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Abstract

Pattern matching is a programming language construct considered essential in functional
programming. Its purpose is to inspect and decompose data. Instead, object-oriented pro-
gramming languages do not have a dedicated construct for this purpose. A possible reason
for this is that pattern matching is useful when data is defined separately from operations
on the data - a scenario that clashes with the object-oriented motto of grouping data and
operations. However, programmers are frequently confronted with situations where there
is no alternative to expressing data and operations separately – because most data is neither
stored in nor does it originate from an object-oriented context.

Consequently, object-oriented programmers, too, are in need for elegant and concise solu-
tions to the problem of decomposing data. To this end, we propose a built-in pattern match-
ing construct compatible with object-oriented programming. We claim that it leads to more
concise and readable code than standard object-oriented approaches. A pattern in our ap-
proach is any computable way of testing and deconstructing an object and binding relevant
parts to local names.

We introduce pattern matching in two variants, case classes and extractors. We compare
the readability, extensibility and performance of built-in pattern matching in these two vari-
ants with standard decomposition techniques. It turns out that standard object-oriented
approaches to decomposing data are not extensible. Case classes, which have been stud-
ied before, require a low notational overhead, but expose their representation, making them
hard to change later. The novel extractor mechanism offers loose coupling and extensibility,
but comes with a performance overhead.

We present a formalization of object-oriented pattern matching with extractors. This is done
by giving definitions and proving standard properties for a calculus that provides pattern
matching as described before. We then give a formal, optimizing translation from the cal-
culus including pattern matching to its fragment without pattern matching, and prove it
correct.

Finally, we consider non-obvious interactions between the pattern matching and parametric
polymorphism. We review the technique of generalized algebraic data types from functional
programming, and show how it can be carried over to the object-oriented style. The main
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tool is the extension of the type system with subtype constraints, which leads to a very
expressive metatheory. Through this theory, we are able to express patterns that operate on
existentially quantified types purely by universally quantified extractors.

Keywords: programming language, type systems, pattern matching, object-oriented pro-
gramming, data abstraction, semantics, compiler construction



Zusammenfassung

Musterabgleich ist ein essentielles Programmiersprachenkonstrukt der funktionalen Pro-
grammierung, welches der Dateninspektion und -dekomposition dient. Im Gegensatz hi-
erzu fehlen objekt-orientierten Programmiersprachen derartige Konstrukte völlig. Ein mög-
licher Grund hierfür mag in der Tatsache liegen, dass Musterabgleich eine Trennung von
Daten und Datenoperationen voraussetzt, welche jedoch nach einem objekt-orientierten
Grundsatz gebündelt sein sollten. Trotz dieses Grundsatzes finden sich Programmierer häu-
fig in Situationen wieder, welche das getrennte Definieren von Daten und Datenoperationen
erfordern – schliesslich werden die meisten Daten weder in objekt-orientierter Weise gespe-
ichert noch in objekt-orientierten Kontexten erzeugt.

Wir schliessen daraus, dass auch objekt-orientierte Programmierer elegante und konzise Lö-
sungen für das Problem der Datendekomposition benötigen. Zu diesem Zweck definieren
wir den Musterabgleich als ein eingebautes Sprachkonstrukt, dass sich mit objekt-orientierter
Programmierung verträgt. Wir belegen, dass dies gegenüber den mit Standardtechniken
erzielbaren Ergebnissen zu kürzerem und lesbareren Programmcode führt. Ein Muster ist
in unserem Ansatz jede berechenbare Methode um Tests und Dekonstruktion auf einem
Objekt durchzuführen und relevante Teile an lokale Namen zu binden.

Wir definieren Musterabgleich in zwei Varianten, mittels Fallklassen und mittels Extrak-
toren. Wir vergleichen beide Varianten mit Standardtechniken in Bezug auf Lesbarkeit,
Erweiterbarkeit und Performanz. Es stellt sich heraus, dass Standardtechniken nicht er-
weiterbar sind. Fallklassen, die schon in der Literatur behandelt wurden, brauchen nur
wenig Notation, legen jedoch ihre Darstellung frei und können daher nicht einfach geän-
dert werden. Der neue Extraktormechanismus bietet gute Erweiterbarkeit, führt jedoch zu
Performanzeinbussen.

Wir formalisieren objekt-orientierten Musterabgleich mit Extraktoren. Dazu liefern wir Def-
initionen und Beweise von Standardeigenschaften eines objekt-orientierten Programmier-
sprachenkalküls, welcher das oben beschriebene Konstrukt des objekt-orientierten Muster-
abgleichs enthält. Dann geben wir eine formale, optimierende Übersetzung von der Sprache
inklusive Musterabgleich auf ihr Fragment ohne Musterabgleich an und beweisen ihre Ko-
rrektheit.
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Schliesslich wenden wir uns den nicht-trivialen Wechselwirkungen zwischen Musterab-
gleich und parametrischem Polymorphismus zu. Wir geben eine Übersicht zur Technik
der generalisierten algebraischen Datentypen aus der funktionalen Programmierung, und
zeigen, wie sie auf den objekt-orientierten Stil übertragen werden kann. Das Hauptwerkzeug
dabei wird die Erweiterung des Typsystems mit subtype constraints sein, welche zu einer
ausdrucksstarken Metatheorie führt. Durch diese Theorie sind wir in der Lage, Muster auf
existenziell quantifizierte Typen durch universell quantifizierte Extraktoren auszudrücken.

Stichwörter: Programmiersprachen, Typsysteme, Musterabgleich, objekt-orientiertes Pro-
grammieren, Datenabstraktion, Semantik, Übersetzerbau
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Chapter 1

Introduction

Object-oriented programming is a style of software development that lacks a primitive for
decomposition. Functional programming languages traditionally offer a pattern matching
construct for this purpose.

In this thesis, we propose a pattern matching construct that is compatible with object-oriented
programming practices. To this end, we study two approaches based on case classes and
extractors. We claim that pattern matching increases the conciseness and readability of pro-
gram code and that it can improve type-checking so that more programs can be type-checked.
Furthermore, we show that there are situations where these benefits can be obtained effi-
ciently (using case classes) or with improved extensibility characteristics (using extractors).

With the aim of motivating and supplementing the above summary, this introduction is
structured as follows. After a brief look at functional pattern matching (Section 1.1), we take
a look at the incompatibilities with object-oriented programming (Section 1.2). Following
that, we describe the line of work aimed at overcoming these problems (Section 1.3). We then
make a case for a pattern matching construct compatible with object-oriented programming
(Section 1.4). We conclude with the overview (Section 1.5) and a list of claimed contributions
(Section 1.6).

1.1 Functional Pattern Matching

In functional programming languages, pattern matching has been closely related to alge-
braic data types since its beginning – Burstall [13] is the first to define a pattern matching
construct that resembles the one found in statically typed functional languages today.

The pattern matching construct is a high-level operation that performs a multi-way branch
based on a case distinction of one or several input values [64, 47]. It is similar to the well-
known switch statement, but more general: its branches do not test constants, but patterns -



2 Introduction

structured terms that contain variables. Performing a match operation consists of checking
whether the structure of an input value corresponds to the structure of a pattern. If it does,
the pattern variables are bound to their corresponding parts in the input value and the rel-
evant branch is executed in the an environment that is enriched with the pattern variable
bindings.

What follows is an example of an algebraic data type. Here and in the following, we
use HASKELL [47] for functional programming examples, and mark them with a comment
{-Haskell-} in the top-right corner in order to distinguish them from object-oriented code.

data Expr = Num Int | Add Expr Expr {-Haskell-}

eval e = case e of
(Num i) -> i
(Add c d) -> (eval c)+(eval d)

These lines define the type Expr for simple arithmetic expressions consisting of either a num-
ber or a sum. It is defined recursively through its so-called constructors. Instances of an alge-
braic data type are written as the constructor name together with its arguments, so (Num 3)

will construct the obvious instance of Num whose first argument is 3. Every instance of Expr
is either (Num i) with i an integer, or (Add d e) with d, e being subexpressions.

Furthermore, a function eval is defined to evaluate such an expression. This happens by
matching on its argument e. Since we know that e can only be one of either (Num i) or
(Add c d), we make a case distinction:

• if e = (Num j) for some j, the integer j is returned.

• if e = (Add c d) for some c, d, then recursive calls are effected on the subexpressions
c, d, and the sum of these results is returned.

The case distinction above indicates what is meant by discerning data and deconstructing
it into its subcomponents. This style of programming supports equational reasoning and is
very concise and readable. In fact, it is hard to envision an equally concise but different way
to define the data and the operation. The conciseness is also partly due to the fact that type
inference allows us to omit easily derivable type information from the program source.

However, algebraic data types conflict with object-oriented design principles.

1.2 Why Algebraic Data Types are not Object-Oriented

Standard functional pattern matching depends on algebraic data types. Since algebraic data
types suffer from several restrictions that make them unsuitable for an object-oriented pro-
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gramming language, pattern matching was never accepted in the object-oriented commu-
nity. Some arguments held agains pattern matching (see e.g. [67]) are:

Lacking extensibility Algebraic data types cannot be extended with new variants.

Lacking of representation independence Algebraic data types expose their representa-
tion, which makes it hard to change them later without affecting the rest of the program.
Whereas getter methods can be used (and, if needed, redefined) in place of field access on
normal objects, for algebraic data types there is no such option.

Too many ways to define data. Algebraic data types are intended to hold data, but in an
object-oriented programming language this task is already fulfilled by classes. Adding non-
orthogonal constructs to a programming language make it bulky, hard to implement and
hard to learn.

No subtyping Algebraic data types cannot be organized in class hierarchies like normal
classes. In particular, a constructor cannot “inherit” from an algebraic data type, no methods
can be defined for a particular variant.

These counter-arguments all revolve around the problem of data definition, not the pattern
matching construct per se. More precisely, object-oriented programmers claim the impor-
tance of grouping data and operations in classes over other benefits.

The answer seems obvious: turn algebraic data types into classes.

1.3 A Brief History of Case Classes

Adapting algebraic data types to the object-oriented context has been initiated by Wadler
and Odersky’s PIZZA extension to the JAVA programming language [70]. This language of-
fers generics, closures and also algebraic data types and pattern matching. This extension
was the first version of case classes: within the scope of class B, algebraic data type con-
structors Ki could be defined writing a constructor signature caseKi(T1f1, . . . , Tnfn). The
compiler lifted these, turning them to full classes that extended the containing class B. Thus,
classes Ki existed that inherited methods from B. The compiler also recognized calls to the
constructor that were not preceded by the new keyword.
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In his diploma thesis, Zenger describes an extensible compiler framework [96] which re-
volves around the idea of extensible algebraic data types. He describes an iterative algo-
rithm that represents a match expression, which differed significantly from the existing pat-
tern match translation algorithm in the literature and the first PIZZA implementation [93].
He goes on to show that extensible algebraic datatypes can be applied to solve the problem
of simultaneously extending algebraic datatypes and operations defined on these types [97].

In the SCALA programming language [69], case classes turned into classes that did not need
to live in the scope of an enclosing class. The case has become merely a modifier that can
turn any class into a case class – with the sole restriction that case classes could not inherit
from case classes.

This restriction was motivated by the implementation: at the time all these systems were
designed, the JVM did not have the same aggressive optimizations that they have now. So
the designers did not want to commit to slow instanceof checks and thus restricted case
classes such that they could not have a direct or indirect parent that is also a case class. This
way, a pattern match could always be optimized using integer tags (Chapter 4) takes up the
idea or replacing type tests with integer tags.

The present work complements these efforts by recasting them in terms of extractors which
are user-defined patterns that are referenced in pattern like method calls. The author makes
no claims regarding case classes, except the implementation of incompleteness checking
for sealed types (see Subsection 1.4.2) and the study of their characteristics in comparison
with other techniques. The novel technique of extractors does away with the tight coupling
between types and matching behavior. While we will see that the added flexibility comes at
a price in terms of performance, it is not so easy anymore to dismiss pattern matching as not
extensible and exposing representation – since programmers have the choice and can even
combine two different approaches to data definition, a pattern matching construct seems
to have become considerably more attractive. In the next section, we will analyze further
reasons to study and use pattern matching of a different nature.

1.4 Data in the Object-Oriented Approach

What is the object-oriented way of structuring and operating on data? Object-oriented de-
sign is a method and style for software system development that amounts to encapsulating
data and operations in abstractions. The abstractions produced by this method are usu-
ally implemented in an object-oriented programming language, which supports the object-
oriented style through its syntax and semantics. It does so by providing an object model and
by offering built-in constructs for object construction, method calls, field access and possibly
deletion of objects.
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This works great, as long as data and operations can really be grouped together. Classifying
abstractions and taking them apart into their subcomponents is not a built-in construct of
object-oriented programming languages. Yet the problem of defining data separate from
operations of course arises, and demands solutions.

In fact, rather than being a rare programming situation, defining data separately from oper-
ations is frequent in various applications. For instancem, in his compiler textbook Appel [6,
pp.94] contrasts compilers with graphic user interface toolkits, observing two orthogonal di-
rections of modularity: both applications have a matrix of data and operations, but whereas
for compilers, the data (syntax trees) is seldom changed but operations (compiler passes)
are evolving, for a user interface toolkit, the operations (Redisplay, Move, . . . ) are fixed and
the data (widgets) are unknown. Compilers need to separate operations from the classes
that represent syntax trees, since it is inconvenient to change every syntax tree class when
a single operation is added. In contrast, graphical user interface toolkits blend well with
object-oriented style, since every widget can be implemented as a new class that will imple-
ment the interface that contains all the operations it has to support.

The situation would be very frustrating if compiler writers had to embrace the object-oriented
style without having a choice to resort to a data-separate approach. There are other situa-
tions that are not application specific. Development that spans several organizational units
can mean that changes to data classes are not allowed, yet it may be necessary to add an
operation.

Maybe the most compelling reason to embrace data-separate-from-operations is the origin
of data. The advent of semistructured data in XML and JSON notation on the internet and
the persistence of relational database technology are two important indicators that suggest
that data does not originate and is not stored in an object-oriented context. While data bind-
ing, object-relational mappings and transparent persistence all aim to create the convenient
illusion for the programmer that data is accessible in the form of object-oriented abstrac-
tions, practical problems prevail. Often, the easiest way is to leave external data as it is and
treat it through particular APIs. For instance, XML data is commonly manipulated through
the Document Object Model (DOM) API. In these cases, data is already separate and only
an API is available to access or traverse it.

1.4.1 A pattern matching use case

There seems to be ample need for solutions that define operations outside of the classes,
separately from the data. Let us single out one example and demonstrate how standard
object-oriented solutions compare to built-in pattern matching.

Imagine a distributed system where a components communicate via messages. In order to
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keep the system extensible, the kinds of possible messages are not fixed in advance. The fol-
lowing classes (in SCALA syntax) model the relevant aspects of messages and components.

abstract class Msg(sender:ComponentId)

abstract class Component { ...
def getId: ComponentId
def handle(msg:Msg): Unit

}

Suppose we wanted to introduce two kinds of messages, one for requests to compute a
prime number and one for sending it back. Here are classes to represent these messages.

class RequestPrime(sender: ComponentId) extends Msg(sender)
class DeliverPrime(prime:Int, sender: ComponentId) extends Msg(sender)

How can we implement the handle method of a component? We have to inspect the type
and decompose the content of the message in order to take the appropriate action.

If we can change the class hierarchy, or if we had anticipated these concrete message when
designing the super class Msg, we could add classification methods isRequest and isDeliver

and an accessor method getPrime. We call this approach object-oriented decomposition.
However, the code for handling messages has to contain a conditional expressions and sev-
eral calls to these methods.

Another approach is to use double dispatch to discover the type of the message: the handle

passes a so-called visitor object to an abstract method of class Msg, which is implemented
in each subclass so that the relevant case of the visitor is called back. This approach cor-
responds to the Visitor design pattern documented by Gamma et al [36]. In their words,
visitors are used to “represent an operation to be performed on the elements of an object
structure . . . without changing the classes of the elements on which it operates”. However,
visitors can only distinguish on one level, which can be a harsh limitation compared to the
flexibility of pattern matching.

In the context of the JAVA virtual machine (and any other object system that supports run-
time type information), a much more direct way of obtaining the dynamic type of a value is
to use an instanceof-check. Although these are considered bad style, programmers make
use of them frequently, in order to avoid the overhead of using a Visitor implementation.
They are error prone since it is possible to perform a cast without a preceding check.

For the remainder of this thesis, we will refer to any standard object-oriented solutions as an
encoding of pattern matching, which seems appropriate given that these approach discern
and deconstruct data. Encodings provide, through low-level constructs, the same function-
ality that pattern matching provides in a high-level fashion. The example that shows how
this leads to more verbose code.
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In contrast, with suitable definitions of either case classes or extractors, we can the decompo-
sition of incoming messages in a straight-forward, high-level manner using a pattern match-
ing operation:

def handle(msg:Msg) = msg match {
case RequestPrime(sender) => ...
case DeliverPrime(prime, sender) => ...

}

1.4.2 What pattern matching has to offer

Apart from readability and safety, a high-level construct for pattern matching provides op-
portunities for optimization and for static checks.

A drawback of all object-oriented solutions above is that standard compilers do not check
whether such hand-crafted case distinction based on type-tests and type-casts cover all the
cases, nor whether all branches can actually be entered. Pattern matching constructs in func-
tional programming languages can be checked statically for incompleteness and redundancy,
which helps catch many programmer mistakes. Incompleteness describes a match expres-
sion that does not cover all cases, whereas redundancy indicates a case that can never be
entered because of a preceding one being more general.

Redundancy can be detected in any match expression, but incompleteness in functional lan-
guages depends on the fact that algebraic data types are closed. The above discussion shows
that pattern matching needs to be combined with standard object-oriented data definitions,
while at the same time offering the option of performing static checks. It turns out that
sealed types are enough to enable incompleteness checks, therefore we do not give up on
extensibility.

A balance needs to be struck between the advantages of the functional pattern matching
(like improved checking and optimizations) and the extensibility considerations that have
made object-oriented programming succesful. Extensibility comes in different flavors: it
should for instance be possible to easily add operations without changing classes. Or the
set of classes and operations is fixed. The next section tries to make a more fine-grained
assessment of extensibility requirements.

1.4.3 Three Categories of Extensibility for Abstractions

After having given an abstract motivation for an object-oriented pattern matching construct,
we should take a step back and reevaluate in which sense extensibility matters. While on
the abstract level, it is easy to accept the object-oriented idea that operations should be tied
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to data, when we turn to more concrete code problems we find that sticking dogmatically
to this idea becomes counter-productive. This becomes clear when considering a few typ-
ical data types used in pattern matching under the aspect of extensibility (we could also
have used “potential reuse”, the point being to measure the relative benefit of following the
object-oriented style). Here follow three categories of settings in which the object-oriented
pattern matching problem needs to be considered. We shall often take these perspectives for
granted in this document.

Standard Library Abstractions. The first category regards basic data types like tuples, the
option type and immutable linked lists. These are all realized as algebraic data types in
functional programming languages, thus designed to be deconstructed by pattern matching.
These data types play basic roles like optional or multiple return values that should be part
of any standard library. Also, we would like to avoid having primitive operations for each
particular such basic data type, which would make the language unnecessarily large. These
basic data types are considered fixed, they are not designed for reuse or extension, but just
for use in standard programming situations. It should be noted that, useful as these types
are, they do not necessarily correspond to object-oriented “dogma”. Although regarded as
controversial by proponents of the object-oriented style, classes alone are not appropriate
because these types are merely data containers. Providing data containers in a standard
Library is useful, yet users of the library can obviously not change standard library classes
to add their operations.

Basic, User-Defined Abstraction. Second, programmers that are used to the “mathematic”
style of aggregating data in Cartesian products will find it useful sometimes to bundle their
data with operations, while still being need for some form of case distinction. So they will
want to make up fixed data types designed for use with pattern matching operations (en-
coded or built-in), which nevertheless can be provided with methods and possibly extended
in very limited ways. The immutable stack example cited above falls in this category.

Abstractions designed for Extensibility. The third category relates to data structures that
are fully geared towards maintenance and program evolution, in the sense that data which is
designed to be split in variants and matched has to allow changes “after the fact”, i.e. after
uses of data definition have been compiled and deployed. Here, representation indepen-
dence is crucial and standard functional pattern matching does not offer a solution. How-
ever, the standard object-oriented approach only offers pattern matching solutions through
encodings and some of these are not extensible either.
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1.4.4 Scope

This thesis is concerned with object-oriented pattern matching in its first-order and generic
variants as a built-in programming language construct. Its main theme is pattern matching
in an object-oriented context: its use, alternatives, formal underpinnings, efficient imple-
mentation and interaction with generic types.

Applications and possible extensions are only mentioned in passing, as are connections with
the fields of pattern recognition or string matching.

1.5 Outline

We describe the structure of this thesis by giving short summaries of each of the remaining
chapters.

Chapter 2 Object-Oriented Pattern Matching

We first present the ideas underlying object-oriented pattern matching in a detailed, but
informal manner. We motivate pattern matching as a built-in construct.

We then compare the built-in matching construct with encodings regarding conciseness of
expressions as well as maintainability and evolution.

Chapter 3 Formal Semantics and Translation

In this chapter, we formally define a first-order calculus FPAT modeling SCALA. We do
this by giving the context-free syntax, typing rules, operational semantics along with the
properties of type soundness.

We describe an optimizing translation algorithm from FPAT to its fragment without pattern
matching through a set of rewrite rules.

We prove the algorithm correct, thus asserting that the meaning of the program is preserved
by each rewrite rule.

Chapter 4 Implementation

In SCALA, several aspects are different from the theoretical presentation of the preceding
chapters. SCALA contains more primitives, and quite a few tricks aimed at maximizing
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performance. This chapter describes how these trickes can be integrated into the formally
defined translation, thus placing the formal translation in the context of the SCALA compiler.
In particular, we show how to make use of lower-level primitives like jumps in in order to
avoid code duplication.

Also, we discuss some extensions that are not present in the formalization. Among these are
guards, which are boolean expressions that make execution of a case clause conditional on
some property.

Chapter 5 Performance Evaluation

In Chapter 5, we compare the performance of programs that use encodings with the perfor-
mance of programs that use built-in pattern matching.

Performance is assessed using three micro-benchmarks named BASE, DEPTH and BREADTH,
and an application benchmark, the SCALA compiler. The micro-benchmarks test the base
performance, performance on deep pattern matches and match expressions with many vari-
ants, respectively. The application benchmark shows how the execution times of the SCALA

compiler change when some case classes are replaced with extractor calls. We also evaluate
some implementation choices, such as replacing type-tests for case classes with operations
on integer tags.

Chapter 6 Generic Pattern Matching

In this chapter, we explore interesting and useful interactions of pattern matching with para-
metric polymorphism. Since pattern matching has long been an essential part of functional
programming, this exploration begins by reviewing second-order variants of pattern match-
ing and algebraic data types.

After reviewing parameterized and generalized algebraic data types, we develop the type-
systematic consequences of generic type-tests based on subtyping constraints [82]. We de-
velop a second-order version of the FPat calculus of Chapter 3 and prove it sound.

Chapter 7 Related Work

In this chapter, we discuss the literature on the various aspects of pattern matching. Note
that most research on first-order pattern matching has been carried out in the context of func-
tional programming languages. For the second-order case, some results for object-oriented
programming are available, and are put in relation with the present thesis. Additionally, we
provide an overview of generalized algebraic data types.
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1.6 Contributions

This thesis was elaborated in the context of the SCALA project. SCALA is a programming
language aimed at at supporting component-oriented software development throught the
unification of idioms from functional and object-oriented programming. The present work
was implemented as a phase in the frontend of the SCALA compiler.

The SCALA compiler is the effort of several researchers, and combining pattern matching
and object-oriented programming has been approached before [70, 97]. Hence, a phase
that translated pattern matching expressions existed beforehand, which in the course of
this work has been completely replaced. It seems thus useful to point out the particular
contributions of the work described in this thesis. The contributions are summarized by the
following points:

1. We precisely define extractors, the first approach of combining a built-in pattern match-
ing construct with user-defined patterns that is compatible with object-oriented pro-
gramming. This satisfies the extensibility requirements sought in object-oriented style
and allows programmers to preserve the principle of data abstraction.

2. We formulate case classes as special cases of extractors where extensibility does not matter
– they are merely shortcuts to common programming idioms that can be optimized
more easily (previous approaches mainly saw case classes as algebraic data types [70],
or restricted case classes so they could not extend other case classes [97]).

3. We provide a formalization of an object-oriented language and prove it sound – based
on which we define the formal translation of extractor-based pattern matching and
prove it correct,

4. We introduce a notion of generic pattern matching (pattern matching in the presence
of parametric polymorphism) and recast generalized algebraic data types from func-
tional programming in object-oriented programming using extractors. This develop-
ment includes a meta-theory of subtype constraints, which is integrated with generic
object-oriented pattern matching. We give a soundness proof for a generalized lan-
guage with pattern matching that uses this meta-theory.

Publications Parts of the contributions mentioned above have been published in the fol-
lowing papers:

• Burak Emir, Martin Odersky and John Williams. Matching Objects with Patterns. Pro-
ceedings of European Conference on Object-Oriented Programming, LNCS, Springer
Verlag (2007)
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• Burak Emir, Qin Ma and Martin Odersky. Translation Correctness for First-Order
Object-Oriented Pattern Matching. Proceedings of Asian Symposium on Program-
ming Languages and Systems, LNCS, Springer Verlag (2007)

• Burak Emir, Andrew Kennedy, Claudio Russo and Dachuan Yu. Generalized Con-
straints and Variance for C# Generics. Proceedings of European Conference on Object-
Oriented Programming, LNCS, Springer Verlag (2006)



Chapter 2

First -Order Pattern Matching

This chapter introduces pattern matching for programs written in object-oriented style. It
starts with background information on pattern matching in functional programming lan-
guages, using examples in HASKELL, and a brief review of SCALA syntax. Afterwards, we
describe standard encodings of pattern matching in object-oriented languages. The charac-
teristics of the encodings are discussed with respect to the aspects of conciseness and main-
tainability. Then, pattern matching is introduced as a built-in language operation, by giving
an informal specification and examples. Its advantages over the encodings are discussed.

2.1 Background

2.1.1 Algebraic Data Types

In typed functional programming languages like HOPE [14], MIRANDA [90], HASKELL [47]
and ML [64], users can define concrete data types as disjoint sums of primitive types, tu-
ples and function types. Each variant, or constructor, is identified with a symbolic constant.
Such data types can then be discriminated using patterns, which mention the constructor
label along with a collection of sub-patterns or variables to bind the constituents of a match-
ing instance. This data definition mechanism should be considered as a building block for
the wider goal of functional programming, which is give clear semantics to data and enable
equational reasoning about programs. Algebraic data types remain very close to logical data
models, which in turn allows programmers to derive algebraic properties and operations
like equality – these qualities are neither sought, nor realizable in object-oriented program-
ming.

For instance, the HASKELL program in Figure 2.1 defines binary search trees through the
type SrchT. The values, or instances, of this type are tagged with constructors Node or Leaf.
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data SrchT = Node Int SrchT SrchT | Leaf {-Haskell-}

insert i Leaf = (Node i Leaf Leaf)
insert i (Node j le ri) = if (i<j)

then (Node j (insert i le) ri)
else if (i>j)

then (Node j le (insert i ri))
else (Node j le ri)

{- desugared version -}

insert i tree = case tree of
Leaf -> (Node i Leaf Leaf)
(Node j le ri) -> if (i<j)

then (Node j (insert i le) ri)
else if (i>j)

then (Node j le (insert i ri))
else (Node j le ri)

Figure 2.1: Binary Search Tree Insertion using Pattern Matching

A Leaf does not contain any information, but every instance of Node has an integer and
two search trees as successors. The insert function takes an integer i and a tree tree as
argument and performs a pattern match operation on instances of SrchT, in order to produce
an updated copy of tree containing the integer i. The two given versions have exactly
the same meaning, except that the former is easier to write and easier to use in equational
reasoning. The function maintains the search tree invariant that for every node with key j,
the left successors only contains smaller keys and the right successor only contains greater
keys. The match expression case . . . of contains two case clauses, each with a pattern to match
instances tagged with Node resp. Leaf. If the argument was a node, it is deconstructed by
binding its left and right successors to local variables. The bodies of the case clause contain
several calls to the constructor function Node, which constructs instances of SrchT tagged with
Node.

Algebraic data types like SrchT are defined inductively as the least set closed under their
constructor functions. Expressing case distinction on the shapes of SrchT values is rooted
in the practice of mathematical function definitions and proofs that involve algebraic terms,
just like term rewriting and unification (see Wechler [94] and Baader and Nipkow [9] for an
introduction in universal algebra and term rewriting techniques).
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2.1.2 Other Kinds of Patterns

Apart from testing for constructors, patterns can also test whether a data item is equal to
a literal constant, a named constant or, in languages with subtyping, whether it has a cer-
tain type. The nesting of patterns can express structural constraints, which can be used to
represent information.

For instance, the pattern (Node 42 Leaf) matches values of SrchT that contains the literals
and a leaf in this particular configuration.

Nested patterns make programs very concise and readable, because the shape of a pattern
determines the meaning of the program, which leaves many visual clues in the source code.
For instance, to a programmer with a mathematical background but no prior exposure to
pattern matching, it soon becomes self-evident that a pattern like (42,y) matches pairs
whose left component is 42 and whose right component can be any value. It is sometimes
convenient to consider a tuple with i components as shorthand notation for an algebraic
type Tuplei.

Systems that deal with nominal subtyping and type-tests, such as the F# language [85], offer
patterns like :? ty as id which dynamically test an input value for a type ty and binds
the result to identifier id if it matches. This provides a nice alternative to using a type-test
followed by a type-cast.

2.1.3 Closed World, Incompleteness and Extensibility

An algebraic data type definition T fixes the structure of the instances of T once and for all.
The constructor tags are special cases of T , which provides a relationship between the set
of instances tagged with a particular constructor and the set of instances of T that is akin
to nominal (explicitly declared) subtyping. One major difference is that an algebraic data
type forms a “closed world”: the set of constructors and their signature cannot be changed.
The reason for this restriction ist that an algebraic data types defines a sum type and allows
straightforward reasoning on its fixed structure. A welcome consequence of this restriction
is that algebraic data types can be represented efficiently by replacing constructor tags with
an integer constant.

Since the set of constructors forms a closed world, an automatic check for incompleteness
can be performed on match expressions: The compiler can thus warn programmers who by
mistake omit a case from their match expressions, which would leave the match expression
incomplete. This check is very helpful if there are many constructors or when nested patterns
allow for combinatorial combinations of algebraic data types (e.g. for a pair of two SrchT

instances).
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However, a closed world does not blend well with extensibility and separate compilation.
For instance, if the type SrchT was extended with another constructor, then the match ex-
pression in function insert would become incomplete, since without intervention of the
programmer it could not cover all cases of the data type. Moreover, if it was compiled sep-
arately from the data type definition, the programmer would never be notified of this fact.
These limitations are known and acceptable in the functional paradigm.

A notable exception is OCAML, where subtyping between variant types is allowed [38].
However, it does not blend seamlessly with the rest of the type system, since many explicit
type annotations are needed to express that a particular variant is a subtype of another
variant. A more complete discussion is provided in Section 7.1.

2.2 Object-Oriented Concepts and Scala

We shall now turn to the important principle of data abstraction, shifting our attention to-
wards data definition in object-oriented style. An abstract review of data abstraction is fol-
lowed by concrete examples of SCALA syntax.

2.2.1 Data Abstraction and Encapsulation

In concrete data types, the programmer has access to all information that makes up the
implementation of the data type – the number, order and type of the data items that are
regrouped is completely exposed. There is no separation between specification and imple-
mentation.

Concrete types are generally at odds with the well-known software engineering principle of
information hiding. The algebraic data types do not hide but expose their representation: A
program constructed against an algebraic data type depends on the implementation details,
making them hard to change later.

This leads to a key concept that is directly related to object-oriented programming, namely
data abstraction. One way to achieve data abstraction is to introduce a form of indirection
such that data types can be specified abstractly and implemented in different ways. This is
usually achieved using encapsulation, which means regrouping data with (only) the opera-
tions that are defined for the data.

Take the example of a function that computes the height of a search tree. A height function
that works with the definition of the above examples is easily written (and given in Figure
2.2 below). By contrast, it is not possible to change the search tree implementation to use B-
trees [22] without changing the height function as well. These obvious connection between
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abstract class SearchTree {
def height: Int = 0
def insert(i: Int): SearchTree

}

class Node(item: Int, left: SearchTree, right: SearchTree)
extends SearchTree {
val _height: Int = {
val lh = left.height
val rh = right.height
1 + { if (lh < rh) rh else lh }

}
override def height: Int =
_height

def insert(i: Int): SearchTree =
if(i < item)
new Node(item, left.insert(i), right)

else if(item < i)
new Node(item, left, right.insert(i))

else
this

}
object Leaf extends SearchTree {
def insert(i: Int): SearchTree =
new Node(i, Leaf, Leaf)

}

Figure 2.2: Binary Search Trees Insertion in Object-Oriented Style

data structures and algorithms has an impact on pattern matching, to the extent that pattern
matching is dependent on particular data containers.

2.2.2 Class and Object Definitions in Scala

In this section, we recall how specification and implementation are handled in an object-
oriented style using examples, before turning to the consequences this has for the applica-
bility of pattern matching.

The object-oriented style of programming presumes aggregation of data and operations in
classes. Rather than giving an introduction to object-oriented concepts, we will merely recall
these concepts and introduce the notation as used in the SCALA programming language.

Figure 2.2 shows the implementation of an immutable binary search tree in SCALA. The im-
plementation follows the technique of object-oriented decomposition, distributing the code
across classes. An abstract class SearchTree defines the operations defined on immutable
search trees. In addition to abstract class, the keyword trait can be used to define traits,
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which are interfaces that may contain the same code as classes, but can additionally take
part in multiple inheritance.

Our search trees have operations height and insert. Since search trees are immutable,
insert returns an updated copy of the tree with the given item inserted in the appropriate
place. Insertion is left abstract (there is no body to the declaration), and thus the class has
to be marked with an abstract modifier. The implementation of height is an example of a
default implementation.

The class definition for type Node extends SearchTree and contains the declaration of the
constructor arguments as well as three member definitions. An instance of Node is con-
structed with an integer item, a left subtree and a right subtree. The definitions in this
class serve the following purposes:

• a local immutable variable _height contains the eagerly computed height. It is defined
through a SCALA block. A block is delimited by braces {} and yields a value (which
is determined by the last expression in a block). It may also contain local variable
declarations. A conditional expression is used to determine the maximum between
the height of the left subtree and the height of the right subtree.

• the definition for the method height overrides the default implementation for the height
method provided in SearchTree. Since the height is implemented in the superclass
SearchTree, this modifier is necessary to indicate that this specific method is to be
used for instances of Node. This happens through late binding, i.e. the method dispatch
being deferred to execution time and involving a look-up in a virtual method table.
For abstract methods, override is optional.

• the definition of method insert is the implementation of the insert operation.

The definition of Leaf illustrates an innovation in SCALA, namely singleton objects (or ob-
jects, for short). The keyword object id is used to define a name id and an unnamed class,
with the effect that id is the single instance of the unnamed class. This removes the need for
static (“per-class”) methods and global functions, through the built-in use of the Singleton
design pattern [36].

Singleton objects can be placed in class hierarchies. In the example, object Leaf ... defines
an unnamed class which extends class SearchTree. It inherits the method height and has to
implement the abstract method insert, like a normal class.

The type of a singleton object can be describe using a singleton type Leaf.type. For any value
v, the singleton type v.type is inhabited by only value v (and the constant null), and a type
test w.isInstanceOf[v.type] succeeds only if w and v are references to the same object.
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2.3 Encodings of Pattern Matching

We reviewed pattern matching in functional programming languages, and the mechanisms
for encapsulation and data abstraction, namely classes and objects. We can now ask the
central question that underlies this thesis: whether and at what cost it is possible to reconcile
the readability and maintainability of functional style pattern matching with object-oriented
programming.

The above question leads to the problem of object-oriented pattern matching which is how to
explore a hierarchy of classes “from the outside”, i.e. without imposing any unwanted con-
straints on data abstraction mechanisms. Discriminating amongst objects usually involves
inspecting their run-time type, and deconstructing them may take the form of determin-
ing some property or accessing some group of constituent objects. For extensibility, which
is a particular aspect of maintainability, we would not want to restrict the notion of “con-
stituent” objects to members: these only need to be available in the context of an accepting
pattern, and may thus be the result of some computation. For our comparison, a pattern is
merely any computable way of testing and deconstructing an object or a group of objects
and binding local names to such constituent objects.

In order to make the comparison between the techniques easy, we will now define a run-
ning example that is used to demonstrate the difference techniques of implementing object-
oriented pattern matching. Each technique will be reviewed with respect to the readability
and maintainability of the resulting source code.

2.3.1 A simple example: Simplification of Logic Formulas

Consider symbolic manipulation of expressions. We assume a hierarchy of classes, rooted
in a base class Expr and containing classes for specific forms of expressions, such as And for
conjunction, Var for variables, and Lit for truth value literals. The expression forms have
members according to their arity: And has two members left and right denoting its left and
right operand, whereas Lit has a member value denoting an integer. A class hierarchy like
this is expressed as follows:

class Expr
class Lit(val value: Boolean) extends Expr
class Var(val name: String) extends Expr
class And(val left: Expr, val right: Expr) extends Expr

A particular expression would then be constructed as follows

new And(new Lit(false), new Lit(true))
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// Class hierarchy:
abstract class Expr {
def isVar: Boolean = false
def isLit: Boolean = false
def isAnd: Boolean = false
def value: Boolean = throw new NoSuchMemberError
def name : String = throw new NoSuchMemberError
def left : Expr = throw new NoSuchMemberError
def right: Expr = throw new NoSuchMemberError

}
class Lit(override val value: Boolean) extends Expr {
override def isLit = true

}
class Var(override val name: String) extends Expr {
override def isVar = true

}
class And(override val left: Expr, override val right: Expr) extends Expr {
override def isAnd = true

}

// Simplification rule:

if (e.isAnd) {
val r = e.right
if (r.isLit && r.value) e.left else e

} else e

Figure 2.3: Simplification using Object-Oriented Decomposition

Consider the problem of simplifying logic expressions. A program could perform this task
by trying to apply a set of simplification rules, until no more rewrites are possible. For
example, looking up the truth table of logical conjunction, we could simplify conjunction
involving the constant true as a rewrite rule, like so:

new And(x, new Lit(true)) is replaced with x .

The question is how simplification rules like the one above can be expressed. For symbolic
computation like the computation at hand, having a concise way of discerning and decon-
structing data is essential for readability.

We can now see how this sample problem is solved using various encodings.

2.4 Object-oriented Decomposition

In object-oriented decomposition, the class hierarchy is rooted in a base class that contains
test methods for testing the dynamic class of an object and accessor methods which let one refer
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to members of specific subclasses. In each subclass, the relevant methods are overridden.
Figure 2.3 demonstrates this technique with the logic simplification example.

We fill the base class Expr with test methods isVar, isLit and isAnd, one for each subclass of
Expr. The default implementations of the test methods all return false. Each subclass over-
rides the appropriate test method to return true. Accessor method for every publicly visible
field or every subclass are also put in the base class. By default, these default accessors throw
a NoSuchMemberError exception. In each subclass, we supply a proper accessors definition
for the accessible members it contains. In SCALA, this can be conveniently expressed in one
syntactic construct, using the syntax override val ... in a class parameter.

Note that in dynamically typed language like SMALLTALK, default implementation of acces-
sors are not needed, since NoSuchMethod messages are generated automatically for every call
to a method that cannot be found. The notational overhead for the object-oriented decompo-
sition technique then diminishes significantly. This may explain why the technique is more
used in dynamically typed languages than in statically typed ones. Still, name pollution
makes this problematic for large class hierarchies1.

Object-oriented decomposition also suffers from a lack of extensibility. If one adds another
subclass of Expr, the base class has to be augmented with new test and accessor methods.
Again, dynamically typed languages can alleviate this problem to some degree using meta-
programming facilities where classes can be augmented and extended at run-time.

The second half of Figure 2.3 shows the code of the simplification rule. The rule inspects the
given term stepwise, using the test functions and accessors given in class Expr.

2.5 Visitors

Visitors [36] perform two method calls (double dispatch) to recover the runtime type of an
object. Figure 2.4 shows logic simplification with visitors. We are giving an instance of the
Visitor design pattern that allows for incomplete matches, hence a visitors with default [97].
The Visitor class contains a case-method named caseX for each subclass X of Expr.

Every caseX method takes an argument of type X . The Visitor class has a generic type
parameter T, which is used by each caseX method as its return type. In class Visitor every
case-method has a default implementation which forward to the otherwise method.

1With regard to this problem, Christian Plesner Hansen writes:“. . . it often means polluting other objects
with methods that may be convenient for you but are completely irrelevant to the object itself and anyone else
who might use it. Case in point: in Squeak the Object class has over 400 methods including isSketchMorph,
playSoundNamed and, the winner by unanimous decision, hasModelYellowButtonMenuItems.” http://blog.

quenta.org/2006/03/match.html

http://blog.quenta.org/2006/03/match.html
http://blog.quenta.org/2006/03/match.html
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// Class hierarchy:
abstract class Visitor[T] {
def caseAnd(t: And): T = otherwise(t)
def caseLit(t: Lit): T = otherwise(t)
def caseVar(t: Var): T = otherwise(t)
def otherwise(t: Expr): T = throw new MatchError(t)

}
abstract class Expr {
def matchWith[T](v: Visitor[T]): T

}
class Lit(val value: Boolean) extends Expr {
def matchWith[T](v: Visitor[T]): T = v.caseLit(this)

}
class Var(val name: String) extends Expr {
def matchWith[T](v: Visitor[T]): T = v.caseVar(this)

}
class And(val left: Expr, val right: Expr) extends Expr {
def matchWith[T](v: Visitor[T]): T = v.caseAnd(this)

}

// Simplification rule:

e.matchWith {
new Visitor[Expr] {
override def caseAnd(m: And) =
m.right.matchWith {
new Visitor[Expr] {
override def caseLit(n: Lit) =
if (n.value) m.left else e

override def otherwise(e: Expr) = e
}

}
override def otherwise(e: Expr) = e

}

Figure 2.4: Simplification using Visitors
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// Class hierarchy:
abstract class Expr
class Lit(val value: Boolean) extends Expr
class Var(val name: String) extends Expr
class And(val left: Expr, val right: Expr) extends Expr

// Simplification rule:

if (e.isInstanceOf[And]) {
val m = e.asInstanceOf[And]
val r = m.right
if (r.isInstanceOf[Lit]) {
val n = r.asInstanceOf[Lit]
if (n.value) m.left else e

} else e
} else e

Figure 2.5: Simplification using Type-Test/Type-Cast

The Expr class declares a generic abstract method matchWith, which takes a visitor as ar-
gument. Instances of subclasses X implement the method by invoking the corresponding
caseX method in the visitor object on themselves.

The bottom half of Figure 2.4 shows how the simplification rule is rendered with visitors.
Since the pattern has two levels, two visitor objects have to created, one per level. Since the
pattern on the third-level involves a primitive boolean, we can use its value directly. Each
visitor object defines two methods: the caseX method corresponding to the matched class,
and the otherwise method corresponding to the case where the match fails.

2.6 Type-Test and Type-Cast

The most direct form of discrimination uses the type-test and type-cast instructions available
in JAVA or C++ with runtime type information enabled. Figure 2.5 shows logic simplifica-
tion using this method. In SCALA, the test whether a value x is a non-null instance of some
type T is expressed using the pseudo method invocation x.isInstanceOf[T], with T as a
type parameter. Analogously, the cast of x to T is expressed as x.asInstanceOf[T].

2.7 Typecase

The typecase construct accesses run-time type information in much the same way as type-
tests and type-casts. It is however more concise and secure since a cast is never done in-
dependently of a test. Figure 2.6 shows the logic simplification example using typecase. In
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// Class hierarchy:
abstract class Expr
class Lit(val value: Boolean) extends Expr
class Var(val name: String) extends Expr
class And(val left: Expr, val right: Expr) extends Expr

// Simplification rule:

e match {
case m: And =>
m.right match {
case n: Lit =>
if (n.value) m.left else e

case _ => e
}

case _ => e
}

Figure 2.6: Simplification using Typecase

SCALA, typecase is an instance of a more general pattern matching expression of the form
expr match { cases }. Each case is of the form case p => b; it consists of a pattern p and an
expression or list of statements b. There are several kinds of patterns in SCALA. The typecase
construct uses patterns of the form x : T where x is a variable and T is a type. This pattern
matches all non-null values whose runtime type is (a subtype of) T . The pattern binds the
variable x to the matched object. The other pattern in Figure 2.6 is the wildcard pattern _,
which matches any value.

2.8 Pattern Matching as a Language Construct

In contrast to the encodings, which use method invocation, late binding and conditionals
with type-tests to achieve the desired case distinction, pattern matching as a language con-
struct provides a high-level solution that is tailored to the pattern matching problem. In this
section, we describe a matching construct with a rich pattern sub-language that is used in
SCALA. However, this description merely deals with syntactic convention which are directly
inspired by functional pattern matching constructs. The relationship between matching and
data, which is particularly important in object-oriented style, is elaborated in the following
sections.

A pattern in SCALA is constructed from the following elements:

• Variables such as x or right. These match any value, and bind the variable name to the
value. The wildcard pattern _ is used as a shorthand if the value need not be named.
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• Type patterns such as x: Int or _: String. These match all values of the given type,
and bind the variable name to the value. Type patterns were already introduced in
Section 2.7.

• Constant literals such as 1 or "abc". A literal matches only itself.

• Named constants such as None or Nil, which refer to immutable values. A named
constant matches only the value it refers to. The comparison is done via the equals

method.

• Constructor patterns of the form C(p1, . . . , pn), where C is a pattern constructor and
p1, . . . , pn are patterns. Such a pattern can have two meanings, which will both be
described below: If C is a case class, it matches all instances which were built from
values v1, . . . , vn matching the patterns p1, . . . , pn. If C is an extractor, its behavior is
defined by the extractor implementation.

For case classes, it is not required that the class instance is constructed directly by an
invocation C(v1, . . . , vn). It is also possible that the value is an instance of a subclass
of C, from where a super-call constructor invoked C’s constructor with the given ar-
guments. Another possibility is that the value was constructed through a secondary
constructor, which in turn called the primary constructor with arguments v1, . . . , vn.
Thus, there is considerable flexibility for hiding constructor arguments from pattern
matching.

• Variable binding patterns of the form x @ p where x is a variable and p is a pattern.
Such a pattern matches the same values as p, and in addition binds the variable x to
the matched value.

To distinguish variable patterns from named constants, we require that variables start with a
lower-case letter whereas constants should start with an upper-case letter or special symbol.
There exist ways to circumvent these restrictions: To treat a name starting with a lower-case
letter as a constant, one can enclose it in back-quotes, as in case ‘x‘ => ... . To treat a
name starting with an upper-case letter as a variable, one can use it in a variable binding
pattern, as in case X @ _ => ....

2.9 Case Classes

Case classes in SCALA provide convenient shorthands for constructing and analyzing data.
Figure 2.7 presents them in the context of logic simplification.

The programmer signals the intent of turning a class into a case class by using the case

modifier. This modifier has several effects. First of all, it provides a convenient notation for
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// Class hierarchy:
abstract class Expr
case class Lit(value: Boolean) extends Expr
case class Var(name: String) extends Expr
case class And(left: Expr, right: Expr) extends Expr

// Simplification rule:

e match {
case And(x, Lit(true)) => x
case _ => e

}

Figure 2.7: Simplification using Case Classes

constructing data without having to write new. For instance, the expression And(Lit(true),

Var(x)) would be a shorthand for new And(new Lit(true), new Var(x)), assuming the
class hierarchy of Figure 2.7. Note here the similarity to constructors as seen for algebraic
data types in functional programming (Section 2.1.1). Second, case classes allow pattern
matching on their constructor. Such patterns are written exactly like constructor expres-
sions, but are interpreted as “templates” that can be filled by matching values. For instance,
the pattern And(x, Lit(true)) matches all values instances of And, whose right is an in-
stance of Lit that has a value field equal to true. If the pattern matches, the variable x is
bound the left operand of the given value.

2.9.1 Examples of Case Classes

With case classes, binary search trees can be expressed like in Figure 2.8, which is very close
to the functional programming code in Figure 2.1.

Case classes are used to express lists, streams, messages, symbols, documents, and XML
data in SCALA’s libraries. We will explain two groups of case classes in more detail, because
they are used in the following sections. First, there are classes representing optional values:

sealed abstract class Option[+T]
case class Some[T](value: T) extends Option[T]
case object None extends Option[Nothing]

Class Option[T] represents optional values of type T. The subclass Some[T] represents a
value which is present whereas the sub-object None represents absence of a value. The ‘+’ in
the type parameter of Option indicates that optional values are covariant: if S is a subtype of
T , then Option[S] is a subtype of Option[T]. The type of None is Option[Nothing], where
Nothing is the bottom in SCALA’s type hierarchy. Because of covariance, None thus conforms
to every option type.
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// Class hierarchy:
abstract class SearchTree {
def insert(i: Int): SearchTree = this match {
case Leaf =>
Node(item, Leaf,Leaf)

case Node(j,le,ri) =>
if (i < j)
Node(j, le.insert(i), ri)

else if (i > j)
Node(j, le, ri.insert(i))

else
this

}
}

case class Node(i:Int, l:SearchTree, r:SearchTree)
extends SearchTree

case object Leaf
extends SearchTree

Figure 2.8: Search Tree Insertion using Case Classes

For the purpose of pattern matching, None is treated as a named constant, just as any other
singleton object. The case modifier of the object definition only changes some standard
method implementations for None, as explained in Section 2.10.5. A typical pattern match
on an optional value would be written as follows.

v match {
case Some(x) => “do something with x”
case None => “handle missing value”

}

Option types are recommended in SCALA as a safer alternative to null. Unlike with null, it
is not possible to accidentally assume that a value is present since an optional type must be
matched to access its contents.

Tuples are another group of standard case classes in SCALA. All tuple classes are of the form:

case class Tuplei[T1, ..., Ti](_1: T1, ..., _i: Ti)

An abbreviated syntax (T1, ..., Ti) for the tuple type Tuplei[T1, ..., Ti] exists, and analogous
abbreviations exist for expressions and patterns.

2.9.2 Case Classes and Class Hierarchies

Algebraic data types correspond closely to case classes in a flat hierarchy, i.e. with one non-
case super class. Unlike algebraic data types, case classes are merely normal classes that
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have a modifier to indicate that their constructor arguments are public fields. This means
we can allow case classes to be arranged in class hierarchies.

However, this raises some issues that we will explain using an example. Consider the
following case class hierarchy, which is used to represent points, i.e. members of two-
dimensional and three-dimensional vector spaces:

case class Point2(x:Float, y:Float)
case class Point3(x:Float, y:Float, z:Float) extends Point2(x,y)
case object Origin extends Point3(0.0, 0.0, 0.0)

The use of extends indicates that an instance of Point3 is at the same time a Point2. Fur-
thermore, the singleton object Origin is a particular Point3 located at the origin.

The relations between classes Point2, Point3 and Origin.type should be respected by the
acceptance relationship: A value v matches a case pattern C(...), if the value has been con-
structed using a constructor D that is a subtype of C (either trivially, directly or indirectly).
The following match expression to produce output (0.0,0.0):

Origin match { case Point2(x,y) => print (x,y) }

2.10 Extractors

We have seen now that case classes provide some of the benefits of functional pattern match-
ing, at the cost of giving up encapsulation. In order to regain encapsulation, it seems neces-
sary to diminish the difference between pattern matching and other operation (i.e. methods,
which can be redefined at will and that adhere to the data abstraction mechanisms in the
language). An easy way to achieve this is to express patterns via methods, and thus render
them user-defined. This approach is inspired by Wadlers’s views [92], which aim to regain
data abstraction by introducing user-defined conversions between data types.

2.10.1 User-Defined Patterns

An extractor is a method that can serve as a user-defined pattern. It does so by testing and de-
constructing its argument, returning a value in the case of acceptance and returning nothing
in the case of rejection. In SCALA, this mechanism is integrated by following some syntactic
conventions, that we introduce by example. The following object Twice enables patterns of
even numbers:

object Twice {
def apply(x:Int) = x*2
def unapply(z:Int) = if(z%2==0) Some(z/2) else None

}
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It defines an apply function, which provides a new way to write integers: Twice(x) is now an
alias for x * 2. SCALA uniformly treats objects with apply methods as functions, inserting
the call to apply implicitly. Thus, Twice(x) is really a shorthand for Twice.apply(x).

The unapply method in Twice reverses the construction in a pattern match. It tests its integer
argument z. If z is even, it returns Some(z/2). If it is odd, it returns None. In a pattern match,
ab unapply method is invoked implicitly, as in the following example, which prints “42 is
two times 21”:

val x = Twice(21)
x match {
case Twice(y) => Console.println(x+" is two times "+y)
case _ => Console.println("x is odd")

}

In this example, apply is called an injection, because it takes an argument and yields an
element of a given type. unapply is called an extraction, because it extracts parts of the
given type. Injections and extractions are often grouped together in one object, because
then one can use the object’s name for both a constructor and a pattern, which simulates the
convention for pattern matching with case classes. However, it is also possible to define an
extraction in an object without a corresponding injection. The object itself is often called an
extractor, independently of the fact whether it has an apply method or not.

It may be desirable to write injections and extractions that satisfy the equality
F.unapply(F.apply(x)) == Some(x), but we do not require any such condition on user-
defined methods. One is free to write extractions that have no associated injection or that
can handle a wider range of data types.

Patterns referring to extractors look just like patterns referring to case classes, but they are
implemented differently. Matching against an extractor pattern like Twice(x) involves a call
to Twice.unapply(x), followed by a test of the resulting optional value. The code in the
preceding example would thus be expanded as follows:

val x = Twice.apply(21) // x = 42
Twice.unapply(x) match {
case Some(y) => Console.println(x+" is two times "+y)
case None => Console.println("x is odd")

}

Extractor patterns can also be defined with numbers of arguments different from one. A
nullary pattern corresponds to an unapply method returning a Boolean. A pattern with
more than one element corresponds to an unapply method returning an optional tuple. The
result of an extraction plays the role of a "representation-object", whose constituents (if any)
can be bound or matched further with nested pattern matches.
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2.10.2 Patterns and Types

Pattern matching in SCALA is loosely typed, in the sense that the type of a pattern does not
restrict the set of legal types of the corresponding selector value. The same principle applies
to extractor patterns. For instance, it would be possible to match a value of SCALA’s root
type Any with the pattern Twice(y). In that case, the call to Twice.unapply(x) is preceded by
a type test whether the argument x has type Int. If x is not an Int, the pattern match would
fail without executing the unapply method of Twice. This choice is convenient, because it
avoids many type tests in unapply methods which would otherwise be necessary. As we
will see later, this also introduces opportunities for optimization (Chapter 4) and allows us
to handle parameterized class hierarchies, as will be explained in (Chapter 6).

2.10.3 Representation Independence

Unlike case-classes, extractors can be used to hide data representations. As an example
consider the following class of complex numbers, implemented by case class Cart, which
represents numbers by Cartesian coordinates.

abstract class Complex
case class Cart(re: double, im: double) extends Complex

Complex numbers can be constructed and matched using the syntax Cart(r, i). The fol-
lowing injector/extractor object provides an alternative access with polar coordinates:

object Polar {
def apply(mod: Double, arg: Double): Complex =
new Cart(mod * Math.cos(arg), mod * Math.sin(arg))

def unapply(z: Complex): Option[(Double, Double)] =
z match {
case Cart(re, im) =>
Some(sqrt(re * re + im * im), Math.atan2(im,re))

}
}

With this definition, a client can now alternatively use polar coordinates such as
Polar(m, e) in value construction and pattern matching.

2.10.4 Logic Simplification Revisited

Figure 2.9 shows the logic simplification example using extractors. The simplification rule is
exactly the same as in Figure 2.7. But instead of case classes, we now define normal classes
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// Class hierarchy:
abstract class Term
class Lit(val value: int) extends Term
class Var(val name: String) extends Term
class And(val left: Term, val right: Term) extends Term

object Lit {
def apply(value: Boolean) = new Lit(value)
def unapply(n: Lit) = Some(n.value)

}
object Var {
def apply(name: String) = new Var(name)
def unapply(v: Var) = Some(v.name)

}
object And {
def apply(left: Term, right: Term) = new And(left, right)
def unapply(m: And) = Some (m.left, m.right)

}

// Simplification rule:

e match {
case And(x, Lit(true)) => x
case _ => e

}

Figure 2.9: Simplification using Extractors
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with one injector/extractor object per each class. The injections are not strictly necessary
for this example; their purpose is to let one write constructors in the same way as for case
classes.

Even though the class hierarchy is the same for extractors and case classes, there is an im-
portant difference regarding program evolution. A library interface might expose only the
objects Lit, Var, and And, but not the corresponding classes. That way, one can replace or
modify any or all of the classes representing logic expressions without affecting client code.

Note that every X.unapply extraction method takes an argument of the alternative type X ,
not the common type Term. This is possible because an implicit type test gets added when
matching on a term. However, a programmer may choose to provide a type test himself:

def unapply(x: Term) = x match {
case m:And => Some (m.left, m.right)
case _ => None

}

This removes the target type from the interface, effectively hiding the underlying represen-
tation.

2.10.5 Encoding Case Classes using Extractors

For the purposes of type-checking, a case class can be seen as syntactic sugar for a normal
class together with an injector/extractor object. This is exemplified in Figure 2.10, where a
syntactic desugaring of the following case class is shown:

case class And(left: Expr, right: Expr) extends Expr

Given a class C, the expansion adds accessor methods for all constructor parameters to C. It
also provides specialized implementations of the methods equals, hashCode and toString

inherited from class Object. Furthermore, the expansion defines an object with the same
name as the class (SCALA defines different name spaces for types and terms; so it is legal
to use the same name for an object and a class). The object contains an injection method
apply and an extraction method unapply. The injection method serves as a factory; it makes
it possible to create objects of class C writing simply C(. . .) without a preceding new. The ex-
traction method reverses the construction process. Given an argument of class C, it returns
a tuple of all constructor parameters, wrapped in a Some.
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class And(_left: Expr, _right: Expr) extends Expr {
// Accessors for constructor arguments
def left = _left
def right = _right

// Standard methods
override def equals(other: Any) = other match {
case m: And => left.equals(m.left) && right.equals(m.right)
case _ => false

}
override def hashCode = hash(this.getClass, left.hashCode, right.hashCode)
override def toString = "And("+left+", "+right+")"

}

object And {
def apply(left: Expr, right: Expr) = new And(left, right)
def unapply(m: And) = Some(m.left, m.right)

}

Figure 2.10: Expansion of Case Class And

2.11 Pattern Matching and Multi-Methods

For completeness, we consider multiple dispatch as another method that allows us to encode
pattern matching [21]. This method is studied separately, since pattern matching and multi-
ple dispatch are, to some extent, inter-definable.

Considering method invocation e0.m(e1, . . . , en), multiple dispatch refers to the choice of a
method among a number of overloaded alternatives based on the run-time types of all ar-
guments (rather than only the run-time type of the receiver e0). The overloaded alternatives
of m are then often considered as being a single method with multiple branches, or multi-
methods.

When pattern matching includes typed patterns (run-time type tests), it can be used to im-
plement multiple dispatch. We sketch how such an implementation could be effected, in
order to show that some overlap exists between the problems solved by multi-methods and
the problems solved by pattern matching.

2.11.1 Defining and Collecting Alternatives

In Figure 2.11 (upper half), an example of multi-methods is given in an imaginary syntax:
It contains classes Shape, Rect and Square and a multi-method intersect. The method
definitions in classes Rect and Square do not override, but specialize the general intersection
method provided in class Shape. A method call s1.intersect(s2) is dispatched according to
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class Shape { ...
def intersect(s: Shape): Boolean = {b1}

}
class Rect extends Shape { ...
def intersect(s @: Rect): Boolean = {b2}
def intersect(s @: Square): Boolean = {b3}

}
class Square extends Rect { ...
def intersect(s @: Square): Boolean = {b4}

}

class Shape { ...
def intersect(s: Shape): Boolean = {b1}

}
class Rect extends Shape { ...
override def intersect(s:Shape): Boolean = s match {
case s:Square => b3

case s:Rect => b2

case _ => super.intersect(s)
}

}
class Square extends Shape { ...
override def intersect(s:Shape): Boolean = s match {
case s:Square => b4

case _ => super.intersect(s)
}

}

Figure 2.11: Translating Multi-Methods to Match Expressions

the run-time types of s1 and s2: If both are instances of Rect, then b2 will be executed; if s1

is a Rect and s2 a Square, then b3 is executed; if both are squares, b4 is executed, and b1 is
executed in all other cases. It is easy to see how this generalizes to multi-methods with more
than one argument.

The lower part of Figure 2.11 contains an equivalent program that uses pattern matching.
All branches in subclasses are replaced with a single method def intersect(s:Shape) that
performs pattern matching (in fact, just a run-time type check) on its first argument. The
various branches are all collected in the match expression and cases that are not covered
by specializations are deferred using a super call. This translation would allow us to use
multi-methods in execution environments that only offer single-dispatch, which include the
Java Virtual Machine and the .NET Common Language Runtime.

Note the order in match expression of class Rect: the more specific type Square has to be
tested before the type Rect, otherwise specializations would not follow the semantics of
picking the method with the most specific argument types. Another subtlety in this match
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is that intersecting a Square with a Rect will unnecessarily repeat the type test for Square:
since the receiver is a Square, the presence of the specialization means that the argument has
already been tested against the type Square and a super call was effected.

Matching as defined above is easily generalized to deal with tuples of expressions (which
will indeed be done in the formal discussion of the following chapters). This means that
at least some multi-methods can be expressed very straightforwardly in terms of pattern
matching. On the other hand, it has been proposed to allow general, nested patterns in
method signatures and translate them in a fashion that is similar to pattern matching [77].

We end this discussion by mentioning that multi-methods pose challenges to type checking
which are independent of pattern matching. Examples include the problem of locating a
multi-method such as to allow access to private or protected members of its arguments, or
the static detection of specialization conflicts that arise in the presence of multiple inher-
itance. Certainly, our sketched translation does not imply that all forms and use-cases of
multiple dispatch could or should always be translated away to match expressions.

2.12 Discussion of Readability and Maintainability

We shall now discuss readability and maintainability, given the source code of the logic
simplification example and the consequences each technique has.

2.12.1 Readability

The best readability is achieved with case classes, which only add a keyword to the class hi-
erarchy while benefitting from concise matches. Next comes typecase, which (like type-tests
and type-casts) works for any class hierarchy without the need for annotation. However,
the match expressions are less readable than for case classes, considering that children have
to be accessed explicitly and deep matches are not supported. Type-test and type-cast are
slightly worse because they have to resort to control constructs.

Extractors have a high overhead for the class hierarchy, but in return the match expressions
are as concise as for case classes. The readability is therefore at a medium.

Object-oriented decomposition has a high overhead for the hierarchy and pollutes the
namespace of all concerned classes with accessors methods. The matching uses control con-
structs and is thus overall hard to read. Visitors have the worst readability: not only do
they require a lot of boilerplate code to be written, but the match expressions involve object
constructions and many scopes to be opened.
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2.12.2 Maintainability

Extractors have excellent maintainability because they can be changed independently from
the types they match. New patterns and new variants can be invented at will, due to the
loose coupling that allows extensions without interfering with the class hierarchy.

Object-oriented decomposition is relatively easy to maintain and extend, as long as no new
classes are added. The programmer can write new patterns as long as they only depend on
existing test and accessor methods. With object-oriented decomposition, it can be possible
to control visibility of accessor methods.

Type-test and type-cast (like typecase) are tied to the class hierarchy, which is good for
adding new classes, but bad if matching behavior needs to be changed without changing
the class hierarchy. They expose the representation of the types they match, which therefore
makes program evolution harder.

Visitors are not extensible (in contrast to extensible visitors [54]), since they are tightly cou-
pled with the class hierarchy. Moreover, existing visitors depend on the existing visitor
interface, which can therefore not be changed without changing all visitors. Visitors also
expose the representation of the class hierarchy they visit.

2.12.3 Multi-Methods are different

Multi-methods are a technique based on method definitions. It thus offers less readable so-
lution when matching expressions are required. On the other hand, when the programmer
intends to provide operations through methods, then multi-methods increase the maintain-
ability in a different manner than the techniques presented above (by allowing us to add
operations to classes later). Extensibility with respect to patterns is the same as for classes
and type-test/type-casts: Since patterns (in this particular presentation of multi-methods)
are tied to types, it is not possible to define new patterns. In summary, multi-methods seem
to be provide a partial solution to the object-oriented pattern matching problem, while solv-
ing problems that cannot be solved by an expression-level pattern matching construct.

2.13 Summary

We have defined the object-oriented pattern matching problem and compared existing solu-
tions with two mechanisms paired with built-in pattern matching, case classes and extrac-
tors. Of these two, the former has been proposed before [70] – here, case classes have been
presented in a more general manner and furthermore are shown to be definable in terms
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of extractors. Moreover, extractor are more amenable to maintenance, since they are user-
defined patterns that are resolved like normal method calls. This makes extractors a better
choice to formulate a specification and translation algorithm in a rigorous manner.

We also sketched how multi-methods can be considered as a convenient syntax for pat-
tern matching expression, indicating some overlap between multiple dispatch and pattern
matching that is purely defined on type tests.

Building on these considerations, we can now turn to a formalization of an object-oriented
programming language that offers a pattern matching construct and extractors.
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Chapter 3

Formal Semantics and Translation

This chapter contains formal definitions and a soundness proof for a first-order object-
oriented language FPAT that offers runtime type inspection and pattern matching. Further-
more, we give a formal, optimizing translation of pattern matching expressions to lower
level primitives and prove it correct. The reasoning is centered around a calculus based on
Featherweight Java [46].

Through this formalization, we can present possible answers to the question whether algo-
rithms for optimized translation of pattern matching known from functional programming
can be applied to extractors, and which conditions (if any) have to be satisfied by extractors
in order to prove that an optimized translation preserves the meaning of the program.

3.1 Syntax and Semantics

The syntax and operational semantics of FPAT are given in Figure 3.1 and Figure 3.3. The
typing rules and auxiliary definitions are given in Figure 3.5, Figure 3.7, Figure 3.8 and Fig-
ure 3.9. The calculus is based on Featherweight Java (FJ), but with the difference that seman-
tics are defined using strict, left-to-right big-step style. We briefly review the definitions. We
then follow a recent approach to show type soundness using a coinductive definition of
divergent programs.

3.1.1 Syntax

What follows is a short presentation of the notation and rules. The metavariables are consis-
tently chosen from the following alphabets:
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A, B, C,D, E class name
x variable name
f, g, h field name
m method name
a, b, d, e expression
p, π pattern
q result
u, v, w values
u̇, v̇, ẇ value or null

cd class definition
md method definition
an optional annotation
v̂ open values
c pattern case
i, j, k, l, m, n integer indices
σ, ρ substitutions
Γ typing contexts
ξ, ζ target contexts

In order to be precise about length and indices of sequences, a sequence α1..αn is abbre-
viated as α?

1..n, where α can be an expression, a name-type binding, or a judgment. The
empty sequence is written •. Multiple occurrence of the ? indicate that the same index ap-
pears at multiple positions. Moreover, we shall need to express sequences with holes, so
α?, β, α?

1..]i[..n stands for α 1..i−1
? , β, α i+1..n

? .

An FPat program cd?
1..n; e is a set of class definitions and a top-level expression. Class def-

initions are kept in a class table, which we leave implicit throughout the formalization and
which satisfies the important properties that inheritance cycles and duplicate entries are ab-
sent. Classes have an explicit superclass as well as field declarations and method definitions,
all publicly accessible. Methods can have a @safe annotation to indicate that they terminate
without throwing an exception (more on this later). The class hierarchy induces a subtype
relation <:, of which the magic class Obj forms the largest element and the magic class Exc

forms the smallest. These two types are magic because they do not have definitions in the
class table. We also have a least upper bound C tD operation, which is the least type E in
the hierarchy that satisfies C <:E and D<:E.

There are 8 expression forms: null, variables x, field selection e.f, method invocation
e.m(e?

1..n), object construction C(e?
1..n), exception throw, test expressions a?{x : C ⇒ d}/{e}

and match expressions e?
1..n match {c?

1..k}, where each case clause c has the shape
case p?

1..n ⇒ b and we convene that the last clause has only variable patterns. The cal-
culus does not model assignment nor object identity. The free variables fv are defined in the
straightforward manner, e.g. the free variables of a test expression a?{x : C ⇒ d}/{e} is the
union of free variables of a, e, and the free variables of d without x.

Note that, unlike the SCALA examples of the previous chapter, we do not use optional values
here – instead we will the null value to signal rejection of an extractor call.

3.1.2 Semantics

We briefly describe the operational semantics of the fragment without pattern matching,
in order to be self-contained. The semantics specific to pattern matching are deferred to a
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separate section below.

Terminating computation of meaningful expressions is modeled by a big-step evaluation
relation e ⇓ q that takes expressions e to results q. A result q is either a value v, the null

result or the exception throw. To express that a result may be either a value v or null, we
use the notation v̇ (“optional value”).

Substitutions are restricted to map variables only to values or null. A value is always the
outcome of an object construction C(v̇?

1..n), which is written without new. There is no ex-
plicitly declared constructor, instead we use the field order determined by the inheritance
hierarchy (specified in the auxiliary judgment fields(C)). The following correct program il-
lustrates how arguments in object construction relate to fields in class definitions:

class D(f : A) / Obj {. . .}
class C(g : B) / D {. . .}
C(A(), B())

Note that in this calculus all classes are case classes: there is no way to restrict visibility and
the constructor arguments are at the same time public fields.

Rules (Rfld), (Rinvk), (Rnew) in Figure 3.3 describe field access, method invocation and ob-
ject construction. The auxiliary judgment mbody(m, C) specifies how to lookup method bod-
ies. Rules (Cfld), (Crcv), (Carg), (Cnew) throw or propagate exceptions.

The only significant use of null happens in test expressions. Their behavior is specified in
rules (Rcst) and (Rskp): if the tested expression, or scrutinee, is not null and its type is lesser
than the required type, it is bound to a local variable and the first branch is evaluated (Rcst).
Otherwise, the second branch is evaluated (Rskp). If the scrutinee throws, the exception is
propagated (Ctst).

The relation ⇓ does not specify the behavior of meaningless or non-terminating programs.
To show type soundness, divergent programs are defined using a relation ⇑ in Figure 3.10.
Meaningless expressions are then precisely those that neither terminate nor diverge.

3.2 Semantics of Matching

Pattern matching expressions contain one or more case clauses, each of which compares the
n input values against n patterns. The last clause may only have variable patterns. This
excludes pathological expressions of the form e?

1..k match {} and ensures that the behavior
is defined for any possible combination of input values. In other words, the pattern match
is complete (also called exhaustive) – we will discuss in Chapter 4 how this property can be
checked automatically.
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cd ::= class C(f? : C?
1..n) / D {md?

1..k}
md ::= an def m(x? : C?

1..n) : C = {e}
an ::= @safe | (empty)

a, b, d, e ::= null

| x

| e.f

| e.m(e?
1..n)

| C(e?
1..n)

| throw

| e?{x : C ⇒ e}/{e}
| e?

1..n match {c?
1..m}

(convention: cm ≡ case x?
1..n ⇒ e)

c ::= case p?
1..n ⇒ e

p, π ::= x | C(v̂?
1..n).m(p?

1..k)

q ::= v̇ | throw

u̇, v̇, ẇ ::= v | null

u, v, w ::= C(v̇?
1..k)

v̂ ::= x | C(v̂?
1..k)

Figure 3.1: Grammar

Subtyping C <:D

(Sobj)
C <:Obj

(Sthr)
Exc<:C

(Sref)
C <:C

C <:D D<:E (Stran)
C <:E

class C(f? : C?
1..n) / D {md 1..m

? }
(Sext)

C<:D

C tD
def
= smallest E such that C <:E and D<:E.

Figure 3.2: First-Order Subtyping
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Computation e ⇓ q

e ⇓ C(v̇?
1..n) fields(C) = f? : C?

1..n

(Rfld)
e.fi ⇓ v̇i

e ⇓ C(v̇?
1..l) e? ⇓ ẇ?

1..n

mbody(m, C) = (x 1..n
? )d

d {this 7→ C(v̇?
1..l), x? 7→ ẇ?

1..n} ⇓ q
(Rinvk)

e.m(e?
1..n) ⇓ q

e? ⇓ v̇?
1..n

(Rnew)
C(e?

1..n) ⇓ C(v̇?
1..n)

e ⇓ C(v̇?
1..l) C <:D e1{x 7→ C(v̇?

1..l)} ⇓ q
(Rcst)

e?{x : D ⇒ e1}/{e2} ⇓ q

e ⇓ null or
[
e ⇓ C(v̇?

1..l) C 6<:D
]

e2 ⇓ q
(Rskp)

e?{x : D ⇒ e1}/{e2} ⇓ q

e? ⇓ v̇?
1..n ∀j < i . v̇?

1..n; cj ⇓ reject

v̇?
1..n; ci ⇓ q

(Rmch)
e 1..n

? match {c?} ⇓ q

(Cthr)
throw ⇓ throw

(Rnul)
null ⇓ null

e ⇓ throw or e ⇓ null
(Cfld)

e.f ⇓ throw

e ⇓ throw or e ⇓ null
(Crcv)

e.m(e?
1..n) ⇓ throw

e? ⇓ v̇?
1..i−1 ei ⇓ throw

(Carg)
e.m(e?

1..n) ⇓ throw

e? ⇓ v̇?
1..i−1 ei ⇓ throw

(Cnew)
C(e?

1..n) ⇓ throw

e ⇓ throw
(Ctst)

e?{x : C ⇒ e1}/{e2} ⇓ throw

e? ⇓ v̇?
1..i−1 ei ⇓ throw

(Cmch)
e?

1..n match {c?
1..k} ⇓ throw

Figure 3.3: FPat Computation Rules
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Acceptance
v̇?

1..n; c ⇓ q

v̇ y p a σ

c ≡ case p?
1..n ⇒ b

v̇? y p? a σ?
1..n b σ?

1..n ⇓ q
(mcase)

v̇?
1..n; c ⇓ q

(mvar)
v̇ y x a {x 7→ v̇}

v.m(u̇) ⇓ w xtype(•, v, m) = E

casefld(E, w) = ẇ?
1..k ẇ? y p? a σ?

1..k

(mextr)
u̇ y v.m(p?

1..k) a σ?
1..k

Rejection
v̇?

1..n; c ⇓ reject

v̇ y p a reject

c ≡ case p?
1..n ⇒ b

v̇? y p? a σ?
1..i−1 v̇i y pi a reject

v̇?
1..n; c ⇓ reject

(rcase)

v.m(u̇) ⇓ null
(rnull)

u̇ y v.m(p?
1..k) a reject

v.m(u̇) ⇓ w xtype(•, v, m) = E

casefld(E, w) = ẇ?
1..k ẇ? y p? a σ?

1..i−1

ẇi y pi a reject
(rchild)

u̇ y v.m(p?
1..k) a reject

Figure 3.4: FPat Acceptance and Rejection
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Matching depends on judgments describing acceptance and rejection of patterns and cases,
which are given in Figure 3.4. Rule (Rmch) describes evaluation of cases according to the
first match policy: an accepting case is evaluated only if all preceding cases rejected the
input.

Two separate judgments describe acceptance for cases v̇?
1..n; c ⇓ q and patterns v̇ y p a

σ. We explain the judgments for case clauses first. A case accepts and evaluates to result
q if each input value is accepted by the corresponding pattern (mcase). Analogously, a
case rejects its input (written v̇?

1..n; c ⇓ reject) if an initial segment of patterns accept and
the following pattern rejects its input (rcase). Together, these rules describe a left-to-right
evaluation of patterns. If a pattern accepts, it yields a substitution, and if all patterns accept,
the substitutions obtained from the accepting patterns are all applied to the body of the case
(the merging of substitutions is indicated by juxtaposition).

The judgment v̇ y p a σ describes that pattern p accepts v̇ and yields substitution σ. Analo-
gously, the judgment v̇ y p a reject describes rejection. A variable pattern always accepts
its input (mvar), yielding the obvious substitution. An extractor pattern is always of the
form C(v̂?

1..n).m(p?
1..k) and accepts (mextr) if:

1. evaluation of the extractor call returns a value w, yielding so-called case fields ẇ?
1..k

2. all sub-patterns accept the case fields, yielding substitutions σ?
1..k

The extractor pattern rejects if the call returns null (rnull) or if one of its sub-pattern rejects its
input (rchild). Case fields casefld(E, w) are determined for the return type E of the extractor
method, as specified in the auxiliary judgment xtype(•, v, m). They are the fields declared in
the class definition of E itself, which thus serves as the “representation type”.

The outcome is undefined when extractors throw exceptions. For this reason, the @safe

annotation is required on any method that is referenced as an extractor. Safety is of course
undecidable, but restrictions and approximations are available to tackle this problem. Our
focus in this thesis is on justifying the condition, not checking it.

Discussion In any statically-typed definition of pattern matching, some mechanism has to
be in place to derive the order and types of sub-patterns – with case classes and extractor we
presented two choices. The benefit of using extractors lies in decoupling the matched type
from the representation type. This leads to improved extensibility.

Pattern matching usually includes matching on literals like 42, true and named constants
like foo. While literal expressions are constructors without arguments, a corresponding con-
vention for extractors can be assumed. We do not deal with named constants here, but only
mention that they can be added to the formalization by allowing tests for singleton types
v.type (structural equality would then ensure that C(ẇ?

1..k) ∈ v.type only if v ≡ C(ẇ?
1..k)).
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3.3 Typing

The FPat type system is specified through a set of typing rules in Figure 3.5, which add
typing rules for match expressions and case clauses to the FJ type system. The rules are
syntax-directed, so they can directly be used implement a type-checker pass of a compiler.
The rules specific to matching are described in a separate section below.

Type judgments for expressions have the form Γ ` e ∈ C where Γ is a type environment
(a finite mapping from variables to types), e an expression and C a class. The judgments
cd � and an md � in C assert well-typedness of class and method definitions. Methods
annotated with @safe are assumed to terminate and never throw exceptions for any input
(including null). We formally define the assumption expressed by the @safe modifier as
follows. Checking this assumption is, in general, undecidable.

Def 1 A method in a class C that is annotated with @safe satisfies the following property: For any
sequence of optional values v̇?

1..m and any arguments ẇ?
1..n such that e = C(v?

1..m).m(ẇ?
1..n) is a

well-typed expression, there exists an optional value ẇ with a derivation of e ⇓ ẇ.

A class definition is well-typed if all its methods are well-typed, and a method is well-typed
if its return expression is well-typed under the appropriate type environment. If the method
overrides a method in a superclass, their signatures have to be identical, which is asserted by
the judgment override(an(B?

1..n)B, m, D). A program is well-typed if all its class definitions
are well-typed, and its top-level expression is well-typed in the empty environment.

Typing expressions is straightforward. Rules (Tthr) and (Tnul) give the most specific type Exc

to the throw and null results. (Tvar) takes the type of a variable from the type environment,
and field access (Tfld) and object construction (Tnew) is checked against the fields of the
class as calculated by the judgment fields(C). A similar judgment for method signatures
mtype(m, C) is used to type-check method invocation (Tinvk). Thus, well-typed method calls
and objects constructions have the right number and types of arguments.

Test expressions are checked with rule (Ttst), which modifies the type environment for the
succeeding branch to account for the new local variable. Binding in test expressions can be
used to define a derived form val x : C = a; b, which we will introduce in Section 3.7.1.

It is notable here that we allow test expressions that are statically known to fail, such as
C(. . .)?{y : D ⇒ . . .}/{. . .} for unrelated C, D. The reason for not checking the static type
against the type to be tested is that it would make it impossible to prove a substitution
lemma (FJ has “stupid casts” for similar reasons): the expression to be tested might have a
more precise type after substitution, and only then it would become apparent that the test
expression fails. A real compiler would reject test expressions in source programs if it can
derive at compile time that a test expression fails. Similar considerations apply to match
expressions.
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Expression Typing Γ ` e ∈ C

(Tvar)
Γ ` x ∈ Γ(x)

(Tnul)
Γ ` null ∈ Exc

(Tthr)
Γ ` throw ∈ Exc

Γ ` e ∈ C fields(C) = f? : C?
1..n

(Tfld)
Γ ` e.fi ∈ Ci

fields(C) = f? : D?
1..n

Γ ` e? ∈ C?
1..n C? <:D?

1..n

(Tnew)
Γ ` C(e?

1..n) ∈ C

Γ ` e ∈ A

Γ, x : C ` a ∈ D Γ ` b ∈ E
(Ttst)

Γ ` e?{x : C ⇒ a}/{b} ∈ D t E

Γ ` e ∈ C mtype(m, C) = an(D?
1..n)E

Γ ` e? ∈ C?
1..n C? <:D?

1..n

(Tinvk)
Γ ` e.m(e 1..n

? ) ∈ E

Γ ` e? ∈ C 1..n
?

Γ; C?
1..n ` c? ∈ D?

1..m

(Tmch)
Γ ` e 1..n

? match {c?
1..m} ∈

⊔
D?

1..m

Figure 3.5: FPat Expression Typing Rules
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Pattern and Case Typing Γ; C?
1..n ` c ∈ D

Γ; C 3 p a Γ′

(TPvar)
Γ; D 3 x a x : D

xtype(Γ, v̂, m) = E

class E(f? : C?
1..m) / E ′ {an?md?

1..k}

Γ; C? 3 p? a Γ′?
1..m Γ′ ≡ Γ′ 1..m

?
(TPext)

Γ; D 3 v̂.m(p 1..m
? ) a Γ′

Γ; C? 3 p? a Γ′ 1..n
?

Γ, Γ′ 1..n
? ` b ∈ D

(Tcase)
Γ; C?

1..n ` case p?
1..n ⇒ b ∈ D

Extractor Type xtype(Γ, v̂, m)

Γ ` v̂ ∈ B mtype(m, B) = @safe(Obj)E

xtype(Γ, v̂, m) = E

Figure 3.6: FPat Pattern and Extractor Typing Rules

Method Typing md � in C

this : C, x? : C 1..n
? ` e ∈ E E <:B

class C(f? : D?
1..m) / D {md?

1..k}

override(an(C?
1..n)B, m, D)

an def m(x? : C?
1..n) : B = {e} � in C

Class Typing cd �

an?md? � in C1..k

class C(f? : D?
1..n) / D {an?md?

1..k} �

Figure 3.7: FPat Method and Class Typing Rules
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Field Lookup fields(C)

fields(Obj) = •

fields(D) = f? : C?
1..m

class C(g? : D?
1..n) / D {an?md?

1..k}
fields(C) = f? : C?

1..m; g? : D?
1..n

Case Field Lookup casefld(C, v)

fields(D) = f? : C?
1..m

class C(g? : D?
1..n) / D {an?md?

1..k}
casefld(C, C(v?

1..m+n)) = vm+1..m+n
?

E 6≡ C fields(D) = f? : C?
1..m

class C(g? : D1..n
? ) / D {an?md?

1..k}
casefld(E, C(v?

1..m+n)) = casefld(E, D(v?
1..m))

Figure 3.8: FPat Auxiliary Judgments for Field Lookup

Overriding override(an(B?
1..n)B, m, D)

mtype(m, D) = an(B?
1..n)B or undefined

override(an(B?
1..n)B, m, D)

Method Lookup mtype(m, C) mbody(m, C)

class C(f? : C?
1..m) / D {an?md?

1..k}
an i ≡ an

md i ≡ def m(x? : B?
1..n) : B = {e}

mtype(m, C) = an(B?
1..n)B

mbody(m, C) = (x?
1..n)e

class C(f? : C?
1..m) / D {an?md?

1..k}
m 6≡ md?

1..k

mtype(mi , C) = mtype(m, D)

mbody(m, C) = mbody(m, D)

Figure 3.9: FPat Auxiliary Judgments for Method Lookup



50 Formal Semantics and Translation

3.4 Typing of Match Expressions

Match expressions are well-typed if all their clauses are well-typed (Tmch), using the least
upper bound to combine the result types of the case clauses. To type-check a single clause
case p 1..n

? ⇒ b (Tcase), each pattern in p 1..n
? is type-checked w.r.t. the type environment Γ

and an “expected type” C?, yielding a type context Γ′? as in Γ; C? 3 p? a Γ′ 1..n
? . Then, the

body is type-checked against the combined type contexts as in Γ, Γ′ 1..n
? ` b ∈ D. Variables in-

troduced in patterns must be pair-wise different and may not clash with Γ, which is implicit
in the juxtaposition of environments.

Pattern typing Γ; E 3 p a Γ′ is type-checked as follows: For variable patterns (TPvar), the
expected type E is used to produce a singleton environment. For extractor patterns (TPextr),
the judgment xtype(Γ, v̂, m) looks up the type of receiver and the signature of the extractor
method in order to recover the representation type. It also ensures that extractors are @safe.
The casefield types are then used as expected types to check the sub-patterns. Finally, the
environments Γ′ 1..m

? obtained from the sub-patterns are merged into one environment Γ′.

3.5 Divergent Programs

Proving type soundness for big-step semantics necessitates specifying in some way the
meaningless programs ruled out by the type system. One possible approach is to define
a special value wrong and characterize meaningless programs as those that are evaluated to
wrong [1, pp.86]. This approach is error-prone, because if by mistake, a wrong rule is omit-
ted, a misleading statement of "type soundness" is proven that does not actually exclude all
meaningless programs.

A safer approach, suggested by Leroy and Grall [56], is to characterize meaningless pro-
grams as those that neither terminate nor diverge. A forgotten rule in the specification of
divergent programs would then make the proof of the big-step version of the "Progress"
lemma impossible. For our purpose, specifying divergent programs has the additional ad-
vantage of being relevant to correctness of pattern matching translation (we want to avoid
translating divergent programs into terminating ones).

Coinduction is the dual of induction, a statement that can be made very precise: while an
inductive definition is the least fixpoint of some equations, the coinductive type is their
greatest fixpoint [42]. For use in proofs, it is helpful to think of induction as simply a process
of "repeatedly adding new members to a set according to a set of rules", and coinduction as
a process of "repeatedly taking away members from a set according to what’s excluded by a
set of rules, and seeing what’s left" [84].
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Divergent programs are defined coinductively by the set of divergence rules in Figure 3.10.
These rules are tailored to help establishing that any well-typed term that does not termi-
nate necessarily diverges. Their coinductive nature is indicated by horizontal double lines:
coinductive derivations are "infinite" trees with the root being the assertion to derive and
the successors of each node being determined by a derivation rule.

Let us consider the rules one by one. Rule (Dfld) and (Drcv) express that accessing a field
or invoking a method of a divergent expression yields a divergent expression. Rules (Darg)
and (Dnew) say that object construction and method invocation diverge if one of their argu-
ments diverge. Note that a strict call-by-value, left-to-right evaluation order is followed also
here. Rule (Dinvk) says that calling a method with arguments that make the method body
diverge yields a divergent expression. Rules (Dtst), (Dcst) and (Dskp) characterize divergent
test expressions by locating divergence in the respective subexpression.

A divergent match expression can be traced back to some (possibly empty) initial segment
of rejecting cases and divergent case, and a divergent case can only diverge because its body
diverges (Dbdy). Since extractors are assumed to be @safe, extractor calls themselves can
neither diverge nor throw exceptions.

We give a small example to illustrates how the principle of coinduction is used in divergence
proofs. Consider the following class definition and the instance of rule (Dinvk) that is a
coinductive proof that expression Lp().m() diverges:

class Lp {
def m(): Lp = { this.m() }

}

Lp() ⇓ Lp() this().m(){this 7→ Lp()} ∈ R

Lp().m() ∈ R

We pick the set R = {Lp().m()} – this “guessing” of the initial set is characteristic for coin-
duction. In order to show that R ⊆⇑ it is enough to show that it is preserved by (any subset
of) the divergence rules. A rule is “preserving” the set, if reinterpreting the conclusion as
asserting membership in R (rather that in ⇑) entails the premises (under the same inter-
pretation). Since ⇑ is defined coinductively (it is the largest possible set preserved by the
divergence rules), the set R must be contained in ⇑.

In the example, for Lp().m(), we observe that rule (Dinvk) considered backwards only yields
the very same expression, because this().m(){this 7→ Lp} ≡ Lp().m(). Rule (Dinvk) thus pre-
serves membership in R for Lp().m(). Since this is the only expression in R, we have shown
that the whole set is preserved by the divergence rules. Consequently, R ⊆⇑ and Lp().m() is
a divergent program.

3.6 Soundness

We now prove type soundness using big-step versions of the standard lemmata.
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Divergent Computation e ⇑

e ⇑
(Dfld)

e.f ⇑
e ⇑

(Drcv)
e.m(e?

1..n) ⇑
e ⇓ v e? ⇓ v̇?

1..i−1 ei ⇑ (Darg)
e.m(e?

1..n) ⇑

e ⇓ C(v̇?
1..m) e? ⇓ ẇ?

1..n

mbody(m, C) = (x?
1..n)b

b{this 7→ C(v̇?
1..m), x? 7→ ẇ?

1..n} ⇑
(Dinvk)

e.m(e?
1..n) ⇑

e? ⇓ v̇?
1..i−1 ei ⇑ (Dnew)

C(e?
1..n) ⇑

e ⇑
(Dtst)

e?{x : C ⇒ a}/{b} ⇑

e ⇓ D(v̇?
1..n) D<:C a{x 7→ D(v̇?

1..n)} ⇑
(Dcst)

e?{x : C ⇒ a}/{b} ⇑

e ⇓ null or [e ⇓ D(v̇?
1..n) D 6<:C] b ⇑

(Dskp)
e?{x : C ⇒ a}/{b} ⇑

e? ⇓ v̇?
1..i−1 ei ⇑ (Dmch)

e?
1..n match {c?

1..m} ⇑

e? ⇓ v̇?
1..n ∀j < i . v̇?

1..n y cj a reject

v̇?
1..n; ci ⇑ e

(Dcase)
e?

1..n match {c?
1..m} ⇑

Divergent Cases and Patterns v̇?
1..n; c ⇑ e

c = case p?
1..n ⇒ b v̇? y p? a σ?

1..n b σ?
1..n ⇑

(Dbdy)
v̇?

1..n; c ⇑ b σ?
1..n

Figure 3.10: FPat Divergence Rules



3.6 Soundness 53

Lemma 1 (Uniqueness) For all a, if a ⇓ q then for all q′, if a ⇓ q′ then q = q′.

Proof By induction on a ⇓ q and case analysis on q′. �

Lemma 2 (Termination) For all a and all q, it holds that if a ⇓ q then a 6⇑.

Proof By induction on a ⇓ q and inversion of a ⇑. We only show (Rfld).

Case a ≡ e.f (Rfld), (Dfld) Assume a ⇓ q, then by (Rfld) e ⇓ v. By i.h. e 6⇑, so (Dfld) is not
available. Hence e.f 6⇑. �

Lemma 3 (Subtypes have all Fields) If C <:D, C 6= Exc then fields(C) = fields(D); g? : E?
1..m.

Proof By induction on the derivation of C <:D.

Case (Sobj) Then fields(Obj) = •

Case (Sthr) Cannot happen

Case (Sref) Trivial

Case (Sext) Then the definition of fields is applied

Case (Stran) The i.h. is applied twice. �

Lemma 4 (Subtypes have all Methods) If C <:D, C 6= Exc and mtype(m, D) = an(C?
1..n)B,

then mtype(m, C) = an(C?
1..n)B.

Proof By induction on the derivation of mtype(m, D) = an(C?
1..n)B and case analysis over

C <:D.

Case (Sobj) Cannot happen, since Obj has no methods.

Case (Sthr) Cannot happen

Case (Sref) Trivial

Case (Sext) If C does not contain a definition for m, then the definition of mtype is applied.
Otherwise, class definition of C is well-typed, thus override( an(C?

1..n)B,m, D) asserts that
mtype(m, C) = mtype(m, D).

Case (Stran) The i.h. is applied twice �
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The following two lemmata are needed to prove the substitution lemma for pattern match-
ing expressions. We have to deal with the typing rule for variables which might end up
producing a “better” environment for input values whose type has become more precise
after substitution. We write Γ′<:Γ when dom(Γ) = dom(Γ′) and x : B ∈ Γ implies x : A ∈ Γ′

with A<:B.

Lemma 5 (Subtypes yield Refined Environment)
If C <:D and Γ; D 3 p a Γ′ then Γ; C 3 p a Γ′′ for some Γ′′<:Γ′ .

Proof By induction on Γ; D 3 p a Γ′ .

Case (TPvar) Then Γ; D 3 x a {x : D} and we can also derive Γ; C 3 x a {x : C}. From
C <:D follows {x : C}<:{x : D}

Case (TPextr)

Then Γ; D 3 v̂.m(p?
1..n) a Γ′?

1..n and subpatterns have derivations Γ; D? 3 p? a Γ′?
1..n for

some casefield types D?
1..n. The expected type is not used for typing the subpatterns, thus

the subderivations can be reused as is, yielding Γ; C 3 v̂.m(p?
1..n) a Γ′?

1..n. �

Lemma 6 (Refined Environment preserves Typing)
If C? <:D?

1..n and Γ, x? : D 1..n
? ` e ∈ B then Γ, x? : C 1..n

? ` e ∈ A for A<:B.

Proof By straightforward induction on Γ, x? : D 1..n
? ` e ∈ B. �

Lemma 7 (Weakening) If Γ ` d ∈ S and x /∈ fv(d), then Γ, x : T ` d ∈ S for any T .

Proof Straightforward induction on Γ ` d ∈ D. �

Lemma 8 (Substitution Lemma) If Γ, x? : B 1..n
? ` b ∈ D and • ` u̇? ∈ A?

1..n for A? <:B?
1..n,

u̇? ∈ Values ∪ {null} then Γ ` b {x? 7→ u̇?
1..n} ∈ C, for C <:D.

Proof By induction on the derivation of Γ, x? : B 1..m
? ` b ∈ D. Let σ = {x? 7→ u̇?

1..n} and
Γ′ = Γ, x? : B 1..m

? .

Case (Tvar) b ≡ x

i) If x = xi for some i, then xσ = u̇i with Γ ` u̇i ∈ Ai and Ai <:Bi by assumption, (Weak-
ening).

ii) Otherwise, xσ = x and rule (Tvar).
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Case (Tthr),(Tnul) trivial because b σ ≡ b

Case (Tfld) b ≡ e.f We have Γ′ ` e ∈ E and i.h. yields Γ ` eσ ∈ E ′ for E ′<:E. By (Subtypes
have all Fields) we have fields(E ′) = fields(E); g? : D 1..m

? and (Tfld) finishes the case.

Case (Tinvk) b ≡ e.m(e?
1..n) We have Γ′ ` e ∈ E and mtype(m, E) = an(C?

1..n)D. The i.h.
yields Γ ` eσ ∈ E ′ for E ′<:E. We also have Γ′ ` e? ∈ E?

1..n for E? <:C?
1..n and i.h. yields

Γ ` e?σ ∈ E ′
?
1..n for E ′

? <:E?
1..n. By (Subtypes have all Methods), we know mtype(m, E ′) =

mtype(m, E). Transitivity of <: and rule (Tinvk) finishes the case.

Case (Tnew) b ≡ C(e?
1..n) We have fields(C) = C?

1..n and Γ′ ` e? ∈ E?
1..n with E? <:C?

1..n.
The i.h. yields Γ ` e?σ ∈ E ′

?
1..n for E ′

? <:E?
1..n. Transitivity of <: and (Tnew) finish the case.

Case (Ttst) b ≡ u̇?{x : C ⇒ d}/{e} We have Γ′ ` u̇ ∈ A, Γ′ ` d ∈ E1, and Γ′ ` e ∈ E0 and
E? <:D0,1. The i.h. yields Γ ` u̇σ ∈ A′, Γ ` dσ ∈ E ′

1, and Γ ` eσ ∈ E ′
0 with A′<:A, E ′

1 <:E1 and
E ′

0 <:E0. Transitivity of <: and (Ttst) finishes the case.

Case (Tmch) b ≡ e?
1..n match {c?

1..m} We have Γ′ ` e? ∈ C?
1..n and i.h. yields Γ ` e?σ ∈

C ′
?
1..n for C ′

? <:C?
1..n.

For each j ∈ 1..m, let cj ≡ case p?
1..n ⇒ bj (we omit the extra j index for patterns). We have

a case typing Γ′; C?
1..m ` cj ∈ Dj via Γ′; C? 3 p? a Γ′′?

1..n and Γ′, Γ′′ 1..n
? ` b ∈ Dj .

By (Subtypes yield Refined Environment), we get Γ′; C ′
? 3 p? a Γ′′′?

1..n for Γ′′′? <:Γ′′ 1..n
? .

By (Refined Environment preserves Typing) we get Γ, Γ′′′?
1..n ` bj ∈ D′

j for D′
j <:Dj .

Applying the i.h. yields Γ, Γ′′′? n ` bjσ ∈ D′′
j for D′′

j <:D′
j .

For the combined lubs, we have
⊔

D′′1..m
? <:

⊔
D?

1..m, and rule (Tmch) finishes the case.

�

Lemma 9 (Preservation)
If a ⇓ q and • ` a ∈ C, then • ` q ∈ C ′ for some C ′<:C.

Proof For q ≡ throw and q ≡ null, rules (Tthr) and (Tnul) yield the proof. Otherwise,
induction on a ⇓ v.

Case (Rfld) a ≡ e.fi

The premises of (Tfld) are • ` e ∈ C0 and fields(C0) = f? : C?
1..m with C = Ci.

We have e ⇓ D(ẇ?
1..n) and v = wi.
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By i.h. • ` D(ẇ?
1..n) ∈ D for D<:C0.

By (Subtypes have all Fields), we obtain m ≤ n and fi ∈ fields(D).

Finally, from • ` D(ẇ?
1..n) ∈ D and rule (Tnew) we know • ` ẇi ∈ Ei with Ei <:Ci.

Case (Rinvk) a ≡ e.m(e?
1..n)

The premises of (Tinvk) are Γ ` e ∈ E, mtype(m, E) = an(C?
1..n)C0, • ` e? ∈ C?

1..n.

Then e ⇓ D(ẇ?
1..m), e? ⇓ v̇?

1..n, mbody(m, D) = (x?
1..n)e0 with • ` e0 ∈ C. Under substitution

σ = {this 7→ D(ẇ?
1..m), x? 7→ v̇?

1..n}, the body evaluates as e0 σ ⇓ v̇.

Applying the i.h. for the receiver yields D<:E.

By (Subtypes have all Methods) we get mtype(m, D) = mtype(m, E).

Applying the i.h. for the arguments yields • ` v̇? ∈ C ′
?
1..n for C ′

? <:C?
1..n.

By (Substitution Lemma) we get • ` e0σ ∈ C ′ for C ′<:C.

Applying the i.h. for the body then yields • ` v̇ ∈ C ′′ for C ′′<:C ′. Transitivity of subtyping
finishes the case.

Case (Rnew) a ≡ D(ẇ?
1..n) then a ⇓ a, and D<:D by (Sref).

Case (Rcst) a ≡ e?{x : C ⇒ b}/{d}

We have e ⇓ D(ẇ?
1..n), D<:C and b {x 7→ D(ẇ?

1..n)} ⇓ v.

Using typing premises from (Ttst), we apply the (Substitution Lemma) and then the i.h.

Case (Rskp) a ≡ e?{x : C ⇒ b}/{d}

We have e ⇓ D(ẇ?
1..n), D 6<:C and d ⇓ v.

Using typing premises from (Ttst), we apply the i.h. to d, yielding • ` d ∈ C ′.

Case (Rmch) a ≡ e?
1..m match {c?

1..l}. Let i be the index of the matching case.

The premises of (Tmch) include • ` e? ∈ C?
1..m and case typing •; C?

1..m ` ci ∈ Di for Di <:C.

The case typing has premises •; C? 3 p? a Γ′?
1..n and •; Γ′ 1..m ` b ∈ Di where ci ≡ case p? ⇒ b.

We have e? ⇓ v̇?
1..m as well as v̇? y p? a σ 1..m

? and b σ 1..m
? ⇓ v̇.

Applying the i.h. to e? yields • ` v̇? ∈ C ′1..n
? for C ′

? <:C?
1..n.

By (Substitution Lemma), • ` bσ? ∈ D′
i with D′

i <:Di.
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Applying the i.h. yields • ` v̇ ∈ D′′
i with D′′

i <:D′
i.

This yields the desired type C ′ = D′′
i <:

⊔
D?

1..m = C, by transitivity of <: and properties of
the least upper bound operator t. �

We can now show a big-step version of the standard Progress lemma using coinduction.
The proof is a straightforward adaptation from Leroy and Grall’s proof for the simply-typed
lambda calculus [56]. We will say that “rule ... preserves R” instead of Leroy and Grall’s
locution “applying the coinduction hypothesis” which seems to stem from the implementa-
tion of the coinduction proof principle in the COQ proof assistant.

Lemma 10 (Progress)
If • ` a ∈ C and a 6⇓ q for all q, then a ⇑.

Proof By coinduction and case analysis over a. We recall the principle of coinduction: In
order to show that R = {a | for all q . a 6⇓ q and • ` a ∈ C} is included in ⇑, it suffices to
show that R is preserved by the divergence rules. This means, if we replaced each assertion
a ⇑ with a ∈ R and assumed that the conclusion holds, we have to be able to show that the
premises hold as well. To do this, we need proofs for e 6⇓ for the subexpressions e of a. These
can be obtained from inversion of "blocked" evaluation rules.

Case a ∈ {throw,null} and a ≡ x are not interesting, since a 6∈ R

Case a ≡ e0.f and (Rfld), (Cfld) are blocked. By • ` a ∈ C and (Tfld), we also have

• ` e0 ∈ C0. Thus, either

i) e0 6⇓ q0 for any q0. This amounts to e0 ∈ R and shows that (Dfld) preserves R.

ii) e0 ⇓ throw or e0 ⇓ null , but this contradicts (Cfld) blocked.

iii) e0 ⇓ D(ẇ?
1..n) but by (Preservation) and (Subtypes have all fields), this contradicts

(Rfld) blocked.

Case a ≡ e0.m(e?
1..n) and (Rinvk),(Crcv) and (Carg) are blocked. By • ` a ∈ C and (Tinvk),

we also have • ` e0 ∈ C0, • ` e? ∈ C?
1..n, mtype(m, C0) = (D?

1..n) and C? <:D?
1..n.

Thus, either

i) e0 6⇓ q0 for any q0. This amounts to e0 ∈ R and shows that (Drcv) preserves R.

ii) e0 ⇓ throw or e0 ⇓ null but this contradicts (Crcv) blocked.

iii) e0 ⇓ D(w?
1..n). By (Preservation), D<:C0 and by (Subtypes have all methods),

mbody(m, D) = (x?
1..n)b. We can distinguish further
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a) There exists i with e? ⇓ v̇?
1..i−1 and ei 6⇓ q0 for any q0. Then ei ∈ R and (Darg)

preserves R.

b) There exists i with e? ⇓ v̇?
1..i−1 and ei ⇓ throw, but this contradicts (Carg) blocked

c) e? ⇓ v̇?
1..n and (Preservation) yields • ` v? ∈ D?

1..n for D? <:C?
1..n. Then let σ =

{this 7→ D(w?
1..m) x? 7→ v?

1..n} and consider bσ. Either

1. b σ 6⇓ q for any q. This amounts to b σ ∈ R and shows that (Dinvk) preserves R.

2. b σ ⇓ q, but this contradicts (Rinvk) blocked.

Case a ≡ C(e?
1..n) and (Rnew), (Cnew) are blocked. By • ` a ∈ C and (Tnew), we also

have • ` e? ∈ A?
1..n, fields(C) = B?

1..n and A? <:B?
1..n. Thus, either

i) there exists i with e? ⇓ v?
1..i−1 and ei 6⇓ q for any q. Then ei ∈ R and (Dnew) preserves R

ii) there exists i with e? ⇓ v?
1..i−1 and ei ⇓ throw, but this contradicts (Cnew) blocked.

iii) e? ⇓ v?
1..n, but this contradicts (Rnew) blocked.

Case a ≡ e?{x : C ⇒ b}/{d} and (Rcst),(Rskp),(Ctst) are blocked. By • ` a ∈ C and (Ttst),
we have all premises of the rule (Ttst). Thus either

i) e 6⇓ q for any q, then e ∈ R and (Dtst) preserves R.

ii) e ⇓ throw, but this contradicts (Ctst) blocked.

iii) e ⇓ D(v̇?
1..n). There are several subcases to consider:

a) D<:C, and for σ = {x 7→ D(v̇?
1..n)}, b σ 6⇓ q for any q. Then b σ ∈ R and (Dcst)

preserves R.

b) D<:C, and for σ = {x 7→ D(v̇?
1..n)}, b σ 6⇓ throw but this contradicts (Rcst)

blocked.

c) D 6<:C, and d 6⇓ q for any q. Then d ∈ R and (Dskp) preserves R.

Case a ≡ e?
1..n match {c?

1..m} and (Rmch),(Cmch) are blocked.

By • ` a ∈ C and (Tmch), we have • ` e? ∈ A?
1..n, for all j a case typing •; A?

1..n ` cj ∈ Dj ,
and for each body bj a typing Γ′j ` bj ∈ Dj .

Thus, either

i) there exists i with e? ⇓ v̇?
1..i−1 and ei 6⇓ q for any q. Then ei ∈ R and (Dmch) preserves

R.
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ii) there exists i with e? ⇓ v̇?
1..i−1 and ei ⇓ throw or ei ⇓ null, but this contradicts (Cmch)

blocked.

iii) e? ⇓ v̇?
1..n. Then we distinguish these cases:

a) if all cases reject, this contradicts that the last case always accepts.

b) There exists an i such that ∀j < i . v?
1..n; cj ⇓ reject, ci = case p?

1..n ⇒ b and
v̇? y p? a σ?

1..n. Then, either

1) b σ?
1..n 6⇓ q for any q, then b σ?

1..n ∈ R and (Dbdy), (Dcase) preserve R

2) b σ?
1..n ⇓ q, which contradicts (Rmch) blocked.

Thus, R is preserved by all divergence rules, so R ⊆⇑.

�

Thm 1 (Type Soundness)
If • ` a ∈ C then either a ⇑ or a ⇓ q for some q with • ` q ∈ C ′, C ′<:C.

Proof Consequence of (Progress) and (Termination).

3.7 Optimizing Translation

In this section, we define and prove correct an optimizing translation from pattern matching
expressions to decision-trees.

3.7.1 Rewriting Match Expressions

An elegant way to describe translation of match expressions is to give a set of rewrite rules,
which are applied successively until all match expressions are replaced with lower-level
operations. Apart from being easy to understand and implement, correctness can then be
established for each rule separately.

There are two approaches to the compilation of pattern matching, one based on decision-
trees and the other based on backtracking automata [33, 79]. We chose the translation to
decision trees, which in the functional setting guarantees that no input value is tested more
than once. Our presentation of the algorithm follows Pettersson’s [73].

The central idea is to remove a top-level pattern of a case clause, lifting its sub-patterns to
the top-level. Consider the two expressions in Figure 3.11. Inspecting their structure reveals
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//we know

//xtype(Γ, List(), cons) = Cons

x match {

case List().cons(π1, π2) ⇒ a

case y0 ⇒ b

}

List().cons(x) ? { y : Cons ⇒

(x, y.hd, y.tl) match {

case y1 , π1 , π2 ⇒ a

case y0 , y2 , y3 ⇒ b

}}/{
x match {case y0 ⇒ b}

}

Figure 3.11: Rewriting a Nested Pattern

that they are actually equivalent (they will evaluate to the same result for all values that are
substituted for x, z). The extractor of the first pattern z.cons(π1, π2) in the first case has been
pulled out and a test is done on the outcome: if it is non-null, it is bound to the fresh variable
y and the sub-patterns are matched against the case fields y.hd, y.tl. Note that the width of
the original match is augmented by lifting the nested patterns to the top-level. Since π1, π2

can potentially reject the input, all cases of the original match are copied to the new one.
Some entries need to be expanded to match the arity of the new match, which is done by
using fresh variable patterns y1, y2, y3. If the extractor returns null, the first clause rejects and
so the second branch of the test expression deals with the remaining cases of the match.

It is convenient to treat match expression as a matrix of patterns and bodies, with the last
column containing the bodies. This should be clear from the layout of the following match
expression:

e?
1..n match {
case p11, . . . , p1n ⇒ b1

case pm1, . . . , pmn ⇒ bm

}

This facilitates reasoning on the optimization that the algorithm performs by reusing results
of an extractor call. It consists of replacing calls to the same extractor in the same column,
but in different rows of the matrix with clauses that match the sub-patterns, in case the
call succeeded. Likewise, if the result of the extractor call is null, all extractor patterns are
discarded at the same time, instead of repeating the extractor call. We illustrate the opti-
mization with an example. For simplicity, we omit the input values and only show the case
clauses in Figure 3.14.

Here, the first and third case (on the left) test the same extractor z.cons. This extractor call has
been pulled out into a test expression. If it succeeds (then-branch), the resulting value is de-
constructed and matched against the sub-patterns. Again, since patterns π1, π2 may fail, we
include all other cases, but we do not need to repeat the extractor call. If the extractor call re-
turns null, then (else-branch) the remaining test cases are those that have extractor patterns
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Translation [[Γ ` a match {M} ∈ D]] = e

(Tmp)

[[ . . . Γ ` a? ∈ C?
1..n

Γ ` a?
1..n match {c?

1..m} ∈ D
]] = val z? : C? = a1..n

? ; z1..n
? match {c1..m

? }

condition: • a? are not all variables

(Var)

[[ . . . Γ ` z? ∈ C?
1..n

Γ ` z?
1..n match {c?

1..m} ∈ D
]] = b {x? 7→ z?

1..n}

condition: • c1 has the shape case x?
1..n ⇒ b

(Mix)

[[ . . . Γ ` z? ∈ C?
1..n

Γ ` z?
1..n match {c?

1..m} ∈ D
]]= v̂.m(zi)?{y :C⇒ d}/{e}

condition: • c1 has the shape case x1..i−1
? v̂.m(p′1..k

? ) p i+1..n
? ⇒ b

translation steps:

• v̂.m(zi) has pattern typing
xtype(Γ, v̂,m) = C . . .

(TPext)
Γ;Ci 3 v̂.m(p′1..k

? ) a ∆

• the definition of C is class C(f? :D 1..k
? ) / E {md?

1..n}

• y, y?
1..k are fresh variables

• d = val y? :D? = y.f?
1..k; (z?, y, y

1..k
? , z

1..]i[..n
? ) match {expand v̂.m(c?

1..m)}

• e = z?
1..n match {other v̂.m(c?

1..m)}

Figure 3.12: FPat Translation Rules
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expand v̂.m(•) = •

expand v̂.m(case p? v̂.m(p?
1..k) p

1..]i[..n
? ⇒ b; c?

1..m) =

case p? z′ p′1 · · · p′k p
1..]i[..n
? ⇒ b; expand v̂.m(c?

1..m)

where z′fresh

expand v̂.m(case p? p p
1..]i[..n
? ⇒ b; c?

1..m) =
case p? p z′1 · · · z′k p

1..]i[..n
? ⇒ b; expand v̂.m(c?

1..m)

where z′1..k
? fresh, p 6= v̂.m(p?

1..k)

other v̂.m(•) = •

other v̂.m(case p? v̂.m(p′1..k
? ) p

1..]i[..n
? ⇒ b; c?

1..m) = other v̂.m(c?
1..m)

other v̂.m(case p? p p
1..]i[..n
? ⇒ b; c?

1..m) =
case p? p p

1..]i[..n
? ⇒ b; other v̂.m(c?

1..m)

where p 6= v̂.m(p?
1..k)

Figure 3.13: Definitions of expand v̂.m and other v̂.m

x match {
case List().cons(π1, π2) ⇒ a

case List().nil() ⇒ b

case List().cons(π3, π4) ⇒ d

case y0 ⇒ e

}

List().cons(x)?{y : Cons ⇒
(x, y.hd, y.tl) match {

case y1 , π1 , π2 ⇒ a

case List().nil() , y2 , y3 ⇒ b

case y4 , π3 , π4 ⇒ d

case y0 , y5 , y6 ⇒ e

}}/{
x match {
case List().nil() ⇒ b

case y0 ⇒ e

}}

Figure 3.14: Optimization of Extractor Calls
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other than z.cons. This suggests an iterative algorithm that identifies common patterns and
translates them into test expressions and new, smaller match expressions.

Figure 3.12 contains the rewrite rules used by the algorithm. The translation relies on the
static types of expressions, and is thus expressed as a translation of type derivations. The
rules use a derived form val x : C = a; b which has the double purpose of simplifying the
presentation and catching divergent and exception-throwing input values. The derived
form is only used when a is of static type C, and abbreviates a?{x : C ⇒ b}/{b′} where b′ =

b {x 7→ null} .

Rule (Tmp) introduces val definitions, so that input values are always variables. Rule (Var)
handles matches that are known to accept. The essential rule is (Mix) which performs the
optimizing translation described above. If the extractor returns value w, then the sub-values
casefld(C, w) can be obtained with field accesses w.f?

1..k, and the return value as well as the
sub-values are bound to fresh local variables y, y?

1..k. The function expand adapts the width
of case clauses as mentioned before. If the extractor returns null, we continue matching on
those clauses that have a different extractor, computed by function other .

In contrast to functional pattern matching, we cannot assume that e.g. a rejecting extractor
cons means that nil will necessarily accept the input value. The user-defined methods could
be annotated to supply this information, an extension that we do not pursue in this thesis.

3.7.2 Why must extractors be @safe?

Recall the example above. Suppose π1 was a variable pattern and π2, π4 test the same extrac-
tor. Optimizing for the failing pattern π2 causes omission of the entire third case clause.

When omitting this case clause, we are already assuming that π3 will either accept or reject
its input. However, if π3 were allowed to throw an exception or diverge, it would not be pos-
sible to omit its evaluation without changing the meaning of the program. For this reason,
the semantics does not cover these anomalous situations (if we included them, we could
not prove our optimization correct). Any semantics for pattern matching that involves user-
defined code depends on this assumption if optimized translation of matching is to preserve
the meaning of programs, since we usually do not expect divergent or exception throwing
programs to turn into normally terminating ones.

The assumption that extractors are @safe complements the assumptions formulated by
Syme, Neverov and Margetson [87] and Okasaki [71] that informally require extractors to be
side-effect free and return the same result in all execution contexts in order for optimization
to work. Of course in this calculus, absence of side-effects is guaranteed by the absence of
assignment. We do not discuss checking absence of side-effects here. In the ML language,
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transform(null) = null

transform(x) = x

transform(e.f) = transform(e).f

transform(e.m(e?
1..n)) = transform(e).m(e′?

1..n)

where e′? = transform(e?)
1..n

transform(throw) = throw

transform(a?{x : C ⇒ d}/{e}) = a′?{x : C ⇒ d′}/{e′}
where a′ = transform(a)

where d′ = transform(d)

and e′ = transform(e)

transform(e?
1..n match {c?

1..k}) = transform(rewrite(e?
1..n match {c?

1..k}))

Figure 3.15: The transform function

which has a tradition of offering references and side-effecting computation alongside func-
tional programming, the absence of automatic checks is compensated by the rigorous spec-
ification: programmers understand in which situations they better not rely on side-effects.
For SCALA, we adopt a similar approach with the contention that such a compromise would
work equally well in the object-oriented setting.

3.7.3 The Algorithm

We define a function transform in Figure 3.15 that recursively traverses expressions, rewriting
any match statements it finds.

The transform function is then naturally extended to method definitions and class definitions.
A program is translated by translating all class definitions and the top-level expression. Note
that a single application of a rewrite rule takes place in one of the following contexts:

Def 2 (Target Context) A target context is defined by the following grammar:

ξ, ζ ::= [ ] | ξ.f | ξ.m(b?
1..n) | a.m(b?, ξ, b?

1..]i[..n)

| ξ?{x : C ⇒ d}/{e} | a?{x : C ⇒ ξ}/{e} | a?{x : C ⇒ d}/{ξ}

By the reasoning in the next section, this rewrite preserves the meaning of the program.
A subsequent call of transform performs the same for subexpressions of a′, until all match
expressions are translated away.
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3.8 Correctness of the Translation

We define a formal notion of equivalence. Recall that a substitution always satisfies xσ ≡
null or xσ ∈ Values for all x ∈ dom(σ). We proceed in two steps, following the démarche of
Ma [59]: we define a notion of equivalence and show that it is preserved by target contexts.
Then we show that an expression is equivalent to its translation.

3.8.1 Equivalence and Open Equivalence

Def 3 (Equivalence) For d, e expressions with fv(d) = fv(e) = ∅, d is equivalent to e (written
d ≈ e), if both of these conditions hold: 1. for all q, if d ⇓ q then e ⇓ q, and 2. if d ⇑ then e ⇑.

Showing that≈ is an equivalence relation is easy using (Uniqueness), (Termination). Equiv-
alence alone is not enough for our purpose, since rewrite rules take place in context. We now
define an equivalence on open terms and show it is stable under contexts.

Def 4 (Open Equivalence) For expressions d, e with fv(d) ∪ fv(e) ⊆ X , d is open-equivalent to e

(written X  d ≈ e) if dσ ≈ eσ for all substitutions σ with X ⊆ dom(σ).

Lemma 11 (Substitution preserves Equivalence) If X  d ≈ e, then for any substitution σ

with dom(σ) ⊆ X , it holds that X\dom(σ)  dσ ≈ eσ.

Proof Let X  d ≈ e and σ be a substitution. We have to show that for any substitution
ρ with dom(ρ) = X\dom(σ), it holds that (dσ)ρ ≈ (eσ)ρ. Considering that substitution
is associative, this amounts to d(σρ) ≈ e(σρ). We observe that σρ is a substitution with
X = dom(σρ), and the equivalence follows from X  d ≈ e. �

Def 5 (Derived Form for Value Definition) The expression form val x : C = a; d abbreviates
a?{x : C ⇒ d}/{d{x 7→ null}} and is typed according to the scheme

Γ ` a ∈ A Γ, x : A ` d ∈ D Γ ` d{x 7→ null} ∈ D′
(Ttst)

Γ ` a?{x : C ⇒ d}/{d{x 7→ null}} ∈ D

With (Substitution Lemma), it is easy to see that D′<:D and thus D tD′ = D

Lemma 12 (ValDef Equivalences) Let b ≡ val x : A = a; d where Γ ` a ∈ A and σ some
substitution that agrees with Γ. Then

I . If aσ ⇓ w then b σ ≈ d{x 7→ w}σ.

II . If aσ ⇓ null then b σ ≈ d{x 7→ null}σ.

III . If aσ ⇓ throw then b σ ⇓ throw.

IV . If aσ ⇑ then b σ ⇑ .
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Proof (Sketch) We note that by (Substitution Lemma) and (Preservation), the type test
cannot fail except for null. With this observation, I. follows from (Rcst), II. from (Rskp), III.
from (Ctst) and IV. from (Drcv). �

Def 6 (Translation) For a ≡ e?
1..n match {c?

1..m} with Γ ` a ∈ C, the translation [[Γ ` a ∈ C]] is
defined as the application of a suitable rule in Fig. 3.12.

Thm 2 (Congruence) If X  d ≈ e, then Y  ξ[d] ≈ ξ[e] for Y = fv(ξ[d]) ∪ fv(ξ[e]).

Proof By induction on ξ. For each context shape, we consider possible terminating and
divergent computations under a value substitution σ.

Case ξ ≡ [ ] then Y = X and X  d ≈ e by assumption.

Case ξ ≡ ζ.f

i) (ζ[d].f)σ ⇓ throw by (Cfld). Then, we have ζ[d]σ ⇓ throw or ζ[d]σ ⇓ null. By i.h., we
obtain ζ[e]σ ⇓ throw (resp. ζ[e]σ ⇓ null) and (ζ[e].f)σ ⇓ throw by (Cfld).

ii) (ζ[d].f)σ ⇓ w by rule (Rfld). Then, we have ζ[d]σ ⇓ C(v̇?
1..n) and f : D ∈ fields(C). By the

i.h., we obtain ζ[e]σ ⇓ C(v̇?
1..n) and (ζ[e].f)σ ⇓ w by (Rfld).

iii) (ζ[d].f)σ ⇑ by (Dfld). Then ζ[d]σ ⇑, by i.h. ζ[e]σ ⇑ and (ζ[e].f)σ ⇑ by (Dfld)

Case ξ ≡ ζ.m(b?
1..n)

i) (ζ[d].m(b?
1..n))σ ⇓ throw by (Crcv). Then ζ[d]σ ⇓ throw or ζ[d]σ ⇓ null. By i.h. ζ[e]σ ⇓

throw (resp. ζ[e]σ ⇓ null) and (ζ[e].m(b?
1..n))σ ⇓ throw by (Crcv).

ii) (ζ[d].m(b?
1..n))σ ⇓ throw by (Carg). Then bi σ ⇓ throw or bi σ ⇓ null and ζ[e].m(b?

1..n) ⇓
throw by (Carg).

iii) (ζ[d].m(b?
1..n))σ ⇓ q by (Rinvk). Then ζ[d]σ ⇓ C(v̇?

1..m). By i.h., ζ[e]σ ⇓ C(v̇?
1..m) and by

(Rinvk), ζ[e].m(b?
1..n) ⇓ q.

Case ξ ≡ a.m(b?, ζ, b?
1..]i[..n)

This case is similar to the preceding case.

Case ξ ≡ ζ?{x : E ⇒ a}/{b}

i) (ζ[d]?{x : E ⇒ a}/{b})σ ⇓ throw by (Ctst). Then ζ[d]σ ⇓ throw. By i.h. ζ[e]σ ⇓ throw

and (ζ[e]?{x : E ⇒ a}/{b})σ ⇓ throw by (Ctst).
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ii) (ζ[d]?{x : E ⇒ a}/{b})σ ⇓ q by (Rcst). Then ζ[d]σ ⇓ E0(v̇?
1..n) for some E0 <:E and

aσ{x 7→ E0(v̇?
1..n)} ⇓ q. The i.h. yields (ζ[e])σ ⇓ E0(v̇?

1..n) and (ζ[e]?{x : E ⇒ a}/{b})σ ⇓
q by (Rcst).

iii) (ζ[d]?{x : E ⇒ a}/{b})σ ⇓ q by (Rskp). Then we either have ζ[d]σ ⇓ null or ζ[d]σ ⇓
C(v̇?

1..n) for some C 6<:E, and bσ ⇓ q. The i.h. yields ζ[e]σ ⇓ null resp. ζ[e]σ ⇓ C(v̇?
1..n)

and (ζ[e]?{x : E ⇒ a}/{b})σ ⇓ q by (Rskp).

Case ξ ≡ a?{x : E ⇒ ζ}/{b}

This case is similar to the preceding case, with i.h. applied with σ{x 7→ w} for (Rcst).

Case ξ ≡ a?{x : E ⇒ b}/{ζ}

This case is similar to the preceding case.

�

The following lemma is an essential part of the correctness theorem and shows the equiv-
alence of a match expression and the test expressions where the relevant extractor call is
“pulled out”.

Lemma 13 (Split) Let a ≡ z?
1..n match {c?

1..m} with Γ ` a ∈ A,

with c1 = case x?
1..i−1 v̂.m(π 1..k

? ) p i+1..n
? ⇒ b,

and xtype(Γ, v̂, m) = @safe(Obj)C.

For any substitution σ it holds that :

I . v̂.m(zi)σ ⇓ w implies aσ ≈ (z?, zi, w1..k
? , z

1..]i[..n
? match {expand v̂.m(c?

1..m)})σ
II . v̂.m(zi)σ ⇓ null implies aσ ≈ (z?

1..n match {other v̂.m(c?
1..m)})σ

Proof I. Let a′ ≡ (z?, zi, w1..k
? , z

1..]i[..n
? match {expand v̂.m(c?

1..m)})σ.

Terminating computation aσ ⇓ q can only happen through (Rmch).

We show pattern acceptance and rejection coincides in a and a′.

Let z?σ
1..n; cjσ ⇓ reject. Then acceptance as well as rejection was established to the left of

column i, in column i, or to the right of column i of the original match in a.

Patterns to the left of i are not changed by expand. Patterns to the right of i are merely moved
to index i + k, but test the same input values.

• If in clause cj a pattern in column i is of the form v̂.m(π′1..k
? ) for some π′1..k

? , the function
expand lifts patterns π′1..k

? appear in c′j , to be matched against w?
1..k.
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The same derivations for acceptance and rejection can be reused: whenever acceptance
by (mextr) is derived with w? y π′? a ρ?

1..k the corresponding ρ?
1..k are also obtained in

c′j . Moreover, whenever rejection is derived through (rchild), then wh y π′h a reject

for some h can be also be derived in c′j . The additional variable pattern at position i

does not affect the outcome, since it was chosen fresh.

• If in clause cj , a pattern with a different extractor appears in column i, then the outcome
is obviously the same. The additional variable patterns in columns i + 1..i + k act as
dummy patterns for discarded input values w?

1..k.

Divergent computation aσ ⇑ is only derivable with (Dcase), and (Dbdy). By the same rea-
soning as above, patterns in c′j have the same acceptance/rejection behavior as those in cj .
So the matching case ci in (Dbdy) produces the same substitution ρ that makes the body
diverge.

Proof II. Let a′ ≡ (z 1..n
? match {other v̂.m(c?

1..m)})σ.

The hypothesis is enough to derive pattern rejection by (rnull). It is clear that this rejection
judgment for column i causes all cj with the same v̂.m(π′1..k

? ) in column i to reject input values
z?

1..nσ. For a formal proof, this is not enough, so we argue that we can actually produce a
proof of case rejection for every such cj .

To this end, we have to look at all patterns to the left of column i. It is important to note
that for each such pattern, we can derive either an acceptance or a rejection judgment: First
of all, the syntax allows only extractor patterns C(v̂?

1..l).m(. . .), so no null dereferencing can
occur. Furthermore, by condition "@safe" divergent patterns and exceptions in patterns
are ruled out. An inductive argument is then applied to each extractor pattern in column l <

i to derive either an acceptance or a rejection judgement: Every extractor call of terminates
normally (guaranteed by @safe), yielding (so we stop with a rejection judgment) or a value
w, whose case-fields are used for the remaining subpatterns (with the induction hypothesis
yielding acceptance or rejection of subpatterns, which is the used to derive acceptance or
rejection for the current pattern). So every pattern in column l on the top-level will either
accept or reject zl.

Now, a sequence of acceptance judgments followed by a rejection judgment in input zl for
l < i yields the desired case rejection for cj . If instead all patterns to the left of colum i accept,
then we use rejection of v̂.m(π′1..k

? ) to derive rejection of the whole case clause.

Putting it all together, we conclude that omitting these case clauses will not alter the behav-
ior of a. The expression a′ uses other to omit exactly these cases, and will contain only those
cases that still need to be tested for acceptance or rejection (with at least one case always
accepting, by convention). Thus, every evaluation involving (Rmch) (which involves one
crucial pattern acceptance judgment) for a can be simulated by a corresponding evaluation
involving (Rmch) for a′. �
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We now have everything we need for proving the correctness theorem. Since equivalence is
a congruence, it is enough to show correctness of the rewrite rules.

Thm 3 (Correctness of [[ ]]) For a ≡ a?
1..n match {c?

1..m}, fv(a) = X , typing Γ ` a ∈ A, transla-
tion a′ = [[Γ ` a ∈ A]] it holds that X  a ≈ a′.

Proof By case distinction on [[Γ ` a ∈ C]]. Let σ be a substitution that closes a.

Case (Tmp) Let σ be a substitution with X ⊆ dom(σ). Then (ValDef Equivalences) yields
the desired result.

Case (Var) a = z?
1..n match {c?

1..m} and a′ = b{x? 7→ z?
1..n}

where c1 = case x?
1..n ⇒ b

Since z?σ ∈ Values ∪ {null}, we can ignore (Cmch),(Dmch). By (mcase) and (mvar), the first
row matches, yielding ρ = {x 7→ zσ}. We then exploit that b ρ ≡ b{x? 7→ z?

1..n}σ

i) aσ ⇓ q by (Rmch). Then bρ ⇓ q thus b{x? 7→ z?
1..n}σ ⇓ q

ii) aσ ⇑ by (Dcase), (Dbdy). Then bρ ⇑ thus b{x? 7→ z?
1..n}σ ⇑

Case (Mix) a = z?
1..n match {c?

1..m} and v̂.m(zi)?{x : B ⇒ d}/{e}

where c1 = case x?
1..i−1v̂.m(p?

1..k) pi+1..n
? ⇒ b and d, e as described in Figure 3.12.

Since z?σ ∈ Values ∪ {null}, we can ignore (Cmch),(Dmch). We distinguish two cases.

• v̂.m(zi)σ ⇓ w. Then by (Preservation), (Rcst), we get a′σ ≈ dσ. We finish the case with
Lemma (Split) and transitity of ≈.

• v̂.m(zi)σ ⇓ null. Then by (Rskp), a′σ ≈ eσ. We finish the case with Lemma (Split) and
transitity of ≈.

�

Corollary 1 (Complete Algorithm) The algorithm described in Section 3.7.3 is correct.
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Proof Consequence of the above theorem, applied sequentially to every application of a
rewrite rule [[ ]], and transitivity of ≈. For termination, observe that each match expression
produced by a rewriting rule is smaller than the original match expression using the lexico-
graphically ordered tuples 〈i, j, k〉 where i is the number of non-variable input values, j the
number of case clauses, and k the number of extractor patterns in c?

1..j . This ordering shows
that for any e, all chains of dependency-pairs 〈transform(e), transform(rewrite(e))〉 must be
finite. �

Using dependency-pairs [40] seems necessary, since the mix rules creates two new match
expressions which complicates finding a suitable simplification order that only compares
expressions before and after application of a rewrite rule.

3.9 Summary

In this chapter, we explored the formal underpinnings of object-oriented pattern matching
based on extractors. The development uses the fact that pattern matching expressions can be
considered as matrices regrouping the patterns and bodies of the case clauses, which can be
broken down in smaller matrices by identifying common tests and translating them step by
step. The formal development proved useful in that we have motivated important restric-
tions that must hold in order for optimizing translation of extractor-based pattern matching
to be semantics-preserving. Namely, extractors have to be implemented with terminating
expressions, that are moreover guaranteed to not throw any exceptions. The modular na-
ture of this formal development in the form of rewrite rules makes it a suitable basis for
implementation. However, a real language implementation like SCALA contains several
pattern forms for syntactic convenience, which have some interaction and sometimes new
opportunities for optimization. These aspects will be described in the next chapter.



Chapter 4

Implementation

When implementing pattern matching in a compiler for a realistic programming language,
the theoretical model of Chapter 3 is modified: on the one hand, we introduce extensions
to pattern matching that increase programmer convenience, on the other hand, we adapt
translation to the available target instructions in order to help efficient code generation. This
chapter deals with implementation issues, based on experiences from implementing pattern
matching in the SCALA compiler.

The SCALA compiler translates an industrial-strength high-level language to a low-level lan-
guage interpreted the JVM virtual execution environment. It is reasonable to expect that
our results can be used to extend other realistic languages with an object-oriented pattern
matching construct.

We will describe type patterns (and other extensions) in isolation, but give no formal de-
scription of the entire system. The reason for this is that more extensions are added later,
and the interactions hold no theoretical insights. The basis for these extensions is rooted in
the engineering perspective of improving efficiency and readability. In contrast, type pat-
terns do hold new theoretical insights when generic patterns are considered in Chapter 6.

Thus, we describe the implementation semi-formally. We give a rewrite rule that is tailored
to match expressions that contain a single column of type patterns. The interactions that
arise in the interplay of type patterns, case classes and extractors is highlighted in prose,
which should be sufficient for the reader interested in reconstructing the whole translation
algorithm from the parts that described here.

4.1 The Scala Language and Compiler

Object-oriented pattern matching is fully implemented in the reference SCALA compiler, in-
cluding many extensions that we will only mention in passing but which should be obvious
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⇓
Parser syntax analysis

Analyzer type and name checking

SuperAccessors add super accessors

Pickler serializes symbol tables

RefChecks perform reference and override checking

UnCurry remove curried functions

ExplicitOuter translate pattern matching, outer pointers

Erasure erase generic types

LambdaLift move nested functions to top level

Constructors move field definitions into constructors

Flatten get rid of inner classes

Mixer do mixin composition

GenICode generate portable intermediate code

GenJVM generate classfiles
⇓

Figure 4.1: Phases of the Scala compiler

after following through the material contained in this thesis.

SCALA is a statically typed language that blends object-oriented programming constructs
with higher-order functions, pattern matching and a component-oriented type system pro-
viding type members, nested types and multiple inheritance. The extensions are compiled
down to the JVM in order to ensure compatibility with existing JAVA libraries and foster
real-world adoption.

The reference SCALA compiler rewrites source programs in several phases, each time taking
a higher-level construct or combination of expressions and yielding one that is closer to
the JVM class-file format. Its phases (except specific ones that are experimental or deal with
optimization) are depicted in Figure 4.1. The architecture of the compiler has been described
by Schinz [78], Altherr [5] and Zenger and Odersky [98].

4.1.1 Applications of Pattern Matching

Pattern matching is widely used in the compiler and the standard library of the SCALA pro-
gramming language. There is a variety of programming language elements that are syntactic
sugar for some form of pattern matching. Among these language elements are
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• value definitions through patterns, as in val (min,max) = computeMinMax() which in-
volves a tuple pattern,

• for-comprehensions, as in for(p <- items) {...} which will filter those items that
match pattern p, and

• partial functions, which consist of just the case clauses of a pattern matching expres-
sions, and

• catch-blocks for exceptions.

We focus on pattern matching itself and do not dwell on these derived constructs, which are
explained in detail in the SCALA language specification [69]. Odersky claims that compared
to JAVA, the primitives and libraries of the SCALA language can reduce code size of equiv-
alent programs by a factor of 2 [68]. Given the above list, it is clear that pattern matching
plays an important part in this reduction.

Application of pattern matching to semistructured data like XML is not discussed in this
thesis, as it would blur the main problem of combining pattern matching with object-
oriented programming. The interested reader is referred to [27, 87].

4.2 Type Patterns

The formal calculus of the preceding chapter offered a minimal pattern language consist-
ing of extractor patterns and variable patterns. Type tests could be encoded using extrac-
tor methods that have a type test expressions as their body. However, in the context of a
real-world programming language, it is usually preferred not to force programmers to use
encodings. Moreover, extending the kinds of pattern and adapting the translation algorithm
offers more opportunities for optimization. In this section, we will elaborate on extending
the pattern language with type patterns.

Type patterns such as x: Int or _: String match all values of the given type, and bind the
variable name to the value. Pattern matching with type patterns immediately corresponds
to the “typecase” construct discussed in Chapter 2.

In a first-order object-oriented language, the principle challenge in translating match ex-
pressions with type patterns lies in subtyping. Consider the class declarations and the two
expressions in Figure 4.2: a variable v:Any and a class hierarchy One <: List <: Seq. We
like to keep our strategy of successively rewriting match expression into simpler ones that
are guarded by tests, so the outcome of rewriting (on the right) contains a type tests and two
branches for each possible result. The outcome of a type test for T can be used to process
remaining patterns “modulo” subtyping with respect to T . There are two ways in which we
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class Seq extends Any
class List extends Seq {...}
class One extends List {...} //singleton lists

(v:Any) match {
case x:List => b1

case y:Seq => b2

case z:One => b3

}

if(v.isInstanceOf[List]) {
val tmp = v.asInstanceOf[List]
tmp match {
case x => b1

case y => b2

case z:One => b3

}
} else v match {

case y:Seq => b2

}

Figure 4.2: Example of Rewriting Type Patterns modulo Subtyping

can make use of the knowledge that an input value is of a “better” type, both of which are
applied in the example. First, in the then-branch of the if-expressions, there is no need to
test for Seq, since it is a more general type than List. The type pattern y:Seq is replaced
with a pattern y. Second, in the else-branch, we can omit the case clause for z:One, since it is
a more specific type pattern than x:List and we know statically that it will reject its input.

The rewrite rule that describes translation of type patterns is given in Figure 4.3. For a
type pattern that tests for T , The function modT retains exactly those cj which test for a
more general or more precise pattern (“modulo”). More general patterns are replaced with
variable patterns, and more specific patterns are kept as they are. Incompatible patterns are
removed. In contrast, the function incmpT retains exactly those patterns that test for some
type S that is either more general or incompatible with T . It is straightforward to generalize
this rule to deal with multiple columns. Extractor patterns are always retained since we do
not know whether the extractor method tests for a type.

4.2.1 Extractors and Type Patterns

Having type patterns suggests a very convenient shortcut for type tests in extractor meth-
ods, as introduced in Chapter 2: an extractor method can be given an argument type that is
more precise that the expected type of a pattern. The semantics is then defined using a type
test prior to the extractor call.

In the formalization, this can be described as allowing not only extractor signatures
@safe(Obj)E, but also @safe(C)E and change the semantics so that a type test for C is added
before calling the extractor.
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z match { c?
1..k } =⇒

if(z.isInstanceOf[C]) {
val tmp = z.asInstanceOf[C]
tmp match {c′?

1..k}
} else
z match {c′′?

1..k}

where c1 ≡ case x : C ⇒ b1, c′ = mod(c?)
1..k and c′′ = incmp(c?)

2..k

modT (case y : S ⇒ b; c j..k
? ) =



case y ⇒ b;modT (c j..k
? ) if T <:S

case y : S ⇒ b;modT (c j..k
? )

if S <:T, S 6= T

modT (c j..k
? ) if S 6<:T, T 6<:S

incmp(case y : S ⇒ b; c j..k
? ) =

 case y : S ⇒ b ; incmp(c j..k
? ) if S 6<:T

incmp(c j..k
? ) if S <:C

Figure 4.3: Rewrite Rule for Type Patterns

This has an important effect on readability. Consider the following extractor methods, for
some type C having an integer-valued method foo. These are equivalent when more precise
argument types are allowed:

def unapply(x:Any): Option[Int] =
if(x.isInstanceOf[C]) Some(x.asInstanceOf[C].foo) else None

def unapply(x:C): Some[Int] = Some(x.foo)

This innocent-looking convention for type tests is the key to reasoning about the static types
of generic values. It also permits to write result types that use type arguments of the tested
type.

4.2.2 Static Types and Null

If we have an expression of static type C and type test for type D, and we know that C <:D,
then it seems that the type test is unnecessary. Unfortunately, this is not the case in SCALA,
since it is still possible that the expression evaluates to the null value. By definitions, null
does not count as an instance of type C, hence the type test should not succeed. Still, replac-
ing a dynamic type test for C with a non-null check promises a small efficiency gain.
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4.3 Case Classes

In this section, we discuss implementation aspects that are specific to case classes and case
class patterns. We will see that, in many respects, case class patterns are merely elaborated
forms of type patterns.

4.3.1 Direct Translation of Case Patterns

When the flexibility of extractor methods is not needed, the overhead paid for extractor
calls becomes a source of inefficiency. In Chapter 2, we saw that case classes can simulate
algebraic datatypes and at the same time be encoded using extractors. In this encoding, an
extractor of a case class pattern was always a type test followed by accesses to its case fields.
This way, we could ensure acceptance of all values that were constructed with a constructor
D that is a subtype of C.

With the extension of type patterns introduced in the last subsection, it is important to note
that almost all machinery is in place for a direct implementation of case patterns, i.e. one
that avoids calling an extractor method at runtime. While this does not make a difference for
correctness, it can make a difference for performance that goes further than simple inlining:
In combinations with other type tests, and especially if the set of case alternatives is closed,
additional optimizations become available. Consider the following SCALA definitions for
lists (here specialized to integer lists), which use a new modifier, sealed.

sealed abstract IntList
case class IntCons(head: Int, tail:List) extends IntList
case object IntNil extends IntList

Recall that the meaning of sealed is that no other case class definition may be added to
IntList. This means, then, that in the following match expressions, only one type test is
necessary to discriminate among IntCons and IntNil instances (if it is not the instance of
one, it must be instance of the other).

list match {
case IntCons(x,xs) => "handle non-empty list"
case Nil => "handle empty list"

}

For the purpose of proving such an optimized translation correct, a rule has to be added
that deals with sealed case classes: If the input value of a column i has modifier sealed and
contains only type tests, this rule can simultaneously inspect all rows and ensure that the
one is replaced by a simple cast that is guaranteed to succeed (Scott and Ramsey apply the
same idea is to algebraic data types [79]). The concrete shape of the translation is not very
different from the optimization for typed patterns, so we omit it here.
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if(x.isInstanceOf[C1]) {

} else if(x.isInstanceOf[C2]) {

} else . . .

. . . if(x.isInstanceOf[Cn]) {

} else {

}

x.$tag match {
case C1.$tag =>
if(x.isInstanceOf[C1]) ...

case C2.$tag =>
if(x.isInstanceOf[C2]) ...

...
case Cn.$tag =>
if(x.isInstanceOf[Cn]) ...

}

Figure 4.4: If vs. Switch

4.3.2 Using tags for case classes

For case classes that simulate an algebraic data type, type tests can be avoided by adding an
integer tag to each case class and performing a switch. The idea is depicted in Figure 4.4,
which shows that the linear search through cascading if-expressions can be avoided. Due to
separate compilation, it is not possible to ensure uniqueness of tags, so that the succeeding
integer test does not guarantee that the object is of the right type. As a consequence, an
isInstanceOf check has to be done anyway. Only for class hierarchies that are sealed, this
additional type test can be omitted. The evaluation of this implementation choice is deferred
to the next Chapter.

4.3.3 Using Reference Equality on Singleton Objects

In the case of SCALA lists, we additionally take into consideration that Nil is a named con-
stant, another important savings become possible: Nil can be tested using a fast check for
reference equality, so it this test should be preferred over testing for type Cons. This ob-
viously works for any pattern that tests for a singleton object. Such a special case in the
translation is useful for performance regardless of whether the type is sealed or not. How-
ever, it complicates the formal treatment significantly, without adding new insights.

4.4 Incomplete Matches and Redundant Clauses

Incompleteness checking is a useful feature of functional pattern matching that is easy to
achieve with the matrix-based translation algorithm and which could be useful also in
object-oriented settings. The SCALA language offers case classes and the sealed keyword
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to this end. We hope to formalize incompleteness checking in future work, and study how
to reintroduce the optimizations possible for algebraic datatypes.

The central notion is the one of “combination”. The combination of patterns in a case clause
collectively tests a particular property of the input values. When reasoning about the set of
accepted input values, it is helpful to think of case clauses and patterns as partially-defined
functions. The domain of a case clause (resp. pattern) is then exactly the subset of input values
that is accepted by the case clause or pattern. For all combinations of sealed type, there must
be exactly one pattern row that matches (non-sealed are ignored). In practice, programmers
tend to introduce two kinds of mistakes when writing match expressions:

1. The union of the domains of the case clauses does not cover the whole range of input
values, i.e. there exists a combination of input values rejected by all case clauses. The
match expression is said to be incomplete.

2. There exists a redundant case clause whose domain is entirely contained in the domain
of a preceding case clause, so that the clause is never applied to input values it can
accept.

In the formalization, we artificially made every match exception complete using a convention,
namely that the last case clause contains only variable patterns. This catch-all clause at the
end has a domain that obviously covers the entire range of input values, but it would be too
constraining to force programmers to follow this convention. In functional programming
languages, programmers have come to expect that the compiler gives appropriate warnings
if a pattern matching expression is encountered that suffers from such a mistake [60]. In the
following, we show how this detection is integrated into pattern matching translation.

4.4.1 Match Exceptions

In practice, a catch-all clause can easily be added automatically. The body of this automati-
cally added case clause is a single statement that throws a match exception. This follows the
philosophy that certain abnormal situations that occur at runtime are signaled by throwing
an exception. Figure 4.5 shows how match exceptions and temporary variables are added
(the input value can be used to display a diagnostic exception message)

4.4.2 Incompleteness Checking on Sealed Types

We argued before that extractor-based pattern matching allows us to preserve encapsulation
by decoupling the type of the accepted values from the behavior of the extractor, or, put
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e match {
case p1 => b1

...
case pn => bn

}

val tmp : T = e
tmp match {
case p1 => b1

...
case pn => bn

case _ =>
throw new MatchException(tmp)

}

Figure 4.5: Temps and Match Exceptions

another way, the structure of its domain. Also, extractors can contain arbitrary code. This
flexibility makes incompleteness checking impossible without further user annotations.

On the other hand, if a domain is completely defined through fixed data definitions, so that
it may be covered by a fixed set of patterns, it seems appropriate to accept the coupling
between types and domains, as is done for case classes. To this end, we introduce a sealed

modifier in order to indicate that the set of direct subclasses is known and fixed (i.e. cannot
be extended - more on this below). Examples from the SCALA library include:

sealed abstract class List[+A]
case object Nil extends List[Nothing]
case class ::[A](hd:A,tl:List[A]) extends List[A]

sealed abstract class Option[+A]
case object None extends Option[Nothing]
case class Some[A](x:A) extends Option[A]

With these definitions, we can be more selective when adding default cases that throw match
exceptions. Using the information that the types of some input values are sealed, we can
check completeness for a case clause matrix by testing it against each tuple in the Carte-
sian product of sealed input types. Input values that are of non-sealed types can simply
be ignored. Here is an example of a match expressions and such a Cartesian product, for
xs:List[String] and ys:List[Int]

(xs, ys) match {
case ( Nil, _) => 1
case (_::_, Nil) => 2
case ( Nil, Nil) => 3

}

Nil Nil (1)
Nil ::[Int] (1)

::[String] Nil (2)
::[String] ::[Int] (?)

The example shows that this match is incomplete, because of the combination in the last
row. Note that in SCALA, this is a match expression operation on a single input value
(a pair). The deconstruction of the tuple is guaranteed to succeed, leaving us with two
sub-values and a proper case clause matrix.

The incompleteness check is not necessarily carried out on the top-level. The following
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match expression is similar to the one above, but instead of a tuple instance being matched
against tuple patterns, it has a case class instance Foo(xs,ys) as input value and slightly
more refined patterns (we give a simplified version of the output to help readability)

f match {
case Foo(Nil, _::_) => 1
case Foo(_::_, Nil) => 2
case Foo(Nil, Nil) => 3
case z:Foo => 4

}

if(f.isInstanceOf[Foo]) {
(f.xs,f.ys) match {
case ( Nil,_::_) => 1
case (_::_, Nil) => 2
case ( Nil, Nil) => 3
case ( _, _) => 4

}
} else throw new MatchException(f)

In deconstructing a case class and typed patterns, we are tacitly assuming a generalization of
the formal translation algorithm that deals with these patterns. Since such patterns mainly
test types and the formal calculus already assumed that every class is a case class, little
insights are to be gained from the detailed translation rules and adapted correctness proof,
which is therefore omitted.

Rewriting the clause matrix lifts the sub-patterns to the top-level and generates the “dummy
patterns” in the last row. It is when translating the match (f.xs,f.ys) match { ... } that
incompleteness checking is activated (because it has input values of sealed type).

4.4.3 Computing Sealed Type Candidates

Above we used a working definition of candidate types for a given input value of type C

that comprised the set D?
1..n of direct subclasses of C. Since sealed types can be part of a

hierarchy, this definition can be extended, such that direct subclasses of a sealed type Di can
be recursively taken into account. Here is the complete, recursive definition of the candidate
closure:

cand(C) = ∅ if C is not sealed

cand(C) =
⋃

1..n cand(D?) if C is sealed, abstract

cand(C) = C ∪
⋃

1..n cand(D?) if C is sealed, not abstract

where D?
1..n direct subclasses of C

It is important to note here that the presented mechanism of sealed types only limits the
direct descendants of a type C. In practice, separate compilation makes such a requirement
is hard to define and hard to check, which requires all subclasses to be defined in the same
compilation unit. So far, the prime motivation for sealed types was to allow convenient
features from algebraic data types. Another benefit of sealed will become clear when im-
plementation of case class is discussed: when the set of candidate types is known to be of
size n, than a complete match does not need to perform more than n− 1 tests.
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4.4.4 Detection of Redundant Clauses

As mentioned above, a case clause is redundant if its domain is entirely contained in the
domain of a preceding case class, causing the body to be unreachable.

Detecting redundancy can be considered as a variation of detecting incompleteness [60]:
in this method, the Cartesian product of types that are tested by the given case clause is
tested against the clause matrix of the preceding cases. If the preceding cases cover the
combination, then the case is redundant. This check would have to be done each time a
case clause matrix is built, in other words, for each match expression that is in the source or
generated by a rewrite rule.

However, there is a simpler way: the translation algorithm, through the (Var) rule, only
generates code for the body of a case clause if this case clause is actually reached. Redundant
cases are simply dropped, which can be used to detect redundancy. For this technique, we
merely keep a hash-table of generated case clause bodies, and at the end of the translation
compare its entries with the bodies of the original match expressions. The ones that are not
in the hash-table, are redundant. This redundancy detection technique is the same as in
Petterson’s algorithm devised for algebraic data types [73].

4.4.5 Disabling Incompleteness Checking

In practice, incompleteness checking is a very useful help for working with a sealed data
type implemented by case classes. However, there arise occasional situations where the
incompleteness warning is unnecessary, because the program conforms to some invariant
that is not represented in the type system. In such a case, we allow the programmer to
annotate the type of the input value with @unchecked, such that these unnecessary warnings
are suppressed.

4.5 Code Generation

In this section, we summarize the low-level operations that are used in the pattern match-
ing implementation. The essential point here is to show that high-level constructs like if-
expressions and method calls are used side-by-side with low-level operations like jumps.
This is of course due to balancing expressivity of pattern matching with considerations re-
garding performance and code size.
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4.5.1 Target Operations

In order to address efficient code generation for pattern matching statements, we need to
know the available target instructions are. The discussion so far assumed a built-in opera-
tion a?{x : C ⇒ b}/{d}. This operation can be easily realized with lower level operations as
follows:

val tmp1 = a
if(tmp1.isInstanceOf[C])
{ val x = tmp1.asInstanceOf[C]; b }
else
{ d }

Besides if-expressions, local variable declarations, type-tests and type-casts, there are two
more operations that are relevant:

• switch-expressions can be more efficient than cascaded if-expressions in terms of per-
formance, provided that multi branch case distinctions can be mapped to integer keys.

• using direct jumps opens the possibility of code-sharing, which is more efficient in
terms of code size than duplicating bodies of case clauses. This is useful for alternative
patterns.

This combination of high-level and low-level control flow operations suggests that pattern
matching is translated in an early phase of the compiler (as seen in Figure 4.1 in the introduc-
tion of this thesis). At the same time, the intermediate representation at this phase should
already allow low-level operations such as switch and jumps. The next sections contain a
detailed discussion of how these operations are used in practice.

4.5.2 Equality Operations

By supporting literal patterns and named constants, pattern matching can be used to re-
place ubiquitous cascades of equality checks on literals and named constants. At the same
time, three different notions of equality exists, namely comparison between primitive data
(e.g. two integers), reference equality between objects and user-defined equality (calling the
equals method on an object). For expressiveness, it is preferable to expose all three to the
programmer.

With this knowledge, we can now describe more precisely some patterns from Section 2.8:
Once we statically ensure that the type of the input value corresponds to the type of the
pattern (either by looking at its static type or performing an instanceOf, a literal pattern
like 1 or ’a’ is ultimately compared to the input value via primitive equality. String literals



4.5 Code Generation 83

like "abc" are an exception to this rule, since string are not primitive values on the JVM and
string equality is accessible to the equals method.

We also expose reference equality via SCALA’s singleton types which were introduced in
Section 2.2.2. For a given input value v, the typed pattern _: x.type and the expression
v.isInstanceOf[x.type] express the same condition, with pattern match translation replac-
ing the former with the latter. At a later phase, the compiler then translates all occurrences
of singleton type tests to reference equality instructions v eq x. Since the algorithm of the
preceding chapter works with type tests, it seems preferable to do this after matching – this
allows the translation algorithm to deal with type test (since a straightforward extension
would be able to optimize multiple occurrences of typed patterns of the form _: x.type).

4.5.3 Switch Operations and avoiding instanceof

A special case that is worth taking into consideration is the comparison of an input value
of type Int (or a convertible type) against several literal patterns. These can be translated to
more efficient switch operations. Moreover, we have seen in Section 4.3.2 that switching on
integer tags can replace cascades of isInstanceOf operations.

In the context of the JVM, two particular strategies for multi-way branch statements are
available through the tableswitch and lookupswitch opcodes. Both are used with a list
of key-target pairs and a default target, with the former using a jump-table and the latter
a static search to find the target for a given key at runtime. While the appropriate switch
instruction is chosen by the backend, translation of pattern matching can affect this choice
through the sparseness of its key range: the more efficient tableswitch instruction can only
be used when its key range is dense (like e.g. 213,214,215), because otherwise, the size of
the jump table would become too large.

When generating native code, platform specific features and strategies for multi-way branch
compilation would also be relevant for efficient implementation. We refer the reader to
Spuler [24] and Korobeynikov [53].

4.5.4 Jumps

As we have seen before, the recursive nature of the translation process leads to nested pat-
terns bubbling up to the top-level. In this process, code duplication may take place when-
ever a case clause appears in both the succeeding branch and the failing branch of a test
operation.

Consider the rewrite step of the example from Section 3.7.1:
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case z.cons(π1, π2) ⇒ a

case z.nil() ⇒ b

case z.cons(π3, π4) ⇒ d

case y0 ⇒ e

case y1 , π1 , π2 ⇒ a

case z.nil() , y2 , y3 ⇒ b

case y4 , π3 , π4 ⇒ d

case y0 , y5 , y6 ⇒ e

−−−
case z.nil() ⇒ b

case y0 ⇒ e

To avoid duplication, a jump expression jmp(e?
1..n) and a labeled block l(x?

1..n) : e are
needed. The variables introduced in the labeling instruction are assumed mutable and used
to bind the arguments which are given to the jump. This way, variable bindings obtained by
evaluating a pattern in one line of the matrix can be communicated when deferring control
to the appropriate case clause body. The backend can then translate this high-level jump to
a normal jump followed by n assignment operations.

With the help of these instructions, the rewrite rule will yield two match expressions whose
case clauses are shown below:

case y1 , π1 , π2 ⇒ a

case z.nil() , y2 , y3 ⇒ jmp l1(); l1() : b

case y4 , π3 , π4 ⇒ d

case y0 , y5 , y6 ⇒ jmp l2(y0); l2(y
′
0) : e{y0 7→ y′0}

− −−
case z.nil() ⇒ jmp l1()

case y0 ⇒ jmp l2(y0)

In this example, only binding y0 needs to be communicated. However, it is not wise to
generate such jumps directly: it might be that the case clause matrix on the succeeding
branch (the upper part) will optimize away the clause that contains the jump target, yielding
an inconsistent program. We therefore delay the generation of jumps, using a hash-table of
abstract syntax trees. Whenever all patterns of a clause are tested, i.e. in the implementation
of rewrite rule (Var), the code of the labeled body is inserted if the body has not previously
been generated, and a jump is inserted otherwise.

We will briefly describe another application of code sharing, namely the extension of alter-
native patterns pij = π1| . . . |πn to discuss this point. Alternative patterns can be removed
using a simple preprocessing step which is illustrated with the following transformation of
the case clause matrix (letters A − F being unchanged parts of the matrix). Note here that
the leftmost column in sub-matrix E contains the body of the (single) case clause containing
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the alternative pattern.

A B C
D (π1| . . . |πn) E
E F G

 =⇒


A B C
D π1 E
...

...
...

D πn E
E F G


The duplication of the body increases the code size. By using jumps, the blowup in code
size can be avoided.

4.6 Guards

While the above extensions aimed at increasing the expressivity of patterns, there is a point
where using pattern matching is not enough to express the constraints relating to a case.
For this reason, the SCALA programming language provides the possibility to annotate a
case clause with a guard. A guard is simply a boolean expression that may make use of
the variables bound in the pattern. If it evaluates to true, then the body is evaluated. If,
however, the guard evaluates to false, then the case clause is ignored and the remaining
cases are tested.

We illustrate the use of guards with the search tree example from Chapter 2.

def insert(i: Int): SearchTree = this match {
case Leaf =>
Node(item, Leaf,Leaf)

case Node(i,l,r) if i < item =>
Node(item, left.insert(i), right)

case Node(i,l,r) if i > item =>
Node(item, left, right.insert(i))

case Node(i,l,r) =>
this

}

Guards can lead to subtle interactions, which makes it difficult to share guards the same
way that we might want to share case clause bodies. Consider the following code fragment,
which shows a match expression operating on integers in the presence of a guard.

i match {
case 1 | 2 if cond => b1

case 1 => b2

}

After preprocessing, this pattern becomes
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i match {
case 1 if cond => b1

case 2 if cond => b1

case 1 => b2

}

Clearly, body b1 can be shared between the first and second case clause. However, it is
also clear that the condition cannot be shared: if it is executed in the first clause and fails,
evaluation needs to continue with the second clause, whereas failing evaluation of the guard
in the second clause leads to evaluation of the third clause.

The use of guards also has consequences for incompleteness checking. While checking a
number of patterns for completeness involves construction of Cartesian products of finite
sets, the static detection of satisfiability of boolean conditions in guards is obviously unde-
cidable. We can possibly resort to approximations and static analyzes as a remedy [25].

4.7 Summary

We discussed implementation aspects of pattern matching in the context of the SCALA com-
piler. While some of the changes that we added here enhanced the expressivity (such as case
classes and type patterns) of the matching construct present formally, others implementa-
tion issues can be characterized by the motivation to enhance runtime performance and code
size. Sometimes, there are choices to be made, and an overall assessment of pattern match-
ing as a high-level construct that is translated to low-level instructions remains to be made.
This is the subject of the next chapter.
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Performance Evaluation

When introducing pattern matching in Chapter 2, we compared conciseness of expressions
as well as maintainability and evolution of the built-in pattern matching construct and its
standard object-oriented encodings. Now we turn to the aspects of performance and scal-
ability, aiming to answer the question of the cost of built-in pattern matching in terms of
execution time and code size. We carry out several micro-benchmarks and an application
benchmark. Particular attention will be paid to the implementation choice of replacing type-
tests for case class tests with integer tags.

5.1 Questions regarding Performance

Pattern matching is a high-level construct for which lower-level encodings exist, and pro-
grammers have an (often correct) intuition that they have a better control over performance
characteristics of their programs if they use low-level operations and optimize by hand, ap-
plying knowledge of the underlying execution environment. If a primitive pattern matching
is to be a viable alternative to the common and known object-oriented encodings, the rela-
tive improvements in readability and maintainability should not carry too high a cost in
performance.

In order to make precise statements about performance and scalability, we should first define
what precisely we intend to measure by these terms. Based on this definition, we perform
a quantitative comparison and sketch a general picture of performance characteristics. We
distinguish three dimensions along which performance can be measured in order to evaluate
and compare pattern matching with the other techniques.

• How much time is spent for a single match expressions whose purpose is to decom-
pose a structured datum with a single case?
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• How well does the technique scale for traversals of deep data structures, where re-
peated use of a match expression with multiple cases is applied many times?

• How does the technique scale when input is drawn from many alternatives?

Each of these dimensions is relevant for the overall performance of applications that make
heavy use of some form of pattern matching, for instance compilers performing abstract
syntax tree manipulations. For each dimension, a sample program with a variable number
of constructs can be given to find a data point. We are thus only concerned with the relative
differences of pattern matching and its encodings.

5.2 Method

We describe the environment and benchmarks that are used to assess the runtime perfor-
mance of the code generated built-in pattern matching vs. the use of standard encodings.
The implementation we study is of course the production SCALA compiler, with all opti-
mization and extensions to the formalization that were presented in the last chapter.

5.2.1 Environment

In order to compare built-in pattern matching performance with other approaches to object-
oriented pattern matching, we measure execution times for typical operations involving
these approaches. These measurements come from three micro-benchmarks. We then carry
out an application benchmark in order to compare extractors to case classes.

The benchmarks presented here were carried out on three configurations using the SCALA

distribution v2.3.1 with local modifications to benchmark case class tags. The configurations
are

• a portable computer running the Mac OS X operating system on and Intel Core Duo
2.2 Ghz and Java HotSpot(TM) Server VM (build 1.4.2-76, mixed mode) which we
will call “Mac-1.4”

• ditto, with the Java HotSpot(TM) Server VM (build 1.5.0_07-87, mixed mode, shar-
ing), herafter called “Mac-1.5”

• a Pentium 4 machine running the Ubuntu GNU/Linux operating system and Java
HotSpot(TM) Server VM (build 1.5.0_07-87, mixed mode, sharing), herafter called
“Linux”



5.2 Method 89

The server variant is chosen by means of the -server option, since we are interested in the
effects of JIT compilation. We run each benchmark several times, to ensure that no extra JIT-
compilation takes place after we started measuring. This choice is not the only possible one,
but it allows us to mask the effect of the JIT-compilation itself (which takes place in parallel
with execution).

5.2.2 Limitation of Micro-Benchmarks

Micro-benchmarks have a limitation which is that they cannot accurately reflect the impact
on realistic programs by themselves. This is explained by the relative importance of the id-
iom that is measured is not known (e.g. a match statement is only executed very rarely), and
that interactions with important optimizations like inlining and register allocation depend
on the remainder of the program. Therefore, they can only serve as a general indication
of the contribution to overall performance. An extensive performance analysis with the
goal of maximizing overall performance would take into account the generated native code,
and platform characteristics, which would however mean abandoning platform indepen-
dence. We use three micro-benchmarks to measure relative performance of the approaches
presented in Chapter 2. The benchmarks are called BASE, DEPTH and BREADTH, and are
described along with their results in a separate section for each.

5.2.3 Application Benchmark

We complement this micro-benchmark with a measurement on a real application that makes
heavy use of pattern matching: scalac, the Scala compiler. Like most compilers for high-
level languages, the Scala compiler works on abstract syntax trees (ASTs). Since scalac is
written in Scala, these ASTs are represented using case classes and operations are expressed
using match operations on these case classes. In order to evaluate the overhead caused by
extractors, we take advantage of the fact that extractors are more general than case classes.
We replaced all cases classes representing ASTs with suitable classes and accompanying
extractors. As we mentioned earlier, this is possible without changing the meaning of the
program - in particular, all match expressions used in the source code could be left as is.

The application benchmark on the compiler is measured by performing a given task (com-
pilation of a Scala program) 10 times and taking the average of the compilation time. We
use version 2.6.0 of scalac as the reference and call the version that uses extractors as its AST
representation the “extractified” version. Here, factors like just-in-time compilation are not
singled out, instead the wholesale performance of the compilation task is measured.
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Linux (ms) Mac-1.5 (ms)
oo oo decomposition 503 725
ooabs oo with abstract class 504 1241
vis visitor 790 1605
cast test-and-cast 514 707
ccls case classes 504 710
ext extractor 1611 2675

Table 5.1: Results of the BASE benchmark on Linux and Mac-1.5

5.3 BASE Performance

The BASE benchmark establishes how the techniques perform for a single pattern. We use
the logic simplification examples that was used throughout Chapter 2. As a reminder, the
pattern matching version consists of the following lines:

t match {
case And(l, Lit(true)) => l
case _ => t

}

This match expression (and its equivalents in the different encodings) is executed against an
argument And(Var("x"), Lit(true)). The benchmark measures execution time of 2 ∗ 107

successful matches, in milliseconds. The simplification is not applied recursively.

The BASE benchmark led to the following results in our configurations: The raw numbers
are shown in Table 5.1 The graphs for the “Linux” configuration are shown in the left half of
Figure 5.3. In the graph, we use abbreviations oo for object-oriented decomposition, vis for
visitor, cast for test-and-cast, ccls for case classes, ext for extractors returning tuples.

Discussion: No difference is observed between the object-oriented, test-and-cast and case
class approaches. The visitor and the extractor approaches suffer from having to create new
objects.

5.4 DEPTH Performance

The DEPTH benchmark shows how factoring out common cases affects performance. To this
end, a more realistic simplification is done, which is depicted in its pattern matching version
in Figure 5.1.

In addition to the above expression and its encodings, we measure a naive attempt to im-
prove readability of object-oriented decompostion that discards factorization of common
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Linux (ms) Mac-1.5 (ms)
ooNaive naive oo 1816 1891
oo oo decomposition 327 517
ooabs oo with abstract class 230 362
vis visitor 735 837
cast test-and-cast 203 271
ccls case classes 178 263
ext extractor 361 698

Table 5.2: Results of the DEPTH benchmark on Linux and Mac-1.5

t match {
case And(Lit(true), x) => simplify(x)
case And(Lit(false), x) => Lit(false)
case And(x, Lit(true)) => simplify(x)
case And(x, Lit(false)) => Num(0)
case And(x, y) => And(simplify(x),simplify(y))
case Lit(i) => Lit(i)
case Var(x) => Var(x)

}

Figure 5.1: Recursive Transformation (Pattern Matching Version)

tests. The code of for “naive” object-oriented decomposition is contained in Figure 5.2 and
is more regular and arguably more maintainable. Moreover, we measure a variant of fac-
tored object-oriented decomposition where methods are located in an abstract class rather
than a trait. It is well-known that interface methods are more costly to lookup than class
methods.

When several patterns are tested side-by-side, a lot of time can be saved by factoring out
common tests in nested patterns. If this is done by hand, the resulting code becomes hard to
read and hard to maintain.

This benchmark measures execution time of 105 applications of several arithmetic simplifica-
tion rules that are applied side-by-side and recursively. The numbers are given in Table 5.2,
with the graphical representation contained on the right side of Figure 5.3.

Discussion: The ooNaive column shows that a readable, semantically equivalent program
with redundant type tests can be 6 times slower than the hand-optimized oo version. But
cast and ccls improve on both. Again, vis and ext suffer from object construction. In an
experimental benchmark not shown here [28], we were able to show that avoiding object
construction can make ext as fast as vis.
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def simplify(t:Term): Term = {
if(t.isAnd) {
val left = t.left
if(left.isAnd && left.value)
return simplify(t.right)

}
if(t.isAnd) {
val left = t.left
if(left.isAnd && !left.value)
return new Lit(false)

}
...
if(t.isVar)
return new Var(t.name)

throw new RuntimeException
}

Figure 5.2: Naive, Readable Version of Object-oriented Decomposition
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Figure 5.3: Results on BASE and DEPTH benchmarks, Linux



5.4 DEPTH Performance 93

Figure 5.4: Diagrams for BREADTH benchmark, Mac-1.4
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Figure 5.5: Diagrams for BREADTH benchmark, Mac-1.5
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Figure 5.6: Close-up for BREADTH benchmark, Mac-1.4
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Figure 5.7: Diagrams for BREADTH benchmark, Linux
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ncases oodecomp ooabstract visitor cast caseclass extractorTuple

5 727 488 428 62 29 886
10 1393 735 461 117 29 1215
20 2873 1135 470 225 30 1859
24 3657 1275 466 242 29 2113
28 4973 1434 473 296 29 2443
32 6126 1775 478 461 488 2528
36 7279 1926 480 506 529 2866
40 9098 1987 478 551 549 2980
60 15398 2794 492 763 704 4295
80 24098 3346 527 856 860 5791
100 35087 4430 559 1025 1116 7681

Table 5.3: Results of the BREADTH Mac-1.5

5.5 BREADTH Performance

The BREADTH benchmarks tests how the number of alternatives of a data type affect perfor-
mance. To this end, for a given breadth n an algebraic signature was generated that has n

constructors, whose arguments vary among the set of constructors. A set of instances is cre-
ated that follows the encoding, with care taken that the set is the same for every technique.

More precisely, for a fixed number n, the BREADTH benchmark defines n generated subclass
variants and a matching expression that covers all cases. Applying the match 25000 times on
each term of a list of 500 randomly generated terms yields the result (the terms and the order
are the same for all approaches). The raw numbers for the Mac-1.5 configuration are shown
in Table 5.3. The graphs for this and the other configurations are shown in Figure 5.4, Fig-
ure 5.5 and Figure 5.7. The techniques are abbreviated oodecomp, ooabstract, visitor, cast,
caseclass, extractor. Additionally, we include caseclasstag, sealedcaseclasstag which are
discussed below. The range up to 1000ms shown in more detail in Figure 5.6, Figure 5.8 and
Figure 5.9, since it shows some optimizations take in effect in more recent configuration.

Discussion: Chained if-statements with n conditions can be assumed to fail oodecomp in
n/2 of the cases on average. The curve is quadratic, since the multiple interface inheritance
feature of the JVM causes a search in the virtual method table during method dispatch,
which itself grows larger when more alternatives are added due to the increase in isX meth-
ods.

In contrast, ooabstract grows linearly, because dispatching to a virtual method in an abstract
class is constant. The visitor approach vis is predictably unaffected by the number of cases,
because it uses double-dispatch. Surprisingly, cast and caseclass perform almost on a par
with vis. Results for caseclass are close to cast, which is expected since they are only a
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minor variation of type-test and type-cast. The graphs also show that in the Mac-1.4 con-
figuration and for more than 20 branches, using integer tags to avoid the linear search pays
off (although the close-up for “Mac-1.4” shows that there is still a linear search involved
– which is easily identified as the switch statement). The result for extractor shows that
extractors are costly, although they do better than object-oriented decomposition with inter-
face methods. Whether extractor is better than ooabstract (Linux) or the other way round
(Mac-1.5) depends on the platform.

5.5.1 Tags for Case Classes

Figure 5.8 and Figure 5.9 show a close-up of the graph for case class with and without the
tag optimization. Note that the VISITOR and CAST curves are included to ease comparison
with these techniques.

Whereas the Mac-1.4 configuration shows that using integer tags benefits scalability, the
modern configurations Linux and Mac-1.5 exhibit more subtle effects, especially for less than
30 branches. This behavior, like the effect on the Mac-1.4 platform that leaves 18 classes in-
teger tags off worse than cascading ’if’s is probably due to aggressive inlining or differences
in register allocation. Below a threshold of 30 branches (on the modern configurations), it
seems better to generate code that the native compiler of the JVM can easily recognize to
follow certain patterns, like cascading type-tests. However, one should recall that the differ-
ence is fairly small, that realistic programs may affect the inlining strategy in different ways,
and that optimizing for a particular VM runs counter to the goal of platform independence.

The mixed result of these considerations is that the optimization seems to pay off in the
Mac-1.4 and Mac-1.5 configurations, while due to internals of the JIT-compilation on Linux
it actually introduces a slow-down. In the light of these results, it seems best to offer the
optimization as a compiler option.

5.6 Application Performance

The application benchmark aims to show how a real application is affected by the overhead
that extractors introduce with respect to case classes. To this end, the application at hand -
the SCALA compiler - was run on 8 different sets of source files, which yielded the compila-
tion times in Table 5.4 and Table 5.5. The graphs of the relative overhead for both platforms
is found in Figure 5.10 and 5.11, with bars being normalized to 1.0 for the unmodified scalac
(2.6.0) that uses case classes.
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Figure 5.8: Case Class Tags in BREADTH, Mac-1.5
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Figure 5.9: Case Class Tags in BREADTH, Linux
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extractor 2.6.0 overhead
linux linux

1. schema2src 9.9402 7.989 0.244235824
2. pex 6.3528 5.7284 0.109000768
3. xquery2src/a 22.2682 15.7758 0.411541728
4. xquery2src/b 10.8446 8.589 0.262614973
5. actors 14.0086 11.2162 0.248961324
6. dbc 14.9518 12.055 0.240298631
7. library 77.709 63.8204 0.217620071
8. compiler 193.8988 136.3185 0.422395346

Table 5.4: Measurements for Application Benchmark, Linux

extractor 2.6.0 overhead
mac mac

1. schema2src 8.1665 6.6625 0.225741088
2. pex 5.5374 4.9596 0.116501331
3. xquery2src/a 18.1113 12.5892 0.43863788
4. xquery2src/b 8.4615 6.8049 0.243442225
5. actors 10.5825 8.4633 0.25039878
6. dbc 11.3581 9.0104 0.26055447
7. library 57.1415 46.8958 0.218477987
8. compiler 154.877 106.6809 0.451778153

Table 5.5: Measurements for Application Benchmark, Mac

On average, the slowdown is by 26.9% on Linux and by 27.5% on the Mac platform. This re-
sult helps interpret the results of the micro-benchmark, although it is of course very specific
to the application and the data.

It can be observed that the compilation times vary a lot according to the set of source files
that is being compiled, which is of course due to the variation in size and complexity of the
source files. More interestingly, the overhead varies as well. A possible explanation is that
the JVM optimizes a sequence of type-tests for disjoint types, whereas it needs to process
a sequence of conditionals calling unapply methods in a strictly sequential manner. This
would mean that the ordering of case clauses together with the relative frequencies of tree
nodes has a very noticeable effect on the compilation time.
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Figure 5.10: Diagram for APPLICATION benchmark, Mac

Figure 5.11: Diagram for APPLICATION benchmark, Linux
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5.7 Summary

The results show that the HotSpot VM is good at optimizing the output resulting from trans-
lation of pattern matching. While providing for much more readable code, case classes and
unapply methods in long-running computations have performance that is not inferior to
the performance of standard techniques. Hotspot optimizes sequences of type tests, which
shows that using integer tags as a replacement for cascading-ifs and type tests is not as good
a strategy as could intuitively be expected.

While BASE performance of extractors is predictably worse than object-oriented decomposi-
tion, the DEPTH benchmark shows that this is amortized in deep traversal, leading to overall
comparable performance. The BREADTH benchmark shows that extractors behave similarly
as object-oriented decomposition if the latter is rooted in an abstract class. If methods are
looked up from an interface, object-oriented decomposition is slower that extractors.

Case classes on the other hand can be used to obtain real performance gains over other
techniques. It seems that modern architectures cache the result of runtime type tests and
generally have more opportunites to optimize these than costly method calls used solely for
classification. The overall picture seems to favor using case classes for performance, while
not overly penalizing extractors for pattern matching when data abstraction is a concern.

The application benchmark shows that extractors carry a noticeable performance penalty in
applications that make heavy use of pattern matching. Most of the overhead seems to be
due to to object construction, with relative order of case clauses playing a role, too.



Chapter 6

Generic Pattern Matching

In this chapter, we explore interesting and useful interactions of pattern matching with
parametric polymorphism. This exploration begins by reviewing second-order idioms from
functional programming languages that involve pattern matching and algebraic data types.
Following a standard taxonomy [50], we distinguish between parameterized algebraic data
types and generalized algebraic data types. After this review, we turn to an adaptation to
object-oriented pattern matching as described in the previous chapters. Given that case
classes and extractor methods are based on dynamic type tests, this adaptation consists
mainly of a study of the type-systematic consequences of providing generic type-tests. In
the functional paradigm, a promising approach to model these is based on constraints [82].
We perform a similar treatment in the nominally typed context, with the core of our devel-
opment being a theory of (nominal, object-oriented) subtyping in the presence of subtyping
constraints. Unless otherwise mentioned, the theory is a simplified account of a collabora-
tion of Emir, Kennedy, Russo and Yu [26] with the difference that class definitions discussed
here are invariant, and that a language GPAT with pattern matching is introduced instead of
C# minor. This calculus provides a polymorphic version of one introduced in Chapter 3.

6.1 Generic Pattern Matching, Functional Style

The polymorphic, or second-order lambda calculus discovered by Reynolds [76] and Gi-
rard [41] is the foundation of many statically typed functional programming languages. It
is also the foundation of generic object-oriented programming [46, 86], albeit without the
strong connection with mathematical logic. Parametric polymorphism, called “generics” by
the object-oriented community, makes statically-typed programming practical since it en-
ables generic data type definitions (like lists) and programs that can be written once but
reused for a variety of types.
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data PSrchT a = Node a (PSrchT a) (PSrchT a) | Leaf {-Haskell-}

data Order = Less | Equal | Greater

pInsert i compare tree = case tree of
Leaf -> (Node i Leaf Leaf)
(Node j le ri) -> case (compare i j) of

Less -> (Node j (pInsert i le) ri)
| Greater -> (Node j le (pInsert i ri))
| Equal -> (Node j le ri)

Figure 6.1: Binary Search Tree Insertion using Pattern Matching

Parametric polymorphism can be applied to algebraic data types (and hence to pattern
matching) in several ways. We give examples in HASKELL following a taxonomy used
by Kennedy and Russo [50] in distinguishing between parameterized algebraic data types and
generalized algebraic data types (GADTs). We then expand on the significance of GADTs by
showing how they allow to encode invariants of data structures within the data type. These
invariants can be used to find more programmer mistakes through type-checking, without
burdening the programmer with annotating his source code.

6.1.1 Parameterized Algebraic Data Types

Parametric polymorphism corresponds to universal quantification of a type that includes a
variable, the formal type parameter. It amounts to unlimited reuse of a type definition for
an unbounded number of types.

A first way of placing type parameters in algebraic data types definitions is to parameterize
(only) the type itself and convene that all constructors of the type “see” the same type pa-
rameter. The type is then called a parameterized algebraic data types (PADTs), which yields one
ADT definition per actual type parameter.

For instance, recall first-order binary search trees (Figure 2.1). Figure 6.1 defines the param-
eterized version, a PADT PSrchT a featuring a type parameter a. Note that we also need
to introduce Order, since the PADT definition itself does not express that its type argument
should be equipped with a comparison function. This comparison function is needed as an
argument for pInsert function in order to compare the labels of the search tree nodes (there
are ways to achieve this in HASKELL but these do not concern us here). Type inference en-
sures that type parameters are properly inserted and applied. Thus, after type-checking, the
compiler considers each function pInsert and compare as taking an additional type param-
eter.

For the purpose of type-checking, the type of algebraic data type determines completely the
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data Term :: * -> * where {-Haskell-}
Lit :: Int -> Term Int
Plus:: Term Int -> Term Int -> Term Int
IsZ :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
Pair:: Term a -> Term b -> Term (a,b)
Fst :: Term (a,b) -> Term a
Snd :: Term (a,b) -> Term b

Figure 6.2: Definition of a GADT for an Expression Language

types of the constructors. It is not possible to express a parametric signature that is specific
to a constructor.

6.1.2 Generalized algebraic data types

Generalized algebraic data types (GADTs) go beyond quantifying the entire definition as a
whole. They are obtained if one allows to abstract type information on a per-constructor basis.
Another way to put this is to say that the constructors “do not see” the type parameters of
the type they are defining. For instance, a simple expression language for a programmable
calculator may define expressions as in Figure 6.2. As before, Term is a unary type construc-
tor. However, its parameter is not needed in the constructor declarations, there it is specified
via its kind. The syntax * -> *. indicates that Term is a unary type operator.

GADTs are more general in three aspects:

1. constructors do not need to return ’generic’ instance of the data type. For instance,
constructor Lit returns a Term Int.

2. data types can be used at different types within their own definition (e.g. If uses a
Term a and a Term Bool).

3. a constructor may have additional type variables (e.g. Fst has two type parameters a
and b).

The relationship between the constructors and the GADT of which they are a variant re-
sembles the explicitly given subtyping relationship that is common in object-oriented style.

6.1.3 Existential Types

Interestingly universal quantification applied on a per-constructor basis can be considered
as existential quantification through patterns [48]. Existential types can be used to encapsulate
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data N = Z | S N {-Haskell-}
data R
data B
data RBTree :: * -> * -> * -> * where
Leaf :: RBTree a B Z
Red :: a -> RBTree a B b -> RBTree a B n -> RBTree a B n
Black:: a -> RBTree a c b -> RBTree a d n -> RBTree a B (S n)

Figure 6.3: Definition of a Red-Black Tree, using GADT invariants

abstract data types in functional programming [65]. Through GADTs, a limited but useful
form of existential types can be simulated through pattern matching. Consider a declaration
like data T where F :: a -> T . It can be used in expressions like case t of F x -> e

where the exact type of x is hidden. In other words, it exists, but is not known. Using a trick
that is loosely based on the equivalence

(
∀a.(Fa → S)

)
⇔

(
(∃a.Fa) → S

)
from second-

order logic, we can type-check the body by treating the type a as a Skolem-constant. To this
end, we introduce a fresh type variable &a whose scope spans the pattern and the body of
a case. The return type S may not contain any reference to &a (alternatively, in a system
with existential quantification, these have to capture-converted – we provide an example in
Subsection 6.2.3).

This technique becomes even more useful when &a is known to satisfy certain constraints.
Consider for instance that Term Int of the expression language in Figure 6.2 can be ex-
pressed as Term a where [a=Int]. Simonet and Pottier [82] give a complete formalization
that shows that the full range of GADTs is covered by type equality constraints.

We shall see below that we can harness this convenient syntax for a limited form of existen-
tials in object-oriented style.

6.1.4 An Application: Data Invariants

With GADTs, we can express data invariants (see e.g. [39]; the following example is from
there). Figure 6.3 shows a GADT formulation of red-black trees. In red-black trees, approx-
imate balance is enforced by the following conditions: every node is colored red or black, a
red node may only have black subtrees, and every path from root to leaf has the same num-
ber of black nodes. We can enforce these conditions representing natural numbers and colors
as types, and specifying constructors to be more picky about the arguments they accept.

Here, the type parameter a is used for the type of elements contained in the tree, while c,d

are used for colors and n for natural numbers.
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6.2 Generic Types and Subtype Constraints

6.2.1 Generic Classes and Objects in Scala

In SCALA, a class, object, trait or method declaration is made generic by following the type
name with a formal type parameter section [69]. Analogously, parameterized types and
methods are references with an actual type parameter section. These sections are delimited
by brackets, as in C[X,Y]. Some examples of generic definitions are:

object List { // a generic method
def flatten[X](xs: List[List[X]]): List[X]) = { ... }

}
abstract class List[X] { // a generic class
def :::(ys: List[X]): List[X]

}

Case class declarations are normal class declarations, and are made generic in the same way
as classes and take part in the same subtype relationships. The subtyping relationship how-
ever is more involved than for first-order classes: there it was determined by the inheritance
hierarchy, but with generic types, subtyping has to take into account type arguments. For
instance, let us assume a simple generic class definition:

class Foo[X] extends Bar[T] {...}

This leads to an infinite number of subtype relationships Foo[R]<:Bar[S], namely for each
pair of types R,S, where S is equal to T with each occurrence of the formal type parameter
X substituted with the actual type parameter R. We express this using type substitution
{{X 7→ S}} and the equality S = T{{X 7→ R}}.

6.2.2 From Bounds to Subtype Constraints

In practice, generic object-oriented languages also provide a means to constrain the type
parameters. The goal here is to specify an upper bound, i.e. an interface that has to be
implemented by types that are used as actual parameters. For instance in a SCALA defini-
tion class C[X <:T ]. The upper bound restricts possible instantiations of X to only those
types S for which S <:T holds. This form of quantification is called bounded quantification. If
the subtype relationship can mention the constrained parameter X itself, we get F-bounded
quantification [15, 10], which is the basis for generics in GJ [12] and later SCALA, JAVA and all
.NET languages supporting generics.

The typical application of F-bounded parameters is a parameter definition
X <: Comparable[X], where Comparable[Y ] is a class that contains a compareTo(that:Y )
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abstract class PSrchTree[X<:Comparable[X]] {
def insert(i:X) = this match {
case Leaf => Node(i, Leaf(), Leaf())
case Node(j,le,ri) => i.compareTo(j) match {

case Less => Node(j, le.insert(i), ri)
case Greater => Node(j, le, ri.insert(i))
case Equal => this

}}
}

case class Node[X<:Comparable[X]](x:X,le:Node[X],ri:Node[X])
extends PSrchTree[X]

case class Leaf[X<:Comparable[X]]()
extends PSrchTree[X]

Figure 6.4: Parameterized Search Tree in Scala

method. It means that parameter X can only be instantiated with a type S that has a
compareTo(that:S) member. To put it another way, we demand that there be a total order
among instances of S, which is precisely what we needed to for generic binary search trees
above. SCALA additionally allows lower bounds on type parameters, which play a role
when contravariant type parameters are available.

Figure 6.4 shows an object-oriented version of generic binary search tree insertion. For read-
ability, we have used the same comparison constants as in the functional version. In contrast
to the functional version, the compiler can now reject instantiations of PSrchTree with a type
that does not support comparison (i.e. does not satisfy the constraint) by signaling a type
error. Again, type inference plays a key role in keeping programs free from automatically
derivable type annotations and type parameters.

6.2.3 Collecting Constraints from Pattern Structure

What happens when we match on a generic type, and we want to make use of the knowledge
of the upper bounds of type parameters? We can introduce type variables in patterns, just as
we use term variables. In fact, the pattern match in Figure 6.4 can be spelled out as follows.

def insert(i:X) = this match {
case Leaf[&Z] => ...
case Node[&Y ](j,le,ri) => ... // here &Y <: Comparable[&Y ]

}

In this code, we have given names (and therefore made explicit) the type arguments of the
patterns. These Skolem-constants can be inserted automatically by the type-checker during
type inference. They are different from type variables introduced by method or class def-
initions, hence we will sometimes use the notation &Y to stress this fact (although we do
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not keep this distinction in the formal treatment). The main difference is that they may not
escape scope, e.g. a method with a match expression like the following would be ill-typed.

def nakedSkolem(x:Object): &Y = this match { // what is &Y ?
case Node[&Y ](j,le,ri) => j

}

If &Y were not a Skolem-constant, but a type parameter reference, this problem could never
arise. In order to solve the problem of Skolem-constants escaping their scope, one can either
replace the type by an upper bound so that the return type does not mention Skolems any-
more (e.g. Object in this case). Or, if we have existential quantification in the sub-language
of type expressions, then we can capture all free Skolems and quantify them (which here
would lead to ∃Y.Y ). Given these constants, we can now elucidate the reasoning that has
to be performed in the type-checking algorithm in order to type-check the generic match
expressions.

In the body of the second clause of insert, we know that term variable j is of type &Y .
Moreover, from the definition of Node, we know that the actual type that will be substituted
for &Y will also satisfy the subtype constraint &Y <:Comparable[&Y ]. So we know that
a compareTo method can be invoked on the variable j. This information is however not
enough to type-check the comparison expression i.compareTo(j), because i has type X

and the comparison method of i expects an argument of type X .

What is missing is that we need to take into account the static type of the input value this.
Since this is of type PSrchTree[X], and the pattern tests for a type Node which extends
PSrchTree, we can deduce that the subtype relationship Node[&Y ] <: PSrchTree[X] must
hold, whatever the actual value of &Y is. A look at the inheritance hierarchy then reveals
that this constraint can only be satisfied, if also the equality &Y = X holds. With this
information, the method call i.compareTo(j) can be type-checked.

This kind of reasoning with constraints is the key that allows us to type-check the compar-
ison operation and the more general idioms that involve GADTs. It is based on combining
the evidence of an accepting pattern (more precisely, its dynamic type test) with information
from the class hierarchy.

6.3 Declarative Subtyping modulo Constraints

In the following, we will introduce a meta-theory of subtyping that will be used in GPat.
This second-order language resembles a SCALA fragment, however it offers a slightly dif-
ferent syntax where F-bounds are replaced with a set of arbitrary constraints on the type
parameter. This allows us to treat the essential ingredients of generic type/pattern interac-
tions without having to discuss the entire SCALA type system.
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Declarative Subtyping ∆ ` S <:T

(Sthr)
∆ ` Exc<:T

(Sobj)
∆ ` S <:Obj

(Svar)
∆ ` X <:X

∆ ` S <:T ∆ ` T <:U (Stran)
∆ ` S <:U

T <:U ∈ ∆ (Shyp)
∆ ` T <:U

∆ ` S? <:T?
1..n ∆ ` T? <:S?

1..n

(Scon)
∆ ` C[S?

1..n]<:C[T?
1..n]

∆ ` C[S?
1..n]<:C[T?

1..n]
(Sdecon+)

∆ ` Si <:Ti

∆ ` C[S?
1..n]<:C[T?

1..n]
(Sdecon-)

∆ ` Ti <:Si

class C[X?
1..m  ∆](f? : C?

1..n) / D[T?
1..n] {md1..l

? }
(Sext)

∆ ` C[S?
1..m]<:D[T?

1..n]{{X? 7→ S?
1..m}}

C[T?
1..k] /? D[U?

1..l] ∆ ` C[T?
1..k]<:D[V?

1..l]
(Sdeext)

∆ ` D[U?
1..l]<:D[V?

1..l]

Figure 6.5: GPat Declarative Subtyping

Instead of attaching upper and lower bounds to the type parameter, we now use type pa-
rameter sections [X?

1..k  ∆] where ∆ is a list of constraints T1 <:T2. We will allow the
abbreviation S = T for the two inequalities S <:T and T <:S. Two important consequences
of this choice are that

• subtyping relates open type expressions and depends on a typing context. In addition
to type variables, the context holds all constraints that are assumed to hold, and

• constraints have to be decomposed in order to properly derive all subtyping judg-
ments entailed by a constraint.

This leads to an expressive theory, which we shall now introduce before we turn to exam-
ples. Figure 6.5 contains declarative rules for subtyping.

The rules (Sthr), (Sobj) describe the most general and most specific type, as before. Rule
(Stran) asserts that subtyping is transitive. Instantiations of the same class means that the
type arguments have to be equal (inequalities holding in both directions),which is expressed
by rule (Scon). To account for type variables, we add reflexivity (Svar) and hypothesis
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(Shyp). These rules alone are not enough to derive all consequences of subtype constraints.
For instance, assume a class declaration class C[Z] extends D[T ]. If the context contains a
subtype constraint C[X] <: C[Y ], the we should be able to also make use of the equality
X = Y because the former inequality cannot hold unless also the equality holds. This is due
to invariance of generic types in our system and justifies rules (Sdecon+) and (Sdecon-). We
should also be able to use the class hierarchy to derive all constraints C[S]<:D[T{{Z 7→ S}}]
that we mentioned earlier. This is done using rule (Sext).

Finally, suppose a declaration classD[Z] extendsE[Z] and the context contains D[X]<:E[Y ]

and. Then, for any ground instantiations {{X 7→ T, Y 7→ U}}, we can only have • `
D[T ]<:E[U ] if also • ` E[T ]<:E[U ] and hence, T = U . This justifies inverting the rule (Sext) as
rule (Sdeext), using the symbol /? for the transitive closure of the direct inheritance relation.

Lemma 14 (Type Substitution preserves Subtyping) If ∆ ` T <:U , then ∆Θ ` TΘ<:UΘ for
any type substitution Θ.

Proof By induction on the derivation. �

Lemma 15 (Weakening) If ∆ ` ∆′ and ∆′ ` T <:U , then ∆ ` T <:U .

Proof By induction on the derivation. �

6.3.1 Syntax-Directed Subtyping

The declarative subtyping rules make it easy to prove properties about the system. How-
ever, cannot be used to implement an algorithm that would decide the subtyping relation,
because it is always possible to introduce new subgoals using (Stran). Therefore we give dif-
ferent rules which are syntax-directed, but equivalent to the declarative system. Figure 6.6
has the rules, with each rule applying to exactly one form of type expression.

The judgment Ψ � T <:U asserts that “under context Ψ we can deduce that T is a subtype of
U”. The transitivity rule (Stran)is eliminated and the rules (Sext), (Sup), and (Sdn)changed
accordingly. An important change from the implementation perspective is that the context Ψ

will no longer contain an arbitrary set of subtype assertions, the context Ψ provides upper or
lower bounds for type variables. Rules (Sup) and (Sdn) make a hypothesis rule unnecessary.
To show admissibility of transitivity, we need to impose some restrictions on the context
Ψ. For example, in context Ψ = {C[X]<:Z,Z <:C[Y ]} we might have Ψ � C[X]<:Z and
Ψ � Z <:C[Y ], but we would not obtain Ψ � C[X]<:C[Y ]. To obtain this assertion, we would
need to add X <:Y to Ψ. We define a notion of consistency for contexts (see Pottier [74] and
Trifonov and Smith [88] for similar ideas).
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Algorithmic Subtyping Ψ � C <:D

(Sthr)
Ψ � Exc<:T

(Sobj)
Ψ � S <:Obj

(Svar)
Ψ � X <:X

Ψ � S? <:T?
1..n Ψ � T? <:S?

1..n

(Scon)
Ψ � C[S?

1..n]<:C[T?
1..n]

S <:X ∈ Ψ Ψ � R<:S (Sdn)
Ψ � R<:X

X <:S ∈ Ψ Ψ � S <:T (Sup)
Ψ � X <:T

class C[X?
1..m  ∆](f? : C?

1..n) / D[T?
1..n] {md1..l

? }
(Sext)

Ψ � C[S?
1..m]<:D[T?

1..n]{{X? 7→ S?
1..m}}

Figure 6.6: GPat Algorithmic Subtyping

Def 7 (Consistency) A context Ψ is consistent if for any pair of assertions T <:X ∈ Ψ and
X <:U ∈ Ψ it is the case that Ψ � T <:U .

With this notion, the syntax-directed and declarative rules can be related: given a consistent
context Ψ that is is equivalent to a set of constraints ∆ (in the sense that Ψ � ∆ and ∆ ` Ψ),
the relation Ψ � ·<: · coincides with ∆ � ·<: ·. We refer the reader to Emir et al[26] for details.

Thm 4 (Equivalence of Syntax-Directed and Declarative Rules)
Provided Ψ is consistent, Ψ � ∆ and ∆ ` Ψ, then Ψ � T <:U iff ∆ ` T <:U .

6.4 Subtyping Algorithm

We introduce the notion of closure of set of types under decomposition and inheritance, in or-
der to clarify when our algorithm can be applied to solve the subtyping problem in presence
of constraints.

Def 8 (Closure of Types) A set of types S is closed if whenever C[S?
1..n] ∈ S then S?

1..n ∈ S
(decomposition) and whenever C[S?

1..n] / T then T ∈ S (inheritance). The closure of an arbitrary set
of types S is the least closed superset of S.

Our language is defined in a way that significantly restricts the class hierarchy. If these
restrictions where not in place, it would be easy to arrive at an undecidable problem [49].



6.4 Subtyping Algorithm 111

Sub(Ξ, Ψ, T, U) = if 〈T, U〉 ∈ Ξ false else let Ξ′ = Ξ ∪ 〈T, U〉 in case T, U of

X,X ⇒ true

T, X ⇒
∨

T? <:X1..n∈Ψ Sub(Ξ′, Ψ, T, Ti)

X,D[S?
1..n] ⇒

∨
X <:T 1..n

? ∈Ψ Sub(Ξ′, Ψ, Ti, T )

C[S?
1..m], D[T?

1..n] ⇒ Sub(Ξ′, Ψ, TΘ, D[T?
1..n]) where

Θ = {{X? 7→ S?
1..m}}, C 6= D, C[X?

1..m] / T

C[S?
1..m], C[T?

1..n] ⇒
∧1..n Sub(Ξ′, Ψ, S?, T?) ∧

∧1..n Sub(Ξ′, Ψ, T?, S?)

Figure 6.7: Subtyping Algorithm

Def 9 (Finitary Definitions) A set of class definitions is finitary if for any set of types S making
use of those classes, its closure is finite.

Class definitions in GPAT are finitary by definition: Inheritance cycles are not permitted, a
parent type must have the form of a constructed type, and there is no variance.

In order to show completeness of the algorithm, we need to define small derivations, i.e.
derivations where no trivial uses of (Sref) and (Stran) occur.

Def 10 (Small Derivations) A derivation of Ψ � T <:U is small if each proper subderivation has a
conclusion other than Ψ�T <:U and is itself small. Likewise, a derivation ∆ ` T <:U is small if each
proper subderivation has a conclusion other than ∆ ` T <:U .

It is easy to see that an arbitrary derivation can be transformed into a small derivation. We
make use of this fact in the proof of completeness. Figure 6.7 presents our subtyping algo-
rithm. The additional parameter Ξ is a set of pairs of types representing subtype assertions
already visited. The algorithm assumes that class definitions are finitary.

The following results are from [26].

Thm 5 (Soundness and Completeness of Subtyping Algorithm) Sub(∅, Ψ, T, U) = true if
Ψ � T <:U .

Proof For soundness, use induction on the call tree. For completeness, LetP = {〈T, U〉 |Ψ�
T <:U is a subderivation of D}. We show by induction on D, that if D is a small derivation of
Ψ � T <:U and Ξ ∩ P = ∅ then Sub(Ξ, Ψ, T, U) = true. �

Thm 6 (Termination) For any consistent, finite Ψ and types T, U , the procedure Sub(∅, Ψ, T, U)

terminates.

Proof Consider the set {T, U} ∪ {T | T <:X ∈ Ψ} ∪ {U | X <:U ∈ Ψ}. Call its closure T ,
which is finite if we assume finitary class definitions. Then it is easy to see that at each
recursive call to Sub, the cardinality of (T × T )\Ξ decreases by one. Hence the algorithm
terminates. �
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Discussion. The algorithm is a simplified version of Emir et al’s subtyping algorithm [26],
which deals with variant parametric types. The algorithm described there additionally deals
with multiple parents. A more recent result by Kennedy and Pierce [49] assures us that since
we have neither contravariance, nor infinite sets of supertypes, nor class hierarchies in which
a type may have multiple supertypes with the same head constructors, our class definitions
are finitary. One might be tempted to drop the list of already visited subgoals, however,
these are necessary even for finitary class definitions. To see why, consider what happens
for Ψ = {T <:X, X <:T} and Sub(∅, Ψ, T, U) for T, U not related in the class hierarchy.

6.5 Constraint Closure

The development so far assumed that we have a way of turning a set of arbitrary-shaped
subtype constraints ∆ into an equivalent, consistent context Ψ which only keeps type vari-
ables with their associated upper and lower bounds. It is helpful to think of such a context
Ψ as a “normalized” representation of ∆: we are going to present a way to preprocess the
constraint set ∆ into a form that is more convenient for direct implementation. and allows
for direct checking of entailment between constraint sets. Being able to check entailment is
essential for an object-oriented language, since we will want to check that constraints intro-
duced by a subclass entail the constraints demanded by the superclass, or that constraints
available in a given typing context are sufficiently strong for a generic type instantiation to
be well-formed.

Apart from enabling algorithmic checking of subtyping and entailment, another virtue of
this normalization is the possibility to detect unsatisfiable constraints. Due to a programmer
mistake, an unsatisfiable constraint set may be encountered, like set {C <:D} where C, D are
unrelated classes. Worse, such situations may arise as consequence of the subtyping rules
when constraints in the source entail unsatisfiable constrains, as in {C <:X, X <:D}.

Def 11 (Constraints Closure) A constraint set ∆ is closed if it is closed under transitivity, inher-
itance and decomposition:

• If T <:U ∈ ∆ and U <:V ∈ ∆ then T <:V ∈ ∆

• If C[T?
1..n]<:D[U?

1..m] ∈ ∆ and C[T?
1..n]<:D[V?

1..m] ∈ ∆ then U? <:V? ∈ ∆1..m and V? <:U? ∈
∆1..m

The closure of ∆, written Cl(∆), is the least closed superset of ∆.

We can now make precise what we mean by consistent constraint sets: they must only con-
tain constraints which express a subtype relationship that is supported by the class hierar-
chy.
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Dec(X <:T ) = X <:T
Dec(T <:X) = T <:X

Dec(C[V?
1..n]<:D[U?

1..m]) =


⋃1..n Dec(T? <:V?) ∪

⋃1..n Dec(V? <:T?)

if C[V?
1..n] /? D[T?

1..m] for some T?
1..m

undefined otherwise

Figure 6.8: Constraint Decomposition

Def 12 (Consistency of constraint sets) A constraint set ∆ is consistent if for any constraint
C[T?

1..n]<:D[U?
1..m] ∈ Cl(∆) there exists some V?

1..m such that C[T?
1..n] /? D[V?

1..m].

To construct a context Ψ from a constraint set ∆ we make use of a partial function Dec de-
fined in Figure 6.8 which takes an arbitrary constraint T <:U and produces a set of constraints
on type variables through a combination of inheritance and decomposition (Pottier [74] de-
fines a similar notion).

Lemma 16 (Context Construction) Let ∆ be a set of constraints. Define

Ψ0 =
⋃

T <:U∈∆ Dec(T <:U)

Ψn+1 = Ψn ∪ ΣT<:X<:U∈ΨnDec(T <: U)

If the class definitions are finitary, and ∆ is consistent, then Ψn is defined for each n and has a
fix-point Ψ = Ψ∞ which is consistent and satisfies ∆ ` Ψ and Ψ � ∆.

This provides a means of computing a consistent Ψ that models a set of constraints ∆, or
rejecting the constraints as unsatisfiable if they are found to be inconsistent. In practice, one
might want to simplify constraints further, using tree automata techniques such as those
described by Pottier [74], though constraint sets are unlikely to be large (generic definitions
tend to have few parameters and inheritance graphs typically are not very deep).

6.6 Formal Definition of GPat

We can now generalize the object-oriented calculus with pattern matching to include generic
definitions and type constraints. To this end, we give generalized definitions for a second-
order language with pattern matching. We thereby establish a declarative system that per-
mits use of GADTs using pattern matching in an object-oriented language.
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S, T, U ::= C[T?
1..k] | X

∆ ::= • | T <:T, ∆

cd ::= class C[X?
1..k  ∆](f? : T?

1..n) / D[S?
1..j] {md?

1..k}
md ::= an def m[X?

1..k  ∆](x? : T?
1..n) : C = {e}

an ::= @safe | (empty)

a, b, d, e ::= null

| x

| e.f

| e.m[T?
1..k](e?

1..n)

| C[T?
1..k](e?

1..n)

| throw

| e?{x : C[Y?
1..k] ⇒ e}/{e}

| e?
1..n match {c?

1..m}
(convention: cm ≡ case x?

1..n ⇒ e)

c ::= case p?
1..n ⇒ e

p, π ::= x | v̂.m[X?
1..k](p?

1..n)

q ::= v̇ | throw

v̇ ::= v | null

u, v, w ::= C[T?
1..k](v?

1..k)

v̂ ::= x | C[T?
1..n](v̂?

1..k)

Figure 6.9: Grammar for the Generic Language GPat
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6.6.1 Syntax

The grammar of the second-order calculus GPAT is depicted in Figure 6.9. We will only
highlight the differences to the first-order version.

The most obvious difference is that all class and method definitions now have a type pa-
rameter section. This section has the form [X?

1..k  ∆], with the intended meaning that
type parameters X?

1..k satisfy the constraint set ∆. Both the number of type parameters and
the constraint set may be empty, and a non-empty constraint set contains only subtype con-
straints of the general form S <:T (we still use an equational constraint S = T for the pair of
inequalities S <:T , T <:S).

Type references are now either a reference to a generic class C[T?
1..k] or to a type parameter

X , and method invocations now have a type argument section. Type references are used in
object construction. If a class C or method m does not have any type parameters, we will
omit the empty type parameter section. Likewise, if there are no constraints, we omit the
constraint part in the type parameter section.

Type test expressions e?{x : C[Y?
1..k] ⇒ e}/{e} now test a value against a type reference that

has new type variables as parameters. This means that it is not possible to test against full
types (e.g. List[String]), but only against the class – just as in the first-order calculus. This
restriction allows us to easily implement type tests on platforms like the JVM, which we
will describe below when we discuss the semantics. Unlike the first-order calculus, the type
variables Y?

1..k transmit some information from the definition of C, since every instance of C

is known to satisfy the constraints that are part of C’s class declaration. This type informa-
tion is recovered and transmitted via the type variables Y which are really renamings of of
type parameters of C.

Since extractor patterns v̂.m[Y?
1..k](p?

1..n) are method calls, they also offer a type argument
section, however just like for test expressions, the type arguments all have to be variables.
Similar to test expressions, these will transmit information from the definition of the extrac-
tor method v̂.m.

6.6.2 Semantics

The computation rules for GPat are contained in Figure 6.10 and Figure 6.11. Recall that
type substitution is written as {{X? 7→ S?

1..l}}.

The semantics is a straightforward generalization of the first-order calculus. The type argu-
ments of methods are substituted in the method body, so the mbody and mtype judgments
are modified to deal with formal type parameters. In type tests, type arguments of the tested
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Computation e ⇓ q

e ⇓ C[T?
1..m](v̇?

1..n)

fields(C[T?
1..m]) = f? : S?

1..n

(Rfld)
e.fi ⇓ v̇i

e ⇓ v v ≡ C[T?
1..m](v̇?

1..k) e? ⇓ ẇ?
1..n

mbody(m, C[T?
1..m]) = [X?

1..l](x 1..n
? )d

θ = {{X? 7→ S?
1..l}} σ = {this 7→ v, x? 7→ ẇ?

1..n}

d θ σ ⇓ q
(Rinvk)

e.m[S?
1..l](e?

1..n) ⇓ q

e? ⇓ v̇?
1..n

(Rnew)
C[T?

1..m](e?
1..n) ⇓ C[T?

1..m](v?
1..n)

e ⇓ v v = C[T?
1..n](v?

1..n) C[T?
1..n] /? D[S?

1..m]

θ = {{X? 7→ S?
1..l}} σ = {x 7→ v} e1 θ σ ⇓ q

(Rcst)
e?{x : D[X?

1..m] ⇒ e1}/{e2} ⇓ q

e ⇓ null or
(
e ⇓ C[T?

1..n](v̇?
1..n) C[T?

1..n] 6/?D[S?
1..m]

)
e2 ⇓ q

(Rskp)
e?{x : D[X?

1..m] ⇒ e1}/{e2} ⇓ q

e? ⇓ v̇?
1..n ∀j < i . v̇?

1..n; cj ⇓ reject

v̇?
1..n; ci ⇓ q

(Rmch)
e 1..n

? match {c?} ⇓ q

Figure 6.10: GPat Computation Rules
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(Cthr)
throw ⇓ throw

e ⇓ throw
(Cfld)

e.f ⇓ throw

e ⇓ throw
(Crcv)

e.m[T?
1..m](e?

1..n) ⇓ throw

e? ⇓ v?
1..i−1 ei ⇓ throw

(Carg)
e.m[T?

1..m](e?
1..n) ⇓ throw

e? ⇓ v?
1..i−1 ei ⇓ throw

(Cnew)
C[T?

1..m](e?
1..n) ⇓ throw

e? ⇓ v?
1..i−1 ei ⇓ throw

(Cmch)
e?

1..n match {c?
1..m} ⇓ throw

e ⇓ throw
(Ctst)

e?{x : C[X?
1..n] ⇒ e1}/{e2} ⇓ throw

Figure 6.11: GPat Computation Rules (ctd.)

value are bound to the type parameters of the type reference which we test against. Since
values contain type references, the concrete type arguments are available for every instance.

We will assume that generic tuple types Tuplen[X?
1..n] are available in a library. This way, we

do not need to treat classes as case classes and specify a casefld judgment in order to extract
their components. This choice brings the formalization closer to the SCALA implementation,
which also uses tuple types to group the results returned by an extractor method.

The algorithmic subtyping relation which is needed to define test expression and matching
semantics is described in Figure 6.6. The context ∆ denotes a set of constraints, without
any processing or simplification – the relation between sets of subtype constraints ∆ and
simplified contexts Ψ has been elaborated above.

Note that in rules (Rcst) and (Rskp) we are not using the subtype relation, but the reflexive
and transitive closure of the inheritance relation /?. This is because subtyping can only
happen with respect to some context, but the dynamic type tests do not need the machinery
of subtype checking with respect to constraints. The type tests are limited by their syntax
to only test head types (like class C of a type C[T?

1..k]), which means that the calculus can
be implemented in execution environments like the JVM which employ erasure to compile
generic classes to first-order classes.
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Acceptance
v̇?

1..n; c ⇓ q

v̇ y p a Θ; σ

c ≡ case p?
1..n ⇒ b

v̇? y p? a Θ?; σ?
1..n b Θ?

1..n σ?
1..n ⇓ q

(mcase)
v̇?

1..n; c ⇓ q

(mvar)
v̇ y x a •; {x 7→ v̇}

u ≡ C[S?
1..k](u̇?

1..j) C[S?
1..k] /? D[T?

1..l]

xtype(•, v, m[Y?
1..l]) = ∆(D[Y?

1..l])S

v.m[T?
1..l](u) ⇓ Tuplen(ẇ?

1..n) ẇ? y p? a Θ?; σ?
1..k

(mextr)
u y v.m[Y?

1..l](p?
1..k) a {{Y?

1..l 7→ T?
1..l}}Θ?

1..k; σ?
1..k

Rejection
v̇?

1..n; c ⇓ reject

v̇ y p a reject

v.m(u) ⇓ null
(rnull)

u y v.m(p?
1..k) a reject

u̇ ≡ null or
(
u̇ ≡ C[S?

1..k](u̇?
1..j) C[S?

1..k] 6/?D[T?
1..l]

)
xtype(•, v, m[Y?

1..l]) = ∆(D[Y?
1..l])S

(rtype)
u̇ y v.m[Y?

1..l](p?
1..k) a reject

u ≡ C[S?
1..k](u̇?

1..j) C[S?
1..k] /? D[T?

1..l]

xtype(•, v, m[Y?
1..l]) = ∆(D[Y?

1..l])S

v.m[T?
1..l](u) ⇓ Tuplen(ẇ?

1..n)

ẇ? y p? a Θ?; σ?
1..i−1 ẇi y pi a reject

(rchild)
u y v.m[Y?

1..l](p?
1..k) a reject

c ≡ case p?
1..n ⇒ b

v̇? y p? a Θ?σ?
1..i−1 v̇i y pi a reject

v̇?
1..n; c ⇓ reject

(rcase)

Figure 6.12: GPat Acceptance and Rejection
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6.6.3 Matching

The acceptance and rejection relationships of values, patterns and substitutions are de-
scribed in Figure 6.12. Acceptance judgments produce not only term substitutions, but type
substitutions as well. We discuss the rules one by one.

The (mcase) rule specifies that a case clause accepts if all its pattern accept. The resulting
type and term substitutions are applied to the body, which is afterwards evaluated to a
result. The (mvar) rule variables match values and null results, and do not produce a type
substitution.

The (mextr) rule does more than in the first-order calculus. To be accepted by an extractor
pattern, a value first has to conform to the argument type of the extractor (there exists some
type substitution such that the formal argument type is a direct or indirect superclass in-
stance of the runtime type). In the first-order case, this was trivial since the argument type
was Obj – in the generic case however, this additional type test allows to communicate type
constraints between extractors and class definitions. If the input value has a conforming
type, then type parameters Y?

1..n can be replaced with actual types T?
1..n. Using these type

parameters, evaluating the extractor call then has to yield a tuple Tuplen(ẇ?
1..n). Finally, all

sub-patterns of the extractor pattern have to match. The resulting type and term substitu-
tions are combined and returned.

Rejection. As before, an extractor pattern rejects its input if the extractor method returns
null (rnull). Additionally, rejection is extended to deal with failing argument type confor-
mance. Thus an extractor patterns rejects also if its argument is null of if it does not conform
to its argument type (rtype). Finally, it can also reject if one of the sub-patterns rejects (rchild).

6.6.4 Typing

The typing rules for GPAT are given in Figure 6.13, Figure 6.14, Figure 6.15 and Figure 6.16.
Auxiliary judgments are given in Figure 6.17. The typing rules Γ ` e ∈ T are formulated
according to a convention that Γ contains not only variable-type bindings x : T , but also
subtyping constraints T <:T and type variables X . We will use the notation Γ  ∆ to
express that in context Γ, every constraint in ∆ holds. Given that the context Γ contains type
constraints as well, this amounts to checking entailment of constraint sets.

Well-Formed Types. Well-formedness of types is specified in Figure 6.13. In order to be
well-formed, a type reference has to be either one of the magic types, a type variable that is
in scope or a type reference that has the right number of type parameters which moreover
satisfy the constraints in the given context.
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Well−Formed Type Γ ` T �
Γ ` T <:T �

Γ ` Obj �
Γ ` Exc �

X ∈ Γ
Γ ` X �

∆ ≡ S? <:T?
1..n Γ ` S?

1..n, T?
1..n �

Γ ` ∆ �

Γ ` T? �1..n

class C[X?
1..n  ∆](g? : U?

1..l) / T {md?
1..j}

Γ ` ∆{{X?
1..n 7→ T?

1..n}} �
Γ ` C[T?

1..n] �

Figure 6.13: Well-formed Types

Expression Typing. Let us have a look at each typing rule. Rule (Tvar) and (Tthr) are
straightforward and do not need explanation. Rule (Tfld) describes well-typed field access.
The auxiliary judgment fields(T ) performs type substitution in order to calculate field types
in presence of parametric polymorphism.

Rule (Tinvk) describes well-typed method invocation. The auxiliary judgment mtype(m, T )

now substitutes actual type arguments of the receiver type T0, producing a specialized sig-
nature of m. The type parameters of the method have to satisfy the type constraints, which
is checked by entailment in Γ  ∆Θ. We do not need to check that the argument types are
subtypes in the given context, as in Γ ` S? <:T?Θ

1..n, because we are defining a declarative
system with the (Tsub) rule. An implementation would check this condition at this precise
point.

Rule (Tnew) specifies well-typed object construction. As for method invocation, the type
parameters of the class have to satisfy the type constraints, as in Γ  ∆Θ. Again, an imple-
mentation would check here that argument types are subtypes in the given contexts, as in
Γ ` S? <:T?Θ

1..n.

Rule (Ttst) is for type-checking type-tests. The type variables X?
1..n are fresh names for the

formal type parameters Y?
1..n of class C, which are required to satisfy constraints ∆. Con-

sequently, the succeeding branch of the test is type-checked in a new type environment Γ′,
which extends Γ with type variables X?

1..n, constraints ∆Θ and binding x : C[X?
1..n]. Having

typed the succeeding and failing branch of the type-test with R and S respectively, the result
is assigned the least upper bound R t S.

Rule (Tmch) achieves something similar for case clauses in match expressions – a match ex-
pression is well-typed if all its case clauses are well-typed. The type of the match expression
is the least upper bound of the result types of all case clauses.
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Expression Typing Γ ` e ∈ C

(Tvar)
Γ ` x ∈ Γ(x)

Γ ` T <:U Γ ` U � Γ ` e ∈ T (Tsub)
Γ ` e ∈ U

(Tnul)
Γ ` null ∈ Exc

(Tthr)
Γ ` throw ∈ Exc

Γ ` e0 ∈ T0 fields(T0) = f? : T?
1..n

(Tfld)
Γ ` e0.fi ∈ Ti

Γ ` e0 ∈ T Γ ` e? ∈ T? Θ 1..n

mtype(m, T0) = an[X?
1..m  ∆](T 1..n

? )T

Θ = {{X? 7→ R?
1..m}} Γ  ∆ Θ

(Tinvk)
Γ ` e0.m[R?

1..m](e 1..n
? ) ∈ T Θ

Γ ` e? ∈ T? Θ 1..n

fields(C[R?
1..m]) = f? : T?

1..n

class C[X?
1..m  ∆](g? : U?

1..l) / T {md?
1..j}

Θ = {{X? 7→ R?
1..m}} Γ  EΘ

(Tnew)
Γ ` C[R?

1..m](e 1..n
? ) ∈ C[R?

1..m]

class C[Y?
1..n  ∆](g? : U?

1..m) / T {md?
1..l}

Γ′ = Γ, X?
1..n, ∆{{Y? 7→ X?

1..n}}, x : C[X?
1..n]

Γ ` e ∈ U Γ′ ` a ∈ R Γ ` b ∈ S
(Ttst)

Γ ` e?{x : C[X?
1..n] ⇒ a}/{b} ∈ R t S

Γ ` e? ∈ R?
1..n

Γ; R?
1..n ` c? ∈ S?

1..m

(Tmch)
Γ ` e 1..n

? match {c?
1..m} ∈

⊔
S?

1..m

Figure 6.14: GPat Expression Typing
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Pattern and Case Typing Γ; R?
1..n ` c ∈ S

Γ; R 3 p a Γ′

(TPvar)
Γ; R 3 x a x : R

xtype(Γ, v̂, m[Y?
1..n]) = ∆(C[Y?

1..n])Tuplel[S?
1..l]

Xfresh

Γ′ = Γ, Y?
1..n, ∆, X <:R,X <:C[Y?

1..n] Γ′; S? 3 p? a Γ?
1..m

(TPext)
Γ; R 3 v̂.m[Y?

1..n](p 1..m
? ) a Γ′, Γ?

1..m

Γ; R? 3 p? a Γ?
1..n

Γ, Γ?
1..n ` b ∈ T

(Tcase)
Γ; R? ` case p?

1..n ⇒ b ∈ T

Extractor Type xtype(Γ, v̂, m[Y?
1..n])

Γ ` v̂ ∈ R ΘX = {{X?
1..n 7→ Y?

1..n}} ΘZ = {{Z?
1..n 7→ Y?

1..n}}
class C[X?

1..l  ∆C ](f? : S?
1..m) / T {an?md?

1..k}
mtype(m, R) = @safe[Z?

1..n  ∆m](C[Z?
1..n])Tuplel[R?

1..l]

Y?
1..n, ∆m ΘZ  ∆C ΘX Y?

1..n, ∆C ΘX  ∆m ΘZ

xtype(Γ, v̂, m[Y?
1..n]) = ∆C ΘX(C[Y?

1..n])Tuplel[R? Θ1..l]

Figure 6.15: GPat Pattern and Case Typing

Method Typing md � in C

Γ = X?
1..k, Y?

1..m, ∆C , ∆m

Γ, this : C[X?
1..k], x? : T 1..n

? ` e ∈ T Γ ` T <:T0 Γ ` T0, T?
1..n, ∆m �

class C[X?
1..k  ∆C ](f? : D?

1..l) / S {md?
1..k}

override(an[Y?
1..m  ∆m](T?

1..n)T0, m, S)

an def m[Y?
1..m  ∆m](x? : T?

1..n) : T0 = {e} � in C

Class Typing cd �

an?md? � in C1..k

X?
1..l, ∆ ` T, T?

1..n, ∆ �
class C[X?

1..l  ∆](f? : T?
1..n) / T {an?md?

1..k} �
(Tc)

Figure 6.16: GPat Method and Class Typing
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Pattern and Case Typing. Pattern typing Γ; R 3 x a Γ′ is done with respect to an “expected
type” so we can assign a type to pattern variables, and produces a context Σ. This happens
in rule (TPvar).

Rule (TPext) obtains the “extractor type signature” ∆(R)S which consists of a set of con-
straints ∆, an argument type R and a result type S that must be a tuple Tuplel[S?

1..l]. Tuple
types play the role of the case classes and the casefld judgment played in the first-order
version. The new context Γ′ = Γ, Y?

1..n, ∆ is used to type-check the sub-patterns as in
Γ′; S?Θ 3 p? a Σ?

1..m. We merge the resulting environments and additionally add the sub-
type constraints that come from the extractor call. This results in a context Γ′, Σ?

1..n. The
fresh type variable X has the sole purpose of placing both of its upper bounds in the con-
text. By rule (Sdeext), any relation between the expected type and the pattern type that
can be derived from the class hierarchy can then be used to obtain precise bounds for type
variables in either.

Using these pattern typing rules, case clauses are checked using (Tcase). Each pattern of
the clause is type-checked, as in Γ; R? 3 p? a Σ?

1..n, and the resulting contexts (including
constraints) are merged to type-check the body b, as in Γ, Σ?

1..n ` b ∈ T .

The extractor type signature judgment xtype(Γ, v̂, m[Y?
1..n]) looks up the extractor method m

from the static type R of the receiver v̂. The argument type of the extractor is some type
reference C[Z?

1..n], whose actual type parameters are exactly the formal type parameters of
the extractor. Whereas in the first-order case, we used type Obj, here extractors have a more
specific type which is going to be tested prior to the extractor call. It is then necessary to
ensure that the constraints of the extractor call are equivalent of the constraints of class C,
since the type test that is going to be generated in pattern matching translation can only test
for the head type C. The rule could have been simplified if we demanded syntactic equality
between constraints ∆m and ∆C , but this would require using the same type parameter
names in the extractor as in the definitions of its argument type. So instead, we use two
substitutions ΘX and ΘZ that unify type constraints from extractor and class definition by
renaming their parameters to type variables from the extractor call. Equivalence is then
checked using by checking entailment in both directions, as in Y?

1..n, ∆mΘZ  ∆CΘX and
Y?

1..n, ∆CΘX  ∆mΘZ . The resulting extractor type signature is then returned, with its
components substituted to work in the context that is constructed in the pattern typing rule.

Method and Class Typing. The typing of methods and classes is straightforward. In addi-
tion to checking each method definitions, the well-formedness of types has to be checked as
well. The override(an[Y?

1..m  ∆m](T?
1..n)T0, m, S) ensures that methods are overridden with

the same annotations, type parameters, constraints, argument types and return type.
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Overriding override(an[X?
1..k  ∆](B?

1..n)B, m, T )

mtype(m, T ) = an[X?
1..k  ∆](B?

1..n)B or undefined

override(an[X?
1..k  ∆](B?

1..n)B, m, T )

Method Lookup mtype(m, T ) mbody(m, T )

class C[X?
1..l  ∆C ](f? : C?

1..m) / T {md?
1..k}

an i ≡ an

md i ≡ def m[Y?
1..j  ∆m](x? : B?

1..n) : B = {e}
Θ = {{X?

1..l 7→ R?
1..l}}

mtype(m, C[R?
1..l]) = an[Y?

1..j  ∆mΘ](x? : BΘ1..n
? )BΘ

mbody(mi , C[R?
1..l]) = [Y?

1..j](x?
1..n)e

class C[X?
1..l  ∆](f? : C?

1..m) / T {md?
1..k}

m 6∈ md?
1..k Θ = {{X?

1..l 7→ R?
1..l}}

mtype(m, C[R?
1..l]) = mtype(m, TΘ)

mbody(m, C[R?
1..l]) = mbody(m, TΘ)

Field Lookup fields(T )

fields(Obj) = •

fields(TΘ) = f? : S?
1..m

class C[X?
1..l  ∆](g? : T?

1..n) / T {an?md?
1..k}

Θ = {{X?
1..l 7→ R?

1..l}}
fields(C[R?

1..l]) = f? : S?
1..m; g : T?Θ

1..n

Figure 6.17: GPat Auxiliary Judgments for Overriding, Method and Field Lookup
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Auxiliary Judgments. Auxiliary judgments are given to check valid overriding, method
and field lookup. The overriding check is demanding syntactic equality between the sig-
nature of the overridden and the overriding method. This restriction is not necessary but
seems reasonable in the interest of readability. Method lookup and field lookup are straight-
forward, as mentioned above the only difference to the first-order case is that a type substi-
tution is performed on the results.

6.6.5 Divergent Programs

Figure 6.18 contains the coinductive rules that characterize divergent programs. The rules
are all straightforward adaptations of the first-order versions.

6.7 Type Soundness

We can now prove type soundness, in the same way we proved it for the first-order calculus.

Lemma 17 (Uniqueness) For all a, if a ⇓ q then for all q′, if a ⇓ q′ then q = q′.

Proof By induction on a ⇓ q and case analysis on q′. �

Lemma 18 (Closed Types) The following statements on closed types hold:

• If • ` C[S?
1..m]<:C[T?

1..m] then S? ≡ T?.

• If • ` S <:T then S ≡ C[S?
1..m], T ≡ D[T?

1..n] and S /∗ T .

Proof Since the context is empty, S, T are closed. Since they are well-formed, they do not
contain type variables and thus must have the desired shape (this includes special cases Obj

and Exc). A small derivation of • ` S <:T can only be derived using (Scon),(Sext),(Sthr) and
(Sobj). �

Lemma 19 (Values) For all v, if • ` v ∈ T then v ≡ C[T?
1..m](v̇?

1..n) with C[T?
1..m] /∗ T

Proof By rule (Tnew) and (Closed Types). �

Lemma 20 (Termination) For all a and all q, it holds that if a ⇓ q then a 6⇑.
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Divergent Computation e ⇑

e ⇑
(Dfld)

e.f ⇑
e ⇑

(Drcv)
e.m[T?

1..n](e?
1..n) ⇑

e ⇓ v e? ⇓ v̇?
1..i−1 ei ⇑ (Darg)

e.m[T?
1..n](e?

1..n) ⇑

e ⇓ C[S?
1..m](v̇?

1..m) e? ⇓ ẇ?
1..n

mbody(m, C[S?
1..m]) = [Y?

1..n](x?
1..n)b

b {{Y?
1..n 7→ T?

1..n}} {this 7→ C(v̇?
1..m), x? 7→ ẇ?

1..n} ⇑
(Dinvk)

e.m[T?
1..n](e?

1..n) ⇑

e? ⇓ v̇?
1..i−1 ei ⇑ (Dnew)

C[S?
1..m](e?

1..n) ⇑
e ⇑

(Dtst)
e?{x : D[Y?

1..n] ⇒ a}/{b} ⇑

e ⇓ C[S?
1..m](v̇?

1..n) C[S?
1..m] /? D[T?

1..n]

a {{Y?
1..n 7→ T?

1..n}} {x 7→ C[S?
1..m](v̇?

1..n)} ⇑
(Dcst)

e?{x : D[Y?
1..n] ⇒ a}/{b} ⇑

e ⇓ null or
(
e ⇓ C[S?

1..m](v̇?
1..n) C[S?

1..m] 6/?D[T?
1..n]

)
b ⇑

(Dskp)
e?{x : D[Y?

1..n] ⇒ a}/{b} ⇑

e? ⇓ v̇?
1..i−1 ei ⇑ (Dmch)

e?
1..n match {c?

1..m} ⇑

e? ⇓ v̇?
1..n ∀j < i . v̇?

1..n y cj a reject

v̇?
1..n; ci ⇑ e

(Dcase)
e?

1..n match {c?
1..m} ⇑

Divergent Cases and Patterns v̇?
1..n; c ⇑ e

c = case p?
1..n ⇒ b v̇? y p? a Θ?, σ?

1..n b Θ?
1..n σ?

1..n ⇑
(Dbdy)

v̇?
1..n; c ⇑ b σ?

1..n

Figure 6.18: GPat Divergence Rules
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Proof By induction on a ⇓ q and inversion of a ⇑. �

Lemma 21 (Substitution Property for Lookup) Let Θ = {{Y?
1..k 7→ U?

1..k}} and S = C[T?
1..m].

The following holds:

• If fields(T ) = f? : S?
1..n then fields(TΘ) = f? : S?

1..nΘ

• If mtype(m, S) = an[X?
1..m  ∆](T?

1..n)T then

mtype(m, SΘ) = an[X?
1..m  ∆Θ](T?Θ

1..n)TΘ.

• If mtype(m, S) is undefined then mtype(m, SΘ) is undefined as well.

Proof The first two statements are proven by induction on derivation of fields and mtype.
The last statement is clear from the observation that Θ does not alter which classes are tra-
versed when going from a class to a superclass.

Lemma 22 (Type Substitution Property for Types) Let J range over judgment forms of sub-
typing (S <:T ), well-formedness T� and typing e ∈ T . If X?

1..m, Y?
1..n, x? : T 1..j

? , ∆ ` J and
Θ = {{Y?

1..n 7→ U?
1..n}} then X?

1..m, x? : TΘ 1..j
? , ∆Θ ` JΘ.

Proof Straightforward induction on the derivation of J , using (Type Substitution Prop-
erty for Lookup). �

The following lemma lets us discharge constraint set that were already proven. It is used
whenever we have more precise bounds and the induction hypothesis holds for weaker
bounds in the context.

Lemma 23 (Constraint Elimination) Let J range over judgment forms of subtyping (S <:T ),
well-formedness T� and typing e ∈ T . If Γ, ∆ ` J and Γ  ∆, then Γ  J .

Proof Induction on the derivation of J . �

Lemma 24 (Subtypes have all Fields) If • ` C[S?
1..k]<:D[U?

1..m], C 6= Exc then
fields(C[S?

1..k]) = fields(D[U?
1..m]); g? : E?

1..m.

Proof We will prefer arguing with the algorithmic jugdment Ψ � C[S?
1..k]<:D[U?

1..m] for
suitable Ψ, which (apart from the special cases for magic classes) leaves us with a trivial
(Scon) or non-trivial (Sext) inheritance relationship. By case analysis on the derivation of
Ψ � C[S?

1..k]<:D[U?
1..m.

Case (Sobj) Then fields(Obj) = •
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Case (Scon) Trivial

Case (Sext) Then the definition of fields is applied

The other cases cannot happen. �

Lemma 25 (Subtypes have all Methods) If C[S?
1..k]<:D[U?

1..m, C 6= Exc and
mtype(m, D[U?

1..m]) = an[Y?
1..k  ∆](T?

1..n)T , then mtype(m, D[U?
1..m]) = an[Y?

1..k 

∆](T?
1..n)T .

Proof We again use the algorithmic jugdment Ψ�C[S?
1..k]<:D[U?

1..m] for suitable Ψ and the
trivial (Scon) or non-trivial (Sext) inheritance relationship. By induction on the derivation
of mtype(m, D[U?

1..m]) = an[Y?
1..k  ∆](T?

1..n)T and case analysis over Ψ�C[S?
1..k]<:D[U?

1..m].

Case (Sobj) Cannot happen, since Obj has no methods.

Case (Scon) Trivial

Case (Sext) If C does not contain a definition for m, then the definition of mtype is applied.
Otherwise, class definition of C is well-typed, thus override( an(C?

1..n)B,m, D) asserts that
mtype(m, C) = mtype(m, D).

The other cases cannot happen. �

We now turn to generalizations of lemmata for the pattern matching construct. Since the
typing rules involve collecting a type context, we want to show that a suitable context is
returned when type substitution takes place. Fortunately, the subsumption rule allows us
to simplify the lemma a bit with respect to the first-order version. Also, we express that the
resulting context is stronger, using the notion of entailment, while the notation Γ<:Γ′ still
expresses that term variables have “better” types.

Lemma 26 (Subtypes yield Refined Environment)
If Γ ` S <:T and Γ; T 3 p a Γ′ then Γ; S 3 p a Γ′′ for some Γ′′<:Γ′ and Γ, Γ′′  Γ, Γ′.

Proof By induction on Γ; T 3 p a Γ′

Case (TPvar) Then Γ; T 3 x a {x : T} and we can also derive Γ; S 3 x a {x : S}. From
Γ ` S <:T follows {x : S}<:{x : T}

Case (TPextr) Then Γ; T 3 v̂.m[Y?
1..k](p?

1..n) a Γ′?
1..n and subpatterns have derivations

Γ; R? 3 p? a Γ′?
1..n for some types R?

1..n and there is a type substitution Θ = {{Y? 7→ U?
1..k}}

for the extractor call. The expected type is only used as an upper bound for the fresh type
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variable X for typing the subpatterns, and by (Constraint Elimination) the subderivations
can be reused, yielding Γ; S 3 v̂.m(p?

1..n) a Γ′?
1..n.

The only difference between the new context Γ′′ and Γ′ is that the constraint X <:T has been
replaced with X <:S. Since Γ ` S <:T was assumed, clearly Γ′′<:Γ′ and Γ, Γ′′  Γ, Γ′ �

Lemma 27 (Refined Environment preserves Typing) If S? <:T?
1..n and Γ, x? : T 1..n

? ` e ∈ U

then Γ, x? : S 1..n
? ` e ∈ U .

Proof By straightforward induction on Γ, x? : T 1..n
? ` e ∈ U , using (Tsub) where necessary.

�

Lemma 28 (Weakening) If Γ ` d ∈ T and x /∈ fv(d), then Γ, x : S ` d ∈ T for any S.

Proof Straightforward induction on Γ ` d ∈ T . �

Lemma 29 (Term Substitution Lemma) If Γ, x? : T 1..n
? ` b ∈ U and • ` u̇? ∈ T?

1..n, u̇? ∈
Values ∪ {null} then Γ ` b{x? 7→ u̇?

1..n} ∈ U .

Proof By induction on the derivation of Γ, x? : T 1..m
? ` b ∈ U . Let σ = {x? 7→ u̇?

1..n} and
Γ′ = Γ, x? : T 1..m

? .

Case (Tvar) b ≡ x

i) If x = xi for some i, then xσ = u̇i with Γ ` ai ∈ Ti by assumption, (Weakening).

ii) Otherwise, xσ = x and rule (Tvar).

Case (Tthr),(Tnul) trivial because bσ ≡ b

Case (Tfld) b ≡ e.f We have Γ′ ` e ∈ R and i.h. yields Γ ` eσ ∈ R. (Tfld) finishes the case.

Case (Tinvk) b ≡ e.m(e?
1..n) We have Γ′ ` e ∈ R and mtype(m, R) = an(U?

1..n)U . The i.h.
yields Γ ` eσ ∈ R. We also have Γ′ ` e? ∈ U?

1..n and i.h. yields Γ ` e?σ ∈ U?
1..n. Rule (Tinvk)

finishes the case.

Case (Tnew) b ≡ C[U?
1..m](e?

1..n) We have fields(C[U?
1..m]) = R?

1..n and Γ′ ` e? ∈ R?
1..n. The

i.h. yields Γ ` e?σ ∈ R?
1..n. Rule (Tnew) finish the case.

Case (Ttst) b ≡ a?{x : C[U?
1..m] ⇒ d}/{e} We have Γ′ ` a ∈ S, Γ′ ` d ∈ R1, and Γ′ ` e ∈ R0

and R? <:U0,1. The i.h. yields Γ ` aσ ∈ S, Γ ` dσ ∈ R1, and Γ ` eσ ∈ R0. Transitivity of <:
and (Ttst) finishes the case.
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Case (Tmch) b ≡ e?
1..n match {c?

1..m} We have Γ′ ` e? ∈ R?
1..n and i.h. yields Γ ` e?σ ∈

R?
1..n.

For each j ∈ 1..m, let cj ≡ case p?
1..n ⇒ bj (we omit the extra j index for patterns). We have

a case typing Γ′; R?
1..m ` cj ∈ Uj via Γ′; R? 3 p? a Γ′′?

1..n and Γ′, Γ′′?
1..n ` b ∈ Uj .

By (Subtypes yield Refined Environment), we get Γ′; R′
? 3 p? a Γ′′′?

1..n. for Γ′′′? <:Γ′′? 1..n.

By (Refined Environment preserves Typing) we get Γ, Γ′′?
1..n ` bj ∈ Uj .

Applying the i.h. yields Γ, Γ′′′?
1..n ` bjσ ∈ Uj . Rule (Tmch) finishes the case. �

Lemma 30 (Preservation)
If a ⇓ q and • ` a ∈ T , then • ` q ∈ T .

Proof For q ≡ throw and q ≡ null, rules (Tthr) and (Tnul) and (Tsub) yield the proof.
Otherwise, induction on a ⇓ v.

Case (Rfld) a ≡ e.fi

The premises of (Tfld) are • ` e ∈ T0 and fields(T0) = f? : T?
1..m with T = Ti.

We have e ⇓ D[S?
1..m](ẇ?

1..n) and v = ẇi.

By i.h. • ` D[S?
1..m](ẇ?

1..n) ∈ D[S?
1..m] for D[S?

1..m]<:T0.

By (Subtypes have all Fields), we obtain m ≤ n and fi ∈ fields(D[S?
1..m]).

Finally, from • ` D[S?
1..m](ẇ?

1..n) ∈ D[S?
1..m] and rule (Tnew) we arrive at • ` ẇi ∈ Ti and

thus • ` v ∈ T .

Case (Rinvk) a ≡ e.m[R?
1..k](e?

1..n)

The premises of (Tinvk) are Γ ` e ∈ U , mtype(m, U) = an[Y?
1..k  ∆](S?

1..n)S,
• ` e? ∈ S?

1..n. The type parameters satisfy the constraints, i.e. for type substitution Θ =

{{Y?
1..k 7→ R?

1..k}}, we have •  ∆Θ.

Then e ⇓ D[U?
1..j](ẇ?

1..m), e? ⇓ v̇?
1..n, mbody(m, D[U?

1..j]) = [Y?
1..k](x?

1..n)e0 with • ` e0 ∈ T .
Using substitution σ = {this 7→ D[U?

1..j](ẇ?
1..m), x? 7→ v̇?

1..n}, we evaluate the body as e0Θσ ⇓
v.

Applying the i.h. for the receiver and (Values) yields D[U?
1..j]<:U .

By (Subtypes have all Methods) we get mtype(m, D[U?
1..j]) = mtype(m, U).

Applying the i.h. for the arguments yields • ` v̇? ∈ S?
1..n.
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By (Type Substitution Property for Types) and (Substitution Lemma) we get • ` e0Θσ ∈ T .

Applying the i.h. for the body then yields • ` v ∈ T .

Case (Rnew) a ≡ D[U?
1..j](ẇ?

1..n) then a ⇓ a, and D[U?
1..j]<:D[U?

1..j] by (Closed Types).

Case (Rcst) a ≡ e?{x : D[Y?
1..k] ⇒ b}/{d}

We have e ⇓ C[R?
1..m](ẇ?

1..n) as well as C[R?
1..m] /? D[S?

1..k] and b {{Y? 7→ S?
1..k}} {x 7→

C[R?
1..m](ẇ?

1..n)} ⇓ v.

Using typing premises from (Ttst), we apply the (Type Substitution Property for Types)
and (Substitution Lemma) followed by the i.h.

Case (Rskp) a ≡ e?{x : D[Y?
1..k] ⇒ b}/{d}

We have e ⇓ C[R?
1..m](w?

1..n), C[R?
1..m] 6/?D[S?

1..k] for any S?
1..k and d ⇓ v.

Using typing premises from (Ttst), we apply the i.h. to d, yielding • ` d ∈ T .

Case (Rmch) a ≡ e?
1..m match {c?

1..l}. Let i be the index of the matching case.

The premises of (Tmch) include • ` e? ∈ S?
1..m and case typing •; C?

1..m ` ci ∈ Ti for Ti <:T .

The case typing has premises •; S? 3 p? a Γ′?
1..n and •; Γ′?1..m ` b ∈ Ti where ci ≡ case p? ⇒ b.

We have e? ⇓ v̇?
1..m as well as v̇? y p? a Θ?; σ

1..m
? and b σ? ⇓ v.

Applying the induction hypothesis to e? yields • ` v? ∈ S?
1..m.

By (Type Substitution Property for Types) and (Substitution Lemma), • ` bΘ?
1..mσ?

1..m ∈
Ti.

Applying the i.h. yields • ` v ∈ Ti and by (Tsub) • ` v ∈ T .

�

Lemma 31 (Progress)
If • ` a ∈ T and a 6⇓ q for all q, then a ⇑.

Proof By coinduction and case analysis over the last rule used in a small derivation of
• ` a ∈ T .

Case a ∈ {throw,null} and a ≡ x are not interesting, since a 6∈ R

Case a ≡ e0.f and (Rfld), (Cfld) are blocked. By • ` a ∈ T and (Tfld), we also have

• ` e0 ∈ T0. Thus, either
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i) e0 6⇓ q0 for any q0. This amounts to e0 ∈ R and shows that (Dfld) preserves R.

ii) e0 ⇓ throw or e0 ⇓ null , but this contradicts (Cfld) blocked.

iii) e0 ⇓ D(ẇ?
1..n) but by (Preservation)and (Subtypes have all Fields), this contradicts

(Rfld) blocked.

Case a ≡ e0.m[R?
1..k](e?

1..n) and (Rinvk),(Crcv) and (Carg) are blocked. By • ` a ∈ T and

(Tinvk), we also have • ` e0 ∈ T0, mtype(m, T0) = an[Y?
1..k  ∆](T?

1..n)T and • ` e? ∈ T?Θ
1..n

for Θ = {{Y? 7→ R?
1..k}}

Thus, either

i) e0 6⇓ q0 for any q0. This amounts to e0 ∈ R and shows that (Drcv) preserves R.

ii) e0 ⇓ throw or e0 ⇓ null but this contradicts (Crcv) blocked.

iii) e0 ⇓ D[U?
1..j](ẇ?

1..n). By (Preservation) and (Closed Types), D[U?
1..j]<:T0 and by (Sub-

types have all Methods), mbody(m, D[U?
1..j]) = [Y?

1..k](x?
1..n)b. We can distinguish fur-

ther

a) There exists i with e? ⇓ v̇?
1..i−1 and ei 6⇓ q0 for any q0. Then ei ∈ R and (Darg)

preserves R.

b) There exists i with e? ⇓ v̇?
1..i−1 and ei ⇓ throw, but this contradicts (Carg) blocked

c) e? ⇓ v̇?
1..n and (Preservation) yields • ` v̇? ∈ T?

1..n. Then let σ = {this 7→
D(ẇ?

1..m) x? 7→ v̇?
1..n} and consider b Θ σ. Either

1. b Θ σ 6⇓ q for any q. This amounts to b Θ σ ∈ R and shows that (Dinvk) pre-
serves R.

2. b Θ σ ⇓ q, but this contradicts (Rinvk) blocked.

Case a ≡ D[U?
1..j](e?

1..n) and (Rnew), (Cnew) are blocked. By • ` a ∈ T and (Tnew), we
also have fields(D[U?

1..j]) = T?
1..n and • ` e? ∈ T?

1..n. Thus, either

i) there exists i with e? ⇓ v̇?
1..i−1 and ei 6⇓ q for any q. Then ei ∈ R and (Dnew) preserves R

ii) there exists i with e? ⇓ v̇?
1..i−1 and ei ⇓ throw, but this contradicts (Cnew) blocked.

iii) e? ⇓ v̇?
1..n, but this contradicts (Rnew) blocked.

Case a ≡ e?{x : D[Y?
1..j] ⇒ b}/{d} and (Rcst),(Rskp),(Ctst) are blocked. By • ` a ∈ T and

(Ttst), we have all premises of the rule (Ttst). Thus either
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i) e 6⇓ q for any q, then e ∈ R and (Dtst) preserves R.

ii) e ⇓ throw, but this contradicts (Ctst) blocked.

iii) e ⇓ C[R?
1..k](v?

1..n). There are several subcases to consider:

a) C[R?
1..k] /? D[U?

1..j], and for Θ = {{Y? 7→ U?
1..j}}, σ = {x 7→ C[R?

1..k](v̇?
1..n)}, bΘσ 6⇓ q

for any q. Then bΘσ ∈ R and (Dcst) preserves R.

b) C[R?
1..k] /? D[U?

1..j], and for Θ = {{Y? 7→ U?
1..j}}, σ = {x 7→ C[R?

1..k](v̇?
1..n)}, bσ 6⇓

throw but this contradicts (Rcst) blocked.

c) C[R?
1..k] 6/?D[U?

1..j], and d 6⇓ q for any q. Then d ∈ R and (Dskp) preserves R.

Case a ≡ e?
1..n match {c?

1..m} and (Rmch),(Cmch) are blocked.

By • ` a ∈ T and (Tmch), we have • ` e? ∈ S?
1..n, for all j a case typing •; S?

1..n ` cj ∈ Tj ,
and for each body bj a typing Γ′j ` bj ∈ Tj .

Thus, either

i) there exists i with e? ⇓ v̇?
1..i−1 and ei 6⇓ q for any q. Then ei ∈ R and (Dmch) preserves

R.

ii) there exists i with e? ⇓ v̇?
1..i−1 and ei ⇓ throw or ei ⇓ null, but this contradicts (Cmch)

blocked.

iii) e? ⇓ v̇?
1..n. Then we distinguish these cases:

a) if all cases reject, this contradicts that the last case always accepts.

b) There exists an i such that ∀j < i . v̇?
1..n; cj ⇓ reject, ci = case p?

1..n ⇒ b and
v̇? y p? a Θ?; σ?

1..n. Then, either

1) b Θ?
1..n σ?

1..n 6⇓ q for any q, then b Θ?
1..n σ?

1..n ∈ R and (Dbdy), (Dcase) preserve
R

2) b Θ?
1..n σ?

1..n ⇓ q, which contradicts (Rmch) blocked.

�

Thm 7 (Type Soundness)
If • ` a ∈ C then either a ⇑ or a ⇓ q for some q with • ` q ∈ C ′, C ′<:C.

Proof Consequence of (Progress) and (Termination).
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6.8 Example

We now show how the GADT of expressions in HASKELL can be rendered in GPAT, which
illustrates just how the extractor typing rule achieves a form of existential quantification.
Consider the following definitions:

class Term[X]

class Num(value:Int) / Term[Int] {}
class PairTerm[Y,Z](a:Term[Y], b:Term[Z]) / Term[Tuple2[Y,Z]] {}

class Match() {

@safe def pairTerm[Y,Z](p:PairTerm[Y,Z]): Tuple2[Term[Y],Term[Z]] =
Tuple2[Term[Y],Term[Z]](p.a, p.b)

@safe def num(p:Num): Tuple1[Int] =
Tuple1(n.value)

}

d match {
case Match().pairTerm[Y,Z](fst, Match().num(i)) => e
case x => null

}

Figure 6.19 contains an example for a typing derivation that uses the system presented above
to derive a typing for this match expression. It demonstrates how pattern matching expres-
sions can provide an anchor for type information to be extracted from pattern shapes and
types.

6.9 Summary and Discussion

The development presented in this chapter points out that pattern matching can enable use-
ful interactions with the type system. However, the calculus is far from being a usable sys-
tem and leaves out many aspects of the SCALA programming language, which has a richer
meta-theory of subtyping.

Class definitions in SCALA can be marked with definition-site variance annotations. There,
subtyping relationships like List[S] <: List[T] can be derived from subtype relationship
S <:T and the covariance of the type List in its type parameter, which is indicated through
an annotation +. Dually, contravariance is indicated by annotating a type parameter with -.
In contrast, the generic type system presented here is invariant. As mentioned earlier, the
meta-theory of subtyping presented here has originally been developed with definition-site
variance in mind [26].
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Figure 6.19: Example of a Typing Derivation
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However, SCALA also adds type members, multiple inheritance and a fundamental notion
of nested types. Again, since pattern matching introduces new variables and offers flexi-
ble syntax, interesting and useful experimental type-system interactions have been imple-
mented.

A particular point that deserves mentioning is that adding existential quantification the type
system opens up possibilities that go beyong the system we described here. Existentially
quantified types allow for instance to give precise types to extractor methods without having
to add a type-test, like so:

@safe def pairTerm(t:Term[A] forSome {type A}):
Tuple2[Term[Y ],Term[Z]] forSome {type Y ; type Z} =...

}

They thus add to the modularity of extractors for generic pattern matching, since the extrac-
tor can be written, compiled, altered independently from the matched type PairTerm[Y ,Z].
A formalization of an object-oriented calculus with pattern matching, subtyping constraints
and existential quantification is planned for future work.



Chapter 7

Related Work

This chapter enumerates literature relevant to translation of pattern matching and interac-
tions of pattern matching constructs and type systems.

7.1 Case Classes, Extractors and Views

Case classes were first proposed by Odersky and Wadler [70], where they denote closed,
non-extensible classes that were introduced with the purpose of providing algebraic data
types in an object-oriented context. A slightly more extensible version (in the sense that it
encourages adding new variants to existing types) is the basis for Zenger’s diploma thesis
on an extensible compiler framework [96]. The ideas were subsequently refined, leading to
extensible algebraic data types with defaults [97]. Case classes as presented in this thesis
subsume the developments with regards to language design. In contrast, the compilation
techniques of the mentioned literature are different. While the original PIZZA implemen-
tation used an algorithm described by Wadler [93] (discussed in Section 7.2 below) which
did not apply to case classes inheriting from case classes, Zenger used an incremental algo-
rithm which would in principle work for this general form of case classes but which did not
support incompleteness checks.

Despite the mainstream object-oriented setting being based on nominal subtyping and thus
significantly different from algebraic data types, no formalization seems to have been car-
ried out with the goal of describing the optimizing translations. This line of work has sub-
sequently led to the concept of case classes in SCALA. In this thesis, we contribute to it by
presenting case classes as a derived concept, while considering extractors as the fundamen-
tal building block to object-oriented pattern matching.

Views in functional programming languages [92, 71] are conversions from one data type to
another that are implicitly applied in pattern matching. They play a role similar to extractors
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in Scala, in that they permit to abstract from the concrete data-type of the matched objects.
However, unlike extractors, views are anonymous and are tied to a particular target data
type.

Tullsen [89] proposes to use functions returning optional values as first class patterns, which
is an important predecessor of extractor-based pattern matching as described here. Since
functions are first-class values and the option type returned by such a pattern is associ-
ated with a monad, it is straightforward to define pattern combinators, making it possible
to define new patterns from old ones. Furthermore, he arrives at a more flexible form of
HASKELL lazy pattern matching by giving different pattern combinators which vary in the
evaluation order they enforce. He proposes syntactic sugar called pattern binders to handle
variable binding conveniently. The approach is tailored to algebraic data types and more-
over assumes, in the interest of minimality, that all pattern matches are complete. Focusing
on expressivity with a minimal set of primitives, Tullsen does not deal with the issue of
optimized translation - instead the verbose nature of hand-coded match expressions involv-
ing pattern binders and functions returning options suggests that programmers perform the
optimization by hand as well.

Erwig’s active patterns [30] provide views for non-linear patterns with more refined compu-
tation rules. Palao Gostanza, Pena and Nunez’s active destructors [43] are closest to extrac-
tors; an active destructor corresponds almost exactly to an unapply method in an extractor.
However, they do not provide data type injection, which is handled by the corresponding
apply method in our design. Also, being tied to traditional algebraic data types, active de-
structors cannot express inheritance with varying type parameters in the way it is found in
GADT’s. Regarding compilation, they describe a scheme that inlines active destructors be-
fore performing further optimizations. This is an interesting idea, however it means giving
up separate compilation. It can be very helpful in whole-program compilers and optimizers,
or when users can live with the fact that changing an extractor requires them to recompile
all sources that make use of the extractor.

Erwig and Peyton Jones propose an extension of HASKELL pattern matching with pattern
guards and transformational patterns [31]. Their transformational patterns can play the role
of views, with the benefit that they do not interfere with equational reasoning.

Kirchner, Moreau and Reilles introduce user-defined operators (anchors) in TOM, which
are very briefly described in their papers [52, 11]. This concept similar to extractors in that
it allows the user to define what it means to match an algebraic signature. Their pattern
matching compiler works for JAVA, C and C++. Unfortunately, the TOM framework has not
been described comprehensively using a complete formal semantics for a given language,
which is probably due to their targetting various host languages.

Syme, Neverov and Margetson [87] independently introduced active patterns which are a
concept very similar to extractors. Their active patterns can be defined to partially or com-
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pletely discriminate amongst values of a given type, which happens by structured names.
For complete discriminators, incompleteness checking is available. They give an operational
semantics in the form of an F# interpreter for pattern matching expressions. Their develop-
ment is very close to ours, however they allow heuristics (these are described below) which
allow traversals of input values that differ from the standard left-to-right one. The paper
lists many applications and a promising future direction to monadic and transactional pat-
tern matching: both are based on the chaining of extractor calls.

In their paper on abstract value constructors [4], Aitken and Reppy present symbolic con-
stants and symbolic patterns (“templates”). However, a template can only be defined in
terms of another pattern. In particular, one cannot perform arbitrary computation, which
only slightly extends the limitations imposed by fixed algebraic data types. Fähndrich and
Boyland [32] expand on this idea, by allowing a template to choose from several patterns and
to be recursive, yielding a way to recognize full regular tree languages. This form of “com-
putation”, while still not comprising the source language, allows the authors to describe
semi-structured data by means of pattern types. The authors devise a full type system that
can check the language recognized by patterns.

Garrigue’s polymorphic variants [38] for OCAML provide another way to reconcile algebraic
data types and extensibility. Here, the programmer is allowed to form arbitrary subtype
relationships between variant types. Since a variant type is merely a tag and a normal data
type, type checking these variants amounts to checking relationships between sets of tags.
Every instance of a variant is then at the same time instance of many other variant types,
which is case of subtype polymorphism. The implementation uses an integer tag that is
computed from the tag names (with the drawback that collisions might in principle make a
perfectly valid program fail to compile). A problem with polymorphic variants is that they
do not blend seamlessly with the rest of the type system. Since there are too many subtyping
relationships, explicit type annotations are required to express that a value is of a particular
variant type. This is immediately clear from the following example definitions:

atype = ‘A of int
btype = ‘B of int
aorb = [atype|btype]

Now, a value ’A 3 is an instance of atype, but it is not an instance of aorb. It can, however,
be turned into one using an explicit typecast. These explicit typecasts are cumbersome and
limit the applicability of polymorphic variants to extensible algebraic data types.

7.2 Correctness

Wadler [93] argues for correctness of pattern matching by making extensive use of the ex-
ception monad (expressed as a “fatbar” operator that combines decision trees and a FAIL
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constant). We describe this reference in more detail below.

The correctness proof in this thesis follows the general structure of a similar proof from Qin
Ma’s thesis [59]. In the first part of her work, the author proves that a translation from
patterns in the join-calculus into ML pattern matching is correct.

7.3 Optimizing Pattern Matching

Augustsson [8, as cited by [93]] seems to be one of the earliest description of pattern match
compilation. Wadler [93] presents the same algorithm in detail. He uses a function match
that translates match expressions to lambda-expressions. This function takes three argu-
ments, a list of variables, a list of case clauses, and a default expression that is used for match
failure. Four rewrite rules are then given to handle translation, namely the empty rule, the
variable rule, the constructor rule and the mixture rule. The algorithm is not optimal in the
sense that it generates codes that in some cases performs a test twice.

Ophel [72] describes an improvement. He elides the third argument to the match function
and rewrites a match expression into a case distinction and “smaller” match expressions.
The “equations”, as the case clause matrix is called, is analyzing complete sets of construc-
tors. Informally, he describes that the incompleteness of a match expression is signaled
when the FAIL constant is evaluated, and redundancy is signaled by checking each body
for reachability. The generated code performs the tests on the input from left to right.

Cardelli [16] also describes briefly how algebraic pattern matching can be translated to de-
cision trees in an optimizing manner. He also mentions heuristics other than left-to-right.

Pettersson [73] describes a variant of the above algorithm for match expression translation
to decision-trees. Its behavior resembles deterministic, finite automata in the sense that mul-
tiple translations of the same expression are avoided by hash-consing (the memoization of ex-
pressions that have been translated before). This leads to a notion of state, like in automata.
The generated code can be more compact by using jumps instead of regenerating equivalent
decision-trees. Another advantage of the matrix-based algorithm is that incompleteness and
redundancy checking become cheap operations.

Scott and Ramsay [79] studied the effects of using different orderings in the algorithm de-
scribed by Pettersson. It is of course not possible to freely choose a completely arbitrary
ordering of pattern positions, since no part of a sub-pattern can be tested before the input
value has been successfully tested against the parent type. The choice of ordering, called
heuristics, thus focus on ordering the sub-patterns on one level. Since the case clause matrix
offers to see, at each translation step, the entire set of sub-patterns, a lot of information is
available that can be used to devise heuristics: for instance, a possible strategy might be to
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first test the column that leads to the earliest distinction. Unfortunately, their study does not
seem to take the merging of equivalent states into account.

With similar aims, Sekar, Ramesha and Ramakrishnan coin the term adaptive pattern match-
ing for the dynamic selection of the traversal order based on the entire match expres-
sions [80]. They use a formalism similar to tree automata and compare several strategies
for synthesizing a traversal order from a set of patterns. After showing through an intricate
example that all of these sometimes decrease the code size or execution time, they intro-
duce a strategy based on index positions which is never worse than any of the strategies in
terms of space or time, while sometimes being better. They give an algorithm that works on
untyped systems, which computes representative sets for untyped systems in quadratic time
and show that in typed systems, the computation of these sets is NP complete.

Sestoft [81] takes a rather different approach to translation of pattern matching: he gives
an ML function that interprets ML pattern match expressions and uses partial evaluation to
derive from it a function performing the behavior of decision trees directly. His translation
makes explicit the use of the set of variants which is available for closed set of types (which
he calls the span of a type): if a type has n branches, and n − 1 branches have been tested
already, the last test can be omitted.

Maranget [60] deals with functional pattern matching warnings due to incompleteness or
redundancy, including a closer look at the special case of lazy functional languages. The def-
inition of pattern matching has to be adapted to laziness, since values may possess infinite
structure and evaluation triggered by pattern matching may not terminate. He introduces
a formalism based on case clause matrices similar to our development here. He demon-
strates also that when incompleteness checking can be done without unfolding alternative
branches, thereby avoiding exponential blowup.

In contrast to the algorithms discussed above, Field and Harrison [34] describe a notion
of best-fit pattern matching where it is the most specific pattern rather than the first case
clause from the top that will be chosen in a match expression. This yields to a different
intermediate representation. Otherwise, translation is similarly avoiding redundant tests in
algebraic data types.

Zenger [96] introduces algebraic data types in the form of case classes to an extensible com-
piler framework. He describes an incremental algorithm that updates a mutable internal
representation for each case clause and each sub-pattern. The internal representation is very
compact and the translation of match expressions very efficient. In the course of this the-
sis, we tried to extend this algorithm with other kinds of patterns. However, incomplete-
ness checking proved difficult since reachability analysis on the intermediate representation
amounts to interpreting generated code.

Moreau, Ringeissen and Vittek [66] translate pattern matching code into existing languages,
without requiring extensions. Their translation is a source-to-source translation from match
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expression to decision trees. Algebraic data types are declared through a macro-language,
and match expressions embedded in sources are compiled to expressions in the host lan-
guage. Unfortunately, they do not give details of their translation algorithm.

7.4 Generic Pattern Matching

7.4.1 Dynamic Typing

Abadi et al [2] study dynamic typing in a statically typed language, more precisely the poly-
morphic lambda calculus. Their paper introduces a typecase construct and a type Dynamic,
with the idea its instances are value bundled type information. Only those values for which
dynamic typing is needed have the type Dynamic, and the typecase construct serves to re-
cover the type information when it is needed.

7.4.2 Subtyping Constraints

Trifonov and Smith [88] describe subtyping in the presence of constraints. They study a se-
mantic characterization of subtyping using regular trees, in the aim of generalizing Hindley-
Milner type inference to polymorphic type schemes with subtype constraints.

Pottier [74] presents a theory for simplifying subtyping constraints, based on unification.
Like Trifonov and Smith, he carries over the syntactic problem of type and type constraint
simplification to the domain of tree automata. He presents a minimization algorithm that
reduces a constraint problem, often yielding optimal equivalent problems.

Litvinov’s thesis [57] deals with subtyping constraints in the context of the multiple dis-
patch, as provided by the CECIL programming language. He proposes constraint-bounded
polymorphism, which generalizes F-bounds to arbitrary constraints, similar to our GPAT

type system described in Chapter 6. His presentation is tailored to multi-methods, which
makes it difficult to compare it with our system where constraint are derived from deep
patterns in pattern matching expressions. The motivation for his system are type-checking
idioms like partial subtyping that are encountered when bootstrapping and type-checking
the CECIL compiler (some of which are quite specific to CECIL).

7.4.3 Generalized Algebraic Data Types

Generalized algebraic datatypes (GADTs) made their first appearance as guarded recursive
data type constructors, proposed in an ML context by Xi, Chen and Chen [95]. They are also
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mentioned as first-class phantom types by Cheney [19]. Crary, Weirich and Morrissett intro-
duced type descriptors (type reps) as a particular early example of GADT’s when studying
intensional type analysis [23].

Peyton Jones, Vytiniotis, Weirich and Washburn [48] show how type annotations can be used
to make the type inference task easy in the functional setting. They use “wobbly types”,
which express in a declarative way the uncertainty caused by the incremental nature of
typical type-inference algorithms. Vytiniotis, Weirich and Peyton Jones also perform a gen-
eralization of the technique to “boxy types” in order to solve the problem for higher-rank
types [91], yielding a conservative extension of Hindley-Milner type inference.

Kennedy and Russo [50] describe ways to harness GADTs in object-oriented programming.
They show that while definitions that model GADTs come almost for free using generic
classes, programs that operate on GADTs need to resort to casts. They also show that equa-
tional type constraints in definitions are remedy to this problem and allow writing visitors
that properly operate on GADTs. They furthermore propose a matching construct and ar-
gue that this makes programs operating on GADT more readable and also permits to match
tuples of expressions. Their matching construct corresponds to the typecase instruction de-
scribed in Chapter 2.

7.5 Other Aspects to Pattern Matching

Queinnec describes applications in and for LISP [75]. His text shows the origins of pattern
matching in LISP meta-programming constructs, and some applications in natural language
processing. Steele and Gabriel [83] is another text that contains remarks on the history of
pattern matching/template filling as an important building block to meta-programming.

The π-calculus provides foundations for concurrent and distributed computation and inter-
action. The “applied” extends pi-calculus with algebraic pattern matching [35], specifying
matching as an equational theory. Algebraic pattern matching is subsumed by matching on
case classes as described in this thesis.

Ma [59] compiles patterns in the (nondeterministic) join calculus into ML style algebraic
patterns, using the partial order “matches more instances” that is defined on patterns.

Harrison, Sheard and Hook define precisely how functional pattern matching in Haskell
alternates between lazy and strict evaluation in order to handle nested patterns [44].

While matching is the computation of a substitution that allows a pattern to be syntactically
equal to value, syntactic unification is the generalization that seeks to make two patterns
syntactically equal. Syntactic unification is the basis of logic programming. Baader [9] de-
scribes the concept and provides pointers to the vast literature on unification algorithms.
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In cotrast to pattern matching in a statically typed context, Erlang [7] is a functional pro-
gramming language that use pattern matching but is dynamically typed. Term pattern
matching is defined in terms of ground terms and does not differ fundamentally from al-
gebraic data types. Pattern matching in Erlang is thus subject to the same restrictions as
algebraic data types and subsumed under the case class mechanism proposed here.

Applications in Object-Oriented Programming. Pattern matching in the context of object-
oriented programming has been applied to message exchange in distributed systems by Lee,
LaMarca and Chambers [55]. They argue that through pattern matching on semistructured
data, programs can be made more robust against changes to data formats. Gapeyev also
applies pattern matching to semistructured data [37], following similar approach by Hosoya
and Pierce put forward in the functional paradigm [45].

Chin and Millstein [20] use pattern matching in the form of a special language construct
called a responder. Responders support event-handling in user interfaces. The paper con-
tains many code examples that show how events and responders (which correspond to case
classes and pattern matching) can facilitate programming interactive applications.

Sequent Calculus Although not mentioning pattern matching explicitly, Abramsky’s com-
putational interpretation of linear logic [3] contains pattern matching primitives. He moti-
vates a calculus based on sequent calculus rather than natural deduction and derives from
it a parallel, lazy language that can be linearly typed. Matching is necessary because in the
subderivation of sequent calculus, a variable is replaced with a whole term substituted for
it. The connection to sequent calculus is also the theme of Kesner, Puel and Breazu-Tannen
pattern calculus [51].

Multiple Dispatch Multi-methods [17, 18, 63, 21] are an alternative technique which
unifies pattern matching with method dispatch. Multi-methods are particularly suitable
for matching on several arguments at the same time. An extension of multi-methods to
predicate-dispatch [29, 62] can also access embedded fields of arguments; however it cannot
bind such fields to variables, so support for deep patterns is limited.

A design that is close to extractors is Richard and Lhoták describe how multi-methods can
be used for pattern matching akin to algebraic data type deconstruction [77].

Reversible Computation Liu and Myers [58] propose to interpret matching as a back-
wards mode of computation. No translation algorithm is given, instead the authors focus
on language design.
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Historical References Rod Burstall’s paper [13] seems the earliest description of pattern
matching as a separate programming language construct. It seems to first have been imple-
mented in an extension of LISP by Fred McBride [61].
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Chapter 8

Conclusion

In this chapter, we summarize the results of our study of object-oriented pattern matching.

8.1 First Order Pattern Matching

We defined the object-oriented pattern matching problem and compared several standard
solutions that are used in object-oriented programs today. We then defined pattern matching
construct compatible with object-oriented programming, based on type tests and two under-
lying mechanisms, case classes and extractor methods. We showed that while case classes
follow functional programming in simplicity and elegance, they also lack extensibility and
complete representation independence. Extractors give us full representation independence
but are associated with a small performance penalty.

The formal translation we presented is an advance over previous presentations of translation
algorithms, since it has a modular correctness proof and provides the basis for a reasonable,
modular implementation. This means that if new kinds of patterns are to be added to the
language, they can easily be integrated in the algorithm, its correctness proof as well as a
rewriting-based implementation.

Our formal development brought to light that optimizations for this object-oriented form
of pattern matching can have important effects on termination. It seems thus desirable
to allow only restricted forms of computation to take place in extractor methods, and ad-
ditionally provide compilers with static analysis facilities that can ensure termination and
exception-freeness on this restricted fragment. Pragmatically, it is useful to know that the
only condition for optimized translation to preserve semantics is termination and exception-
freeness, since it means that programmers that are certain that their extractors are safe may
choose to perform unrestricted computation. In other words, our definition of safety is not
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exotic or specific to matching, and programmers frequently use code that is unsafe in this
sense.

We discussed some implementation choices, which fall into two categories: more kinds of
patterns in order to enhance usability and programmer convenience, and changes to the
underlying mechanisms in order to enhance runtime performance. An interesting choice
that defies this classification is the integrated type test in extractor definitions, as it increases
programmer convenience and at the same time enables further optimization (albeit at the
price of increasing the coupling between the matched type and the extractor behavior).

The performance evaluation showed that object-oriented pattern matching has roughly the
same performance characteristics as other techniques. A vast improvement in readability
is not paid with a horrible performance penalty, on the contrary it even leads to efficient
programs in some cases where encodings introduce inefficiencies.

8.2 Generic Pattern Matching

Parametric polymorphism has a deep impact on the way in which object-oriented programs
are written and type-checked. Our study of pattern matching revealed new aspects in which
the enhanced expressivity of type systems can be harnessed. This was predictable, since
matching is on the one hand based on type tests and, on the other hand, introduces new
identifiers to a scope (the case clause body), similar to the “let” construct in functional lan-
guages, which provides for ample possibilities of interacting with the type-system in mean-
ingful ways.

We studied how advanced techniques from functional programming languages, namely
generalized algebraic data types, can be carried over to object-oriented style. Our devel-
opment rested on a rich notion of subtyping that involved subtyping constraints. Subtyping
in the presence of generalized constraints (as opposed to only upper bounds) seems to be
a good match to object-oriented pattern matching, particularly because expressive object-
oriented languages already have to deal with some form of subtyping constraints for the
upper bounds on type parameters. We introduced subtyping in presence of constraints
and gave declarative and syntax-directed versions of the subtyping rules needed in order
to handle introduction of type parameters in case clauses. We furthermore described how
type-checking collects the various constraints and lets us check the body of each case clause
in a type environment contains information from the pattern structure.
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8.3 Future Work

Besides further case studies to assess whether and to which extent object-oriented pattern
matching can impact software engineering practice, future work is indicated in three direc-
tions.

First, a formal model of local type inference that takes into account existentially quantified
type expressions and subtype constraints. The formalization presented in this document did
not deal with existential types, although these can add to the extensibility of programs that
make use of extractor-based pattern matching.

Second, we experimented with a notion of matching on so-called outer types in SCALA pro-
grams. It may turn out that pattern matching is the only operation that can cleanly query
dynamically the level from which an object is instantiated – since in SCALA, types can be
arbitrarily nested, this would open new possibilities of structuring programs while main-
taining the a safe dynamic type test construct.

Third, various enhancements to the usability have been effected and suggested for the
SCALA implementation of pattern matching, among these parameterized extractors, and-
patterns (conjunctions) and support for more precise exhaustivity checking that includes
information from guards. It seems useful to find a general mechanism that would permit
the user to implement these enhancements himself by expressing them in terms of smaller
pattern primitives. Chaining extractor calls (combined with evaluation at compile time) may
provide a useful angle at this problem.

An orthogonal aspect that requires more work is the optimization of extractor-based pattern
matching. Each of the above-mentioned directions and the original mechanism described
in this thesis needs to be efficiently implementable, in order to preserve the balance of ex-
pressiveness and efficient compilation that is characteristic to pattern matching in functional
programming languages.
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