tion forMultipath Media Streaming
5.1 Introdu
tionIn this 
hapter we address the problem of joint optimal rate allo
ation between media sour
e rateand error prote
tion rate in lossy multipath networks. In lossy network s
enarios, where mediapa
kets are prone to transmission erasures it is important to 
hose the right amount of redundan
y,and the proper distribution between the sour
e and 
hannel rate, in order to guarantee su

essfulde
oding at the end 
lient. Based on a general distortion model for layered en
oding video streams,whi
h takes into a

ount possible pa
ket transmission losses, we formulate a general optimizationproblem that a
hieves an optimal balan
e between video sour
e rate and forward error 
orre
tionrate, given a 
onstraint on total network resour
es. The optimal solution for our general problemdi�ers with the 
hoi
e of FEC and s
heduling s
hemes. Hen
e, based on the most 
ommon FECand s
heduling te
hniques, we propose several 
on
rete instan
es of this problem and we 
omputethe optimal a
hieved solutions. In parti
ular, we address the equal and unequal forward error
orre
tion s
hemes, along prioritized or un-prioritized s
heduling te
hniques for layered video
oding. At the same time, we o�er fast heuristi
 algorithms that provide good results for ourproblem with a minimum 
omputational e�ort. We 
ompare the di�erent instan
es based on theobtained results. Our results 
on�rm the 
on
lusions drawn in the previous 
hapters, namely thatit is always best to stream on the best network paths �rst, and that fully utilizing the networkresour
es is not always optimal in terms of average media quality. In the same time, we show thebene�ts of unequal error prote
tion and we identify the tradeo� between rate allo
ation optimalityand servi
e granularity in real systems.Furthermore, we address the same problem of optimal 
hannel rate allo
ation for media stream-ing in a
tive networks, where intermediate nodes are able to perform basi
 FEC de
oding/en
odingoperations. FEC performan
e is analyzed in the 
ase of hop-by-hop FEC prote
tion, and 
om-pared with an end-to-end FEC s
enario, in order to demonstrate the bene�ts of FEC operationsin the intermediate nodes. FEC operations in intermediate nodes are shown to be
ome espe
iallyuseful when the network segments on the streaming path have quite heterogeneous 
hara
teristi
s.The rest of this 
hapter is organized as follows: Se
tion 5.2 introdu
es the network, video andFEC models. We dis
uss possible FEC and s
heduling s
hemes for our proposed setup in Se
-tion 5.3 and Se
tion 5.4, and we formulate the optimization problem in Se
tion 5.5. The proposedalgorithms are presented in Se
tion 5.6, and evaluated in Se
tion 5.7. Finally, we dis
uss the 
aseof a
tive networks when intermediate nodes 
an perform basi
 FEC operations in Se
tion 5.8, andwe 
on
lude the 
hapter in Se
tion 5.9. 51



52CHAPTER 5. FORWARD ERROR CORRECTION FORMULTIPATHMEDIA STREAMING5.2 Multipath Streaming System5.2.1 Network ModelAs in the previous 
hapter, we 
onsider a framework where the multimedia streaming appli
ationuses a multipath network. The available network between the server S and the 
lient C is modeledas a �ow-equivalent graph G(V, E), where V = {Ni} is the set of nodes in the network, and E isthe set of links or segments. Ea
h link Lu = (Ni, Nj) ∈ E 
onne
ting nodes Ni and Nj has threeasso
iated positive metri
s: the available bandwidth ρu and loss probability θu as in the earlier
hapters, and the propagation delay tu ≥ 0, 
onsidered as stati
.Finally, let P = {P1, ..., PN} denote the set of available loop-free paths between the server
S and the 
lient C in G, with N the total number of non-identi
al end-to-end paths. P 
anbe 
omputed a

ording to the network �ow transformation and theorems presented earlier in thisthesis. A distin
t path Pi ∈ P is 
hara
terized by the end-to-end bandwidth bi and loss probability
pi, 
omputed as in the previous 
hapters.In addition, we 
onsider the end-to-end propagation delay of path Pi, τi, 
omputed as the sumof the intermediate links delays:

τi =
∑

Lu∈Pi

ti . (5.1)Server S uses the available network paths for media pa
ket transmission to the 
lient. Afterinitiating the media request, the 
lient waits for a limited playba
k delay ∆ before starting theplayout.5.2.2 Video ModelWe represent the end-to-end distortion, as per
eived by the media 
lient, as the sum of the sour
edistortion, and the 
hannel distortion. In other words, the quality depends on both the distortiondue to a lossy en
oding of the media information (DS), and the distortion due to losses experien
edin the network (DL). Overall, the end-to-end distortion 
an thus be written as in the previous
hapters:
D = DS + DL = f(R, π, Γ) , (5.2)where Γ represents the set of parameters that des
ribe the media sequen
e. This generi
distortion model is quite 
ommonly a

epted, as it 
an a

ommodate a variety of streaming s
e-narios [85℄. For example, when error 
orre
tion is available, the total streaming rate has to be splitbetween the video sour
e rate that drives the sour
e distortion DS and the 
hannel rate, whi
hdire
tly in�uen
e the video loss rate π.We assume the video sequen
e to be layered en
oded into L separate layers, ea
h layer l ≤ Lbeing 
hara
terized by its en
oding rate rl. Video layers are transmitted starting with the baselayer, and then adding subsequent enhan
ement layers, if the network 
onditions permit it. Weassume that a video layer 
an either be fully transmitted or dropped from an en
oder/sender pointof view. Hen
e the total en
oding rate of the video stream 
an be expressed as the sum of therates of all layers that are transmitted from S to C:

R =

l
∑

j=1

rj , (5.3)where l is the number of transmitted video layers, as de
ided by the streaming appli
ation.A 
ommonly a

epted model for the sour
e rate distortion is a de
aying exponential fun
tionon the en
oding rate, while the 
hannel distortion is proportional in average to the number oflost pixels/video elements. Under the 
ommon assumption that network pa
kets 
ontains datareferring to the same amount of video information (e.g. one frame, one sli
e, one en
oded videolayer of a frame), the 
hannel distortion is proportional to the number of lost pa
kets, and is
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Figure 5.1: Video Model Validation- Sour
e Distortion: H264/SVC en
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foreman_qcif , 30 fps, one BL and one EL,
β = 147.di�erentiated by the importan
e of the video layer 
ontaining the lost pa
kets. For video en
odinginstan
es where higher video layer 
annot be de
oded unless all lower video layers are presentat the de
oder, we build on the general distortion model presented in the previous 
hapter, andexpli
itly formulate the distortion metri
 as:

D = α · (
l
∑

j=1

rj)
ξ + β · π1 +

l
∑

j=2

(πj · (Dj−1 − Dl) ·

j−1
∏

s=1

(1 − πs)) (5.4)where α, ξ and β are sequen
e dependent parameters. Dj represents the sour
e distortion ofthe �rst j layers of the video stream, and π = {πj |∀j : 1 ≤ j ≤ l} is the set of average loss ratesexperien
ed during the transmission pro
ess by the video pa
kets of ea
h layer j. πj depends onthe loss probabilities pi of the subset of network paths used for the transmission of the pa
ketsof video layer j, and on the eventual error prote
tion s
heme employed for prote
ting the videopa
kets. Noti
e that our model for the loss distortion DL separates the pa
ket losses in the baselayer (seen as more severe, be
ause of frame loss and the a
tivation of error 
on
ealment strategiesat the de
oder) and the losses in the enhan
ement layers (seen as a�e
ting only the total qualityof the given frame). In our framework, we 
onsider the pa
ketized bitstream, with one networkpa
ket per frame and per video layer. Depending on network available resour
es, the server de
idesthe number of video layers that 
an be transmitted to the 
lient. A video layer 
an either be fullytransmitted or dropped.We validate the distortion model with streaming experiments. We en
ode the foreman_qcifsequen
e (300 frames, 30 frames per se
ond) in one base layer (BL) and one enhan
ement layer(EL), with the help of the H.264/SVC en
oder. The total rate of the en
oded sequen
e is varied,by en
oding at di�erent quantization parameters (QP) for the BL. The 
hosen en
oder imple-mentation always uses a QP for the EL, 6 points below the QP of the BL. On the sequen
e ofpa
kets we are in�i
ting transmission pa
ket losses a

ording to an independent loss probability
p ∈ [0, 0.05], and we 
ompare the de
oded video quality with the original one, by averaging over100 simulation runs. Results for the validation of the sour
e distortion are presented in Figure 5.1,while Figure 5.2 presents the validation of the loss distortion model. We observe that the model
losely follows the experimental results1.1For a 
omplete validation of the video distortion model, please see [195℄.



54CHAPTER 5. FORWARD ERROR CORRECTION FORMULTIPATHMEDIA STREAMING5.2.3 Forward Error Corre
tionAmong all error 
orre
tion te
hniques, pa
ket-level FEC is generally preferred in the 
ase ofmulti
ast-like or delay sensitive streaming s
enarios, espe
ially when pa
ket losses are expe
ted toa�e
t the transmission pro
ess. Generi
ally, a FEC blo
k of n pa
kets 
ontains k media pa
ketsand n−k FEC pa
kets. In the 
ase of Reed-Solomon 
odes (RS), the re
eiver 
an fully re
onstru
tthe original k data pa
kets as long as it 
orre
tly re
eives at least k pa
kets of the FEC blo
k.We assume that the server S 
an prote
t ea
h media layer against transmission errors, with onesystemati
 forward error 
orre
tion s
hemes FEC(n, k). The loss probability for ea
h video layer,prote
ted by FEC(n, k) 
an be 
omputed starting form the total error probability p, a�e
ting thetransmission pro
ess of that layer. Let πj be the error probability a�e
ting video layer j, afterFEC de
oding. It 
an be 
omputed as the average probability of loosing exa
tly i video pa
ketsfrom the FEC blo
k (1 ≤ i ≤ k), and at least ⌊n − k − i + 1⌋ redundant pa
kets.
πj =

1

k
·

k
∑

i=1

i · pi(n, k), (5.5)where pi(n, k) is the probability of losing at least n− k +1 pa
kets from the FEC blo
k, out ofwhi
h, exa
tly i pa
kets are video pa
kets. For an iid loss pro
ess, pi(n, k) 
an be easily 
omputed:
pi(n, k) =

(

k

i

)

pi(1 − p)k−i

s
∑

l=⌊s+1−i⌋

(

s

l

)

pl(1 − p)s−l, (5.6)where s = n − k.Given the network and video models presented above, an upper bound on n 
an be easily
omputed as:
n ≤ f · min

Pi∈P
(∆ − τi) (5.7)where f is the en
oded video sequen
e frame rate, and ∆ is the maximum playba
k delayimposed by the 
lient. Knowing that the FEC performan
e in general in
reases with the in
rease inblo
k size, we 
onsider the maximum blo
k size allowed by the network, e.g., n = f ·minPi∈P(∆−τi)as the FEC blo
k size2.5.3 FEC S
hemes5.3.1 Equal Error Prote
tion S
hemeWe investigate two separate forward error 
orre
tion s
hemes. First we address the simple EqualError Prote
tion s
heme (EEP), in whi
h all video layers are prote
ted by the same FEC s
heme

FEC(n, k).Assume that, a

ording to the s
heduling me
hanism utilized, ea
h video layer j ≤ l is a�e
tedby the loss pro
ess pj before FEC de
oding at the 
lient. The �nal loss probability πj a�e
tingea
h video layer after FEC re
onstru
tion is 
omputed based on n, k and pj , a

ording to Eq. (5.5)and Eq. (5.6). At the same time, the total rate of the video stream be
omes:
R =

l
∑

j=1

rj ·
n

k
(5.8)and is 
onstrained by the total network available rate∑N

i=1 bi.2While the 
omplexity of the RS 
oding pro
ess grows as a quadrati
 fun
tion of n, in delay sensitive streamings
enarios, we expe
t n to be generally small, hen
e limiting the required 
oding exe
ution time.
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tion perNetwork Path: ea
h network path o�ers dif-ferent FEC parameters for the prote
tion ofthe passing data, no matter to whi
h videolayer it belongs.5.3.2 Unequal Error Prote
tion S
hemeNext, we 
onsider the 
ase on unequal error prote
tion (UEP) when di�erent video layers traversingdi�erent paths in the network 
an be prote
ted by individual FEC s
hemes. Di�erent UEP s
hemes
an refer to individual transmitted video layers, 
ase in whi
h ea
h layer j ≤ l is prote
ted bya separate FEC s
heme FEC(n, kj) (Figure 5.3), or to individual network paths, 
ase in whi
hall video data traversing a parti
ular network path Pi is prote
ted by a separate FEC s
heme
FEC(n, ki) (Figure 5.4).In the �rst 
ase, the total rate of video layer j be
omes rj ·

n
kj
, and depending on the s
hedul-ing me
hanism utilized, will be a�e
ted by the end-to-end loss pro
ess after FEC de
oding πj ,
omputed starting from pj, n and kj .In the se
ond 
ase, we 
an re
ompute the relevant end-to-end parameters of ea
h path Pi inthe network model (bandwidth b

′

i and loss pro
ess p
′

i), as seen after applying the FEC s
heme
FEC(n, ki) and de
oding the data a

ordingly. The available bandwidth for video pa
ket trans-mission on path Pi be
omes:

b
′

i = bi ·
ki

n
, (5.9)and the new loss pro
ess p

′

i a�e
ting video pa
kets on path Pi 
an be 
omputed starting fromthe FEC parameters n and ki, and a
tual pa
ket loss pro
ess pi. Performing this transformationfor every individual path Pi ∈ P , we obtain a new set of available network paths P
′ for videostreaming (e.g., same set of paths, but with di�erent parameters). The new path parameters b

′

iand p
′

i will a�e
t the video �ows a

ording to the s
heduling me
hanism employed.5.4 S
heduling Me
hanisms5.4.1 Equivalent Network ModelWe address two di�erent s
heduling me
hanisms that help us transmit the video information overthe network paths. Initially, we present a simple earliest deadline �rst s
heduling me
hanism thatis unaware of the 
hara
teristi
s of the network paths or of the spe
i�
s of the video en
odingstru
ture. The s
heduling algorithm forwards the in
oming media and FEC pa
kets in a FIFOorder, on the �rst available network path, a

ording to the respe
tive rates and propagation



56CHAPTER 5. FORWARD ERROR CORRECTION FORMULTIPATHMEDIA STREAMINGdelays. Using this s
heduling me
hanism in the long run, the multimedia appli
ation will per
eivethe available network between S and C as one equivalent end-to-end network path with averageequivalent parameters.We 
an easily 
ompute the parameters of the equivalent network end-to-end path, starting fromthe initial parameters of ea
h individual network path Pi. Let b be the total bandwidth of theequivalent network model. As we have seen in the previous 
hapters, the network graph G(V, E)
an be modelled as a network of disjoint �ows/path, as per
eived by the media appli
ation. Inthis 
ase we 
an 
ompute:
b =

N
∑

i=1

bi. (5.10)The average loss probability p of the end-to-end equivalent network link 
an be 
omputed asthe average of the loss probabilities a�e
ting ea
h individual network path in G(V, E):
p =

∑N
i=1 bi · pi
∑N

i=1 bi

. (5.11)Finally, an upper bound on the propagation delay 
an be 
omputed for the end-to-end equiv-alent network link as:
τ = max

i:1≤i≤N
τi. (5.12)Considering this s
heduling me
hanism, the transmitted video layers will experien
e the net-work as a single equivalent network path with the equivalent parameters as 
omputed above. Themaximum possible FEC blo
k size n 
an be 
omputed starting from the end-to-end propagationdelay τ and ∆, while the error probability πj a�e
ting ea
h video layer j, prote
ted by a spe
i�
FEC 
ode, 
an be 
omputed starting from the loss probability p of the network link. Finally, thetotal sour
e 
oding rate and FEC rate are upper bounded by the total available bandwidth of theequivalent network link b.5.4.2 Priority S
hedulingNext we address a s
heduling algorithm that takes into a

ount the di�erent parameters of thenetwork paths, and the relative importan
e of the video layers. As seen in the previous 
hapters,it is always best to fully utilize the network paths in as
ending order of their loss probability pi.Hen
e we adopt a s
heduling strategy that maps the video layers, in
luding the a

ompanyingFEC rate, in in
reasing order of their importan
e, on the best available network paths in terms ofloss probability.Let P = {P1, . . . , PN} be the ordered set of available network paths, a

ording to their lossprobabilities (e.g., p1 < . . . < pN ). In the previous 
hapter, we have seen that network paths

Pi and Pj with equivalent error pro
esses pi = pj 
an be 
onsidered by the media appli
ationas a single network path with aggregated bandwidth bi + bj and equivalent propagation delay
max(τi, τj).At the same time, let the l transmitted video layers be ordered a

ording to their importan
e(e.g., layer 1 
orresponds to the base layer, layer 2 
orresponds to the �rst enhan
ement layer, ...),and let FEC(n, kj) be the forward error 
orre
tion s
heme employed for prote
ting video layer
j ≤ l. For simpli
ity reasons we assume that the maximum FEC blo
k size is 
omputed in thesame way as before. The total network rate required for the transmission of video layer j will be
rj · n

kj
. We assume that layer j is mapped a

ording to the gradual �lling algorithm des
ribedabove on network paths Ps, . . . , Pt with reserved rates cs, . . . , ct, where cs ≤ bs, ct ≤ bt, and

ci = bi, ∀i : s < i < t. We observe the following rate equality:
rj ·

n

kj

=

t
∑

i=s

ci. (5.13)



5.5. OPTIMIZATION PROBLEM 57EEP UEP Layer UEP PathFIFO S
h. EqEEP EqLayer EqPathPriority S
h. S
hEEP S
hLayer S
hPathTable 5.1: Di�erent Optimization Algorithms for the Problem Instan
es, based on the possible
ombinations of s
heduling and FEC strategies.while the total error probability pj a�e
ting layer j before FEC de
oding 
an be 
omputed as:
pj =

∑t
i=s ci · pi
∑t

i=s ci

. (5.14)Based on pj we 
an now 
ompute the �nal error pro
ess a�e
ting layer j after FEC de
oding,
πj , a

ording to Eq. (5.5) and Eq. (5.6). Please observe that, 
ompared to the previous s
heduling
ase, where all transmitted video layers are a�e
ted by the same loss probability p, we s
hedulenow the most important video layers on the best paths, hen
e we have p1 <, . . . , < pl.5.5 Optimization ProblemWe 
onsider the problem of optimal rate allo
ation strategy, for a given video stream that 
anbe split into �ows sent on di�erent paths from the streaming server S and the 
lient. Given thenetwork rate 
onstraints and path status in terms of propagation delays and loss probability, weare interested in �nding the optimal rate split between sour
e en
oding rate and forward errorprote
tion rate, in order to maximize the re
eived video quality. Hen
e, we 
an formulate theoptimization problem as follows:Joint Multimedia - FEC Rate Allo
ation Problem (JMFR): Given the �ow-equivalentnetwork graph G, the number of di�erent paths or �ows n, the video sequen
e 
hara
teristi
s (Γ)and the total number of en
oded video layers L, �nd the optimal number of transmitted videolayers l∗, and the optimal forward error prote
tion s
heme FEC(n, k∗

j ) for ea
h layer j ≤ l∗, su
hthat the per
eived video distortion D at the 
lient is minimized:
{l∗, k∗

j } = arg min
l≤L;kj≤n;1≤j≤l

D(R, π, Γ), (5.15)under the network rate 
onstraint:
l∗
∑

j=1

rj ·
n

k∗
j

≤
N
∑

i=1

bi. (5.16)Given the di�erent s
heduling strategies for the multipath data transmission, and the variousFEC s
hemes for the prote
tion of the layered video data, the optimization problem will presentmultiple instan
es, ea
h one having an optimal solution. The following se
tions present our pro-posed algorithms for solving the instan
es of the optimization problem and dis
uss in details theirperforman
e and opportunity.5.6 Optimization Algorithms5.6.1 Optimal Full Sear
h AlgorithmsIn the previous se
tion we have presented di�erent s
heduling and FEC me
hanisms and we have
omputed in ea
h 
ase the parameters ne
essary for solving the proposed optimization problem.Now we present the algorithms we use in order to sear
h for the optimal solution, and dis
usstheir performan
e and 
omplexity.



58CHAPTER 5. FORWARD ERROR CORRECTION FORMULTIPATHMEDIA STREAMINGDepending on the s
heduling me
hanism and the FEC s
heme employed we 
an identify sixdi�erent types of algorithms as de�ned in Table 5.1. Ea
h of the algorithms employs one FECand one s
heduling strategy, from the ones presented above.We are utilizing the full sear
h algorithms as a ben
hmark for performan
e. For the sake of
larity we present in Algorithm 3 the pseudo-
ode for one of these algorithms. Slight variations inthe 
ode will lead to the implementation of full sear
h algorithms for all other streaming strategies.Algorithm 3 EqLayer Full Sear
h Algorithm.Input:2: Flow-equivalent network graph G(V, E), network paths P = {Pi(bi, pi, τi)/∀i : 1 ≤ i ≤ N},en
oded video bitstream parameters Γ, video layers rates rl, ∀l : 1 ≤ l ≤ L, frame rate f ,playba
k delay ∆.Output:4: Optimal joint rate allo
ation {l∗, k∗
j }.Initialization:6: Compute equivalent network link bandwidth: b =

∑N
i=1 bi;Compute equivalent network link loss pro
ess: p =
∑

N
i=1 bi·pi
∑

N
i=1 bi

;8: Compute equivalent network link propagation delay: τ = maxi τi;Compute maximum FEC blo
k size: n = f · (∆ − τ);10: Pro
edure Compute optimal JMFR solution:for Every number of video layers l ≤ L and every kj ≤ n, 1 ≤ j ≤ l do12: Che
k rate 
onstraint:if ∑j
j=1 rj ·

n
kj

≤ b then14: Compute πj , ∀j : 1 ≤ j ≤ l, starting from p and kj ;Compute D = D(R, π, Γ) a

ording to the Equivalent Network S
heduling and UEP perVideo Layer s
hemes;16: end ifend for18: Output {l∗, k∗
j } = arg min

l≤L;kj≤n;1≤j≤l

D(R, π, Γ).The algorithm �nds the optimal solution for the optimization problem, by parsing every feasiblerate allo
ation between sour
e video rate and error 
orre
tion rate. It outputs the optimal numberof video layers to be transmitted, along the optimal FEC strategy for ea
h transmitted layer, su
hthat the media distortion as per
eived by the 
lient is minimized.While the algorithm outputs the optimal result for every network s
enario, the 
omputationalresour
es needed are rather high. During the full sear
h for the optimal parameters, the algorithmneeds to 
ompute one distortion value for every feasible value of kj ≤ n, for every video layer
j ≤ L. Hen
e, the total 
omplexity of the algorithm is O(nL). Similarly, the FEC strategy thatallo
ates one FEC 
ode per ea
h individual network path requires a total of O(nN ) 
omputations,with N being the number of distin
t available network paths. The exponential 
omplexity ofthese algorithms will prohibit their use in large s
ale s
enarios with a large number of availablenetwork paths and �ner granularity in the video en
oding. Therefore, we introdu
e now heuristi
algorithms that a
hieve similar results with a mu
h lower 
omputational 
omplexity.5.6.2 Utility-based Heuristi
 AlgorithmsIn this se
tion we introdu
e our heuristi
 approa
h towards solving the optimization problem. Webuild on the utility framework introdu
ed in [33℄, and present algorithms that iteratively take astepwise lo
ally optimal de
ision.Let ea
h algorithm start from an initial feasible solution where only the video base layer,without any FEC prote
tion, is s
heduled for transmission, a

ording to the employed s
heduling
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hanism. Let also Fs = {l, {kj}; 1 ≤ j ≤ l} be a feasible solution obtained by our algorithmsat iteration s.We asso
iate to this solution, the total video rate Rs =
∑l

j=1 rj , satisfying the total networkrate 
onstraint ∑l
j=1 rj · n

kj
≤
∑N

i=1 bi. We 
an also 
ompute the values πs = {πj ; 1 ≤ j ≤ l}representing the loss pro
ess observed by every transmitted video layer on the network. Based onthese values we 
an 
ompute the per
eived 
lient distortion Ds = D(Rs, πs, Γ). Let Bs be theresidual available network rate after transmitting all data pa
kets related to solution Fs.At the next algorithm iteration, s+1, we 
an either attempt the transmission of an extra videolayer l+1, in 
ase l+1 ≤ L, or 
hange the FEC parameter k′
j of any of the already s
heduled videolayers j ≤ l. Let the new distortion measures asso
iated to ea
h of these a
tions be Da

s+1, where
a identi�es the spe
i�
 a
tion taken. We de�ne the utility of an a
tion a as the ratio betweenthe per
eived video quality improvement by performing this a
tion, and the amount of networkresour
es δra, ne
essary for implementing the a
tion:

Ua =
Ds − Da

s+1

δra
. (5.17)

δra 
an be easily 
omputed as rl+1 in 
ase a new video layer is s
heduled for transmission, oras the extra ne
essary network rate in order to 
hange the FEC parameters of video layer j from
kj to k′

j , e.g., δra = rjn
kj−k′

j

kjk′

j
. Any of the a
tions a is feasible as long as δra ≤ Bs. In the sametime, a
tion a brings an improvement in quality if Ua > 0.Algorithm 4 S
hPath Utility Algorithm.Input:2: Flow-equivalent network graph G(V, E), network paths P = {Pi(bi, pi, τi)/∀i : 1 ≤ i ≤ N},en
oded video bitstream parameters Γ, video layers rates rl, ∀l : 1 ≤ l ≤ L, frame rate f ,playba
k delay ∆.Output:4: Optimal joint rate allo
ation {l∗, k∗

j }.Initialization:6: Compute maximum FEC blo
k size: n = f · mini(∆ − τi);
F1 = {1, k1 = n};8: Compute B1 =

∑N
i=1 bi − r1;Compute the ordered set P = {Pi : 1 ≤ i ≤ N}, s.t. p1 <, . . . , pN .10: Pro
edure Compute heuristi
 JMFR solution:Iteration s=1;12: while 1 dofor every feasible a
tion a do14: Compute updated distortion value Da

s+1 a

ording to the Priority S
heduling me
hanismand UEP s
heme;Compute utility fun
tion Ua;16: end forif no feasible a
tion a exists, or Ua ≤ 0, ∀a then18: Break;end if20: Compute new solution: Fs+1 = arg maxa Ua;Update available network bandwidth Bs+1;22: Update iteration: s = s + 1.end while24: Output Fs.The algorithm, at ea
h iteration s will 
hose the next solution Fs+1 by performing the a
tionthat maximizes the utility value among all feasible a
tions. The algorithm stops either when there
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oding Bitrate per video layer [kb/s℄ QP=30 QP=34 QP=38Base Layer 328.8335 233.1850 159.1450Enhan
ement Layer 1 482.6697 244.9661 145.1805Enhan
ement Layer 2 546.5654 342.1015 201.5870Table 5.2: Average en
oding rate per video layer for en
odings with di�erent quantization pa-rameters using H.264/SVC.are no more feasible a
tions, e.g., the network rate has already been totally utilized, or there are nomore a
tions that bring a positive improvement to the 
urrent solution. Depending on the FEC ands
heduling me
hanisms employed, six di�erent algorithms 
an be derived. Algorithm 4 presentsthe pseudo 
ode of one of them, the modi�
ations towards all the others being straightforward.For a 
omplete sear
h over the FEC parameter spa
e, during ea
h a
tion a, the parameter
k′

j be
omes k′
j = kj − 1. In real system implementations, where only a limited amount of FECs
hemes are available, k′

j should be 
hosen as the next smaller parameter from the feasible set ofs
hemes after kj .During ea
h iteration, the algorithm needs at most L 
omputations, while the maximum num-ber of iterations is n · L. Hen
e the total 
omplexity of the proposed algorithm is O(n · L2). Inthe following se
tions we asses the performan
e of our heuristi
 method 
ompared to the optimalfull sear
h.5.7 Experimental Results5.7.1 SetupWe test the proposed me
hanisms in various network setups with various en
oded bitstreams. Weuse a 
on
atenated version of the foreman_cif sequen
e (3000 frames), en
oded at 30 frames perse
ond using the s
alable en
oder H.264/SVC. We en
ode the sequen
e in three video layers, onebase layer and two enhan
ement layers, at di�erent en
oding rates given by the 
hosen quantizationparameters (QP). Our spe
i�
 en
oder generates the desired number of enhan
ement layers startingfrom the given QP value for the base layer, and de
reasing it by 6 for ea
h additional layer. Theobtained data rates for the video layers en
oded at di�erent QPs are presented in Table 5.2. Weassume that the video layers 
annot be de
oded unless all lower layers are available at the de
oder.We use a multipath network s
enario that o�ers a variable number of end-to-end transmis-sion paths to the media appli
ation. Our results are obtained for network s
enarios with two,three or four network paths. Ea
h network path is 
hara
terized by a random iid loss pro
essuniformly drawn in the interval [1−25]%, and a propagation delay randomly drawn in the interval
[50 − 100]ms. The end-to-end bandwidth of ea
h path is randomly assigned in intervals that aremeaningful for ea
h experiment. Finally we assume that the 
lient imposes a �xed playba
k delay
∆ = 700ms, after whi
h it starts playing the re
eived video data. Any pa
kets arriving at the
lient after their de
oding deadline are 
onsidered as lost for the appli
ation and dis
arded.Within the presented framework we 
ompare the performan
e obtained by the proposed algo-rithms for optimal joint sour
e-FEC rate allo
ation, representing the di�erent FEC s
hemes ands
heduling me
hanisms presented above. Our results are averaged over 100 simulation runs forea
h network s
enario and ea
h transmitted bitstream. In parti
ular, we emphasize the betterperforman
e brought by the UEP error 
orre
tion s
heme and the priority s
heduling me
hanism.Finally, we dis
uss real system implementations with 
onstraints on the available set of FECparameters.5.7.2 EEP vs. UEPFirst we 
ompare the EEP and UEP forward error 
orre
tion s
hemes in the 
ase of full sear
halgorithms. We identify �ve network s
enarios, ranging from very low end-to-end loss probability
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Figure 5.6: FEC s
hemes 
omparison forvarious s
heduling me
hanisms, video baselayer en
oding: QP=34.Average Loss Probability [%℄ S
hLayer EqLayer S
hPathBase Layer 0.059 0.056 0.06Enhan
ement Layer 1 4 3.46 2.1Enhan
ement Layer 2 11.52 - 9.3Table 5.3: Average Loss Probability after FEC de
oding for ea
h video Layer, for the algorithmsbased on UEP.to very high one, and we set the end-to-end available bandwidth to be lower than the totalen
oded rate of the transmitted video bitstream. Ea
h algorithm runs on the network s
enarioand optimizes the en
oding FEC rate allo
ation in order to maximize the video distortion measure.They de
ide how many video layers to transmit and how mu
h error prote
tion should be addedto ea
h layer, given the total network resour
e 
onstraints.Results for the three en
oded bitstreams are presented in Figure 5.5, Figure 5.6 and Figure 5.7.We observe that for every bitstream and every range of network losses, the UEP s
heme performsbetter than the EEP s
heme. While the improvement is minimal for very low error networks
enarios, it be
omes in
reasingly visible as the network 
onditions get worse. These results 
learlyevidentiate the importan
e of �exible error prote
tion in the 
ase of s
alable video transmissionover lossy networks. The UEP s
heme prote
ts di�erently the video layers, a

ording to theiroverall importan
e to the �nal distortion measure, being able to better utilize network resour
es.On the other hand the EEP s
heme overprote
ts the higher layers of the video stream, hen
ewasting the available bandwidth.Table 5.3 provides a di�erent representation of the same results. Here we show the total errorpro
ess asso
iated with ea
h transmitted video layer after FEC de
oding at the 
lient in the 
ase ofthe UEP s
heme. We observe that, while the base layer is very well prote
ted, ensuring pra
ti
allyzero losses, the higher layers are gradually less prote
ted, as the appli
ation 
an tolerate a higheramount of losses with lower impa
t on the re
onstru
ted media quality. On the other hand theEEP s
heme does not o�er this �exibility, hen
e leading to a suboptimal performan
e.5.7.3 Equivalent Network Model vs. Priority S
hedulingNext, we 
ompare the two proposed s
heduling me
hanisms. Due to the 
oarse granularity pro-vided by the used video en
oder, in this subse
tion we hand-pi
k the network total bandwidth,su
h that we emphasize the 
on
eptual di�eren
es between the two s
heduling me
hanisms3. We
hoose network s
enarios with total end-to-end bandwidth that 
an easily a

ommodate the �rsttwo video layers of ea
h bitstream without error prote
tion (but not three layers), while we ran-domly 
hoose the error rates of ea
h path as presented before.3Please note that with fully s
alable en
oding systems, e.g., FGS en
oders, the di�eren
e between the s
hedulingme
hanisms would always be visible.
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Figure 5.7: FEC s
hemes 
omparison forvarious s
heduling me
hanisms, video baselayer en
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Figure 5.8: S
heduling me
hanisms 
om-parison for various FEC strategies, videobase layer en
oding: QP=30.
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heduling me
hanisms 
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Figure 5.10: S
heduling me
hanisms
omparison for various FEC strategies,video base layer en
oding: QP=38.Figure 5.8, Figure 5.9 and Figure 5.10 present the obtained MSE results for the proposedalgorithms. We observe that in general the Priority S
heduling with UEP performs better that theEquivalent Network s
heduling, for all tested bitstreams. It 
an also be noted that all algorithmsbased on UEP outperform the EEP s
heme, whi
h 
orresponds to the results presented in theprevious se
tion. The di�eren
e in performan
e between the two s
heduling me
hanisms 
an beexplained by the better resour
es utilization of the priority s
heme. As the Priority S
hedulings
heme sends the most important video layers on the better network paths in terms of errorprobability, it requires less rate for the error prote
tion, hen
e being able to send more videolayers. On the other hand, the Equivalent Network s
heduling s
heme 
onsiders the network as asingle equivalent link with equivalent error parameters, hen
e it requires more rate for the errorprote
tion of the most important layers. In turn, this leaves less resour
es for transmitting extravideo layers. Table 5.4 presents the average number of video layers transmitted by ea
h of thealgorithms utilizing UEP. We observe that, in general, the Priority S
heduling me
hanisms manageto transmit more video information than the Equivalent Network me
hanism on similar networksetups.



5.7. EXPERIMENTAL RESULTS 63Average Number of Transmitted Layers S
hLayer EqLayer S
hPathFour Paths S
enarios 1.6 1.15 1.62Three Paths S
enarios 1.55 1.23 1.53Two Path S
enarios 1.6 1.18 1.55Table 5.4: Average number of transmitted video layers for UEP-based algorithms in variousnetwork s
enarios.
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e for di�erent video en
oding rates.5.7.4 Full Sear
h vs. Utility algorithmsFinally, we 
ompare the performan
e of the proposed heuristi
 algorithms based on utility, to thefull sear
h ones. On the same network setups, we run both the full sear
h and utility algorithmsfor bitstreams en
oded at various bitrates. Figure 5.11 and Figure 5.12 present the averagedPSNR results for the Priority S
heduling me
hanisms. We observe that the heuristi
 utility basedalgorithms have a performan
e that is similar to the one of the full sear
h, while they require amu
h smaller 
omputation e�ort.The good performan
e of the heuristi
 algorithms is naturally motivated by the assumptions wemade on the en
oding format (e.g., video layers are de
oded in a sequential manner, and higherlayers 
annot be de
oded unless previous layers have already been de
oded), and the previousresults showing the optimal unequal error prote
tion based on the importan
e of ea
h video layer.Finally, we 
onsider the performan
e of real systems where the 
hoi
e of FEC 
odes is limitedto a �nite available set. Let the sender be able to a

ess any of the following FEC 
odes: RS(20,16), RS(20,12) and RS(20,8) in order to prote
t the transmitted media pa
kets. We test the utilitybased algorithms 
onstrained by the available set of FEC 
odes, and we 
ompare the obtainedresults to the optimal ones found by the full sear
h. Table 5.5 summarizes the results averagedover 100 simulation runs for one video bitstream.Compared to previous results we observe a slight degradation in algorithm performan
e 
om-pared to the optimal full sear
h results. This is explained by the la
k in �exibility in the FECmode 
hoi
e. An the same time, we observe that full utilization of network resour
es is no longeroptimal. Depending on the algorithm, only a fra
tion of the network bandwidth is utilized in orderto a
hieve the optimal result. Hen
e, �ooding the network with data and redundant pa
kets in notS
hLayer EqLayer S
hPathFull Sear
h Distortion (MSE) 9.34 11.046 9.35Constrained Utility Distortion (MSE) 10.898 11.987 14.118Constrained Utility Resour
e Utilization (%) 76% 74% 89%Table 5.5: Algorithm performan
e in systems s
enarios with limited 
hoi
e of FEC parameters,and per
entage of total network resour
es utilized.
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enariooptimal, unless the designed system has full �exibility in the 
hoi
e of FEC and s
heduling strate-gies. This observation is in line with our previous results on path sele
tion and rate allo
ation,presented in the previous 
hapters.5.8 A
tive NetworksIn this se
tion we address the same joint sour
e-
hannel rate allo
ation problem in a
tive networkswhere intermediate nodes are able to perform basi
 FEC de
oding/en
oding operations. FECperforman
e is analyzed in the 
ase of hop-by-hop FEC prote
tion, and 
ompared with an end-to-end FEC s
enario, in order to demonstrate the bene�ts of FEC operations in the intermediatenodes.We 
onsider a simpli�ed network model 
onsisting of one path between the server and the
lient made of multiple links Lu that 
onne
t intermediate nodes i − 1 and i. The intermediatenodes are able to perform FEC en
oding/de
oding operations. The intermediate nodes i and the
lient have bu�ers assumed to be large enough to prevent over�ow, and the server S is aware of theparameters of all the links Lu along the path to the 
lient C. Within this 
ontext, two s
enariosare studied, where the intermediate nodes either transparently forward pa
kets, or provide simpleFEC operations. These s
enarios are represented in Figure 5.13 and Figure 5.14, respe
tively.Given the single path network model, we 
onsider a simpli�ed version of the end-to-end distor-tion model in Eq. (5.4), whi
h takes into a

ount the total media en
oding rate and the networkpa
ketization e�e
ts over a single transmission path. It 
an be written as :

D = αRξ + βRπ,where the �rst term of the sum represents the sour
e distortion DS , and the se
ond term isthe loss distortion DL.We validate the distortion model for the parti
ular 
ase of the MPEG-4 video streaming, wherethe de
oder implements basi
 error 
on
ealment fun
tions. The foreman.
if sequen
e (300 frames)is en
oded at 30 fps with an interval of 15 frames between I-frames, and the pa
ket size is setto 500 Bytes. Figure 5.15(a) presents the 
omparison between our theoreti
al model and theexperimental results in the 
ase of no loss, while Figure 5.15(b) shows the distortion as a fun
tionof the pa
ket loss probability for a given video rate. It 
an be seen that the experimental data �tsquite well the analyti
al values, and similar behavior has been observed for di�erent video rates.Under the FEC assumptions presented in Se
tion 5.3, the s
enario under 
onsideration be
omesthe following. A streaming media server S sends live or stored media 
ontent to a re
eiver C.The media (e.g., video) is en
oded and sent through the network in blo
ks of pa
kets. Thevideo pa
kets are prote
ted with FEC pa
kets, forming FEC blo
ks. All pa
kets (media andFEC) have an average size of M bytes, and the en
oding format allows ea
h data pa
ket to bede
oded independently from the others, possibly with some distortion (i.e., we use all re
eivedvideo pa
kets).The end-to-end quality optimization problem be
omes the following: Given (i) the 
hara
ter-isti
s (ρu, θu and tu) of all links Lu, and (ii) a maximum end-to-end delay ∆ in the transmissionof one video pa
ket, �nd the optimal transmission s
enario S∗, or equivalently the optimal FECparameters ~k∗ and ~n∗, that minimize the end-to-end distortion D :
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( ~k∗, ~n∗) = arg min
~k,~n

(

αR(~k, ~n)ξ + βR(~k, ~n)π(~k, ~n)
)

, (5.18)under the 
onstraintR ≤ min(ρu) and a maximum transmission delay below ∆. (~k, ~n) representthe ve
tors of FEC parameters for the links in the streaming path.The next subse
tion presents an analyti
al study of the loss probabilities and transmissiondelays in the two streaming poli
ies, that will eventually allow to solve the optimization problem.It 
on
entrates on a simple network topology where the path from the server to the 
lient 
onsistsof two links and one intermediate node. However, the study 
an easily be generalized to anytopology with multiple hops.5.8.1 FEC Performan
es5.8.1.1 End-to-End FEC Prote
tion � In the 
ase of end-to-end FEC prote
tion in atopology like the one in Figure 5.13, the server sets the parameters (k, n) based on its knowledgeabout the network status. The intermediate node a
ts as a simple router and transparentlyforwards the re
eived pa
kets on the se
ond link. Hen
e, the media rate is equivalent to: R =
k
n

min(ρ1, ρ2) and the transmission delay be
omes:
τ(k, n) = t1 + t2 +

nM

min(ρ1, ρ2)
,where nM

min(ρ1,ρ2) represents the transmission time of a 
omplete n-pa
ket FEC blo
k. Withoutloss of generality, we assume here that the time required for FEC 
oding 
an be negle
ted.The video loss rate π, as seen by the re
eiver after FEC re
overy is expressed as:
π =

∑k
i=1 ipi(k, n)

k
,where pi(k, n) is the probability of losing i video pa
kets on the two links, after FEC re
overy.It is 
omputed as the probability of losing i video pa
kets and at least ⌊n−k− i+1⌋ FEC pa
kets,on either the �rst or the se
ond link. For a uniform and independent loss pro
ess, it yields :
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pi(k, n) =

i
∑

a=0

(

k

a

)(
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θ
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1θ

i−a
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k−a(1 − θ2)
k−i

n−k
∑

j=0

c
∑

b=⌊c−i+1⌋

(

n − k

j

)(

c

b

)

θ
j
1θ

b
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c−b

,where θ1,2 respe
tively represent the loss probability on the �rst and se
ond link, and c =
n − k − j.The extension of the two links 
ase to the more general 
ase of N links and N −1 intermediaterouters is straightforward. The media rate is equivalent to : R = k

n
min(ρ1, ..., ρN ) and thetransmission delay be
omes:

τ(k, n) =

N
∑

u=1

tu +
nM

min(ρ1, ..., ρN)
.The expression of pi(k, n) 
an be easily 
omputed in an iterative way, but is omitted here dueto the la
k of a 
losed form expression.5.8.1.2 Hop-by-hop FEC Prote
tion � In the 
ase of hop-by-hop FEC prote
tion, thelosses 
an be isolated on the various links, at the pri
e of a possible larger end-to-end delay. Theserver and the intermediate nodes 
an set di�erent FEC parameters (ku, nu), individually for ea
hlink Lu (see Figure 5.14). The sizes of the FEC blo
ks are however 
onstrained by a maximumend-to-end delay. The media rate is given by R = min( k1

n1
ρ1,

k2

n2
ρ2), and the total delay 
an bewritten as :

τ(k1, n1, k2, n2) = t1 + t2 +
M

R
(k1 + k2) + τ1

w,where M
R

(k1 + k2) represents the transmission time of the FEC blo
ks (k1, n1) and (k2, n2) onthe �rst and respe
tively se
ond link. If the loss probability on the �rst link is larger than 0, thereis a non-zero probability that the intermediate node waits forever before it re
eives enough mediapa
kets to �ll in k2 slots in the n2-pa
ket FEC blo
k. To avoid su
h a s
enario, a limit is set in theintermediate node, that will send available data after τ1
w. We set this limit to be equivalent to theaverage waiting time in the intermediate node, τ1

w = ⌊ k2

k1(1−π1(k1,n1))
⌋. Experiments have shownthat this value is in general su�
ient to absorb the pa
ket losses on the �rst link. In the very lowprobability 
ase where the waiting time is larger than τ1

w, the FEC parameters on the se
ond link
an be slightly di�erent than (k2, n2), with a small impa
t on the hop-by-hop FEC performan
e.Sin
e the loss pro
esses on the two links are isolated due to the FEC de
oding/en
odingoperations at the intermediate node, the overall media loss rate, as seen by the re
eiver 
an beexpressed as:
π(k1, n1, k2, n2) = π1(k1, n1) + π2(k2, n2)(1 − π1(k1, n1)),where π1(k1, n1) and π2(k2, n2) are the video loss rates after FEC re
overy on ea
h individuallink. They are given by πu(k, n) =

∑k
j=1 jpj(k,n)

k
, where pj(k, n) is the probability of losing j mediapa
kets out of the FEC blo
k (k, n) after FEC re
overy, and 
an be 
omputed individually forea
h link u as in Se
tion 5.3.For the general 
ase of N links and N − 1 intermediate nodes the media rate is: R =

min( k1

n1
ρ1, ...,

kN

nN
ρN ) and the total delay be
omes:

τ(~k, ~n) =

N
∑

u=1

(tu +
M

R
ku) +

N−1
∑

u=1

⌊
ku+1

ku(1 − πu(ku, nu))
⌋.
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=0.05(b) r1 = 1 Mbps, r2 = 600 kbpsFigure 5.16: Minimal distortion in end-to-end and hop-by-hop FEC s
enariosIn the same time, the overall media loss rate 
an be expressed as:

π(~k, ~n) = π1(k1, n1) +
N
∑

u=2

πi(ku, nu)
u−1
∏

j=1

(1 − πj(kj , nj)).Having the expressions for R(~k, ~n), π(~k, ~n) and τ(~k, ~n), we 
an solve the optimization problem.Knowing that FEC performs better with the in
rease in the blo
k size, we 
an implement ane�
ient sear
h algorithm for the optimal solution by limiting the feasible sear
h spa
e for the
(~k, ~n) parameters. The sear
h spa
e of the ~n parameters is greatly redu
ed based on the delay
onstraint ∆, while the sear
h spa
e for the ~k parameters is limited knowing the loss probabilities
θi on all the links. Results are presented in Se
tion 5.8.2.5.8.2 Results link 1 link 2 Case 1 Case 2

r1 p1 r2 p2 k n k1 n1 k2 n2700 6 400 1 15 20 9 17 8 9500 2 700 7 18 25 13 16 7 12800 5 800 5 29 40 15 21 13 181000 9 600 3 20 30 12 25 11 14600 5 1000 9 19 30 17 22 6 12Table 5.6: Optimal (~k, ~n) for end-to-end (Case 1) and hop-by-hop (Case 2) FEC prote
tion, asa fun
tion of ri [kbps℄ and pi [%℄.For the same simulation setup as used for validating the distortion model, we now solve theoptimization problem given from Eq. (5.18), and �nd the optimal (~k, ~n) parameters for the hop-by-hop FEC prote
tion poli
y. They are then 
ompared to the optimal parameters for the end-to-endFEC s
enario. Table 5.6 presents the optimal values in the two 
ases for di�erent parameters ofthe streaming path segments, where the maximal end-to-end delay has been set to τmax = 0.2sand the propagation delays have been negle
ted. It 
an be seen that the FEC blo
ks are in generalmu
h smaller in the end-to-end 
ase be
ause of the end-to-end delay 
onstraint. Also, the optimalFEC 
onstru
tion greedily uses all the available bandwidth on the highest rate links, in order tolimit as mu
h as possible losses on this parti
ular link. Loss therefore o

urs almost ex
lusivelyon the smaller rate segment.
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ompares the optimal performan
e of both FEC te
hniques in terms of averageMSEdistortion for di�erent link parameters. As expe
ted, the hop-by-hop prote
tion performs mu
hbetter than the end-to-end FEC poli
y. This is espe
ially true for segments with very di�erent
hara
teristi
s, and the performan
e be
omes similar when the path be
omes homogeneous. Also,for stringent end-to-end delay 
onstraints, it 
an happen that the end-to-end FEC prote
tionperforms better thanks to the in
reased �exibility in building longer blo
ks. It 
an be noted �nallythat the experimental results are slightly better than the theoreti
al ones. This phenomenon isdue to a so low e�e
tive loss probability (thanks to the very good FEC prote
tion), that even ahigh number of simulations 
an hardly reprodu
e. In the very small probability 
ase where a FECblo
k 
annot be de
oded, the distortion be
omes however high enough for the average behaviorto jump on the theoreti
al 
urve.5.9 Con
lusionsIn this 
hapter we address the problem of optimal joint sour
e-
hannel rate allo
ation for multime-dia streaming appli
ations over lossy multipath networks. Based on di�erent FEC and s
hedulingstrategies for layered en
oded video streaming we derive algorithms for the e�
ient 
omputationof the sour
e rate and forward error prote
tion rate, with the �nal goal of optimizing the 
lient per-
eived video quality. In a lossy multipath s
enario with limited network resour
es we �nd optimalto perform a prioritized s
heduling of the video layers a

ording to their importan
e, on the bestnetwork paths �rst. In the same time, unequal error prote
tion strategies that prote
t better themost important video information are shown to be more e�
ient. Our results 
on�rm our resultson path sele
tion and rate allo
ation, presented in previous 
hapter. We also dis
uss real systemimplementations when the optimization problem is solved only on an available set of video ratesand FEC strategies. We show that in su
h a 
ase, �ooding all available network paths is no longeroptimal in terms of re
onstru
ted media quality. Moreover, we dis
uss the same optimizationproblem in the 
ontext of a
tive networks when intermediate nodes 
an perform basi
 operationson the passing data �ow, e.g. FEC de
oding and re-en
oding. We show the bene�t of in-network�ow pro
essing espe
ially in the 
ase of heterogeneous networks, when di�erent network segmentsbelonging to the same end-to-end network path have di�erent network parameters.



Chapter 6Media Pa
ket S
heduling forMultipath Streaming
6.1 Introdu
tionIn previous 
hapters we have dis
ussed the problem of multipath streaming in �ow networks, andwe have provided e�
ient solutions for path sele
tion and rate allo
ation. We have seen thatin general, due tot the error-prone nature of the transmission medium, only a small number ofnetwork paths (hen
e limited streaming rate) are used for the streaming appli
ation. At the sametime, we have dis
ussed the e�
ient distribution of network resour
es between e�e
tive streamingrate and forward error 
orre
tion rate for in
reased toleran
e to network erasures. The e�
ien
yof multipath video streaming is however tied to the pa
ket transmission strategy, whi
h aims ato�ering an optimal quality of servi
e in delay-
onstrained video appli
ations.This 
hapter addresses the problem of video pa
ket s
heduling in multipath network s
enarios,under playba
k delay and bu�er 
onstraints. It aims at e�
iently distributing the video informa-tion on the available network paths, while judi
iously trading o� playba
k delay and distortionat the re
eiver. We 
onsider the sele
tion of inter-dependent video pa
kets to be transmitted (orequivalently the adaptive 
oding of the video sequen
e), and their s
heduling on the availablenetwork paths, in order to minimize the distortion experien
ed by the end-user. The 
omplex dis-tortion optimization problem is a priori NP-
omplete, and no method 
an solve it in polynomialtime [196℄. With help of heuristi
s from 
onstrained multipath streaming s
enarios, we propose apolynomial 
omplexity algorithm for e�
ient video s
heduling in pra
ti
al s
enarios.Assuming a simple streaming model, whi
h 
aptures the unequal importan
e of video pa
ketsand their dependen
ies, we propose a detailed analysis of timing 
onstraints imposed by delaysensitive streaming appli
ations. This analysis allows us to identify sets of valid, or feasibletransmission poli
ies, whi
h 
ompete for the distortion optimized multipath streaming solution.The optimal strategy is 
omputed based on a modi�ed bran
h and bound algorithm [186℄ thatapplies sear
h and pruning methods spe
i�
 to the multipath streaming problem. The methodgreatly redu
es the 
omplexity of the 
omputations 
ompared to a full sear
h over the poli
yspa
e, and still provides an optimal solution. However, there is no guarantee that it performsin polynomial time for every instan
e of the problem, and we rather use it as a ben
hmark forother streaming algorithms. Hen
e, we propose a heuristi
-based approa
h to the optimizationproblem, based on load-balan
ing te
hniques, whi
h leads to a polynomial time algorithm. Thisfast s
heduling algorithm is �nally adapted with sliding window me
hanisms, to the 
ase of realtime streaming where the server only has a partial knowledge about the pa
ket stream. Simulationresults demonstrate 
lose to optimal performan
es of the fast s
heduling solution, for a large varietyof network s
enarios. Compared to state-of-the-art algorithms, it o�ers smaller quality variationson dynami
 bandwidth 
hannels, and preserves a minimal quality level by improved s
heduling.69
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Figure 6.2: Dire
ted a
y
li
 dependen
y graph representation for a typi
al MPEG layered-en
oded video sequen
e (one network pa
ket per layer, with IPBPB format).Interestingly enough, the performan
e of the real time s
heduling algorithm stays quite 
onsistent,even for small video prefet
h windows, and for low a

ura
y in the 
hannel bandwidth predi
tion.This extends the validity of our algorithm to multipath live streaming systems with stringent delay
onstraints, and simple bandwidth predi
tion methods.The main 
ontributions presented in this 
hapter are threefold. First, we study video pa
kets
heduling in a rate-distortion multipath streaming s
enario, taking into a

ount possible bu�er
onstraints in ea
h intermediate network nodes. Sin
e 
ongestion is the main 
ause of loss, it
ertainly be
omes primordial to respe
t the bu�er 
onstraints in network nodes, in order to designe�
ient streaming systems. Se
ond, we propose an optimal solution for the distortion optimizationproblem, whi
h takes into a

ount the non-stationary nature of the video sequen
e, the pa
ket de-penden
ies introdu
ed by the en
oding algorithm, and the network status. This optimal solutionallows to bound the performan
e of s
heduling algorithms. Finally, we present a novel polyno-mial time algorithm that provides performan
es similar to the optimal streaming strategy. Thisalgorithm is eventually adapted to real time s
enarios, with more restri
tive delays, and to 
aseswhere the a

ura
y in the predi
tion of the 
hannel status is redu
ed. It still o�ers interesting per-forman
es in su
h 
ases, and thus provides a very e�
ient solution for multipath video streamingappli
ations.This 
hapter is organized as follows. Se
tion 6.2 des
ribes our multipath streaming modeland introdu
es the notation used in the distortion optimization problem. The pa
ket s
hedulingproblem is analyzed in detail in Se
tion 6.3. Based on this timing analysis, we propose both optimaland fast heuristi
-based algorithms to solve the distortion optimization problem in Se
tion 6.4.Simulation results are presented in Se
tion 6.5, and we 
on
lude in Se
tion 6.6.6.2 Multipath Video Streaming6.2.1 General FrameworkWe 
onsider the simple multipath network topology represented in Figure 6.1. The 
lient Crequests a media stream from a streaming server S, whi
h transmits the requested bitstream viatwo disjoint paths. Ea
h network path 
onsists in two segments 
onne
ted through an intermediatenode that simply forwards, after a possible bu�ering delay, in
oming pa
kets from the �rst segment,
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ket λn sent on path a.towards the 
lient on the se
ond segment. The intermediate nodes represent network streamingproxies, edge servers or peers, for example. The streaming server is 
onne
ted to the 
hannelsthrough bu�er interfa
es, whi
h are modelled as FIFO queues. Thus, the 
hannels drain thepa
kets from the bu�ers, in the same order in whi
h the server pla
es them into the bu�ers. Thenetwork 
hannels between the server and the 
lient are represented as variable bandwidth, losslesslinks. The variable nature of the bandwidth implies that the rate at whi
h the 
hannels drain datapla
ed in the server's bu�ers, 
hanges as a fun
tion of time. At the other end, the 
lient waits foran initial playba
k delay ∆ after its request for a stream has been a
knowledged. It then startsde
oding the media stream, and plays it 
ontinuously.During the streaming session, the server sele
ts a subset of the pre-en
oded media pa
kets to
ommuni
ate to the 
lient, taking into a

ount the available bandwidth on the di�erent networkpaths, and bu�er fullness in the nodes, or at the re
eiver. The segment bandwidth, laten
y andintermediate bu�er fullness 
an be estimated at the server, or reported by various methods (e.g.,as in [16℄). The work presented in this 
hapter rather addresses the sele
tion of the pa
ketsthat should be 
ommuni
ated to the 
lient, as well as the network path they need to follow. Ita
tually does not even require an exa
t knowledge of the 
hannel bandwidth, but a

urate networkinformation yet in
reases the performan
e of the streaming system. Finally, the network topology
ould present several disjoint paths, and several nodes on ea
h path. However, for the sake of
larity, we 
onsider in the problem formulation only the two-path s
enario presented in Figure 6.1.The extension to s
enarios with a larger number of paths, is straightforward.6.2.2 Streaming Model and NotationsIn the multipath streaming topology represented in Figure 6.1, ea
h network segment i is 
har-a
terized by an instantaneous rate ri(t) and an instantaneous laten
y di(t). The rate ri(t) is thetotal bandwidth allo
ated to the streaming appli
ation on segment i at time instant t. Equiva-lently, we denote the 
umulative rate on segment i, up to time instant t, by Ri(t) =
∫ t

0 ri(u)du.Additionally, the streaming server assumes that no pa
ket is lost on the network segments, ex
eptthose indu
ed by late arrivals or bu�er over�ows, and that the order of the pa
kets is not 
hangedbetween two su

essive nodes. These assumptions are quite realisti
 in most of today's wiredstreaming networks. The intermediate nodes {a, b} have bu�ers of 
apa
ity Ba and respe
tively
Bb, whi
h are available for the streaming session. The 
lient has a playba
k bu�er of 
apa
ity
Bc. We �rst assume that all segment rates and laten
ies along with intermediate bu�er 
apa
itiesare a

urately predi
ted by the server at all time instants, possibly with feedba
k of the overlaynodes. We will eventually relax that assumption to 
onsider realtime streaming s
enarios.The video sequen
e is en
oded into a bitstream using a s
alable (layered) video en
oder. Thebitstream is then fragmented into network pa
kets under the general rule stating (i) that ea
hnetwork pa
ket 
ontains data relative to at most one video frame, and (ii) that an en
oded videoframe 
an be fragmented into several network pa
kets. Let Λ = {λ1, λ2, ..., λN} be the 
hronologi-
ally ordered sequen
e of N network pa
kets, after fragmentation of the en
oded bitstream. Ea
hnetwork pa
ket λn is 
hara
terized by its size sn in bytes, and its de
oding timestamp tdn. Fromthe 
lient viewpoint, all the video pa
kets are not equivalently valuable, due to the non-stationary
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h network pa
ket 
an be 
hara
terized by a weight
ωn, whi
h represents the redu
tion in the distortion per
eived by the 
lient, in the 
ase wherepa
ket λn is su

essfully de
oded. We refer to a su

essfully de
oded pa
ket as a network pa
ketthat is re
eived and 
orre
tly de
oded by the 
lient before its de
oding deadline.Additionally, in most video en
oding s
hemes, pa
kets generally have dependen
ies betweenthem. In other words, the su

essful de
oding of one pa
ket λn is 
ontingent on the su

essfulde
oding of some other pa
kets, 
alled an
estors of λn. The su

essful de
oding of one pa
ket maydepend on the 
orre
t de
oding of several an
estors, and we denote by An, the set of an
estors ofpa
ket λn. Su
h dependen
ies 
an be represented by a dire
ted a
y
li
 dependen
y graph [117℄, asshown in Figure 6.2. The nodes in the graph represent the network pa
kets and are 
hara
terizedby their individual weights, and dire
ted edges represent dependen
ies between pa
kets and theiran
estors.We denote by π = (π1, π2, ..., πN ) the transmission poli
y adopted by the streaming server, andby Π be the set of all the feasible poli
ies π. The poli
y πn used for pa
ket λn 
onsists in a 
ouple avariables [qn, tsn] that respe
tively represent the path qn 
hosen for pa
ket λn, and its sending time
tsn. It 
ompletely 
hara
terizes the server behavior with respe
t to pa
ket λn under the generalpoli
y ve
tor π. In the multipath network s
enario presented above, the server 
an de
ide to sendpa
ket λn on paths a or b, or simply to drop the pa
ket without sending it. Therefore, the a
tionimposed on pa
ket λn 
an be written as:

qn =







a if pa
ket λn is sent on path a
b if pa
ket λn is sent on path b
0 if pa
ket λn is dropped.Let Π be the set of all the feasible poli
ies π, in the network s
enario under 
onsideration.Remember that pa
kets are sent sequentially on a path, and that the streaming strategy aims atavoiding bu�er over�ows that would result in pa
ket loss.Finally, in our streaming model, a pa
ket is de
oded by the re
eiver only if its arrival time,

tcn, is smaller than its de
oding deadline, i.e., if tcn ≤ tdn + ∆ where tdn represents the de
odingtimestamp of pa
ket λn, and ∆ is the playba
k delay at 
lient. We assume here, without loss ofgenerality, that the 
lient request has been sent at time t = 0, and that the de
oding timestampof the �rst pa
ket p1 is set to 0. The pro
essing time at the re
eiver is further negle
ted. Underthese assumptions, and taking into a

ount pa
ket dependen
ies, the su

essful de
oding of apa
ket λn under the streaming strategy π ∈ Π, 
an be represented by the binary variable ϕn(π),where ϕn(π) is equal to 1 if the pa
ket arrives on time at the de
oder, and if all its an
estors havebeen su

essfully de
oded. We further take into a

ount the di�eren
e between frame order inthe bitstream and the de
oding order of the frames at the 
lient. This impa
ts, for example, thes
heduling of a B frame that is pla
ed in the bitstream after the future P frame it depends on. Inother words, we 
an write:
ϕn(π) =























1 if 













qn 6= 0
tcn ≤ tdn + ∆
ϕm(π) = 1, ∀λm ∈ Anat time tdn + ∆

0 otherwiseThe overall bene�t Ω of the streaming strategy π ∈ Π, whi
h is equivalent to the qualityper
eived by the re
eiver, 
an now simply be expressed as the sum of the weights ωn of allsu

essfully de
oded pa
kets. We assume that pa
kets whose ϕn(π) 6= 1 are simply dis
arded atthe 
lient, hen
e the overall bene�t 
an be written as Ω(π) =
∑

∀n:ϕn(π)=1

ωn.6.2.3 Distortion Optimization ProblemGiven the abstra
tion model of the en
oded video bitstream, the distortion optimization problem
onsists in an e�
ient sele
tion of the subset of video pa
kets to be transmitted, jointly with
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y. We assume a server-driven s
enario in whi
h the server is aware of, or 
anestimate the network 
onditions (i.e., ri(t) and di(t)), at ea
h time instant. The server then onlys
hedules for transmission pa
kets that 
an arrive at the 
lient before their de
oding deadline.The streaming server 
onsiders that the transmission links are lossless, and that pa
ket loss onlyhappens due to bu�er over�ow, or late arrival.The distortion optimization problem 
an be stated as follows: Given Λ, the pa
ketized bit-stream of an en
oded video sequen
e, ∆, the maximum playba
k delay imposed by the 
lient, andthe network state, �nd the optimal transmission poli
y π∗ ∈ Π that maximizes the overall qualitymeasure Ω. The optimization problem translates into �nding π∗ ∈ Π s.t.:
Ω(π∗) = max

π∈Π

∑

∀n:ϕn(π)=1

ωn.The optimization problem 
an be easily redu
ed to the more general 
ase of optimal s
hedulingproblems. This family of problems proves to be NP-
omplete [196℄ and an optimal algorithm thatsolves them in polynomial time does not exist. Hen
e, we still propose an optimal algorithm thate�
iently �nds the distortion minimal streaming strategy for long video sequen
es, to be used asa ben
hmark for faster, sub-optimal methods. We then design a heuristi
-based algorithm thatprovides 
lose to optimal performan
e, but in polynomial time, and we eventually apply it torealtime streaming s
enarios.6.3 Pa
ket S
heduling Analysis6.3.1 Unlimited Bu�er NodesThis se
tion proposes an in-depth analysis of the s
heduling of pa
kets in the streaming modeldes
ribed above, and 
omputes the parameters ne
essary to solve the distortion optimization prob-lem. Our approa
h represents a segment-by-segment analysis of the network behavior, in
ludingintermediate nodes bu�ers. This approa
h is a �rst step towards a more 
omprehensive analysisof network behavior related to the spe
i�
ities of video streaming appli
ations. In general, theparti
ular 
hara
teristi
s of media pa
ket streams, like timing issues or unequal importan
e ofdata, prevent the appli
ation of general end-to-end analysis like [14℄ in su
h s
enarios.We 
onsider �rst the 
ase where bu�ering spa
e in the network nodes and the 
lient is not
onstrained, i.e., Ba = Bb = Bc = ∞. The server has the knowledge of N video pa
kets, where
N 
an be the total number of network pa
kets of the video stream (in the 
ase of stored video),or simply the number of pa
kets 
ontained in the prefet
h window in real-time streaming. Theserver is able to transmit network pa
kets simultaneously on the two network paths. Under theassumption of unlimited bu�er spa
e, the server 
an send pa
kets on ea
h of the paths at themaximum rates of the �rst segments (r1(t) for path a or r3(t) for path b, see Figure 6.1).Under a given poli
y π, the sending time tsn of ea
h pa
ket λn 
an thus be easily 
omputed.Suppose that λn is sent on path a (i.e., qn = 1). Let Sa

n(π) =
∑

m<n,qm=1

sm, Sa
n(π) represent the
umulative size of all the pa
kets that need to be sent on path a before λn, under the poli
y π.Under the assumption that the available bandwidth is fully utilized by the streaming appli
ation,

tsn is the shortest time t at whi
h the 
umulative rate R1(t) is larger than Sa
n :

tsn(π) = arg min
t

|R1(t) − Sa
n(π)|. (6.1)In other words, the pa
ket λn 
an only be sent when all the previous pa
kets s
heduled on thesame path have been transmitted. It will then arrive at the 
lient after a 
ertain delay, 
ausedby the transmission delays (t1n and t2n) on the 2 segments that 
ompose path a, the laten
iesintrodu
ed by the two links (d1(t) and d2(t)) and the queuing time at the node bn. Therefore, thetime instant at whi
h pa
ket λn enters the node bu�er 
an be expressed as tβn = tsn + t1n + d1(t

s
n).
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ket λn at the 
lient, 
an be written as tcn = tβn + bn + t2n + d2(t
β
n). Thetiming representation of the transmission of pa
ket λn is provided in Figure 6.3.The transmission delays t1n and t2n represent the time needed to send pa
ket λn, at the band-width available on path a. They have to verify:

R1(t
s
n + t1n) − R1(t

s
n) = R2(t

β
n + t2n + bn) − R2(t

β
n + bn) = sn,and 
an be 
omputed similarly to Eq. (6.1). The queuing time bn 
orresponds to the timeneeded to transmit the B(tβn) bits present in the bu�er, at time tβn when pa
ket λn enters thebu�er. The bu�er fullness 
an be 
omputed re
ursively as

B(tβn) = max[B(tβn−1) + sn−1 − R2(t
β
n) + R2(t

β
n−1), 0].Therefore, the queuing time 
an be 
omputed su
h that it satis�esR2(t

β
n + bn) − R2(t

β
n) = B(tβn).Note that, even if the previous development only 
onsider the path a, the extension of the analysisto the pa
kets transmitted over path b is straightforward. The arrival time of pa
ket λn, tcn isthus fully determined. The minimal playba
k delay D(π) indu
ed by the transmission poli
y π
an �nally be expressed as:

D(π) = max
1≤n≤N

(Dn(π)) = max
1≤n≤N

(tcn − tdn),where Dn(π) is the playba
k delay imposed by the streaming pro
ess up to pa
ket λn by thetransmission poli
y π. Interestingly, the playba
k delay is a non-de
reasing fun
tion of the pa
ketnumber n. That property expressed in Lemma 6.3.1, will be advantageously used in the s
hedulingoptimization problem.Lemma 6.3.1. Given that the streaming server sends the N network pa
kets in parallel on twopaths, and that on ea
h path the pa
kets are sent sequentially, the playba
k delay Dn(π) under thegiven poli
y ve
tor π is a non-de
reasing fun
tion of n.Sket
h. Observe that Dn(π) 
an be expressed as a re
ursive fun
tion of n:
Dn(π) = max(Dn−1(π), tcn − tdn) (6.2)Hen
e, Di(π) ≤ Dn(π), ∀n, ∀i su
h that 0 ≤ i ≤ n ≤ N , with: D0(π) = 0 and D(π) =

DN (π).Let us �nally de�ne the 
umulative quality Ω(π), resulting from the streaming poli
y π. Ina perfe
t transmission where the set of pa
kets Λ is entirely transmitted, the quality is denotedby Ω0(π) =
∑N

n=1 ωn. Due to delay or bandwidth 
onstraints, the server may de
ide to dropsome pa
kets from Λ. In this 
ase, we iteratively 
ompute the 
umulative quality, Ωn(π), whi
his de
remented ea
h time a pa
ket is dropped. It 
an be written as :
Ωn(π) =

{

Ωn−1(π) if ϕn(π) = 1
Ωn−1(π) − ωn otherwise (6.3)with Ω(π) = ΩN (π). While Eq. (6.3) does not expli
it the in�uen
e of other pa
kets that havepa
ket λn as their an
estor, the status ϕn(π) of pa
ket λn, dire
tly a�e
ts the status of all pa
ketsdependent on λn.Lemma 6.3.2. Ωn is a non-in
reasing fun
tion of the pa
ket number n.Sket
h. Observe that ωn is by de�nition a non negative value. Hen
e, Ωn ≤ Ωi, ∀n ≤ N , ∀i ≤

n. The two properties expressed in Lemmas 6.3.1 and 6.3.2 are used later in the derivation ofe�
ient sear
h algorithms for the optimal s
heduling poli
y.



6.4. DISTORTION OPTIMIZED STREAMING 756.3.2 Constrained Bu�er NodesA similar timing analysis 
an be performed in the 
ase where the bu�ering spa
e in the inter-mediate nodes on ea
h path is limited to Ba and Bb respe
tively. The bu�er 
apa
ities in theintermediate nodes may signi�
antly in�uen
e the optimal pa
ket s
heduling strategy in multipathstreaming s
enarios. In 
ontrary to single path s
enario, the overall pa
ket s
heduling is not ne
-essarily sequential any more, whi
h allows to use bu�ers as a form of staging step. Bu�ers allowsfor smoothing bandwidth �u
tuations between su

essive path segments, when delay 
onstraintspermit it.We reasonably assume that the bu�ering spa
e is larger than any video pa
ket in Λ. Ba and
Bb represent the bu�er sizes allo
ated by the intermediate nodes to the streaming pro
ess andthey are known by the server. The server estimates the bu�er fullness based on its knowledgeabout the network bandwidth, or with help of feedba
ks from intermediate overly nodes. It triesto avoid bu�er over�ows by adapting the sending time of ea
h pa
ket to the bu�er fullness. Notethat it may no longer use the full available bandwidth, without risking to lose pa
kets.The streaming poli
y has to take into a

ount these new 
onstraints. In parti
ular, if pa
ket
λn has to be transmitted on path a under poli
y π, its sending time tsn is su
h that there is enoughbu�er spa
e available when it rea
hes the intermediate node. Additionally, the pa
ket λn 
anonly be sent when all the previous pa
kets on the same path have been transmitted. Using thesame notation as de�ned hereabove, tsn be
omes the smallest value that simultaneously veri�es thefollowing 
onditions :

{

R1(t
s
n) ≥ Sa

n(π)
tsn + t1n + d1(t

s
n) ≥ τn

(6.4)where τn represents the earliest time at whi
h there is enough spa
e in the intermediate bu�erto re
eive pa
ket λn, when the bu�er is drained at a rate r2(t). Equivalently, τn 
an be 
omputedre
ursively, sin
e it veri�es the inequality
Ba − (B(tβn−1) + sn−1 − R2(τn) + R2(t

β
n−1)) ≥ sn.We 
an also de�ne the maximum bu�er o

upan
y during the whole streaming pro
ess as

Bmax
a (π) = max

1≤i≤N
(B(tβi )) ≤ Ba.The timing analysis on path b follows immediately. The strategy π is thus 
ompletely de�ned,and we 
an 
ompute D(π) and Ω(π) similarly to the 
ase with unlimited bu�ers. A similarreasoning 
an be applied in order to prevent bu�er over�ow at the 
lient, in the 
ase where the
lient also has a limited storage spa
e.6.4 Distortion Optimized Streaming6.4.1 Optimal Solution: Depth-First Bran
h & Bound (B&B)Sin
e the sending and arrival times for ea
h pa
ket λn 
an be 
omputed for a given transmissionpoli
y π (see Se
tion 6.3), we 
an now sear
h for the optimal pa
ket s
heduling π∗ that maximizesthe 
lient video quality given an imposed playba
k delay. We �rst present an e�
ient algorithmthat �nds the optimal transmission poli
y ve
tor π∗ for a given en
oded video sequen
e, networktopology and playba
k delay. While being too 
omplex to implement in pra
ti
e, the algorithm isused as a performan
e ben
hmark for the development of sub-optimal, faster s
heduling methods.The novelty of the algorithm resides in the use of bran
h and bound (B&B) methods [197℄ in amultipath video-streaming framework1, and on adapting pruning rules to the spe
i�
 
hara
teris-ti
s of this s
enario. The pruning rules make the algorithm mu
h faster than a brute sear
h but1While B&B te
hniques have been used for years by the optimization 
ommunity, they have only re
ently beenemployed in a streaming s
enario [115,198℄.
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h & Bound Algorithmstill do not guarantee polynomial exe
ution times on all streaming s
enarios. The optimizationproblem still has a 
ombinatorial 
omplexity.The s
heduling of N pa
kets on two available paths 
an be organized as a de
ision tree ofdepth N (Figure 6.4). At ea
h stage n in the tree, pa
ket λn 
an be sent on path a, on path
b, or 
an be dropped. Hen
e, at depth N , the de
ision tree will 
ontain 3N leaves, a

ordingto the number of s
heduling possibilities of the N pa
kets on the 2 paths. At ea
h stage n inthe tree we 
an 
ompute Dn(π), the minimum playba
k delay and Ωn(π), the 
umulative videoquality measure, for a partial s
heduling up to pa
ket λn, a

ording to the re
ursive Eq. (6.2)and Eq. (6.3), presented in Se
tion 6.3. This 
omputation 
an be done for ea
h one of the valids
heduling poli
ies, for the �rst n pa
kets. As mentioned in Se
tion 6.3.1, Dn(π) and Ωn(π)are non-de
reasing, and respe
tively non-in
reasing fun
tions in n. These two fun
tions are usedto establish a fast sear
h on the de
ision tree for the optimal transmission poli
y ve
tor π∗. Adepth-�rst sear
h is performed on the de
ision tree, starting with an initial poli
y ve
tor π thatsatis�es the delay 
onstraint D(π) ≤ ∆, where ∆ is the playba
k delay imposed by the 
lient. Thepoli
y π be
omes our initial optimal poli
y π∗ with Ω∗ = Ω(π∗). The initial poli
y is 
omputedusing a simple Earliest Delivery Path First algorithm with a 
omplexity of O(N), similar to [135℄.The EDPF algorithm s
hedules frames in a FIFO order. Pa
kets belonging to a given frame ares
heduled a

ording to their importan
e ωn, on the path that guarantees the earliest arrival timeat the 
lient. If a pa
ket 
annot be su

essfully s
heduled, it is dropped without transmission,along with all his 
hildren pa
kets, to avoid waste of network resour
es.Sin
e an EDPF strategy is often sub-optimal in a multipath s
enario, we start sear
hing thede
ision tree for better transmission poli
ies, with Ω > Ω∗. We start with the leftmost transmissionpoli
y represented on the tree (equivalent to sending all pa
kets on path a) and move through thede
ision tree towards right. For ea
h new poli
y π′, we 
ompute Dn(π′) and Ωn(π′) su

essivelyfor n = 1..N . At any pa
ket λn for whi
h Dn(π′) > ∆ or Ωn(π′) ≤ Ω∗, the 
omputation of Dn(π′)is stopped, and the de
ision tree is pruned for all poli
ies that have the same s
heduling up topa
ket λn (i.e., {π} s.t. πi = π′

i, ∀i, 1 ≤ i ≤ n). If DN (π′) ≤ ∆ and Ω(π′) ≥ Ω∗, the poli
y π′be
omes the new optimal poli
y π∗ and Ω∗ = Ω(π′). The operation is repeated until the set of allfeasible poli
ies Π represented on the de
ision tree has been 
overed. When the sear
h is 
omplete,the optimal poli
y π∗ maximizes the video quality at the re
eiver and respe
ts the playba
k delay
onstraints.The B&B method provides an e�
ient way of 
omputing the optimal transmission poli
y ve
tor
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π∗. The speed of the method depends on the pruning e�
ien
y, whi
h in turn, depends on thequality of the initial poli
y. However, the method is not s
alable with N , sin
e it 
annot 
omputethe optimal solution in polynomial time. The worst 
ase 
omplexity of the method remains O(3N ).The extension of the algorithm to more paths follows easily. In the general 
ase of K independentnetwork paths between the streaming server and the 
lient, the 
omplexity grows to O((K +1)N).6.4.2 Heuristi
 Solution: Load Balan
ing Algorithm (LBA))Sin
e the B&B algorithm may be too 
omplex in pra
ti
e, this subse
tion now presents a heuristi
approa
h, whi
h �nds a 
lose-to-optimal solution in polynomial time. The algorithm is inspiredfrom load balan
ing te
hniques, whi
h proved to be very e�e
tive in solving problems of tasks
heduling in multipro
essor systems [199℄. In short, the algorithm performs a greedy s
hedulingof the most valuable pa
kets �rst. Less valuable pa
kets are s
heduled only if the network 
apa
itypermits, and only if they do not lead to the loss of a more valuable pa
ket already s
heduled (dueto subsequent late arrivals at the 
lient).First, the N network pa
kets are arranged in des
ending order of their value. Hen
e, we obtaina new representation of the en
oded bitstream, Λ′ = {λ′

1, λ
′
2, ..., λ

′
N}, su
h that: ω1(λ

′
1) ≥ ω2(λ

′
2) ≥

... ≥ ωN (λ′
N ). Then, similarly to the EDPF algorithm, a greedy algorithm (see Algorithm 5),s
hedules the N ordered pa
kets on the two network paths, while additionally taking 
are of thepa
ket interdependen
ies. Algorithm 5 presents the sket
h of the 
omplete algorithm, where, forthe sake of 
larity, we rede�ne the a
tion imposed on pa
ket λ′

n, q′n as:
q′n =















a if pa
ket λ′
n is sent on path a;

b if pa
ket λ′
n is sent on path b;

0 if pa
ket λ′
n is dropped without sending;

∞ if pa
ket λ′
n is not s
heduled yet.To de
ide whi
h a
tion to take on ea
h pa
ket λ′

n, the algorithm �rst attempts to s
hedule allan
estors that have not been s
heduled yet. If one of them 
annot be s
heduled, then the algorithmautomati
ally drops the pa
ket λ′
n. This ensures that our algorithm does not waste networkresour
es on transmitting network pa
kets that 
annot be 
orre
tly de
oded at the re
eiver.All pa
kets marked to be s
heduled on a given path, are reordered a

ording to their de
odingdeadlines before transmission. When a new pa
ket is inserted, it triggers a new pa
ket ordering. Ifa pa
ket λ′

n 
an be s
heduled on both network paths without interfering with the pa
kets alreadys
heduled, the algorithm will 
hose the path that o�ers the shortest arrival time for pa
ket λ′
n. Ifpa
ket λ′

n 
an only be s
heduled on one path, the algorithm will insert the pa
ket on that path.Otherwise pa
ket λ′
n 
annot be s
heduled on any of the two paths, without interfering with thealready s
heduled pa
kets, and the algorithm will drop pa
ket λ′

n without transmitting it. Hen
e,the algorithm prevents that the transmission of one pa
ket for
es the loss of a more importantpa
ket previously s
heduled, be
ause of late arrival at the 
lient. Note that in the 
ase where thevalue of ea
h network pa
ket is dire
tly proportional to the size of the pa
ket, the algorithm o�ersa real load balan
ing solution for the two network paths.Algorithm 5 performs an initial ordering of the N pa
kets in the new set Λ′. Any 
ommonsorting algorithm that works with 
omplexity O(N log N) 
an be employed. Afterwards, for ea
hpa
ket λ′
n that must be s
heduled, the algorithm requires a sear
h among the pa
kets alreadys
heduled on ea
h of the paths, in order to insert the new pa
ket a

ording to its de
oding deadline.The operation requires O(N) 
omputations and is repeated N times, for ea
h pa
ket in Λ′. The
omplexity of the proposed algorithm is thus O(N2). For the more general 
ase of K disjoint pathsbetween the server and the 
lient, the algorithm requires the 
omputation of arrival times on all thepaths, for all s
heduled pa
kets. The insertion of one pa
ket therefore requires O(KN) operations,and is performed for all N pa
kets. The total 
omplexity of Algorithm 5 grows linearly with thenumber of network paths, being of O(KN2). In 
on
lusion, the proposed heuristi
 algorithmhas a 
omplexity that grows linearly with the number of network paths K, and quadrati
 withthe number of video pa
kets N . However, it generally leads to suboptimal strategies due tothe greedy optimization strategy. The extensive simulations presented in the next se
tion show
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Algorithm 5 Load Balan
ing Algorithm (LBA) for �nding πInput: Λ, ωn, sn, 1 ≤ n ≤ NOutput: Suboptimal transmission poli
y ve
tor π;1: Initialization: Create Λ′: arrange pa
kets in order of importan
e ωn;

n := 1;2: while n ≤ N do3: if Pa
ket λ′
n s.t. q′n = ∞ then4: invoke S
hedule_Pa
ket(n);5: end if6: n := n + 1;7: end while8: Pro
edure: S
hedule_Pa
ket(n)9: for all pa
kets λ′

k in An s.t. q′k = ∞ do10: invoke S
hedule_Pa
ket(k);11: end for12: invoke do_S
hedule(n);13: Pro
edure: do_S
hedule(n)14: if ∃ pa
ket λ′
k ∈ An s.t. q′k = 0 then15: q′n = 0;16: return;17: else18: attempt the insertion of pa
ket λ′

n on path a and on path b, ordered a

ording to thede
oding deadlines, without 
ompromising the de
oding of any other s
heduled pa
ket;19: if tcn(path a), tcn(path b) ≤ tdn + ∆ then20: 
hoose the path with shorter tcn;21: set q′n a

ordingly;22: else23: if tcn(path a), tcn(path b) > tdn + ∆ then24: q′n = 0;25: else26: s
hedule pa
ket λ′
n on the path with tcn ≤ tdn + ∆;27: set q′n a

ordingly;28: end if29: end if30: end if
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e are nevertheless very 
lose to optimal. The 
ombination of e�
ien
y and low
omplexity makes Algorithm 5 a suitable solution for fast multipath pa
ket s
heduling, espe
iallybene�
ial in real-time video streaming.6.4.3 Real-time streaming: Sliding Window Approa
hWe now relax the assumptions of full knowledge of media pa
kets and 
hannel bandwidths, andwe present the adaptation of the above algorithms to the 
ase of live streaming. In this 
ase, theserver does not anymore have the knowledge of the 
omplete video sequen
e. Instead it re
eivesthe network pa
kets dire
tly from an en
oder. The server may bu�er live streams for δ se
onds,in order to in
rease the s
heduling e�
ien
y. It has therefore a limited horizon, whi
h we 
all theprefet
h time δ. In other words, the prefet
h time, or prefet
h window, refers to the look-aheadwindow employed by the server. At any given time t, the server is therefore aware only of thenetwork pa
kets {λn} with de
oding time-stamps tdn ≤ t + δ.We assume that N(t) is the number of pa
kets that are available at the server at time t,and that Λ(t) = {λ1, λ2, ..λN(t)} now represents the set of these pa
kets ordered a

ording totheir de
oding deadlines. N(t) is equal to the number of pa
kets 
ontaining data from the videosequen
e up to time t + δ, minus the pa
kets that were already transmitted to the 
lient in thetime interval [0, t]. Note that we use the terms of prefet
h and sliding window inter
hangeably, asreferring to the same 
on
ept.The previously de�ned B&B and LBA methods are now applied on the set Λ(t) in orderto 
ompute a transmission poli
y ve
tor π for the N(t) pa
kets under 
onsideration at time t.Negle
ting the 
omputation time, even for the B&B method, we 
an start transmitting the pa
ketson the two paths a

ording to the poli
y π, at time t. Let T be the time interval between twosu

essive video frames, and without loss of generality, let t and δ be multiples of T . Hen
e,
t + δ = kT . At time t, the server 
an send pa
kets that 
ontain data from the en
oded videosequen
e up to frame k. At time t + T , the pa
kets 
ontaining data from frame k + 1 will beavailable at the server. At this time, the server will stop the transmission pro
ess of all pa
ketsfrom the previous sliding window that have not been sent yet, and add them to the new slidingwindow, along with the new pa
kets from frame k + 1. B&B and the LBA methods are thenapplied on the new sliding window. The implementation of our algorithms on top of a slidingwindow me
hanism adapts the s
heduling to new pa
kets, as soon as they are available at theserver.It is worth mentioning, that in the 
ase of real-time video streaming, Algorithm 5 is equivalentto a sequential greedy pa
ket s
heduling algorithm that 
onsiders �rst the most important pa
ketsin the sliding window, while for a sliding window of just one frame, our LBA method in essen
eredu
es to the EDPF algorithm, enhan
ed with a pa
ket dis
ard strategy [137℄.Interestingly, the LBA algorithm has the same behavior even in the 
ase when the exa
tweights of ea
h pa
ket, wn, are not known. It su�
es to know only the relative ordering of thevideo pa
kets a

ording to their weight, along with the pa
ket dependen
ies. While 
omputingonline the exa
t weight of ea
h pa
ket might be di�
ult (esp. in realtime streaming s
enarios),the relative ordering of the pa
kets 
an be easily performed, sin
e it is generally a

epted thatan I frame pa
ket is more important than a P or a B frame pa
ket, and a base layer pa
ket ismore important than an enhan
ement layer pa
ket. In the same time, the pa
ket dependen
iesare known from the en
oding and pa
ketization pro
esses.These observations emphasize the low 
omplexity of our proposal. We argue that, due to itslow 
omplexity, the LBA algorithm 
an be implemented at a real-time streaming server. The LBAalgorithm presents a 
omplexity that depends on the number of frames s
heduled (N) and the sizeof the sliding window. Its 
omplexity, C, varies a

ording to: C = 2( δ

frame_rate
)2(N− δ

frame_rate
).Along with any simple bandwidth predi
tion me
hanism able to estimate the bandwidth for theduration of the sliding window, it provides a valuable algorithm for any pra
ti
al multipath stream-ing s
enario. We demonstrate the good performan
e of the live streaming algorithm in Se
tion 6.5,where it is 
ompared to long horizon s
heduling me
hanisms.
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r1 r2 r3 r4 B&B LBA EDPF250 300 100 200 51.8% 47% 39.7%300 300 100 200 58.9% 51.5% 43.4%250 250 200 250 66.6% 60.6% 48.2%250 250 250 250 68.2% 60.6% 48.2%300 300 300 400 88% 82.2% 82.2%Table 6.1: Heuristi
 algorithms performan
e 
omparison6.5 Simulation Results6.5.1 Simulation SetupThis se
tion now presents and dis
usses the performan
e of the proposed s
heduling algorithms,and 
ompares the heuristi
-based solution to the optimal performan
e bound, in both stored videos
enarios and live streaming servi
es. Video sequen
es are 
ompressed with an MPEG4-FGS [7℄en
oder, at 30 fps with various GOP stru
tures. We use two di�erent CIF sequen
es, foreman andnews, en
oded in one base layer BL, and one or two enhan
ement layers (EL1 and EL2). Ea
hen
oded frame is split into network pa
kets, one for ea
h en
oded layer. We set the weights ωn ofthe pa
kets as a fun
tion of their relative importan
e to the en
oded bitstream (depending on thetype of en
oded frame, I, P or B, and on the en
oded layer they represent, BL, EL1 or EL2), asillustrated in Figure 6.2.We simulate network s
enarios 
ontaining two and three disjoint paths between the server andthe 
lient. We 
ondu
t experiments for segment bandwidths whi
h vary in time, for the theoreti
al
ase when the server knows them in advan
e, or when it predi
ts them based on past values. Weexperiment stored or live streaming s
enarios, with limited prefet
h window. Finally, we 
onsiderunlimited 
lient bu�ers, and negligible network laten
ies (i.e., di(t) = 0, ∀i, ∀t). We 
ompare theperforman
e of the proposed algorithms to the one of EDPF [135℄. We also 
ompare to a simpleRoundRobin algorithm, whi
h greedily s
hedules video pa
kets in a FIFO order, a

ording to theavailable bandwidth on ea
h of the paths. Finally, we also test our algorithm in s
enarios withpa
ket loss, in order to evaluate its behavior in very adverse 
onditions.
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r1 r2 r3 r4 B&B LBA B&B SW LBA SW200 300 400 400 75.8% 65.5% 70.4% 65.5%300 300 100 200 50.6% 47% 44.9% 47%300 300 200 200 64% 60.8% 60.6% 60.8%250 300 200 300 57.6% 51.4% 5.1% 51.5%300 300 250 300 71% 60.8% 69.7% 60.8%Table 6.2: Algorithm 
omparison with Sliding Window6.5.2 Stored Streaming S
enariosThe proposed algorithms are �rst 
ompared in the 
ase of stored video s
enarios, where the wholesequen
e is available at the streaming server, before running the s
heduling algorithms. The twosequen
es are en
oded into a BL of 300kbps and 450kbps respe
tively, and one EL of 550kbps. Dueto the high 
omplexity of the B&B algorithm, whi
h 
omputes the performan
e upper-bound, weuse a GOP of 6 frames, with one B frame between P frames. In a �rst approximation, we 
hoosethe following pa
kets weights: ωi = 5, for I frame base layer pa
ket, ωi = 4, for the base layer ofthe �rst P frame, ωi = 3, for the base layer of the se
ond P frame, ωi = 2, for the base layer of Bframes, and ωi = 1, for enhan
ement layer pa
kets.Figure 6.5 presents the video rate tra
e at the de
oder, when the server s
hedules the networkpa
kets a

ording to the optimal B&Bmethod, the LBA algorithm, the EDPF algorithm [135℄, andRoundRobin. The segment bandwidths are set to r1 = 300kbps, r2 = 500kbps, r3 = 400kbps and

r4 = 100kbps, the intermediate bu�ers are unlimited and the maximum playba
k delay imposedby the 
lient is set to ∆ = 150ms.It 
an be observed that, while the proposed LBA algorithm manages to su

essfully s
hedulealmost the same number of pa
kets as the optimal B&B solution, the simple EDPF algorithmand the RoundRobin method have 
learly worse performan
e sin
e they mostly drop the end ofthe sequen
e. This is due to the fa
t that the proposed LBA algorithm makes sure that the mostimportant pa
kets (the pa
kets from the base layer starting with the I frames, then P and Bframes) 
an be s
heduled, and only afterwards adds the enhan
ement layer pa
kets, if the networkrate permits it. On the 
ontrary, the EDPF or RoundRobin algorithms s
hedule as mu
h aspossible from any frame, without taking into a

ount future frames. In this way, entire GOPs
ould be lost, be
ause pa
kets of the I frame 
annot meet the de
oding deadline at the 
lient.A di�erent representation is provided in Table 6.1. It presents the performan
e of the LBA andEDPF algorithms 
ompared to the optimal solution for the foreman_cif sequen
e, as a fun
tionof the available 
hannel bandwidth. The performan
e here is measured in terms of the per
entageof su

essfully s
heduled data bytes out of the total en
oded stream. We observe that for a largevariety of rates, the proposed LBA algorithm performs mu
h 
loser to the optimal than the EDPFapproa
h. In the same time, for some rates, the LBA algorithm su�ers a loss in performan
e
ompared to the optimal B&B method, mainly due to the greediness of its s
heduling strategy.6.5.3 Streaming with Limited Look-aheadThe proposed solutions are now 
ompared in the 
ase of live video streaming, where the serverknowledge is limited to the pa
kets within the prefet
h window. The prefet
h window is set to3 frames (i.e., δ = 100ms), the maximal playba
k delay is ∆ = 100ms and the bandwidths ofthe 4 network segments are 
onstant in time. Figure 6.6 
ompares the real time B&B and LBAmethods, where the original algorithms are applied on top of a sliding window me
hanism (asexplained in Se
tion 6.4.3). The performan
e of the optimal B&B method applied to the wholesequen
e is also provided for the sake of 
omparison. It 
an be seen that the B&B method is nolonger optimal when 
ombined with a sliding window, as expe
ted. The proposed LBA algorithm
an even provide better performan
e in the live s
enario.The algorithms are also 
ompared in terms of the proportion of transmitted information, for
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Figure 6.8: MSE values for di�erent net-work rate sets as a fun
tion of Sliding Win-dow size.di�erent network 
onditions, in Table 6.2. The values represent the per
entage of su

essfullyde
oded data at the 
lient, out of the full stream. Interestingly enough, the real time LBAalgorithm has a similar performan
e to the 
ase of stored video s
enario. The sliding window,even with low prefet
h time, does not signi�
antly a�e
t the behavior of the s
heduling algorithm.This property, along with the low 
omplexity of the algorithm, shows that LBA represents a validsolution to the multipath pa
ket s
heduling problem, in the 
ase of live streaming.The algorithms are also 
ompared in terms of the MSE per
eived at the re
eiver. Figure 6.7presents the distortion due to the network bandwidth 
onstraints, 
omputed between the originalen
oded video sequen
e and the sequen
e available to the 
lient. The MSE values obtained bythe real time B&B and LBA s
heduling algorithms on two paths (with equal rates) are 
omparedto the ones obtained by using a single network path with equivalent aggregated bandwidth. Thede
oder in this 
ase implements a simple error 
on
ealment strategy based on previous framerepetition. Both s
hemes perform quite similarly when the aggregate bandwidth be
omes large.We observe that, while the multipath s
enario does not require a large bandwidth network path,there is virtually no loss in video quality when using two parallel network paths, instead of a singlehigh bandwidth 
hannel. This proves the e�
ien
y of the proposed algorithms, relatively to thedistortion lower-bound provided by the single 
hannel s
enario. Obviously, multipath streaming isuseful when there is no single high bandwidth 
hannel available, whi
h is used here only to assessthe s
heduling poli
y performan
e. Note that the EDPF algorithm is voluntarily omitted here dueto the high MSE values rea
hed when it fails to s
hedule entire frames or GOPs.We now analyze the in�uen
e of the Sliding Window size on the LBA pa
ket s
heduling pro
ess.As seen before, in the 
ase of 
onstant link rates, the pa
ket s
heduling pro
ess is barely in�uen
edby the size of the sliding window. However, it is not the 
ase if we allow the link rates to varyin time. We tested the performan
e of the LBA algorithm with various sizes for the slindingwindow. We use the foreman_cif sequen
e (the �rst 100 frames) and variable network rates onsmall time s
ales (hundreds of millise
onds). We omit the results of the B&B algorithm due tothe intra
tability of the 
omputations for larger window sizes, and those of the EDPF s
heduling,sin
e it does not take into a

ount the sliding window size.We present the MSE results in fun
tion of the size of the sliding window, for various networkrate sets of di�erent aggregated average bandwidths (Figure 6.8). We 
an observe that, for smallsliding windows, the LBA algorithm behavior is 
lose to the one of the EDPF algorithm, whi
hmay lose entire GOPs. Results are improving on
e the sliding window in
reases, sin
e the LBAalgorithm has more �exibility in s
heduling the video pa
kets. Finally, given a reasonable sizedwindow (δ = 0.5s), the results of the LBA are 
omparable to the 
ase of entire sequen
e knowledgebefore s
heduling. This depends on the ergodi
ity of the sequen
e sour
e rate.
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Figure 6.10: En
oded video frame rate(
umulative) and de
oded video frame rates(
umulative) in the 
ase of in�nite and 
on-strained intermediate bu�ers.We now further investigate the e�e
t of the size of intermediate bu�ers on s
heduling perfor-man
e. For the same network rate sets as before we vary the size of intermediate node bu�ers (Baand Bb). We observe that, for the same network rates, bigger intermediate bu�ers allow for thes
heduling of more video pa
kets, with improved smoothing of the rate variations; the di�eren
ebeing noti
eable in terms of MSE (Figure 6.9).Finally, we study the e�e
t of the intermediate bu�er size on the pa
ket load balan
ing on thetwo network paths. We 
ompare the s
heduling pro
ess on the two network paths in the 
ase wherethe intermediate nodes have in�nite or limited bu�er spa
e. Figure 6.10 presents the 
umulativeen
oded frame rate of the total bitstream and the su

essfully s
heduled bitstream rate in the 
aseof in�nite intermediate bu�ers, 
ompared to the 
ase when the bu�er of node a is limited to 8kB.Similarly, Figure 6.11 presents the same s
heduling pro
ess in the same 
ases, separately for ea
hof the two network paths. We observe major di�eren
es in the pa
ket s
heduling on the two pathsbetween the two s
enarios. A small bu�er size on the �rst network path will render it unusablefor a 
onsiderable period of time. This shortage is partially 
ompensated by sending the baselayer pa
kets on the se
ond link during the spe
i�
 period. However, the e�e
ts on the re
eivedbitstream are noti
eable. The s
heduling of the bitstream in the 
ase of unlimited intermediatebu�ers is therefore smoother. Finally, it is interesting to observe, that, due to the �ner granularityof the base layer pa
kets (in our setup the size of a base layer pa
ket is in general smaller than thesize of an enhan
ement layer pa
ket), we 
an s
hedule on path b more data than in the unlimitedbu�er 
ase.6.5.4 Streaming with Link Rate Estimation and Channel LossesNext, we release the assumption of a perfe
t 
hannel knowledge, and we test our proposed s
hedul-ing algorithm in the 
ase where the server estimates the 
hannel availability, and the transmissionpro
ess su�ers losses on the network links. We programm our simulation s
enario in ns-2 [194℄,where we simulate 10 ba
kground �ows for ea
h link. These �ows are generated a

ording tothe On/O� Exponential distribution, with average rates between 100 and 300kbps. The availableinstantaneous rate for our streaming appli
ation is 
onsidered to be the di�eren
e between thetotal link bandwidth and the aggregated instantaneous rate of the ba
kground tra�
. While theexa
t shape of the ba
kground tra�
 is not important for our work, the On/O� exponential dis-tribution of ba
kground tra�
 leaves a 
onstant average available rate for our appli
ation, withinstantaneous rate variations that 
an be larger than 100% (please refer to [200℄ for other typesof tra�
). In the same time, we generate pa
ket losses on ea
h of the network paths, a

ording to
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Figure 6.11: Video s
heduling on the twopaths with in�nite intermediate bu�ers vs.
onstrained bu�er on path a (Ba = 8kB).
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Figure 6.12: LBA performan
e on 3 net-work paths with predi
ted parameters and
hannel losses.an iid pro
ess with probabilities equivalent to pa
ket loss rates between 1 and 3%.Next, the server implements a simple bandwidth estimation algorithm, based on an auto-regressive model. It estimates the bandwidth for ea
h time window of size Tp, as follows. Theavailable rate rk+1 of a segment in the next time interval k+1, is given by: rk+1 = γ
∑k−1

j=1 rj

k−1 +(1−
γ)rk, where γ is the predi
tion 
oe�
ient. While the instantaneous rate variations of the 
hannel
an happen on very small time s
ales (of tens to hundreds of millise
onds), the fastest estimationme
hanisms [16℄ provide a

urate results on time intervals of the size of a few round-trip times(e.g., at least one se
ond or more). In simulations we therefore set Tp = 1s. Note �nally thatexa
t rate predi
tion is not 
ru
ial for the proposed algorithms, even if a

urate predi
tion 
anonly improve the performan
e.We test the LBA proto
ol in the 
ase when the server disposes of three disjoint paths fortransmission, and the video is s
alably en
oded into one BL and two ELs. We use a GOP of31 frames, with 15 P frames between I frames and one B frame between P frames. The twoenhan
ement layers are 
reated by splitting the FGS enhan
ement layer 
reated by the MPEG-4FGS en
oder. We split the bitplanes su
h that the two layers have similar average rate, similarto [201℄. We set the rates to 300kbps for the BL, and 260kbps respe
tively for the two ELs. Thepa
ket weights are set in a similar manner as in the previous experiments.We s
hedule the �rst 100 frames of foreman_cif , and we 
ompare the results obtained by ouralgorithm and the EDPF algorithm [135, 137℄, in the 
ase the server knows the rates in advan
eand there is no 
hannel loss, with the 
ase when it predi
ts the rates based on the auto regressivemodel presented above, and the transmission pro
ess su�ers from path losses. We set the averagerates on the three network paths to 280, 200 and 170kbps, and the pa
ket loss probabilities to 1,3 and 2% respe
tively.The maximum playba
k imposed by the 
lient is D = 200ms. For the 
omputation of thes
heduling poli
y based on predi
ted rates, we however use a more 
onservative delay of D1 =
150ms, in order to 
ope with big shifts in link rates and avoid the drop of important pa
kets. Thes
heduling results are presented in Figure 6.12 and Figure 6.13. We observe that in the 
ase ofLBA, the performan
e degradation 
ompared with the optimal 
ase, when all rates are known,is negligible. While, in the optimal 
ase, the algorithm 
orre
tly s
hedules 201 pa
kets, out of300, representing 67% of the total stream, in the 
ase of predi
tion, it manages to s
hedule 186pa
kets, representing 62%. While no frame is lost due to frame dropping or late pa
ket arrivalsat the 
lient, we observe a limited number of lost frames due to the loss of BL pa
kets on thetransmission pro
ess. Simple rate predi
tion, 
ombined with 
onservative playba
k delay settings,o�ers performan
e in terms of 
lient video quality that is 
omparable to the 
ase where rates are
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Figure 6.15: LBA performan
e vs. 
omplexity. (100 frames, average aggregated bandwidth of450 kbps)perfe
tly known at the server2.We observe that EDPF tends to s
hedule entire frames and drop less important frames infavor of more important ones. On the other hand, the LBA algorithm prefers to s
hedule themost important video layers �rst, and only then s
hedule pa
kets belonging to the enhan
ementlayers, in the network bandwidth permits it. Due to the fa
t that LBA 
an handle s
alable videostreams, we also observe that it is more robust to 
hannel losses than EDPF. LBA loses an entireframe only if a BL pa
ket is lost due to 
hannel errors.In the 
ontext of simple error 
on
ealment methods at the 
lient (e.g., frame repla
ement), theLBA s
heduling will provide a smoother quality of the re
eived video (7.2 MSE points 
omparedto 22.4 MSE points in the 
ase of EDPF). In the same time, due to the variable size of the frames,EDPF is more vulnerable to network rate variations and predi
tion errors than LBA.Note that pa
ket loss 
an be mitigated by use of error resilient me
hanisms (e.g. FEC or pa
ketretransmissions [106℄), and we present results in lossy s
enarios to evaluate the performan
e of thes
hemes in limit 
onditions. The design of a s
heduling strategy adapted to lossy environments ishowever outside of the s
ope of the present work.2For a more detailed analysis of media streaming with 
onservative delay on variable rate 
hannels, pleasesee [202℄.
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omplexity of the proposed algorithms and we try to derive a good trade-o� for our LBA method, between 
omplexity and performan
e, as a fun
tion of the size of thesliding window. While the B&B algorithm has a prohibitive exponential 
omplexity as a fun
tionof the size of the sliding window, the EDPF and the Round Robin algorithms are very simple,their 
omplexity being linear in terms of the number of total s
heduled frames, and independentof the size of the sliding window. The 
omplexity of our algorithm lies between the two bounds(Figure 6.14). It takes more operations than the simple EDPF s
heduling, but it is still polynomialin 
omplexity and 
an be performed in real time. In the same time, it is similar in 
omplexity tothe EDPF algorithm with the sele
tive frame dis
ard enhan
ement [135℄.Figure 6.15 presents the performan
e of the LBA algorithm for di�erent sizes of the slidingwindow. We superimpose the 
omplexity 
urve with the performan
e 
urve in order to �nd theoperational sliding window size as a fun
tion of the two values. We observe that for low values ofthe sliding window size, the performan
e of the LBA algorithm mat
hes the one of the s
enariowhen all frames are known in advan
e. In the same time, the 
omplexity of the algorithm remainslow. Low 
omplexity and good performan
e, even for small sliding window sizes that allow tomaintain low end-to-end delays, make the LBA a suitable 
andidate for real time pa
ket s
hedulingin multimedia streaming.6.6 Dis
ussion and Con
lusionsThis work addresses the problem of the joint sele
tion and s
heduling of video pa
kets on a networktopology that o�ers multiple paths between the streaming server and the media 
lient. We usean en
oded video abstra
tion model that fa
tors in the variable importan
e of video pa
kets,as well as their interdependen
ies. An optimization problem is then formulated, whi
h aims atmaximizing the video quality at the 
lient under a given playba
k delay. A formal analysis ofpa
ket transmission timing leads to the derivation of e�
ient algorithms to �nd the transmissionpoli
y that maximizes the video quality at the 
lient. Be
ause of the 
omplexity of the optimalmethod, we propose fast, polynomial time algorithms that still o�er 
lose-to-optimal solutions.Both methods have been implemented in the 
ase of stored videos, and real-time streaming withthe help of a sliding window me
hanism. Simulation results in both s
enarios prove that ourproposed heuristi
-based solution performs well in terms of �nal video quality, and is moreoversuitable for the 
ase of real-time streaming under stri
t delay 
onstraints. They also show thatour methods outperform other 
ommon s
heduling algorithms from the literature.We identify a generi
 pra
ti
al s
enario in whi
h our algorithm 
an be applied, as a streamingsystem in whi
h one video server sends an en
oded video to one or more 
lients in real time.Su
h a s
enario 
an be easily imagined in the 
ontext of Content Distribution Networks, wirelessvideo transmissions via several interfa
es, or peer-to-peer appli
ations. The video is en
oded intomultiple layers adding up to a very good quality, and the available aggregated rate between theserver and any 
lient represents the share of the total link bandwidth allo
ated to, or reserved bythe streaming appli
ation. In su
h a s
enario, for ea
h of the 
lients, our algorithm will adaptively
hose the right set of video pa
kets to send on the network, in order to maximize the re
eived videoquality, given the available rates and the imposed playba
k delay. Be
ause of its low 
omplexity,the algorithm is s
alable within large streaming s
enarios.Our method 
an be easily adapted to network s
enarios 
hara
terized by weaker assumptions interms of server knowledge about link rates and loss pro
esses. We show how the algorithms performin the 
ase of predi
ted network rates, when the server uses a simple auto-regressive predi
tionme
hanism. By using 
onservative s
heduling parameters, our s
heduling methods 
ope with largevariations in instantaneous network rates, with a negligible in
rease in the distortion per
eived atthe 
lient, as detailed in the next 
hapter. Furthermore, pa
ket loss 
an be e�e
tively addressedby implementing FEC s
hemes on top of our s
heduling me
hanisms.



Chapter 7Pa
ket Media Streaming withImpre
ise Rate Estimation
7.1 Introdu
tionOur streaming solutions from the previous 
hapters generally rely on the knowledge of the 
hannelbandwidth, in order to sele
t the media pa
kets to be transmitted, a

ording to their sendingtime. However, the streaming server usually 
annot have a perfe
t knowledge of the 
hannelbandwidth, and important pa
kets may be lost due to late arrival, if the s
heduling is based onan over-estimated bandwidth. Robust media streaming te
hniques should take into a

ount themismat
h between the values of the a
tual 
hannel bandwidth and its estimation at the server.Even the best rate estimation algorithms are not able to follow the rate variations of the 
han-nel, and often work on a 
oarser times
ale [16℄. Sin
e 
hannel predi
tion errors are inevitable and
an lead to late arrivals of important media pa
kets, the streaming server has to adjust the pa
ketsele
tion and s
heduling strategies in order to 
ope with estimation mismat
hes. Our proposedmethod relies on a simple FIFO s
heduling me
hanism; however, we in
rease the algorithm's ro-bustness by using a 
onservative virtual playba
k delay, smaller than the playba
k delay imposedby the 
lient. The s
heduling pro
ess 
onsiders the 
onservative playba
k delay as the hard dead-line for pa
ket arrival at the 
lient, hen
e it is more aggressive in the pa
ket sele
tion pro
ess. Onthe other side, the di�eren
e between the 
onservative s
heduling delay and the e�e
tive playba
kdelay after whi
h the 
lient starts playing the video, transparently 
ompensates for the eventuallate pa
ket arrivals due to the overestimation of the end-to-end bandwidth.Overall, we observe that a very 
onservative s
heduling delay tends to limit the sele
tionof transmitted media data to only a few pa
kets, whi
h penalizes the quality at the re
eiver.Alternatively, a s
heduling delay that is too 
lose to the e�e
tive playba
k delay may result inlate arrival of pa
kets, whi
h also penalizes the quality. Hen
e, the purpose of this 
hapter is toanalyze the trade-o� between robustness against 
hannel predi
tion errors and pa
ket sele
tionlimitations, observed as a result of tighter s
heduling 
onstraints.The rest of this 
hapter is organized as follows: We formulate in Se
tion 7.2 an optimizationproblem whose goal is to �nd the optimal 
onservative delay used in the s
heduling pro
ess, whi
hmaximizes the quality of the re
eived video for a given 
hannel rate model, and a given playba
kdelay at the 
lient. We dis
uss the 
omplexity of the exa
t solution for the optimization problemand we present a fast solution in Se
tion 7.3. Se
tion 7.4 presents our simulation results andSe
tion 7.5 
on
ludes this 
hapter. 87
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t

r r(t)

rp(t)

Server ClientFigure 7.1: Network end-to-end model with rate variations r(t) and estimated rate rp(t).7.2 Streaming with Conservative Delay7.2.1 System OverviewAs in the previous 
hapter, we 
onsider a single path streaming s
enario between a server S and a
lient C. The media stream 
an either be pre-stored at the server (V oD), or 
an be obtained in realtime (real-time streaming). The video 
ontent is en
oded into one or more layers and fragmentedinto network pa
kets su
h that one pa
ket 
ontains information related to one frame and one videolayer. Let Λ = {λ1, ..., λn} be the set of available pa
kets at the server, with n representing thetotal number of pa
kets. Similarly to [198℄, ea
h pa
ket λi is 
ompletely 
hara
terized by its size
si, its de
oding deadline ti, its importan
e ωi and its list of dependen
y pa
kets Ai, whi
h arene
essary for a 
orre
t de
oding.The intermediate network between S and C is modelled as an end-to-end 
hannel 
hara
terizedby the variable rate r(t). While we 
onsider no link error in our model, pa
kets 
an still be lostfrom a media appli
ation perspe
tive, due to late arrivals. The server S estimates on a periodi
interval, the available 
hannel rate rp(t), using any estimation me
hanism Γ (Figure 7.1). Based onthat estimation, the streaming appli
ation employs a generi
 s
heduling algorithm Ψ that de
idesthe subset of pa
kets π ⊆ Λ that are sent in a FIFO order to the 
lient, so that the re
onstru
tedvideo quality is maximized, given the playba
k delay ∆ imposed by the 
lient. The video qualitymeasure Ω, 
an be 
omputed at the 
lient as:

Ω = ΩS(π) − ΩL(π), (7.1)where ΩS(π) =
∑

i ωi, ∀λi ∈ π represents the quality of the video pa
kets sele
ted for trans-mission, and ΩL(π) =
∑

i(ωi · ǫi) represents the video quality degradation due to pa
kets that
annot be de
oded be
ause of late arrivals at the 
lient. ǫi represents the probability that pa
ket
λi arrives past its de
oding deadline at the 
lient. These late arrivals are 
aused by 
hannel band-width variations, and ina

ura
y in the rate estimation used by the server. Indeed, the estimationof the available rate in the future time instants is generally not perfe
t, and often not able toexa
tly follow the frequent variations of the bandwidth.We propose to modify the s
heduling strategy, in order to be robust to over-estimations ofthe 
hannel rate. We de�ne a virtual playba
k delay, or s
heduling delay δ, whi
h is used bythe server to 
ompute the subset of pa
kets to be sent. As δ is smaller than the a
tual playba
kdelay ∆, the server will sele
t a redu
ed number of pa
kets for transmission (ΩS de
reases), butthe sele
ted pa
kets have a lower probability to be lost (ΩL in
reases). In other words, π now
ontains only pa
kets that are likely to rea
h the 
lient before their de
oding deadline (ti +δ) witha streaming rate rp, and ea
h pa
ket λi is s
heduled and transmitted only on
e. The 
hoi
e ofthe virtual playba
k delay be
omes obviously a trade-o� between sour
e quality, and robustnessto rate variations, and its optimization is proposed in the next se
tions.7.2.2 Illustrative ExampleWe demonstrate the rationale behind our proposed me
hanism by a 
on
rete example. Imaginethat server S needs to de
ide at time t whether to send pa
ket λi to the 
lient C or not. The



7.2. STREAMING WITH CONSERVATIVE DELAY 89Table 7.1: Example Parameter Values for Conservative Delay S
heduling.Instantaneous Rate (kbps) 420Predi
ted Rate (kbps) 450Pa
ket Size si (bits) 8000Pa
ket Weight ωi 1000De
oding Deadline ti 0Playba
k Delay ∆ (ms) 200Conservative Playba
k Delay δ (ms) 180Time t (ms) 0s
heduling de
ision is based on the predi
ted network rate at moment t, rp(t), the size si, weight
ωi, dependen
y list Ai and de
oding deadline ti of pa
ket λi, and on the 
onservative playba
kdelay δ. In the same time, C expe
ts pa
ket λi before time ti + ∆, so that it 
an su

essfullyde
ode it.For the sake of 
larity, assume that the list Ai = ∅, e.g., pa
ket λi 
an be independentlyde
oded at C, and that the server's bu�er does not 
ontain any other media pa
kets ex
ept λi.The rest of the parameters are set a

ording to Table 7.1.Observe that S takes the de
ision to send the pa
ket on the network after 
omputing theexpe
ted arrival time at the 
lient: Tp = t + si

rp(t) ≈ 177ms ≤ 180ms = ti + δ. Even if the
hannel rate is overestimated and pa
ket λi arrives at the 
lient at the real arrival time Ta =
t + si

r(t) ≈ 190ms > ti + δ, pa
ket λi still arrives on time for su

essful de
oding at the 
lient, as
ti + ∆ = 200ms.On the 
ontrary, imagine the same pro
edure is applied to pa
ket pj , under the same 
onditions,ex
ept sj = 9.000 bits and the s
heduler does not use the 
onservative delay δ, but rather dire
tlythe playba
k delay ∆. S de
ides to send the pa
ket, as Tp = t+

sj

rp(t) = 200ms ≤ 200ms = ti +∆.However, pa
ket pj is useless for the 
lient as it arrives past its de
oding deadline: Ta = t+
sj

r(t) ≈

220ms > ti + ∆. In su
h a 
ase pa
ket pj 
onsumes network resour
es that 
ould be used moree�e
tively.Finally, please observe that in the 
ase where S uses the 
onservative delay δ in s
hedulingpa
ket pj , the de
ision would be to drop the pa
ket, as it is likely to arrive late a

ording to thepredi
ted bandwidth. This insight lies the ground for the trade-o� between robustness against
hannel predi
tion errors, and pa
ket sele
tion limitations, observed as a result of tighter s
heduling
onstraints.7.2.3 Optimization ProblemThe virtual playba
k delay δ used by the s
heduler represents a 
ompromise between a 
onservativesele
tion of pa
kets that minimizes the probability of late arrivals, and the sele
tion of a su�
ientnumber of pa
kets for an e�e
tive quality. Given the video sequen
e, the quality metri
 Ω, thes
heduling strategy Ψ, the rate estimation algorithm Γ, and the playba
k delay ∆, the optimizationproblem translates into �nding the optimal 
onservative delay δ ≤ ∆ to be used by the s
heduler,in order to maximize the re
eived video quality Ω, for a given 
hannel model:
δ∗ = arg max

∀δ≤∆
Ω(δ) (7.2)In general, this optimization problem does unfortunately not provide any simple solution. Evenfor �xed Ψ, Γ and ∆, the s
heduling poli
y π 
an greatly vary with the 
hoi
e of δ, hen
e �ndingthe optimal solution for the problem has 
ombinatorial 
omplexity. However, for small values of

∆ (as in pra
ti
al real-time streaming s
enarios), δ∗ 
an be a

urately approximated in real-time.In the next se
tion we present our approa
h towards �nding an appropriate solution, based onheuristi
s from real-time video streaming.



90 CHAPTER 7. PACKET MEDIA STREAMING WITH IMPRECISE RATE ESTIMATION7.3 Finding the Conservative Delay7.3.1 General SolutionOn the one hand, the quality metri
 ΩL(π) depends only on the di�eren
e ∆ − δ, for a giventransmission poli
y π and the 
hannel model. Very 
onservative values for δ will ensure a bigdi�eren
e ∆ − δ, hen
e more �exibility in dealing with rate predi
tion errors, and 
onsequently asmaller value for ΩL (see Figure 7.2).On the other hand, the quality measure ΩS(π) depends only on the pa
kets s
heduled fortransmission, a

ording to the predi
ted rate rp(t) and δ. Interestingly, our experiments showthat, for a given 
hannel model, ΩS does not vary mu
h with δ, as long as δ is large enough toa

ommodate the transmission of the largest video pa
kets of the sequen
e.Let Ri(∆) be the 
umulative rate of the 
hannel up to time ti +∆: Ri(∆) =
∫ ti+∆

0 r(t)dt, and
Ri

p(δ) be the 
umulative estimated rate up to time ti + δ: Ri
p(δ) =

∫ ti+δ

0
rp(t)dt. For given δ and

∆, we de�ne the e�e
tive data transfer Cδ
∆(i) on the time interval [0, ti +∆], as the amount of datas
heduled a

ording to the predi
ted rare rp before ti + δ, and re
eived before ti + ∆ a

ording tothe a
tual bandwidth r:

Cδ
∆(i) = Ri

p(δ) · Pr{Ri
p(δ) ≤ Ri(∆)}. (7.3)An illustration of the e�e
tive data rate transfer is given in Figure 7.3.Given this measure, we transform the original optimization problem into a new problem that
hooses δ in order to maximize C. The optimal value of δ be
omes:

δ∗ = arg max
0≤δ≤∆

Cδ
∆(i). (7.4)

Cδ
∆(i) is invariant in time, as long as the 
hannel model does not 
hange, hen
e it 
an be
omputed at any ti. The previous optimization problem translates into maximizing the 
han
esof every pa
ket λi, s
heduled for transmission at time t, to rea
h its destination by time t + ∆.Unlike the original optimization problem of Eq. (7.2), Eq. (7.4) depends only on the 
hannelmodel, hen
e it is easy to solve, on
e this model is known. It 
an be noted that both optimizationproblems are equivalent in the 
ase of a smooth video model (the video pa
kets have the same sizeand importan
e, and there are no dependen
y among them). We later show in Se
tion 7.4 thateven in realisti
 video streaming s
enarios the solution obtained for this problem is a very goodapproximation of the optimal solution, as long as the playba
k delay is long enough.7.3.2 Example Channel ModelWe now develop all ne
essary relations for a typi
al 
hannel modelled as a dis
rete-time system,with a sampling interval of Ts se
onds. The network 
an 
ommuni
ate a maximum of riTs bits ofdata in the time interval [iTs, (i + 1)Ts], where ri is the available bandwidth of the 
hannel in the

ith time interval. The 
hannel rate ri is given as a Gaussian autoregressive pro
ess of the form:
ri = µ + (1 − α)

∞
∑

j=0

αjni−j , j ∈ Z, nk = 0, ∀k < 0. (7.5)Ea
h nj is an independent zero mean Gaussian random variable with varian
e σ2, α is amodelling parameter, and µ denotes the average available bandwidth. The validity of that modelfor internet tra�
 tra
es on time s
ales of millise
onds up to a few se
onds has been veri�ed in [18℄.A simple auto-regressive predi
tion model is used for bandwidth estimation at the server, wherethe available rate of the network in the next time interval, k + 1, is given by:
rk+1 = γ

∑k−1
j=1 rj

k − 1
+ (1 − γ)rk, (7.6)
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Figure 7.3: E�e
tive average data trans-fer when δ varies between 0 and ∆ (∆ =
300ms).where γ is the predi
tion 
oe�
ient. The estimation is run periodi
ally, on time windows ofsize Tp. While instantaneous rate variations of the 
hannel 
an happen on very small time s
ales(of tens to hundreds of millise
onds), the fastest estimation me
hanisms provide a

urate resultson time intervals of the size of a few round-trip times (e.g., one se
ond or more), and predi
tionina

ura
ies 
annot be avoided.Assuming that ti + ∆ = k · Ts ≤ Tp, with k an integer1, we 
an 
ompute:

Ri(∆) = k · µ +

k
∑

j=0

(1 − γ) · γj−1 ·

k−j
∑

l=1

nl. (7.7)Finally, Si denotes the 
umulative size of the transmitted pa
kets up to pa
ket λi: Si =
∑i

j=1 sj, ∀pj ∈ π. The probability that a pa
ket arrives too late at the re
eiver, ǫi, 
an be
omputed as:
ǫi = Pr{Si > Ri/Si ≤ Ri

p}. (7.8)Sin
e Ri is a normal random variable and Ri
p is a known 
onstant, given any δ and ∆, theerror probabilities ǫi 
an be easily 
omputed with the help of the erfc fun
tion.7.3.3 S
heduling AlgorithmWhile the presented robustness me
hanism is generi
, and 
an be applied to any pa
ket s
hedulingalgorithm, in this se
tion we des
ribe the spe
i�
 algorithm employed in the experimental phaseof this work.The algorithm is an adaptation of the LBA s
heduling algorithm introdu
ed in the previous
hapter, to the single path network s
enario presented above. In short, the algorithm performs agreedy s
heduling of the most valuable pa
kets �rst. Less valuable pa
kets are s
heduled only ifthe network 
apa
ity permits, and only if they do not lead to the loss of a more valuable pa
ketalready s
heduled (due to subsequent late arrivals at the 
lient).First, the n network pa
kets are arranged in des
ending order of their weight, obtaining anew representation of the en
oded bitstream, Λ′ = {λ′

1, λ
′
2, ..., λ

′
n}. Then, the algorithm attemptsa greedy s
heduling of the pa
kets on the network link, starting with the most important one.To de
ide whi
h a
tion to take on ea
h pa
ket λ′

i, the algorithm �rst attempts to s
hedule allan
estors that have not been s
heduled yet. If one of them 
annot be s
heduled, then the algorithm1The extension of the 
omputation for the general 
ase, on multiple predi
tion intervals, and when k is not aninteger 
an be 
omputed in a straightforward manner, based on the analysis presented here.
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heduling.automati
ally drops the pa
ket λ′

i. This ensures that our algorithm does not waste networkresour
es on transmitting network pa
kets that 
annot be 
orre
tly de
oded at the re
eiver.Finally, all pa
kets marked to be transmitted, are reordered a

ording to their de
oding dead-lines before transmission. When a new pa
ket is inserted for transmission, it triggers a new pa
ketordering. If pa
ket λ′
i 
an be inserted, without 
ompromising the arrival time of any other alreadys
heduled pa
ket, then it is s
heduled for transmission. Otherwise, pa
ket λ′

i is dropped. Pleaseobserve that the s
heduling algorithm 
an be run on the total video sequen
e to be streamed,in the 
ase of VoD streaming, or on a limited window of video pa
kets in the 
ase of real-timestreaming.The total 
omplexity of the s
heduling algorithm is driven mainly by the sorting and insertionoperations. While the sorting 
an be performed by any algorithm in time O(n log n), the insertionof ea
h pa
ket λ′
i requires a 
omplete parse through all previously s
heduled pa
kets. Hen
e thetotal 
omplexity of the algorithm is O(n2).7.4 SimulationsWe dis
uss the performan
e of the streaming appli
ation with 
onservative delay and we 
omparethe results obtained by our heuristi
 solution for δ with the optimal solution, obtained througha full sear
h, and with other frame reordering te
hniques. We s
alably en
ode the foreman_cifsequen
e (130 frames) using MPEG4-FGS, at 30 frames per se
ond, with a GOP stru
ture of 31frames (IPBPBPB...). By splitting the bitplanes, we en
ode one BL and 2 ELs of average ratesof 260kbps. In all our experiments we use the simple pa
ket s
heduling algorithm as presentedabove. We set the weights ωi of the pa
kets as a fun
tion of their relative importan
e to theen
oded bitstream (depending on the type of en
oded frame, I, P or B, and on the en
oded layerthey represent, BL, EL1 or EL2), as illustrated in Figure 6.2. In a �rst approximation, we 
hoosethe following pa
kets weights: 5 for I frame BL pa
kets, 4 for the P frame BL pa
kets, 3 for theB frame BL pa
kets, 2 for the EL1 pa
kets, and 1 for the EL2 pa
kets [198℄.For the 
hannel model and estimation me
hanism, we set the required parameters to α = γ =

0.8, Ts = 20ms, Tp = 1s, and we vary σ2 ∈ [100, 250], a

ording to the 
hannel average rate. Thesevalues ensure realisti
 
hannel variations on small time s
ales around the average bandwidth value.Finally, we set ∆ = 200ms.We 
ompare the results obtained by streaming with the heuristi
 δ, 
omputed a

ording toEq. (7.4), and the optimal δ∗, obtained after a full sear
h through all possible values for δ ∈ [0, ∆].We use di�erent 
hannel average rates and we average over 10 simulations for ea
h 
ase. The resultsare presented in Figure 7.4. We observe that for all simulated rates, our results in terms of MSE



7.4. SIMULATIONS 93Table 7.2: δ∗ and δ for Various Average Channel Rates.Rate (kbps) 350 400 450 500 550 600Optimal δ∗ (ms) 163 156 172.5 161 154 155.5Heuristi
 δ (ms) 172 170 168 167 166 165
Ω(δ∗)−Ω(δ)

Ω(δ∗) (%) 4.94 1.71 3.53 2.86 6.04 2.63
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heduling with Heuristi
 and Optimal Con-servative Playba
k Delay δ for ns-2 NetworkRate Tra
es.are very 
lose to the optimal ones. This validates our simpli�
ation to the original optimizationproblem, presented in Se
tion 7.3. At the same time, Table 7.2 presents the obtained values forthe heuristi
 and optimal δ for the same 
hannel 
onditions as above, along with the relative errorbetween the streaming performan
es. We observe that the values are very 
lose and that δ∗ isin general more 
onservative than δ. An explanation of this phenomenon resides in the fa
t thatthe sequen
e under 
onsideration does not present any s
ene 
hanges and the pa
ket sizes remain
onstant in time.Next, we 
ompare the proposed 
onservative δ streaming with other frame reordering streamingte
hniques. We use a simple te
hnique similar to the one presented in [138℄, whi
h brings forwardall I and P frames by two positions in the original bitstream before s
heduling. Both te
hniquesare 
ompared in terms of number of late pa
ket arrivals with a simple FIFO s
heduling s
hemethat is unaware of 
hannel rate variations. Simulation results are averaged over 100 
hannelrealizations for an average rate of 500kbps. Figure 7.5 presents the number of late pa
kets forea
h of the 3 s
hemes with the 95% 
on�den
e intervals. We observe that the 
onservative δs
heme performs the best in terms of average number of late arrivals, due to the fa
t that theappli
ation 
an transparently use the di�eren
e ∆ − δ to 
ompensate for unpredi
ted 
hannelrate variations. Figure 7.6 presents one s
heduling example for the 
onservative δ and framereordering te
hniques. We observe that in the 
ase of frame reordering, the strategy trades o� ahigher 
on�den
e in re
eiving I and P frames on time, at the expense of less important B frames.Hen
e, some B frames are lost due to late arrivals. On the 
ontrary, the 
onservative δ strategymanages to s
hedule a similar amount of pa
kets, and uses the extra time ∆ − δ to minimize theimpa
t of rate variations on late arrivals. Hen
e, less pa
kets are late at the re
eiving end of theappli
ation.Finally, we test the proposed 
onservative delay s
heduling method on network rate tra
esgenerated with the help of the ns-2 simulator in the presen
e of ba
kground tra�
. We simulate 10ba
kground �ows that use the same bottlene
k link as our media stream. These �ows are generateda

ording to the On/O� Exponential distribution, with average rates between 100 and 300kbps.The available instantaneous rate for our streaming appli
ation is 
onsidered to be the di�eren
e



94 CHAPTER 7. PACKET MEDIA STREAMING WITH IMPRECISE RATE ESTIMATIONbetween the total link bandwidth and the aggregated instantaneous rate of the ba
kground tra�
.Even if the average available rate stays 
onstant, instantaneous rate variations 
an be larger than100%. We 
ompare the performan
e of the s
heduling obtained by using the heuristi
 and theoptimal 
onservative delays, respe
tively, by averaging the obtained results over 10 randomlygenerated network rate tra
es. Results are presented in Figure 7.7 for average network rates of
300 and 450kbps. We observe that the results are very 
lose, even if the exa
t 
hannel model is notknown when the 
onservative delay is 
omputed, and the 
hannel estimation method is imperfe
t2.Results show that being 
onservative in terms of s
heduling delay and initial 
hannel rate estimate,in
reases the robustness of the streaming appli
ation, without signi�
antly penalizing the re
eivedvideo quality. It indi
ates that our method is robust even in extreme 
ases when exa
t informationrelated to the 
hannel model is not available.7.5 Con
lusionsWe present a new me
hanism to improve the robustness of adaptive media stream s
heduling al-gorithms against network 
hannel variability and estimation ina

ura
ies. By using a 
onservativevirtual playba
k delay in the s
heduling pro
ess we 
ompensate for possible predi
tion errors. Thedi�eren
e between the 
onservative and a
tual playba
k delay imposed by the 
lient transparentlyabsorbs the negative e�e
ts of inexa
t rate estimation (e.g., in
reased pa
ket delay at the 
lientdue to 
hannel variations). We propose a method to determine the value of the 
onservative de-lay, as a trade-o� between sour
e quality, and robustness to bandwidth variations. The proposedsolution is generi
 and 
an be employed with any given streaming me
hanism. Results show thatbeing 
onservative in 
hoosing the s
heduling delay pays o�, even if the exa
t 
hannel model isunknown (e.g., on simulated network rate tra
es with 
ompeting ba
kground tra�
) and the rateestimation me
hanism only approximates the 
hannel rate variations over time. The simpli
ityand e�e
tiveness of our solution make it appropriate for any real-time streaming me
hanism overbest-e�ort networks.

2For more details on e�
ient bandwidth estimation me
hanisms we refer the reader to [16℄.



Chapter 8Media Streaming over MultipleWireless Networks
8.1 Introdu
tionIn this 
hapter we rely on the theoreti
al work presented until now, and we dis
uss a possiblepra
ti
al streaming s
enario. We envision a setup where users 
an a

ess various appli
ations withdi�erent Quality-of-Servi
e (QoS) requirements over possibly multiple a

ess networks (Figure 8.1).We solve a global optimization problem that periodi
ally 
omputes the optimal rate allo
ation andnetwork sele
tion for ea
h user/appli
ation, given a universal quality metri
. To this end, we takeinto a

ount the parameters of the networks available to ea
h user, and the spe
i�
 
hara
teristi
sof wireless appli
ations. One by one, the behavior of ea
h 
onsidered appli
ation is designed asa fun
tion of the user's network a

ess parameters. Spe
i�
ally, we derive a distortion model forstreaming appli
ations, whi
h depends on the available data rate, transmission loss pro
ess at ea
h
lient, and spe
i�
 video sequen
e 
hara
teristi
s. Similarly, voi
e and data transfer appli
ationsare analyzed. Then, we de�ne a universal quality metri
 that maps the QoS behavior of allappli
ations as a fun
tion of the network parameters. Our �nal goal is to maximize the overallQoS of the system, under the given network resour
e 
onstraints.Real systems will often o�er a limited 
hoi
e in the mode of operation of the a

essed appli
a-tions; e.g., di�erent voi
e trans
oders operating at di�erent rates in the 
ase of voi
e 
onversations,a limited number of s
alable en
oded video layers for streaming appli
ations, or a set of standarddownload rates for data transfer appli
ations. Our �nal solution 
onsists of an optimal de
isionon the mode of operation (total required rate) and network resour
e allo
ation for ea
h 
lienta

essing a spe
i�
 appli
ation. Su
h a global solution requires the 
omputation over the wholeset of appli
ation modes, for every user. Given the time varying nature of the wireless 
onne
tionsand the dynami
s of users leaving/joining the system, the optimality of our solution is insuredby iterative 
omputations that take into a

ount the a
tualized system status. To this end, weprovide fast heuristi
 algorithms that 
an be used in real time system optimizations, based on theutility trade-o� between system performan
e improvement and required resour
es [33℄. We showthat our QoS metri
 behaves well in a large set of system setups, and outperforms other tradi-tional QoS metri
s based on throughput, in terms of overall a
hieved quality, user fairness andadaptability to dynami
 system setups. Finally, we show that our proposed heuristi
 algorithmsobtain a 
lose to optimum system performan
e with a low 
omputational e�ort.Our 
ontributions in this 
hapter are two-fold:

• In the 
ontext of multiple parallel appli
ations over wireless networks, we dis
uss the op-portunity of a single unifying quality metri
 that maps the spe
i�
 requirements of ea
h
onsidered appli
ation to a single value. Later, this quality metri
 is used in our optimiza-tion framework for improving the overall system performan
e;95



96 CHAPTER 8. MEDIA STREAMING OVER MULTIPLE WIRELESS NETWORKS
FTP

Streaming

Voice

QoS 
Network

Best-Effort 
Network

Server

Figure 8.1: Multiple wireless networks framework: more 
lients have a

ess to multiple appli-
ations via more wireless networks.
• Finally, we propose a fast heuristi
 algorithm that 
omputes a 
lose to optimum resour
eallo
ation solution in an iterative pro
ess, by taking into a

ount the network a

ess 
hara
-teristi
s at ea
h a
tive 
lient, along with the spe
i�
 requirements of its desired appli
ation.The rest of this 
hapter is organized as follows. Se
tion 8.2 presents the 
onsidered appli
ationsand available a

ess networks. We present our joint optimization problem in Se
tion 8.3 andexplain our heuristi
 approa
h to solving it in Se
tion 8.4. We o�er a 
on
rete modelling examplein Se
tion 8.5. Extensive simulation results are presented in Se
tion 8.6, while Se
tion 8.7 
on
ludesthis 
hapter.8.2 System Model8.2.1 Multiple Appli
ationsAssume N a
tive users that simultaneously a

ess via a server S any one of three di�erent types ofappli
ations, namely voi
e 
onversation (V ), real-time media streaming (M) and FTP download(F ). Let user i, 1 ≤ i ≤ N a

ess one of the available appli
ations k, k ∈ {V, M, F}, and let

Mi = ri be the mode of operation of user i, de
ided by S. It des
ribes the average rate allo
atedto user i that has 
hosen appli
ation k. We assume that S 
an s
alably adapt the transmissionpro
ess to the 
hannel 
onditions of user i. To this end, for ea
h appli
ation k, the server 
an
hoose the right transmission parameter, from a prede�ned set of available parameters Pk.First, we 
onsider a multimedia streaming appli
ation that transmits a s
alable en
oded streamto the end user. Let L be the number of available en
oded media layers available at the server S,where the layer l ≤ L is 
hara
terized by its average en
oding rate ρl. Additionally, we assume thatthe server S 
an prote
t ea
h media layer against transmission errors, with one of E forward error
orre
tion s
hemes FEC(ne, ke), e = 1, . . . , E. We de�ne PM = {ρm : 1 ≤ m ≤ O} as the set ofavailable streaming modes, where O = L · E represents the total number of feasible 
ombinationsbetween the media en
oded layers and FEC s
hemes, and ρm is the total rate imposed by mode m.The �nal per
eived quality at the end user depends on the number of media layers transmitted,and the loss pro
ess that a�e
ts the media pa
kets after FEC de
oding, and 
an be 
omputed asshown in Chapter 5.Then, we model the voi
e appli
ation. We 
onsider NV available voi
e trans
oders at theserver S. Ea
h trans
oder v is 
hara
terized by its en
oding rate ρv. We de�ne PV = {ρv : 1 ≤
v ≤ NV } as the available parameter set for the voi
e appli
ation. The per
eived quality of thevoi
e appli
ation at the end 
lient depends on the 
omplexity of the trans
oder v, and hen
e theallo
ated rate ρv, and the error pro
ess p that a�e
ts the data transmission.Finally, we assume PF = {ρf : 1 ≤ f ≤ NF } as the available parameter set for the FTPappli
ation. ρf represents the download rate of the FTP session. The per
eived quality of theappli
ation will depend on the total download time, hen
e on the allo
ated download rate anderror pro
ess that a�e
ts the data transmission.
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 Γ (Mi) = f(ri, pi) as a fun
tion of the allo
ated rate ri and theaverage loss probability pi a�e
ting the data transmission of appli
ation k, towards user i. A
on
rete example of su
h a QoS metri
, along with the appropriate mappings between this metri
and the per
eived quality of the appli
ations presented above is given in Se
tion 8.5. Finally, wede�ne M = {Mi : 1 ≤ i ≤ N} as the global operation mode of the system, when the server Sallo
ates the rate ri = ρk ∈ Pk to ea
h a
tive user i, a

essing appli
ation k.8.2.2 Multiple NetworksEven if the problem formulation proposed here is generi
, we 
onstrain ourselves to a s
enariowith two a
tive networks that relay appli
ation data between the server S and user i. Q_Net isa QoS modelled network, 
hara
terized by a guaranteed servi
e to all a
tive users when networkloads are inferior to the 
ongestion point (e.g., through spreading 
odes and transmission timeintervals assignment in the 
ase of an HSDPA system), and high blo
king probability in saturatedregime. Its total resour
es are 
hara
terized by the instantaneous total throughput RQ, whi
htakes into a

ount the 
hannel 
onditions of all a
tive users in the network. RQ is preferentiallydistributed among a
tive users a

ording to the importan
e of their a

essed appli
ation (e.g.,HSDPA systems prioritize voi
e 
onversations over streaming appli
ations and FTP downloads).
RQ is periodi
ally estimated on time intervals T , possibly with a 
ertain predi
tion error, whi
htranslates into a generally small pa
ket error probability pQ

i that equally a�e
ts all a
tive users.The se
ond network, BE_Net, is modelled as a Best E�ort network that provides servi
es to
lients on a �rst-
ome-�rst-serve basis (e.g., a WiFi hotspot). Ea
h a
tive 
lient i in this network
an a

ess resour
es at a maximum data rate RB
i and is a�e
ted by an average loss pro
ess pB

i ,over time intervals T . While 
hannel 
onditions in wireless environments 
hange on very shorttime s
ales (e.g., up to a few tens of ms), we assume that RB
i and pB

i represent average values
omputed on larger time s
ales T (e.g., one to a few se
onds), and represent the average 
hannel
onditions for user i on the given period T .Let [rQ
i , rB

i ] be the rate allo
ation of user i over the two networks, with ri = rQ
i + rB

i . Pleaseobserve that appli
ation rates rQ
i = 0 or rB

i = 0 imply that user i is ina
tive in the given network.Finally, let the tuple τi = [rQ
i , pQ

i , rB
i , pB

i ] 
hara
terize the appli
ation rates and 
hannel 
onditionsfor ea
h user i in the two networks. The following resour
e 
onstraints apply:
N
∑

i=1

rQ
i ≤ RQ,

N
∑

i=1

rB
i

RB
i

≤ 1. (8.1)for Q_Net and BE_Net respe
tively. While the �rst 
onstraint refers to the total availablethroughput on the Q_Net, the se
ond one refers to the maximum available time for transmissionon the downlink at the a

ess point of the BE_Net. Finally, under these 
onditions, the totalerror probability that a�e
ts the transmission to user i, reads : pi =
rQ
i · pQ

i + rB
i · pB

i

rQ
i + rB

i

.8.3 Network Sele
tion and Rate Allo
ation ProblemWe assume that the server S periodi
ally solves the optimization problem, in full knowledge ofthe 
onne
tion parameter tuple τi, ∀i : 1 ≤ i ≤ N , and of the appli
ation parameter sets Pk,
∀k ∈ {V, M, F}. Within ea
h time interval T , we optimize the allo
ation of network resour
esamong the N 
lients, with the �nal goal of maximizing the overall quality of the system. In otherwords, we are looking for the optimal global operation mode M∗ = {M∗

i : 1 ≤ i ≤ N} 
ontainingthe optimal appli
ation mode for ea
h 
lient i, where M∗
i = r∗i ∈ Pk, k being the appli
ationa

essed by 
lient i:

M∗ = arg max
M

N
∑

i=1

Γ(Mi) (8.2)
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onstraints provided by Eq. (8.1). A dis
rete sear
h through all operation modesleads to the solution M∗ with optimal overall QoS. Alternatively, in the next se
tion, we o�er aheuristi
 algorithm that a
hieves 
lose-to-optimal results with a faster 
onvergen
e time.8.4 Utility Based Rate Allo
ation AlgorithmAlgorithm 6 Utility based rate allo
ation algorithmInput:2: RQ, pQ
i , RB

i , pB
i , ∀ user i;

Pk, ∀k ∈ {V, M, F}, ordered in as
ending order of ρk;4: Mi = 0, ∀ user i;Output:6: Global Rate Allo
ation Mode M;Pro
edure RateAllo
ation8: While (1)for i = 1 to N do10: Compute the utility of i → M
′

i:
Ui =

Γ(M
′

i)−Γ(Mi)

r
′

i
−ri

;12: end for�nd i∗ = arg maxi Ui;14: Push(i∗,M′

i∗ , Q_Net);Pro
edure Push(i,M′

i, Q_Net)16: if Q_Net has enough free resour
es then
i → M

′

i;18: update free resour
es on Q_Net;else20: Swit
h(i,M′

i, Q_Net);end if22: Pro
edure Swit
h(i,M′

i, Q_Net)�nd user j that 
an transfer part of his allo
ated rate rj to BE_Net with minimum Hj ;24: if Ui − Hj > 0 thenperform the swit
h of user j rate: G(j, r);26: i → M
′

i;update free resour
es on Q_Net and BE_Net;28: elseBreak;30: end ifIn this se
tion we introdu
e our heuristi
 approa
h for solving the rate allo
ation optimizationproblem. We build on the utility framework introdu
ed in [33℄, and present an algorithm thatiteratively takes a lo
ally optimal de
ision on ea
h user's appli
ation mode.Let Pk, k ∈ {V, M, F} be the sets of appli
ation modes ordered in in
reasing order of theirrequired rates, and let Mi be the allo
ated mode of user i at a given iteration of our algorithm.We de�ne i → M
′

i as the transition of user i to the next appli
ation mode M′

i requiring the nexthigher appli
ation rate r
′

i. The utility of this transition 
an be 
omputed as:
Ui =

Γ(M
′

i) − Γ(Mi)

r
′

i − ri

,and represents the trade-o� between the system quality improvement and the extra resour
esrequired by user i's transition. Our algorithm starts from the initial setup when the 
lients haveno allo
ated network resour
es. During ea
h iteration, the proposed algorithm �nds the user i∗
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Figure 8.2: Voi
e Appli
ation MOS:mapping between MOs and in
reasing lossprobabiltiy for every 
onsidered voi
e 
ode
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MOS: mapping between MOS and PSNRfor the foreman sequen
e.that brings the highest utility to the overall system by its transition to the next (higher quality)appli
ation mode:

i∗ = arg max
i

Ui,The extra resour
es will be allo
ated to user i∗ starting with the resour
es of Q_Net. On
e theresour
es of Q_Net are depleted, the algorithm �nds a di�erent user j that 
an free the requiredresour
es for user i∗, by reallo
ating part of its rate r ≤ rj on the other network BE_Net. Let
G(j, r) be the operation by whi
h rate r ≤ rj of user j is redire
ted through BE_Net, and let
Hj be the loss in system utility 
aused by the swit
h. This operation is performed as long as theoverall utility of the system is still improved (Ui −Hj > 0), and as long as free network resour
esstill exist in the overall system. The algorithm stops when there are no more free resour
es inthe network system, or when no other possible user transition 
an bring any improvement in theoverall system utility.Algorithm 6 represents a sket
h of the proposed algorithm. The Push pro
edure alwaysattempts to in
rease the system's utility by allo
ating the free Q_Net resour
es to the best user.If the free resour
es are not enough, the Swit
h pro
edure tries to �nd a new user that 
an freeup enough resour
es by reallo
ating parts of its allo
ated rate through the BE_Net. As long asthe network resour
es allow it, the pro
edures repeat until no higher modes are available at any
lient, or no extra utility improvement 
an be brought to the overall system.The 
omplexity involved in the sear
h for i∗ is O(N), the same being valid for the Swit
hpro
edure. In the worst 
ase, the algorithm requires O(N · |Pk|) iterations to pass through everyappli
ation mode of every user. Hen
e the total 
omplexity of the algorithm is O(N2 · |Pk|). For areasonable number of wireless users, and a �nite set of available appli
ation modes, the algorithmwill 
onverge rapidly to a global rate allo
ation ve
tor M. Its performan
e is further studied inSe
tion 8.6.8.5 MOS Quality Metri
In this se
tion we exemplify on a 
on
rete quality metri
 Γ based on the MOS (Mean OpinionS
ore) value [203℄.

MOS re�e
ts the average user satisfa
tion on a s
ale of 1 to 4.5. The minimum value re�e
tsan una

eptable appli
ation quality, and the maximum value refers to an ex
ellent QoS. Theper
eived quality of ea
h of the three appli
ations is 
onverted into an equivalent MOS value,whi
h is later used in the optimization problem.
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Figure 8.4: FTP Appli
ation MOS: mapping between MOS and throughput.The performan
e of di�erent voi
e trans
oders as a fun
tion of network losses is mapped to
MOS values using the PESQ algorithm on a representative set of voi
e samples [157℄ in Figure 8.2.We observe that, while good network 
onditions lead to in
reased user experien
e, high pa
keterror rates degrade the per
eived quality of the voi
e 
ommuni
ation.The per
eived media streaming quality is initially mapped into an MSE (mean square error)distortion measure, as presented in Se
tion 8.2.1. Later on, a nonlinear mapping between MSEand MOS values is used, as illustrated in Figure 8.3.Finally, the per
eived quality of the FTP appli
ation is mapped to MOS values a

ording toa logarithmi
 fun
tion of the a
hieved throughput: MOS = a · log(b · r(1 − p)). The variables aand b are system dependent parameters, and 
an be set by the network operator (Figure 8.4).8.6 Simulation Results8.6.1 Simulation SetupWe test the performan
e of our proposed rate allo
ation and path sele
tion method, and we
ompare its performan
e against a 
lassi
 optimization solution that uses appli
ation throughputas a quality metri
.We use 4 voi
e trans
oders, namely G.723.1B, iLBC, SPEEX and G.711 with average en
odingrates of 6.4, 15.2, 24.6 and 64kbps respe
tively. To simulate the media streaming appli
ation, ween
ode the foreman_qcif sequen
e (300 frames) with the H.264/SVC 
ode
. We en
ode onebase layer and one enhan
ement layer, ea
h of 70kbps. Additionally, we use one forward error
orre
tion mode FEC(20, 17) whi
h 
an 
orre
t up to 3 pa
ket errors in a blo
k of 20 pa
kets.For FTP downloads, we set 4 available download rates of 50, 100, 150 and 200kbps respe
tively.Due to the high 
omplexity of the full sear
h algorithm for �nding the overall optimal rateallo
ation solution, we use small network s
enarios (5 or 6 users) in order to validate the MOSquality metri
, and the proposed heuristi
 algorithm. Later we 
ompare our proposed heuristi
algorithm with other heuristi
s in larger network setups. For 
omparison purposes we de�neas OptimMOS and OptimTh the full sear
h algorithms whi
h optimize the network resour
eallo
ation based on the MOS, and respe
tively Throughput QoS metri
s. In the same time wede�ne Algorithm 6 as Heuristic, while Switch represents the same heuristi
 algorithm, with the
onstraint that no user 
an be allo
ated resour
es from both networks in the same time (e.g., whenthe algorithm de
ides to swit
h one 
lient from one network to another, its whole allo
ated rateis rerouted through the new network). SwitchTh is similar to Switch, but a
ts a

ording to the
Throughput QoS metri
.
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e whenusers are added/removed to/from the sys-tem: Heuristic algorithm.8.6.2 Small Network S
enariosA total of 6 
lients are pla
ed in the 
overage area of both networks (3 voi
e, 2 FTP, and onestreaming user). Server S performs the optimization of the rate allo
ation periodi
ally, every

T = 1s. The average throughput RQ of Q_Net varies in the interval [100, 150]kbps and thepredi
tion error pQ
i is kept around 1%. The 
onne
tion data rate RB

i of the users in the BE_Netis set in the interval [220, 310]kbps, and the individual average loss probabilities pB
i are randomly
hosen in the interval [1, 15]%. We average our results over 100 simulation runs of 10 se
onds ea
h.We �rst 
ompare the average performan
e of the overall system, when the optimization is per-formed a

ording to the MOS and throughput quality metri
s. We start by identifying the tra�
distribution obtained by ea
h optimization metri
 over the two networks. Table 8.1 presents thefra
tion of tra�
 that passes through both networks, for ea
h appli
ation. We observe that the

MOS optimization rightfully uses the Q_Net resour
es for the voi
e and streaming appli
ations,while the FTP tra�
 is forwarded through BE_Net. On the other hand, the throughput optimiza-tion favors the FTP appli
ation, as it forwards part of its tra�
 over Q_Net (hen
e in
reasingthe o�ered rate for the appli
ation), at the expense of lower available resour
es for the voi
eand streaming appli
ations that share the same network. This explains the lower overall systemperforman
e obtained for the throughput metri
, 
ompared to MOS (Figure 8.5). For a totalaverage system throughput varying from 320 to 460kbps, the MOS optimization outperforms the
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ases by as mu
h as 0.15 MOS points. We also observe that the

Heuristic algorithm 
losely mat
hes the optimal behavior, and the experimental results obtainedafter performing experiments with real video sequen
es. In the same time, Figure 8.6 presents thequality performan
e among the proposed heuristi
 algorithms. While Switch and Heuristic arequite 
lose to optimum, SwitchTh fails to allo
ate enough resour
es to some of the users, hen
ethe important degradation in overall system performan
e.Finally, we test the two optimization metri
s in dynami
 systems where users are allowed tojoin/leave the networks. We start with 5 
lients (2 voi
e, 1 streaming and 2 FTP users). At time
t = 3s we add a streaming user, and at time t = 8s we remove one voi
e user. Figure 8.7, Figure 8.8and Figure 8.9 present the average appli
ation performan
e for ea
h user. We observe that in the
ase of MOS optimization, the system is able to 
ope with the extra user at the expense of a smallquality degradation for the existing users, for both OptimalMOS and Heuristic algorithms. Onthe other hand, the throughput optimization is unfair, as some of the 
lients are penalized morethan the others, and the overall performan
e is worse.8.6.3 Large Network S
enariosIn this 
ase we are using a total of 20 
lients pla
ed in the 
overage area of both networks (7 voi
e,6 streaming and 7 FTP 
lients). The total rate of the system is varied in the interval [1.3, 1.7]Mbpswith RQ ∈ [300, 600]kbps. The loss probabilities for the two networks and the simulation setupare similar as in the previous example.We are looking at the overall average performan
e of the Heuristic and Switch algorithmswhen more a
tive users are present in the system (Figure 8.10). Intentionally, we omit the per-forman
e of the SwitchTh algorithm, due to its very poor results. We observe that while Switchperforms quite good, Heuristic still provides a signi�
ant improvement in total system quality.This is mainly due to the extra system granularity in allo
ating the resour
es of the two networksamong the 
lients, if 
lients are allowed to 
onne
t in parallel to both networks.Next, we present the average tra�
 distribution on the two networks, for ea
h type of appli
a-
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Figure 8.12: Average tra�
 distributionper appli
ation type, per network: Switchalgorithm, 20 users.tion, when ea
h of the two algorithms is used to 
ompute the overall rate allo
ation. Figure 8.11and Figure 8.12 present the distributions obtained by the Heuristic and respe
tively Switch algo-rithms. We observe that Heuristic manages to allo
ate the Q_Net resour
es mostly to the voi
eappli
ation and as mu
h as possible to the streaming appli
ation. The FTP 
lients are mostlys
heduled on BE_Net, whi
h represents an intuitive result. On the other hand, Switch s
hedulesalmost half of the voi
e appli
ations on the BE_Net, at the advantage of streaming appli
ations.While surprising, this result is explained by the fa
t that voi
e appli
ations, usually requiring lessnetwork resour
es, are easier to swit
h on the best-e�ort network, when the QoS network be
omes
ongested. Su
h a behavior 
an however be 
orre
ted by applying di�erent weights to the 
lients,depending on the importan
e of the a

essed appli
ation.Finally, we test our algorithms in dynami
 systems. We allow 4 new users to join the systemat time t = 3s (2 voi
e, 1 streaming and 1 FTP 
lients), while at time t = 8s, other 4 usersarea leaving. Figure 8.13 and Figure 8.14 present the results obtained by Heuristic and Switchrespe
tively. In the �rst 
ase, we observe that the algorithm manages to keep a rather 
onstantappli
ation quality for all a
tive 
lients, by redistributing parts of the network resour
es to the newusers. This way, Heuristic a
hieves fairness among all users, even if they a

ess di�erent types ofappli
ations. On the other hand, Switch 
opes worse with the system dynami
s; we observe thatthe voi
e and streaming users are penalized, 
ompared to the FTP users. Again, this is due tothe la
k of granularity in reallo
ating network resour
es, when new users enter the system. Thishighlights the bene�t of resour
e allo
ation �exibility given by the multipath network s
enarioassumed by the proposed algorithm.8.7 Con
lusionsWe introdu
e a new optimization framework for the rate allo
ation and network sele
tion for 
lientsa

essing multiple appli
ations over parallel networks. In the optimization pro
ess we take intoa

ount the available network resour
es and the 
onne
tion parameters of ea
h 
lient, along withthe spe
i�
 quality requirements of ea
h appli
ation. We unify the performan
e of all appli
ationsunder a single MOS quality metri
, whi
h is later used in the optimization pro
ess. Comparedto traditional optimization metri
s based on throughput, the MOS approa
h a
hieves a more fairresour
e allo
ation among a
tive 
lients, and proves to be more s
alable in dynami
 systems. We�nally provide a heuristi
 algorithm based on utility fun
tions, whi
h a
hieves a 
lose to optimalresour
e allo
ation with low 
omputational resour
es. Comparing to other heuristi
 approa
hes,our algorithm is more stable and adaptable in dynami
 situations, emphasizing the �exibilitygiven by the resour
e aggregation paradigm in multipath network s
enarios. The obtained results
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ourage us to further investigate the possibility of multiple wireless networks inter
onne
tingtowards the �nal bene�t of the end users.



Chapter 9Con
lusions
9.1 Thesis A
hievementsThis thesis addresses the problem of internet media streaming from the end-user perspe
tive.We take a 
ombined approa
h by looking at the same time at the 
hara
teristi
s of the trans-port medium, and of the parti
ular appli
ation under 
onsideration, in order to develop e�
ientstreaming algorithms and proto
ols. We take advantage of the path diversity o�ered by the latestnetwork ar
hite
tures and present a 
omplete framework for video streaming over multipath net-works. Within this 
ontext, we separately dis
uss the most important issues 
on
erning an e�
ientstreaming pro
ess, and we present our analysis, results and 
on
lusions. Finally, we integrate theproposed me
hanisms and algorithms into a possible system for video streaming.First we dis
uss the issue of path sele
tion and rate allo
ation for multipath streaming systems.Our main obje
tive is to jointly �nd (i) the optimal streaming rate for a given, pre-en
oded videopa
ket stream so that the quality at re
eiver is maximized, and (ii) whi
h network paths should beused for relaying the video stream to the 
lient. Our analysis leads to the theoreti
al foundationsfor an e�
ient algorithm that 
omputes the optimal path sele
tion and rate allo
ation solutionfor our s
enario. We learn that the network paths should be used in a greedy manner, startingwith the ones a�e
ted by the lowest loss probabilities, and that on
e used, a path should beutilized at its full resour
es. Interestingly enough, our simulation results emphasize the trade-o� between allo
ating more network resour
es to the streaming pro
ess, and hen
e, allowing foran in
reased en
oded media quality, and the in
reased risk of erroneous de
oding due to extratransmission errors, indu
ed by added transmission paths. This insight motivates the use of alimited number of streaming paths for the media transmission, and explains why a simple network�ooding with media pa
kets is not ne
essarily optimal. Furthermore, we propose distributedmethods for implementing our �ndings in large network s
enarios, where the available end-to-end network paths are not known a-priory. We show that fast heuristi
 rate allo
ation rulesimplemented at intermediate nodes lead to the 
onstru
tion of good transmission paths, laterutilized by the streaming appli
ation.Next, we o�er an insight study of various forward error 
orre
tion and s
heduling te
hniquesin multipath s
enarios. We emphasize the streaming quality improvement o�ered by prioritys
heduling strategies, 
ombined with unequal error prote
tion, based on the di�erent importan
eof media pa
kets. Furthermore, we dis
uss pra
ti
al systems, with limited �exibility in 
hoosingthe forward error 
orre
tion parameters, and we show that e�
ient systems will generally insurethe strong prote
tion of the most important pa
kets of the media appli
ation in a joint sour
e
hannel 
oding setup. Finally we explore the possibility of in-network pro
essing, and we identifynetwork s
enarios where intermediate node error 
orre
tion is bene�
ial for the appli
ation. Ouranalysis o�ers valuable solutions for the design of pra
ti
al streaming systems, and emphasizesthe relevant trade-o�s. 105



106 CHAPTER 9. CONCLUSIONSOur pa
ket sele
tion and s
heduling analysis is presented next. Based on the knowledge of themedia bitstream stru
ture, and on a 
areful timing analysis of the pa
ket transmission pro
ess, weidentify optimal and heuristi
 s
heduling algorithms for multipath streaming appli
ations. Basedon load balan
ing and prefet
h window te
hniques we improve the streaming pro
ess in terms ofappli
ation smoothness and number of late pa
ket arrivals. Our methods is e�
ient in terms ofnetwork resour
es 
onsumption and insures gra
eful quality degradation at the 
lient when thenetwork be
omes una

ommodating. We also o�er simple robustness me
hanisms that prote
t theperforman
e of the streaming pro
ess in the wake of undete
ted network variations or estimationerrors. Our results show that the proposed algorithm along with the implemented robustnessmethods o�er a fast s
heduling solution that outperforms existing proposals.Finally, we des
ribe a possible pra
ti
al system for multimedia servi
es integrated in a generalnetwork s
enario with 
lients a

essing di�erent types of appli
ations. We dis
uss a possiblemultipath network s
enario obtained by the inter-operability of parallel wireless servi
es, wheremultiple 
lients 
an a

ess various appli
ations by 
onne
ting to one or more wireless networks.We address the path sele
tion and rate allo
ation problem for ea
h 
lient, along with forward error
orre
tion de
isions, in order to maximize the overall system performan
e under a unifying qualitymetri
. Our analysis and algorithms take into a

ount the 
onne
tion parameters of ea
h 
lient inea
h of the a

essed networks, and periodi
ally 
ompute an optimal system resour
e allo
ation, inorder to 
ope with 
lient dynami
s and network variability. Our heuristi
 algorithm outperformsother methods, while the proposed unifying optimization metri
 a
hieves a more fair resour
eallo
ation than 
lassi
al optimization metri
s.9.2 Future Dire
tionsRe
ent developments in 
oding theory and appli
ations open new resear
h issues in the domainof real time appli
ations over the internet. In parti
ular, many-to-one streaming setups basedon rateless 
odes appear promising, as this 
lass of 
odes o�ers the de
oding �exibility requiredby highly dynami
 network systems. We identify peer-to-peer streaming systems as a suitableappli
ation that 
ould bene�t for the implementation of error 
orre
tion strategies based on rate-less 
odes. The simple implementation of su
h 
odes in distributed s
enarios represents a greatmotivation for su
h systems. However, the real-time nature of su
h systems also poses severalmajor problems in terms of 
ontent syn
hrony, appli
ation delays, and 
oding de
isions. Futureinvestigation of these aspe
ts 
ould provide solutions that bring the implementation of e�
ientpeer-to-peer streaming systems 
loser to reality.While part of the existing internet paradigm pushes the appli
ation pro
essing and de
ision
omputation at the edge nodes, in
reased 
apabilities at intermediate nodes allow for in-networkpro
essing of traversing data �ows. Network 
oding emerges as a powerful tool for throughputmaximization in pa
ket networks, based on simple linear operations performed on in
oming pa
k-ets at ea
h router. Further extending the range of network 
oding appli
ations for future streamingsystems seems a natural step. Large s
ale streaming systems whi
h require distributed implemen-tations with no 
entral authority 
ould greatly bene�t of su
h pro
essing paradigms. However,e�
ient streaming systems based on network 
oding should address the inherent problems, e.g.,real-time in-network shaping and adaptation of the in
oming streams to variable network 
ondi-tions, or minimizing in-network pro
essing delays.Finally, the streaming pro
ess 
ould be analyzed from a 
ross layer design perspe
tive. Witha �nal goal of optimizing the appli
ation quality as per
eived by the end user, de
isions at theappli
ation layer should be based on the knowledge ex
hanged by di�erent layers of the networksta
k. Highly variable network setups like wireless systems 
ould greatly bene�t from su
h strate-gies. The inter-operability among network layers 
ould improve the overall system performan
eand ensure smoother transitions in the 
ase of drasti
 network variations. In su
h a 
ontext weemphasize the importan
e of the trade-o� between the in
reased appli
ation performan
e and theadditional 
omputation 
ost and exe
ution time.
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