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Abstract

The problem of side-information scalable source coding is considered in this work, where the encoder constructs a

progressive description, such that the receiver with high quality side information will be able to truncate the bitstream

and reconstruct in the rate distortion sense, while the receiver with low quality side information will have to receive

further data in order to decode. We provide inner and outer bounds for general discrete sources. The achievable region

is shown to be tight for the case that either of the stages requires a lossless reconstruction. Furthermore we show

that the gap between the achievable region and the outer bounds can be bounded by a constant when square error

distortion measure is used. Complete characterization is provided for the important quadratic Gaussian source with

jointly Gaussian side-informations, where the outer bounds match the achievable region. Partial result is provided

for the doubly symmetric binary source with Hamming distortion when the worse side information is a constant, for

which one of the outer bound is strictly tighter than the other one.

I. INTRODUCTION

Consider the following scenario where a server is to broadcast multimedia data to multiple users with different

side informations, however the side informations are not available at the server. A user may have side information

so strong that only minimal additional information is required from the server to satisfy a fidelity criterion, or a user

may have barely any side information and expect the server to provide virtually everything to satisfy a (possibly

different) fidelity criterion.

A naive strategy is to form a single description and broadcast it to all the users, who can decode only after

receiving it completely regardless of the quality of their individual side informations. However, for the users with

good-quality side information (who will be simply referred to as the good users), most of the information received

is redundant, which introduces a delay caused simply by the existence of users with poor-quality side informations

(referred to as the bad users) in the network. It is natural to ask whether an opportunistic method exists, i.e., whether

it is possible to construct a two-layer description, such that the good users can decode with only the first layer, and

the bad users receive both the first and the second layer to reconstruct. Moreover, it is of importance to investigate

whether such a coding order introduces any performance loss. We call this coding strategy side-information scalable

(SI-scalable) source coding, since the scalable coding direction is from the good users to the bad users. In this

work, we consider mostly two-layer systems, except the quadratic Gaussian source for which the solution to an

even more general problem is given.

This work is related to the successive refinement problem, where a source is to be encoded in a scalable manner

to satisfy different distortion requirement at each individual stage. This problem was studied by Koshelev [1],

and by Equitz and Cover [2]; Rimoldi [3] later provided a complete characterization of the rate-distortion region.
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Fig. 1. The SR-WZ system vs. the SI-scalable system.

Another related problem is the rate-distortion for source coding with side information at the decoder [4], for which

Wyner and Ziv provided conclusive result (now widely known as the Wyner-Ziv problem). Steinberg and Merhav

[5] recently extended the successive refinement problem in the Wyner-Ziv setting (SR-WZ) for the special case of

the two stage system, when the second stage side information Y2 is better than that of the first stage Y1, in the sense

that X ↔ Y2 ↔ Y1 forms a Markov string. The extension to multistage systems with degraded side informations

in such a direction was recently completed in [6]. Also relevant is the work by Heegard and Berger [7] (see also

[8]), where the problem of source coding when side information may be present at the decoder was considered;

the result was extended to the multistage case when the side informations are degraded. This is quite similar to the

problem being considered here, however without the scalable coding requirement.

The current work differs from that in [5][6] in terms of mathematical formulation, as well as their possible

applications. Roughly speaking, in the SI-scalable problem, the side information Y2 at the later stage is worse than

the side information Y1 at the early stage, while in the SR-WZ problem, the order is reversed. In more mathematically

precise terms, for the SI-scalable problem, the side informations are degraded as X ↔ Y1 ↔ Y2, in contrast to the

SR-WZ problem where the reversed order is specified as X ↔ Y2 ↔ Y1. The two problems are also different in

terms of their possible applications. The SR-WZ problem is more applicable for a single server-user pair, when the

user is receiving side information through another channel, and at the same time receiving the description(s) from

the server; for this scenario, two decoders can be extracted to provide a simplified model. On the other hand, the

SI-scalable problem is more applicable when multiple users exist in the network, and the server wants to provide

a scalable description, such that good users are not jeopardized unnecessarily (see Fig. 1). It is also worth pointing

out that Heegard and Berger showed when the scalable coding requirement is removed, the optimal encoding by
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itself is in fact naturally progressive from the bad user to the good one; as such, the SI-scalable problem is expected

to be more difficult than the SR-WZ problem, since the encoding order is reversed from the natural one. Despite

the differences, both problems can be though as special cases of the general problem of scalable source coding

with side information at the decoders with no structure imposed on the side informations. This general problem

appears difficult; in fact, even without the scalable requirement, a complete solution was not found.

The problem is in fact well understood for the lossless case. The key difference from the lossy case is that the

quality of the side informations can be naturally determined by the value of H(X|Y ). By the seminal work of

Slepian and Wolf [9], H(X|Y ) is the minimum rate of encoding X losslessly with side information Y at the decoder,

thus in a sense a larger H(X|Y ) corresponds to weaker side information. If H(X|Y1) < H(X|Y2), then the rate

(R1, R2) = (H(X|Y1),H(X|Y2)−H(X|Y1)) is achievable, as noticed by Feder and Shulman [10]. Extending this

observation and a coding scheme in [11], Draper [12] proposed a universal incremental Slepian-Wolf coding scheme

when the distribution is unknown, which inspired Eckford and Yu [13] to design rateless Slepian-Wolf LDPC code.

For the lossless case, there is no loss of optimality by using a scalable coding approach; an immediate question is

to ask whether the same is true for the lossy case in terms of rate distortion, which we will show to be not so in

general. In this rate-distortion setting, the order of goodness by the value of H(X|Y ) is not sufficient because of

the presence of the distortion constraints. The Markov condition is therefore introduced as X ↔ Y1 ↔ Y2 for the

SI-scalable coding problem. From this point of view, the SI-scalable problem is also applicable in the single user

setting, when the source encoder does not know exactly which side information statistics the receiver has within a

given set, i.e., a special case of universal rate distortion coding.

In this work, we formulate the problem of side information scalable source coding, and provide two inner

bounds and two outer bounds for the rate-distortion region. One of the inner-bounds has the same distortion and

rate expressions as one of the outer bound, and they differ only by a Markov string requirement. Though the inner

and the outer bounds do not coincide in general, the inner bounds are indeed tight for the case when either the

first stage or the second stage requires a lossless reconstruction. Furthermore, a conclusive result is given for the

quadratic Gaussian source with (more than two) arbitrary correlated Gaussian side informations by using these

bounds.

With this set of inner and outer bounds, the problem of perfectly scalability is investigated, defined as when

both of the layers can achieve the corresponding Wyner-Ziv bounds; this is similar to the notion of (strictly)

successive refinement in the SR-WZ problem [5][6]1. Necessary and sufficient conditions are derived for general

discrete memoryless sources to be perfectly scalable under a mild support condition. By using the tool of rate-loss

introduced by Zamir [14], we further show that the gap between the inner bounds and the outer bounds are bounded

by a constant when square error distortion measure is used, and thus the inner bounds are “nearly sufficient”, in

the sense as given in [15].

1In the rest of the paper, decoder one, respectively decoder two, will also be referred to as the first stage decoder, respectively second stage

decoder, depending on the context.
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In addition to the result for the Gaussian source, partial result is provided for the doubly symmetric binary source

(DSBS) with Hamming distortion measure when the second stage does not have side information, for which the

inner bounds and outer bounds coincide in certain distortion regimes. Furthermore, it is shown one of the outer

bound can be strictly better than the other for this source.

This paper is organized as follows. In Section II we define the problem and establish the notation. In Section

III, we provide inner and outer bounds to the rate-distortion regio.

and the gap between the inner bound and the outer bounds is investigated for the special case of mean squared

distortion measure. The special cases are discussed in VI. We conclude the paper in Section VII.

II. NOTATION AND PRELIMINARIES

Let X be a finite set and let Xn be the set of all n-vectors with components in X . Denote an arbitrary member

of Xn as xn = (x1, x2, ..., xn), or alternatively as x. Upper case is used for random variables and vectors. A

discrete memoryless source (DMS) (X , PX) is an infinite sequence {Xi}∞i=1 of independent copies of a random

variable X in X with a generic distribution PX with PX(xn) =
∏n

i=1 PX(xi). Similarly, let (X ,Y1,Y2, PXY1Y2)

be a discrete memoryless three-source with generic distribution PXY1Y2 ; the subscript will be drop when it is clear

from the context as P (X,Y1, Y2).

Let X̂1 and X̂2 be finite reconstruction alphabets. Let dj : X ×X̂j → [0,∞), j = 1, 2 be two distortion measures.

The single-letter distortion extension of dj to a vector is defined as

dj(x, x̂) =
1
n

n∑

i=1

dj(xi, x̂i), ∀x ∈ Xn, x̂ ∈ X̂n
j , j = 1, 2. (1)

Definition 1: An (n,M1,M2,D1,D2) rate distortion (RD) SI-scalable code for source X with side information

(Y1, Y2) consists of two encoding functions φi and two decoding functions ψi, i = 1, 2:

φ1 : Xn → IM1 , φ2 : Xn → IM2 , (2)

where Ik = {1, 2, ..., k} and

ψ1 : IM1 × Yn
1 → X̂n

1 , ψ2 : IM1 × IM2 × Yn
2 → X̂n

2 , (3)

such that

Ed1(Xn, ψ1(φ1(Xn), Y n
1 )) ≤ D1, (4)

Ed2(Xn, ψ2(φ1(Xn), φ2(Xn), Y n
2 )) ≤ D2, (5)

where E is the expectation operation.

Definition 2: A rate pair (R1, R2) is said to be (D1,D2)-achievable for SI-scalable encoding with side informa-

tion (Y1, Y2), if for any ε > 0 and sufficiently large n, there exist an (n,M1,M2,D1 + ε,D2 + ε) RD SI-scalable

code, such that R1 + ε ≥ 1
n log(M1) and R2 + ε ≥ 1

n log(M2).

Denote the collection of all the (D1,D2)-achievable rate pair (R1, R2) for SI-scalable encoding as R(D1,D2),

and we seek to characterize this region when X ↔ Y1 ↔ Y2 forms a Markov string (see similar but reversed
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degradedness conditions in [5] and [7]). The Markov condition in effect specifies the goodness of the side infor-

mations.

The rate-distortion function for degraded side-informations was established in [7] for the non-scalable coding

problem. In light of the discussion in Section I, it gives a lower bound on the sum-rate for any RD SI-scalable

code. More precisely, in order to achieve distortion D1 with side information Y1, and achieve distortion D2 with

side information Y2, when X ↔ Y1 ↔ Y2, the rate-distortion function is

RHB(D1,D2) = min
p(D1,D2)

[I(X;W2|Y2) + I(X;W1|W2, Y1)], (6)

where p(D1,D2) is the set of all random variable (W1,W2) ∈ W1×W2 jointly distributed with the generic random

variables (X,Y1, Y2), such that the following conditions are satisfied2: (i) (W1,W2) ↔ X ↔ Y1 ↔ Y2 is a Markov

string; (ii) X̂1 = f1(W1, Y1) and X̂2 = f2(W2, Y2) satisfy the distortion constraints. Notice that the rate distortion

function R(D1,D2) given above suggests an encoding and decoding order from the bad user to the good user.

Wyner and Ziv [4] showed that under the following quite general assumption that the distortion measure is chosen

in the set Γd defined as

Γd
∆= {d(·, ·) : d(x, x) = 0, and d(x, x̂) > 0 if x̂ �= x}, (7)

then the rate distortion function satisfies R∗
X|Y (0) = H(X|Y ), where R∗

X|Y (D) is the well-known Wyner-Ziv rate

distortion function with side information Y . If the same assumption is made on the distortion measure d1(·, ·) ∈ Γd,

then it is easy to show using a similar argument as remark (3) in [4] that

RHB(0,D2) = min
p(D2)

[I(X;W2|Y2) +H(X|W2, Y1)], (8)

where p(D2) is the set of all random variable W2 such that W2 ↔ X ↔ Y1 ↔ Y2 is a Markov string, and

X̂2 = f2(W2, Y2) satisfies the distortion constraint.

III. INNER AND OUTER BOUNDS

To provide intuition into the the SI-scalable problem, we first examine a simple Gaussian source under the mean

squared error (MSE) distortion measure, and describe the coding schemes informally.

Let X ∼ N (0, σ2
x) and Y1 = Y = X +N , where N ∼ N (0, σ2

N ) is independent of X; Y2 is simply a constant,

i.e., no side information at the second decoder. X ↔ Y1 ↔ Y2 is indeed a Markov string. To avoid lengthy

discussion on degenerate regimes, assume σ2
N ≈ σ2

x, and consider only the following extreme cases.

• D1 � D2 � σ2
x: It is known binning with a Gaussian codebook, generated single-letter-wisely as W1 = X +

Z1, where Z1 is a zero-mean Gaussian random variable independent of X such that D1 = E[X−E(X|Y,W1)]2,

is optimal for Wyner-Ziv coding. This coding scheme can still be used for the first stage. In the second stage,

by direct enumeration in the list of possible codewords in the particular bin specified in the first stage, the exact

2This form is slightly different than the one in [7] where f1 was defined as f1(W1, W2, Y ), but it is straightforwardly to verify that they

are equivalent. The cardinality bound is also ignored, which is not essential here.
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codeword can be recovered by decoder two, who does not have any side information. Since D1 � D2 � σ2
x,

W1 alone is not sufficient to guarantee a distortion D2, i.e., D2 � E[X − E(X|W1)]2. Thus a successive

refinement codebook, say using a Gaussian random variable W2 such that D2 = E[X − E(X|W1,W2)]2, is

needed. This leads to the achievable rates:

R1 ≥ I(X;W1|Y ), R1 +R2 ≥ I(X;W1|Y ) + I(W1;Y ) + I(X;W2|W1) = I(X;W1,W2). (9)

• D2 � D1 � σ2
x: If we choose W1 = X + Z1 such that D1 = E[X − E(X|Y,W1)]2 and use the coding

method in the previous case, then since D2 � D1, W2 is more than sufficient to achieve distortion D2, i.e.,

D2 � E[X − E(X|W1)]2. The rate needed for the enumeration is I(W1;Y ), and it is rather wasteful since

W2 is more than we need. To solve this problem, we construct an coarser description using random variable

W2 = X+Z1+Z2, such that D2 = E[X−E(X|W2)]2. The encoding process has three effective layers for the

needed two stages: (i) the first layer uses Wyner-Ziv coding with codewords generated by PW2 (ii) the second

layer uses successive refinement Wyner-Ziv coding with PW1|W2 (iii) the third layer enumerates the specific

W2 codeword within the first layer bin. Note that the first two layers form a SR-WZ scheme with identical

side information Y at the decoder. For decoding, decoder one decodes the first two layers, while decoder two

decodes the first and the third layer. By the Markov string X ↔ W1 ↔ W2, this scheme gives the following

rates:

R1 ≥ I(X;W1,W2|Y ) = I(X;W1|Y )

R1 +R2 ≥ I(X;W1|Y ) + I(W2;Y ) = I(X;W2) + I(X;W1|Y,W2). (10)

It is seen in the above discussion the specific coding schemes depend on the distortion values, which is not

desirable since this usually suggests difficulty in proving the converse. The two coding schemes can be unified into

a single one by introducing an auxiliary random variable, as will be shown in the sequel, however, it appears the

converse is indeed quite difficult to prove.

In the rest of this section, inner and outer bounds for R(D1,D2) are provided. The coding schemes for the above

Gaussian example are naturally generalized to give the inner bounds. It is further shown when either one of the

stages requires lossless reconstruction, the inner bounds are in fact tight.

A. Two inner bounds

Define the region Rin(D1,D2) to be the set of all rate pairs (R1, R2) for which there exist random variables

(W1,W2, V ) in finite alphabets W1,W2,V such that the following condition are satisfied.

1) (W1,W2, V ) ↔ X ↔ Y1 ↔ Y2 is a Markov string.

2) There exist deterministic maps fj : Wj × Yj → X̂j such that

Edj(X, fj(Wj , Yj)) ≤ Dj , j = 1, 2. (11)

3) The non-negative rate pairs satisfy:

R1 ≥ I(X;V,W1|Y1), R1 +R2 ≥ I(X;V,W2|Y2) + I(X;W1|Y1, V ). (12)
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4) W1 ↔ (X,V ) ↔W2 is a Markov string.

5) The alphabets V , W1 and W2 satisfy

|V| ≤ |X | + 3, |W1| ≤ |X |(|X | + 3) + 1, |W2| ≤ |X |(|X | + 3) + 1. (13)

The last two conditions can be removed without causing essential difference to the region Rin(D1,D2); with

them removed, no specific structure is required on the joint distribution of (X,V,W1,W2). To see the last two

conditions indeed do not cause loss of generality, apply the support lemma [11] as follows. For an arbitrary joint

distribution of (X,V,W1,W2) satisfying the first three conditions, we first reduce the cardinality of V . To preserve

PX and the two distortions and two mutual information values, |X | + 3 letters are needed. With this reduced

alphabet, observe that both the distortion and rate expressions depend only on the marginal of (X,V,W1) and

(X,V,W2), respectively, hence requiring W1 ↔ (X,V ) ↔ W2 being a Markov string does not cause any loss

of generality. Next to reduce the cardinality of W1, it is seen |X ||V| − 1 letters are needed to preserve the joint

distribution of (X,V ), one more is needed to preserve D1 and another is needed to preserve I(X;W1|Y1, V ). Thus

|X |(|X | + 3) + 1 letters suffice. Note that we do not need to preserve the value of D2 (and the value of the other

mutual information term) because of the aforementioned Markov string. A similar argument holds for |W2|.
The following theorem asserts that Rin(D1,D2) is an achievable region.

Theorem 1: For any discrete memoryless stochastically source with side informations under the Markov condition

X ↔ Y1 ↔ Y2,

R(D1,D2) ⊇ Rin(D1,D2).

This theorem is proved in Appendix II, and here we outline the coding scheme for this achievable region in an

intuitive manner. The encoder first encodes V using a “coarse” binning, such that decoder one is able to decode

it with side information Y1. A Wyner-Ziv successive refinement coding (with side information Y1) is then added

conditioned on the codeword V also for decoder one using W1. The encoder then enumerates the binning of V up

to a level such that V is decodable by decoder two using the weaker side information Y2. By doing so, decoder two

is able to reduce the number of possible codewords in the (coarse) bin to a smaller number, which essentially forms

a “finer” bin; with the weaker side information Y2, the V codeword is then decoded correctly with high probability.

Another Wyner-Ziv successive refinement coding (with side information Y2) is finally added conditioned on the

codeword V for decoder two using random variable W2.

As seen in the above argument, in order to reduce the number of possible V codewords from the first stage to

the second stage, the key idea is to construct a nested binning structure as illustrated in Fig. 2. Each of the coarser

bin contains the same number of finer bins; each finer bin holds certain number of codewords. They are constructed

in such a way that given the specific coarser bin index, the first stage decoder can decode in it with the strong side

information; at the second stage, additional bitstream is received by the decoder, which further specifies one of the

finer bin in the coarser bin, such that the second stage decoder can decode in this finer bin using the weaker side

information. If we assign each codeword to a finer bin independently, then its coarser bin index is also independent

of that of the other codewords.
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Fig. 2. An illustration of the codewords in the nested binning structure.

Specializing the region Rin(D1,D2) gives another inner bound. Let R̂in(D1,D2) be the set of all rate pairs

(R1, R2) for which there exist random variables (W1,W2) in finite alphabets W1,W2 such that the following

condition are satisfied.

1) W1 ↔W2 ↔ X ↔ Y1 ↔ Y2 or W2 ↔W1 ↔ X ↔ Y1 ↔ Y2 is a Markov string.

2) There exist deterministic maps fj : Wj × Yj → X̂j such that

Edj(X, fj(Wj , Yj)) ≤ Dj , j = 1, 2. (14)

3) The non-negative rate pairs satisfy:

R1 ≥ I(X;W1|Y1), R1 +R2 ≥ I(X;W2|Y2) + I(X;W1|Y1,W2). (15)

4) The alphabets W1 and W2 satisfy

|W1| ≤ (|X | + 3)(|X |(|X | + 3) + 1), |W1| ≤ (|X | + 3)(|X |(|X | + 3) + 1). (16)

Corollary 1: For any discrete memoryless stochastically source with side informations under the Markov condi-

tion X ↔ Y1 ↔ Y2,

Rin(D1,D2) ⊇ R̂in(D1,D2).

The region R̂in(D1,D2) is particular interesting for the following reasons. Firstly, it can be explicitly matched

back to the coding scheme for the simple Gaussian example. Secondly, it will be shown that one of the outer bounds

has the same rate and distortion expressions as R̂in(D1,D2), only without the second Markov string requirement.

We now prove this corollary.

Proof of Corollary 1

When W1 ↔W2 ↔ X , let V = W1. Then the rate expressions in Theorem 1 gives

R1 ≥ I(X;W1|Y1), R1 +R2 ≥ I(X;V,W2|Y2) + I(X;W1|V, Y1) = I(X;W2|Y2), (17)

and therefore Rin(D1,D2) ⊇ R̂in(D1,D2) for this case. When W2 ↔ W1 ↔ X , let V = W2. Then the rate

expressions in Theorem 1 gives

R1 ≥ I(X;V,W1|Y1) = I(X;W1|Y1)

R1 +R2 ≥ I(X;V,W2|Y2) + I(X;W1|V, Y1) = I(X;W2|Y2) + I(X;W1|W2, Y1),
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and therefore Rin(D1,D2) ⊇ R̂in(D1,D2) for this case.

The cardinality bound here is larger than that in Theorem 1 because of the requirement to preserve the Markov

conditions.

B. Two outer bounds

Define the following two regions, which will be shown to be two outer bounds. An obvious outer bound is

given by the intersection of the Wyner-Ziv rate distortion function and the rate-distortion function for the problem

considered by Heegard and Berger [7] with degraded side information X ↔ Y1 ↔ Y2

R∩(D1,D2) = {(R1, R2) : R1 ≥ R∗
X|Y1

(D1), R1 +R2 ≥ RHB(D1,D2)}. (18)

A tighter outer bound is now given as follows: define the region Rout(D1,D2) to be the set of all rate pairs

(R1, R2) for which there exist random variables (W1,W2) in finite alphabets W1,W2 such that the following

conditions are satisfied.

1) (W1,W2) ↔ X ↔ Y1 ↔ Y2.

2) There exist deterministic maps fj : Wj × Yj → X̂j such that

Edj(X, fj(Wj , Yj)) ≤ Dj , j = 1, 2. (19)

3) |W1| ≤ |X |(|X | + 3) + 2, |W2| ≤ |X | + 3.

4) The non-negative rate vectors satisfies:

R1 ≥ I(X;W1|Y1), R1 +R2 ≥ I(X;W2|Y2) + I(X;W1|Y1,W2). (20)

The main result of this subsection is the following theorem.

Theorem 2: For any discrete memoryless stochastically source with side informations under the Markov condition

X ↔ Y1 ↔ Y2,

R∩(D1,D2) ⊇ Rout(D1,D2) ⊇ R(D1,D2).

The first inclusion of R∩(D1,D2) ⊇ Rout(D1,D2) is obvious, since Rout(D1,D2) takes the same form as

R∗
X|Y1

(D1) and RHB(D1,D2) when the rates R1 and R1 +R2 are considered individually. Thus we will focus on

the latter inclusion, whose proof is given in Appendix III.

Note that the inner bound R̂in(D1,D2) and Rout(D1,D2) have the same rate and distortion expressions and they

differ only by a Markov string requirement (ignoring the non-essential cardinality bounds). This is quite similar to

the case of distributed lossy source coding problem, for which the Berger-Tung inner bound requires a long Markov

string and the Berger-Tung outer bound requires only two short Markov strings [16], but their rate and distortion

expressions are the same.
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C. Lossless reconstruction at one of the decoders

Since decoder one has better quality side information, it is reasonable for it to require a higher quality recon-

struction. Alternatively, from the point of view of universal coding, when the encoder does not know the quality

of the side information, it might assume the better quality one exists at the decoder and aim to reconstruct with a

higher quality, comparing with the case when the poorer quality side information is available. In the extreme case,

decoder one might require a lossless reconstruction. In this subsection, we consider the setting where either decoder

one or decoder two requires lossless reconstruction. More precisely, we have the following theorem.

Theorem 3: If D1 = 0 with d1(·, ·) ∈ Γd, or D2 = 0 with d2(·, ·) ∈ Γd, then R(D1,D2) = Rin(D1,D2).

Remark: Zero distortion under a distortion measure d ∈ Γd can be interpreted as lossless, however, it is a weaker

requirement than the traditional Shannon sense that the probability of error is arbitrarily small. Nevertheless, it is

rather straightforward to specialize the coding scheme for these cases, and show that the same conclusion is true

for lossless coding in the Shannon sense.

Proof of Theorem 3:

For D2 = 0, let W1 = V and W2 = X . The achievable rate vector is given by

R1 ≥ I(X;W1|Y1), R1 +R2 ≥ H(X|Y2). (21)

It is easily seen that this rate region is tight by the converse of Wyner-Ziv coding for rate R1, and the converse of

Slepian-Wolf coding (or more precisely, Wyner-Ziv rate distortion function with d2(·, ·) ∈ Γd as given in [4]) for

rate R1 +R2.

For D1 = 0, let W1 = X and V = W2. The achievable rate vector is given by

R1 ≥ H(X|Y1), R1 +R2 ≥ I(X;W2|Y2) +H(X|Y1,W2). (22)

It is seen that this rate region is tight by the converse of Slepian-Wolf coding for rate R1, and by (8) of Heegard-

Berger coding for rate R1 +R2.

The key difference from the general case when both stages are lossy is the elimination of the need to generate

one of codebooks using an auxiliary random variables, which simplifies the matter tremendously. For example when

D2 = 0, since the first stage encoder guarantees that w1 and x are jointly typical, the second stage only needs

to construct a codebook of x by binning the approximately 2H(X|W1) such x vector directly. Subsequently the

second stage encoder does not search for a vector x∗ to be jointly typical with both w1 and x, but instead just

sends the bin index of the observed source vector x directly. Alternatively, it can be understood as both the encoder

and decoder at the second stage have access to a side information vector w1, and thus a conditional Slepian-Wolf

coding with decoder side information Y2 suffices.
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IV. PERFECT SCALABILITY

Similarly as the notion of the (strictly) successive refinability defined in [5], we now introduce the notion of

perfect scalability for the SI-scalable problem.

Definition 3: A source X is said to be perfect scalable for distortion pair (D1,D2), with side informations under

the Markov string X ↔ Y1 ↔ Y2, if

(R∗
X|Y1

(D1), R∗
X|Y2

(D2) −R∗
X|Y1

(D1)) ∈ R(D1,D2).

Theorem 4: A source X with side informations under the Markov string X ↔ Y1 ↔ Y2, for which there exists

y1 ∈ Y1 such that PXY1(x, y1) > 0 for each x ∈ X , is perfect scalable for distortion pair (D1,D2) if and only

if there exist random variables (W1,W2) and deterministic maps fj : Wj × Yj → X̂j such that the following

conditions hold simultaneously:

1) R∗
X|Yj

(Dj) = I(X;Wj |Yj) and Edj(X, fj(W1, Yj)) ≤ Dj , for j = 1, 2.

2) W1 ↔W2 ↔ X ↔ Y1 ↔ Y2 forms a Markov string.

3) The alphabet W1 and W2 satisfy |W1| ≤ |X |(|X | + 3) + 2, and |W2| ≤ |X |(|X | + 3).

The Markov string condition is the most crucial one, and the substring W1 ↔ W2 ↔ X is the same as one

of the condition for successive refinability without side information [2][3]. The cardinality bounds on the alphabet

can be removed without essential difference, but it is included here for easy comparison with the outer bound

Rout(D1,D2), for which the alphabet size of W2 is in fact smaller.

Proof of Theorem 4

Without loss of generality, assume PX(x) > 0 for all x ∈ X . By Theorem 2, if (R∗
X|Y1

(D1), R∗
X|Y2

(D2) −
R∗

X|Y1
(D1) is achievable for (D1,D2), then there exist random variable W1,W2 in finite alphabet, whose sizes is

bounded as |W1| ≤ |X |(|X |+3)+2 and |W2| ≤ |X |+3, and functions f1, f2 such that (W1,W2) ↔ X ↔ Y1 ↔ Y2

is a Markov string, Edj(X, fj(Wj , Yj)) ≤ Dj for j = 1, 2 and

R∗
X|Y1

(D1) ≥ I(X;W1|Y1), R∗
X|Y2

(D2) ≥ I(X;W2|Y2) + I(X;W1|Y1,W1). (23)

It follows

R∗
X|Y2

(D2) ≥ I(X;W2|Y2) + I(X;W1|Y1,W2) ≥ I(X;W2|Y2)
(a)

≥ R∗
X|Y2

(D2), (24)

where (a) follows the converse of rate-distortion theorem for Wyner-Ziv coding. Since the leftmost and the rightmost

quantities are the same, all the inequalities must be equalities in (24), and it follows I(X;W1|Y1,W2) = 0. Similarly

we have

R∗
X|Y1

(D1) ≥ I(X;W1|Y1) ≥ R∗
X|Y1

(D1), (25)

thus (25) also holds with equality.

Notice that if W1 ↔ W2 ↔ X is a Markov string, then we can use Corollary 1 to claim the sufficiency and

complete the proof. However, this Markov condition is not true in general. This is where the support condition is

needed.
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For convenience, define the set F (w2) = {x ∈ X : P (x,w2) > 0}. By the Markov string (W1,W2) ↔ X ↔ Y1,

the joint distribution of (w1, w2, x, y1) can be factorized as follows

P (w1, w2, x, y1) = P (x, y1)P (w2|x)P (w1|x,w2). (26)

Furthermore, I(X;W1|Y1,W2) = 0 implies the Markov string X ↔ (W2, Y1) ↔W1, and thus the joint distribution

of (w1, w2, x, y1) can also be factorized as follows

P (w1, w2, x, y1) = P (x, y1, w2)p(w1|y1, w2)
(a)
= P (x, y1)P (w2|x)P (w1|y1, w2), (27)

where (a) follows by the Markov substring W2 ↔ X ↔ Y1 ↔ Y2. Fix an arbitrary (w∗
1 , w

∗
2) pair, by the assumption

that P (x, y1) > 0 for any x ∈ X , we have

P (w∗
2 |x)P (w∗

1 |x,w∗
2) = P (w∗

2 |x)P (w∗
1 |y1, w∗

2) (28)

for any x ∈ X . Thus for any x ∈ F (w∗
2) such that P (w1|x,w∗

2) is well defined, we have

p(w∗
1 |y∗1 , w∗

2) = p(w∗
1 |x,w∗

2) (29)

and it further implies

p(w∗
1 |w∗

2) =
∑

x P (x,w∗
1 , w

∗
2)∑

x P (x,w∗
2)

=
∑

x P (x,w∗
2)P (w∗

1 |x,w∗
2)∑

x P (x,w∗
2)

= p(w∗
1 |x,w∗

2) (30)

for any x ∈ F (w∗
2). This indeed implies W1 ↔W2 ↔ X is a Markov string, which completes the proof.

The following two cases will be examined in Section VI: Gaussian source with MSE distortion measure and the

doubly symmetric binary source with Hamming distortion measure. It will be shown that for some distortion pairs,

both sources are perfectly scalable, while for others this is not possible.

V. A NEAR SUFFICIENCY RESULT

By using the tool of rate loss introduced by Zamir [14], which was further developed in [15], [17], [18], it can

be shown that when both the source and reconstruction alphabets are reals, and the distortion measure is MSE, the

gap between the achievable region and the out bounds are bounded by a constant. To do this, we distinguish the

two cases D1 ≥ D2 and D1 ≤ D2. The source X is assumed to have finite variance σ2
x. The result of this section

is summarized in Fig. 3.

A. The case D1 ≥ D2

Construct two random variable W ′
1 = X + N1 + N2 and W ′

2 = X + N2, where N1 and N2 are zero mean

independent Gaussian random variables, independent of everything else, with variance σ2
1 and σ2

2 such that σ2
1+σ2

2 =

D1 and σ2
2 = D2. Let U be optimal random variable to achieve the Wyner-Ziv rate at distortion D1 given decoder
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),( 21 DD

),( 21 DDout

),( 21 DDin

1R

2R

Fig. 3. An illustration of the gap between the inner bound and the outer bounds when MSE is the distortion measure. The two regions

Rin(D1, D2) and Rout(D1, D2) are given in dashed lines, since it is unknown whether they are indeed the same.

side information Y1. Then

I(X;X +N1 +N2|Y1) − I(X;U |Y1)

(a)
= I(X;X +N1 +N2|UY1) − I(X;U |Y1,X +N1 +N2)

≤ I(X;X +N1 +N2|UY1)

= I(X − X̂1;X − X̂1 +N1 +N2|UY1)

≤ I(X − X̂1, U, Y1;X − X̂1 +N1 +N2)

= I(X − X̂1;X − X̂1 +N1 +N2) + I(U, Y1;X − X̂1 +N1 +N2|X − X̂1)

= I(X − X̂1;X − X̂1 +N1 +N2)
(b)

≤ 1
2

log2

D1 +D1

D1
= 0.5 (31)

where (a) is by applying chain rule to I(X;X+N1 +N2, U |Y1) in two different ways; (b) is true because X̂1 is the

decoding function given (U, Y1), the distortion between X and X̂1 is bounded by D1, and X − X̂1 is independent

of (N1, N2).

Now we turn to bound the gap for the sum rate R1 + R2. Let W1 and W2 be the two random variables to

achieve the rate distortion function RHB(D1,D2). First notice the following two identities due to the Markov
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string (W1,W2) ↔ X ↔ Y1 ↔ Y2 and (N1, N2) are independent of (X,Y1, Y2)

I(X;W2|Y2) + I(X;W1|W2Y1) = I(X;W1W2|Y1) + I(Y1;W2|Y2) (32)

I(X;X +N2|Y2) = I(X;X +N2|Y1) + I(Y1;X +N2|Y2). (33)

Next we seek to bound the following difference

I(X;X +N2|Y2) − I(X;W2|Y2) − I(X;W1|W2Y1)

= {I(X;X +N2|Y1) − I(X;W1W2|Y1)} + {I(Y1;X +N2|Y2) − I(Y1;W2|Y2)}. (34)

To bound the first bracket, notice that

I(X;X +N2|Y1) − I(X;W1W2|Y1)

= I(X;X +N2|W1W2Y1) − I(X;W1W2|Y1,X +N2)

≤ I(X;X +N2|W1W2Y1)

(a)
= I(X;X +N2|W1W2Y1Y2)

= I(X − X̂2;X − X̂2 +N2|W1W2Y1Y2)

≤ I(X − X̂2,W1,W2, Y1, Y2;X − X̂2 +N2)

= I(X − X̂2;X − X̂2 +N2) + I(W1,W2, Y1, Y2;X − X̂2 +N2|X − X̂2)

= I(X − X̂2;X − X̂2 +N2) ≤ 1
2

log
D2 +D2

D2
= 0.5 (35)

where (a) is due to the Markov string (W1,W2) ↔ X ↔ Y1 ↔ Y2, X̂2 is the decoding function given (W2, Y2),

and the other inequalities follow similar arguments as in Eqn. (31). To bound the second bracket, we write the

following

I(Y1;X +N2|Y2) − I(Y1;W2|Y2) = I(Y1;X +N2|W2Y2) − I(Y1;W2|Y2,X +N2)

≤ I(Y1;X +N2|W2Y2)

≤ I(XY1;X +N2|W2Y2)

= I(X;X +N2|W2Y2) ≤ 1
2

log
D2 +D2

D2
= 0.5 (36)

By letting W ′
1 = V ′ = X +N1 +N2 and W ′

2 = X +N2, it is obvious that the following rates are achievable for

distortion (D1,D2) from Theorem 1

R1 = I(X;X +N1 +N2|Y1), R1 +R2 = I(X;X +N2|Y2). (37)

Thus we have shown that for D1 ≥ D2, the gap between the outer bound R∩(D1,D2) and the inner bound

Rin(D1,D2) is bounded. More precisely, the gap for R1 is bounded by 0.5 bit, while the gap for the sum rate is

bounded by 1.0 bit.
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B. The case D1 ≤ D2

Construct random variable W ′
1 = X+N1 and W ′

2 = X+N1 +N2, where N1 and N2 are zero mean independent

Gaussian random variables, independent of everything else, with variance σ2
1 and σ2

2 such that σ2
1 = D1 and

σ2
1 + σ2

2 = D2.

Apparently, the argument for the first stage R1 still holds with minor changes. To bound the sum-rate gap, notice

the following identity

I(X;X +N1 +N2|Y2) + I(X;X +N1|Y1,X +N1 +N2)

= I(X;X +N1 +N2|Y1) + I(Y1;X +N1 +N2|Y2) + I(X;X +N1|Y1,X +N1 +N2) (38)

= I(Y1;X +N1 +N2|Y2) + I(X;X +N1|Y1). (39)

Next we seek to upper bound the following quantity

I(X;X +N1 +N2|Y2) + I(X;X +N1|Y1,X +N1 +N2) − I(X;W2|Y2) − I(X;W1|W2Y1)

= {I(X;X +N1|Y1) − I(X;W1W2|Y1)} + {I(Y1;X +N1 +N2|Y2) − I(Y1;W2|Y2)}. (40)

For the first bracket, we have

I(X;X +N1|Y1) − I(X;W1W2|Y1)

= I(X;X +N1|W1W2Y1) − I(X;W1W2|Y1,X +N1)

≤ I(X;X +N1|W1W2Y1)

= I(X − X̂1;X − X̂1 +N2|W1W2Y1)

≤ I(X − X̂1,W1,W2, Y1;X − X̂1 +N2)

= I(X − X̂1;X − X̂1 +N1) + I(W1,W2, Y1;X − X̂1 +N1|X − X̂1)

= I(X − X̂1;X − X̂1 +N1) ≤ 1
2

log
D1 +D1

D1
= 0.5, (41)

where X̂1 is the decoding function given (W1, Y1). For the second bracket, following a similar approach as (36),

we have

I(Y1;X +N1 +N2|Y2) − I(Y1;W2|Y2) ≤ I(X;X +N1 +N2|W2Y2) (42)

≤ I(X − X̂2,W2, Y2;X − X̂2 +N1 +N2) (43)

= I(X − X̂2;X − X̂2 +N1 +N2) ≤ 0.5 (44)

By letting V ′ = W ′
2 = X+N1 +N2, it is easily seen that the following rates are achievable for distortion (D1,D2)

R1 = I(X;X +N1|Y1)

R1 +R2 = I(X;X +N1 +N2|Y2) + I(X;X +N1|Y1,X +N1 +N2).

Thus we conclude that for both cases the gap between the inner bound and the outer bound is bounded. Fig. 3

illustrates the inner bound and outer bounds, as well as the gap in between.
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Fig. 4. The partition of the distortion region, where dc is the critical distortion in [4] below which time sharing is not necessary.

VI. TWO SPECIAL SOURCES

A. The Quadratic Gaussian Case

Consider the Gaussian source X and two jointly Gaussian side informations Y1 and Y2. The degraded side

information assumption, either X ↔ Y1 ↔ Y2 or X ↔ Y2 ↔ Y1, for the quadratic Gaussian case is specially

interesting. Since physically degradedness and statistically degradedness do not cause essential difference in terms

of the rate-distortion region [5], and furthermore jointly Gaussian source-side information is always statistically

degraded, these two degraded cases provide a complete solution to the jointly Gaussian two-decoder case. This

can be generalized one more step to a system with more than two decoders, which introduces slight complication

because the quality of side informations may not be monotonic along the scalable coding order. We next consider

this general case, and the solution for the two stage case can be easily reduced from the general solution.

B. The Doubly Symmetric Binary Source with Hamming Distortion Measure

Consider the following source: X is a memoryless binary source X ∈ {0, 1} and P (X = 0) = 0.5. The first

stage side information Y can be taken as the output of a binary symmetric channel with input X , and crossover

probability p < 0.5. The second stage does not have side information. Despite various attempts [7], [19], [20], an

explicit calculation of RHB(D1,D2) was not found until recently [6].

With this explicit calculation, it can be shown that in the shaded region in Fig. 4, the outer bound R∩(D1,D2)

is in fact achievable (as well as in Region II, III and IV; however these three regions are degenerate cases, and

will be ignored in what follows). Recall the definition of the critical distortion dc in the Wyner-Ziv problem for

the DSBS source in [4]

G(dc)
dc − p

= G′(dc),
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BSC BSC BSC
Y X

1
W

2
W

Fig. 5. The forward test channel in Region I-D. The crossover probability for the BSC between X and W1 is D1, while the crossover

probability η for the BSC between W1 and W2 is such that D1 ∗ η = D2.

BSC BSC BSC
Y X 2

W
1

W

(a)

BSC BSC
Y X 2

W

(b)

Fig. 6. The forward test channels in Region I-C. The crossover probability for the BSC between X and W2 is D2 in both the channels, while

the crossover probability η for the BSC between W2 and W1 in (a) is such that D2 ≤ D1 ∗ η = η′ ≤ dc. Note for (b), W1 can be taken as

a constant.

where G(u) = h(p∗u)−h(u), h(u) is the binary entropy function h(u) = −u log u− (1−u) log(1−u), and u∗ v
is the binary convolution for 0 ≤ u, v ≤ 1 as u ∗ v = u(1− v) + v(1−u). It was shown in [4] that if D ≤ dc, then

R∗
X|Y (D) = G(D). We will use the following result from [6].

Theorem 5: For distortion pairs (D1,D2) such that 0 ≤ D2 ≤ 0.5 and 0 ≤ D1 ≤ min(dc,D2) (i.e., Region

I-D),

RHB(D1,D2) = 1 − h(D2 ∗ p) +G(D1).

This result implies that for the shaded region I-D, the forward test channel to achieve this lower bound is in fact

a cascade of two BSC channels depicted in Fig. 5. This choice clearly satisfy the condition in Corollary 1 with

the rates given by the outer bound R∩(D1,D2), which shows that this outer bound is indeed achievable. Note the

following inequality

RHB(D1,D2) = 1 − h(D2 ∗ p) + h(p ∗D1) − h(D1) ≥ 1 − h(D2) = R(D2), (45)

where the inequality is due to the monotonicity of G(u) in 0 ≤ u ≤ 0.5, we conclude that in this regime the

source is not perfectly scalable. To see R∩(D1,D2) is also achievable in region I-C, recall the result in [4] that

the optimal forward test channel to achieve R∗
X|Y (D) has the following structure: it is the time-sharing between

zero-rate coding and a BSC with crossover probability dc if D ≥ dc, or a single BSC with crossover probability

D otherwise. Thus it is straightforward to verify that R∩(D1,D2) is achievable by time sharing the following two

forward test channels in Fig. 6. From this time-sharing channel, an equivalent forward test channel can be found

such that the Markov condition W ′
1 ↔ W2 ↔ X is satisfied, and furthermore it satisfies the condition given in

Theorem 4, and thus in this regime, the source is in fact perfectly scalable.

Unfortunately, we were not able to find the complete characterization for the regime I-A and I-B. Using an
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Fig. 7. The rate outer bounds for a particular choice of D1, D2 in Region I-B of Figure 4.

approach similar to [6], an explicit outer bound can be derived from Rout(D1,D2). It can then be shown numerically

that for certain distortion pairs in this regime, Rout(D1,D2) is strictly tighter than R∩(D1,D2). This calculation is

relegated to Appendix IV. An example is given in Fig. 7 for the two outer bounds with a non-zero gap in between

for a specific distortion pair in Region I-B.

VII. CONCLUSION

We studied the problem of scalable source coding with reversely degraded side-information and gave an achievable

rate region as well as two outer bounds. Furthermore we provided a complete solution the Gaussian source with

quadratic distortion measure, which was shown to be generalized SI-scalable without rate loss. Furthermore, for

some distortion pairs, it is strictly SI-scalable without rate loss, which suggests such an opportunistic approach does

not cause any loss of optimality. For the doubly symmetric binary source with Hamming distortion, we provided

partial results which show that it is generalized SI-scalable without rate loss for low distortion pairs, but fails to

be so for others. The result illustrates the difference between the lossless and the lossy source coding: though a

universal approach does exist with uncertain side informations at the decoder, such uncertainty generally causes

loss of performance in the lossy case.
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APPENDIX I

NOTATION AND BASIC PROPERTIES OF TYPICAL SEQUENCES

We will follow the definition of typicality in [11], but use a slightly different notation to make the small positive

quantity δ explicit (see [5]).

Definition 4: A sequence x ∈ Xn is said to be δ-strongly-typical with respect to a distribution PX(x) on X if

1) For all a ∈ X with PX(a) > 0
∣∣∣∣
1
n
N(a|x) − PX(a)

∣∣∣∣ < δ, (46)

2) For all a ∈ X with PX(a) = 0, N(a|x)=0,

where N(a|x) is the number of occurrences of the symbol a in the sequence x. The set of sequences x ∈ Xn that

is δ-strongly-typical is called the δ-strongly-typical set and denoted as T δ
[X], where the dimension n is dropped.

The following properties are well-known and will be used in the proof:

1) Given a x ∈ T δ
[X], for a y whose component is drawn i.i.d according to PY and any δ′ > δ, we have

2−n(I(X;Y )+λ1) ≤ P [(x,y) ∈ T δ′
[XY ]] ≤ 2−n(I(X;Y )−λ1) (47)

where λ1 is a small positive quantity λ1 → 0 as n→ ∞ and both δ, δ′ → 0.

2) Similarly, given (x,y) ∈ T δ′
[XY ], for any δ′′ > δ′, let the component of z be drawn i.i.d according to the

conditional marginal PZi|Yi
(yi), then

2−n(I(X;Z|Y )+λ2) ≤ P [(x,y,z) ∈ T δ′′
[XY Z]] ≤ 2−n(I(X;Z|Y )−λ2) (48)

where λ2 is a small positive quantity λ2 → 0 as n→ ∞ and both δ′, δ′′ → 0.

3) Markov Lemma [16]: If X ↔ Y ↔ Z is a Markov string, and X and Y are such that their component is

drawn independently according to PXY . Then for all δ > 0

lim
n→∞P [(X,z) ∈ T

|Y|δ
[XZ] |( Y ,z) ∈ T δ

[Y Z]] → 1. (49)

furthermore,

lim
n→∞P [(X,Y ,z) ∈ T δ

[XY Z] |( Y ,z) ∈ T δ
[Y Z]] → 1. (50)

APPENDIX II

PROOF OF THEOREM 1

Codebook generation: Let a probability distribution PW1W2XY1Y2 = PXV W1W2PY1|XPY2|Y1 , and two recon-

struction functions f1(Y1,W1) and f2(Y2,W2) be given. First construct 2nRA coarser bins and 2nRA+R′
A finer

bins, where RA and R′
A are to be specified later. Generate 2RV length-n codewords according to PV (·), denote

this set of codewords as Cv; assign each of them into one of the finer bins independently. For each codeword

v ∈ Cv , generate 2nRW1 length-n codewords according to PW1|V (w1|v) =
∏n

k=1 PW1|V (w1,k|vk), denote this set

of codewords as CW1(v); independently assign each codeword to one of the 2nRB bins. Again for each V codeword,
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independently generate 2nRW2 length-n codewords according to PW2|V (w2|v) =
∏n

k=1 PW2|V (w2,k|vk), denote

this set of codewords as CW2(v); independently assign each codeword to one of the 2nRC bins. Reveal this codebook

to the encoders and decoders.

Encoding: For a given x, find in Cv a codeword v∗ such that (x,v∗) ∈ T 2δ
[XV ]; calculate the coarser bin index

i(v∗), and the finer bin index within the coarser bin j(v∗). Then in the Cw1(v
∗) codebook, find a codeword w∗

1 such

that (w∗
1,v

∗,x∗) ∈ T 3δ
[W1V X], and calculate its corresponding bin index k. In Cw2(v

∗) codebook, find a codeword

w∗
2 such that (w∗

2,v
∗,x) ∈ T 3δ

[W2V X], and calculate its corresponding bin index l. The first-stage encoder sends i

and k, and the second-stage encoder sends j and l. In the above procedure, if there is more than one joint-typical

sequence, choose the least; if there is none, choose a default codeword and declare an error.

Decoding: The first stage decoder finds v̂ in the coarser bin i, such that (v̂,y1) ∈ T
3|X |δ
[V Y1]

; then in the Cw1(v̂)

codebook, find ŵ1 such that (ŵ1, v̂,y1) ∈ T
4|X |δ
[W1V Y1]

. In the second stage, the decoder finds v̂ in the finer bin

specified by (i, j) such that (v̂,y2) ∈ T
3|X |δ
[V Y2]

; then in the Cw2(v̂) codebook, find ŵ2 such that (ŵ2, v̂,y2) ∈
T

4|X |δ
[W2V Y2]

. In the above procedure, if there is none or there are more than one, an error is declared and the decoding

stops. The first decoder reconstructs as x̂1,k = f1(ŵ1,k, y1,k) and the second decoder as x̂2,k = f2(ŵ2,k, y2,k).

Probability of error: First define the encoding errors:

E0 = {X /∈ T δ
[X]} ∪ {Y1 /∈ T δ

[Y1]
} ∪ {Y2 /∈ T δ

[Y2]
}

E1 = Ec
0 ∩ {∀v ∈ Cv, (X,v) /∈ T 2δ

[XV ]}

E2 = Ec
0 ∩ Ec

1 ∩ {∀w1 ∈ Cw1(v
∗), (w1,v

∗,X) /∈ T 3δ
[W1V X]}

E3 = Ec
0 ∩ Ec

1 ∩ {∀w2 ∈ Cw2(v
∗), (w2,v

∗,X) /∈ T 3δ
[W2V X]}.

Next define the decoding errors:

E4 = Ec
0 ∩ Ec

1 ∩ {(v∗,X,Y1) /∈ T 2δ
[V XY1]

}

E5 = Ec
0 ∩ Ec

1 ∩ {(v∗,X,Y2) /∈ T 2δ
[V XY2]

}

E6 = Ec
0 ∩ Ec

1 ∩ {∃v′ �= v∗ : i(v′) = i(v∗) and (v′,Y1) ∈ T
3|X |δ
[V Y1]

}

E7 = Ec
0 ∩ Ec

1 ∩ {∃v′ �= v∗ : i(v′) = i(v∗) and j(v′) = j(v∗) and (v′,Y2) ∈ T
3|X |δ
[V Y2]

}

E8 = Ec
0 ∩ Ec

1 ∩ Ec
2 ∩ Ec

4 ∩ Ec
6 ∩ {(w∗

1 ,v
∗,X,Y1) /∈ T 3δ

[W1V XY1]
}

E9 = Ec
0 ∩ Ec

1 ∩ Ec
3 ∩ Ec

5 ∩ Ec
7 ∩ {(w∗

2 ,v
∗,X,Y2) /∈ T 3δ

[W2V XY2]
}

E10 = Ec
0 ∩ Ec

1 ∩ Ec
2 ∩ Ec

4 ∩ Ec
6 ∩ {∃w′

1 �= w∗
1 : l(w′

1) = l(w∗
1) and (w′

1,v
∗,Y1) ∈ T

4|X |δ
[W1V Y1]

}

E11 = Ec
0 ∩ Ec

1 ∩ Ec
3 ∩ Ec

5 ∩ Ec
7 ∩ {∃w′

2 �= w∗
2 : l(w′

2) = l(w∗
2) and (w′

2,v
∗,Y2) ∈ T

4|X |δ
[W2V Y2]

}
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Apparently, for any ε′, for n > n1(ε′, δ), P (E0) ≤ ε′. We have also

P (E1) ≤ P (X ∈ T δ
[X])P ({∀ v ∈ Cv, (X,v) /∈ T 2δ

[XV ]}|X ∈ T δ
[X])

≤
∑

x∈T δ
[X]

PX(x)(1 − 2−n(I(X;V )+λ))nR1

≤ exp(−2−n(I(X;V )+λ−RV )), (51)

where Property 1) of the typical sequences and (1 − x)y < e−xy are used. Thus P (E1) → 0, provided that

RV > I(X;V ) + λ.

P (E4) and P (E5) both tends to zero due to the Markov lemma; it requires the condition (v∗,X) ∈ T 2δ
[V X] to

hold, which is indeed so given E1 does not happen. Similarly, both P (E8) and P (E9) tends to zero for the same

reason. Notice that if (v∗,X,Y1) ∈ T 2δ
[V XY1]

, then (v∗,Y1) ∈ T
3|X |δ
[V Y1]

, thus v∗ can be correctly decoded if there is

no other codewords in the same bin satisfying the typicality test.

Conditioned on Ec
1, we have (X,v) ∈ T 2δ

[XV ]. Thus

P (E2) ≤
∑

(x,v)∈T 2δ
[XV ]

Pr(x,v)(1 − 2−n(I(X;W1|V )+λ))nR2

≤ exp(−2−n(I(X;W1|V )+λ2−R2)) (52)

where property 2) of the typical sequences is used. Thus P (E2) tends to zero provided RW1 > I(X;W1|V ) + λ1.

Similarly P (E′
3) tends to zero provided RW2 > I(X;W2|V ) + λ2.

Conditioned on Ec
1, y1 ∈ T δ

[Y1]
, since codeword in Cv are generated independently according to PU (·)

P (E6) ≤
∑

v∈Cv

2−nRA2−n(I(Y1;V )−λ1)

= 2n(RV −RA−I(Y1;V )+λ1) (53)

where we have used property 2) of the typical sequences and the fact the bin to which v is assigned is independent.

Thus P (E6) → 0 provided that RA > RV − I(Y1;V ) + λ3. Similarly P (E7) → 0 provided that RA + R′
A >

RV − I(Y2;V ) + λ4.

Conditioned on Ec
4, (v∗,Y1) ∈ T

2|X |δ
[V Y1]

. Thus

P (E10) ≤ 2nRW1 2−nRB2−n(I(Y1;W1|V )−λ3)

= 2n(RW1−RB−I(Y1;W1|V )+λ3) (54)

where property 3) of the typical sequences is used. Thus P (E10) tends to zero provided RB > RW1−I(Y1;W1|V )+

λ5. Similarly, P (E11) tends to zero provided RC > RW2 − I(Y2;W2|V ) + λ6. Thus the rates only need to satisfy

R1 = RA +RB > I(X;VW1|Y1) + λ′ (55)

R1 +R2 = RA +R′
A +RB +RC > I(X;VW2|Y2) + I(X;W2|V Y1) + λ′′ (56)

where λ′ and λ′′ are both small positive quantities and vanish as δ → 0 and n→ ∞; then Pe ≤ ∑11
i=0 P (Ei) → 0. It

only remains to show that the distortions constraints are satisfied as well. When no error occurs, then (Ŵ1,X,Y1) ∈
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T
3|V|δ
[W1XY ] and (Ŵ2,X,Y1) ∈ T

3|V|δ
[W2XY ]. By standard argument using the definition of the typical sequences, it can

be shown that

d(x, x̂1) ≤ Ed[X, f1(W1, Y1)] + ε′ (57)

where ε′ = max(d(x, x̂))(3|V×W1×X ×Y1|δ+Pe). Thus the distortion can be made arbitrarily small by choosing

sufficiently small δ and sufficiently large n. Similar arguments holds for the second stage decoder. This completes

the proof.

APPENDIX III

PROOF OF THE THEOREM 2

Assume the existence of (n,M1,M2,D1,D2) RD SI-scalable code, there exist encoding and decoding functions

φi and ψi for 1 = 1, 2. Denote φi(Xn) as Ti. X−
k will be used to denote the vector (X1,X2, ...,Xk−1) and X+

k to

denote (Xk+1,Xk+2, ...,Xn); the subscript k will be dropped when it is clear from the context. The proof follows

the same line as the converse proof in [7]. The following chain of inequalities is standard (see page 440 of [21]).

nR1 ≥ H(T1)

≥ H(T1|Y1)

= I(X;T1|Y1)

=
n∑

k=1

I(Xk;T1|Y1X−
k )

=
n∑

k=1

H(Xk|Y1X−
k ) −H(Xk|T1Y1X−

k )

=
n∑

k=1

H(Xk|Y1,k) −H(Xk|T1Y1X−
k )

≥
n∑

k=1

I(Xk;T1Y
−
1 Y +

1 |Yk). (58)

Next we bound the sum rate as follows

n(R1 +R2) ≥ H(T1T2)

≥ H(T1T2|Y2)

= I(X;T1T2|Y2)

= I(X;T1T2Y1|Y2) − I(X;Y1|T1T2Y2)

=
n∑

k=1

[I(Xk;T1T2Y1|Y2X−) − I(X;Y1,k|T1T2Y2Y −
1 )].

Since (Xk, Y2,k) is independent of (X−,Y −
2 ,Y +

2 ), we have

I(Xk;T1T2Y1|Y2X−) = I(Xk;T1T2Y1Y −
2 Y +

2 X−|Y2,k)

≥ I(Xk;T1T2Y1Y −
2 Y +

2 |Y2,k) (59)
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The Markov condition Y1,k ↔ (Xk, Y2,k) ↔ (X−X+T1T2Y
−
1 Y −

2 Y +
2 ) gives

I(X;Y1,k|T1T2Y2Y −
1 ) = I(Xk;Y1,k|T1T2Y2Y −

1 ). (60)

Thus we have

n(R1 +R2) ≥
n∑

k=1

[I(Xk;T1T2Y1Y −
2 Y +

2 |Y2,k) − I(Xk;Y1,k|T1T2Y2Y −
1 )]

=
n∑

k=1

[I(Xk;T1T2Y
−
1 Y2

−Y +
2 |Y2,k) + I(Xk;Y +

1 |T1T2Y2Y −
1 Y1,k)]. (61)

The degradedness gives Y2,k ↔ Y1,k ↔ (Xk, T1T2,Y
−
1 Y −

2 Y +
2 ), which implies

n(R1 +R2) ≥
n∑

k=1

[I(Xk;T1T2Y
−
2 Y +

2 Y −
1 |Y2,k) + I(Xk;Y +

1 |T1T2Y
−
2 Y +

2 Y −
1 Y1,k)]. (62)

Define W1,k = (T1Y
−
1 Y +

1 ) and W2,k = (T1T2Y
−
2 Y +

2 Y −
1 ), by which we have

nR1 ≥
n∑

k=1

I(Xk;W1,k|Y1,k) (63)

n(R1 +R2) ≥
n∑

k=1

[I(Xk;W2,k|Y2,k) + I(Xk;W1,k|W2,kY1,k)]. (64)

Therefore the Markov condition (W1,k,W2,k) ↔ Xk ↔ Y1,k ↔ Y2,k is true. Next introduce the time sharing

random variable Q, which is independent of the multisource, and uniformly distributed over In. Define Wj =

(Wj,Q, Q), j = 1, 2. The existence of function fj follows by defining

f1(W1, Y1) = ψ1,Q(φ1(X),Y1) (65)

f2(W2, Y2) = ψ2,Q(φ1(X), φ2(X),Y2) (66)

which leads the fulfillment of the distortion constraints. It only remains to show both the bound can be written in

single letter form in W1,W2, which is straightforward following the approach in (page 435 of) [21]. This completes

the proof for Rout(D1,D2) ⊇ R(D1,D2). �

APPENDIX IV

AN EXPLICIT OUTER BOUND FOR THE DSBS

In this appendix, we provide an explicit lower bound for the doubly symmetric binary source considered in

Section VI-B. To simply the notations, we reformulate the problem as follows:

Rsum(D1,D2, R1) = min
(R1,R2)∈R(D1,D2)

[R1 +R2]. (67)

We will show the following is true for the DSBS in question:

Rsum(D1,D2, R1) ≥ min
(α,β,θ,θ1,D′

2)∈Q
[1 − h(D′

2 ∗ p) + θ1G(β) + (θ − θ1)G(α) + (1 − θ)G(γ)] (68)

where

γ =
D1 − (θ − θ1)(1 − α) − θ1β

1 − θ
, (69)
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and the minimization is within the set

Q = {(α, β, θ, θ1,D′
2) : 0 ≤ D′

2 − (θ − θ1)(1 − α) − θ1β ≤ (1 − θ), 0 ≤ θ1 ≤ θ ≤ 1,

0 ≤ α, β ≤ 1, (θ − θ1)α+ θ1β + (1 − θ)p ≤ D1, D′
2 ≤ D2, θ G(

θ1β + (θ − θ1)α
θ

) ≤ R1}.

We will need the following lemma from [19] to simplify the calculation.

Lemma 1: For (W1,W2) such that (W1,W2) ↔ X ↔ Y forms a Markov string,

I(X;W2) + I(X;W1|YW2) = H(X) −H(Y |W2) +H(Y |W1W2) −H(X|W1W2). (70)

Proof of (68)

Let (W1,W2) define a joint distribution with (X,Y ). Furthermore, assume the functions f1 and f2 are optimal

for these random variables, i.e., there do not exist f ′1 (or f ′2), such that Ed(X, f ′1(W1, Y )) < Ed(X, f1(W1, Y )) (or

Ed(X, f ′2(W2)) < Ed(X, f2(W2))), because otherwise we can consider the alternative functions f ′1 (or f ′2) without

loss of optimality.

Similar as in [4], define the following set

A = {(w1) : f1(w1, 0) = f1(w1, 1)}, (71)

which makes it complement

Ac = W1 −A = {w1 : f1(w1, 0) �= f1(w1, 1)}. (72)

For each w2 ∈ W2, define the following two sets

B(w2) = {w1 ∈ A : f2(w2) = f1(w1, 0)}, B∗(w2) = {w1 ∈ A : f2(w2) �= f1(w1, 0)}.

Notice that for each fixed w∗
2 ∈ W2, we have W1 = B(w∗

2) ∪ B∗(w∗
2) ∪ {w1 : w1 ∈ Ac}, and the three sets are

disjoint. To simplify the notations, write P{(W1W2) = (w1w2)} as Pw1w2 , P{W1 = w1} as Pw1 , and P{W2 = w2}
as Pw2 . Define the following quantities for each w1 ∈ A

D1,w1

∆= E[d(X, X̂1)|W1 = w1] = P{X �= f1(w1, 0)|W1 = w1}

D1,w1w2

∆= E[d(X, X̂1)|(W1,W2) = (w1, w2)] = P{X �= f1(w1, 0)|(W1,W2) = (w1, w2)},

and define the following quantity for each w2 ∈ W2,

D2,w2

∆= E[d(X, X̂2)|W2 = w2] = P{X �= f2(w2)|W2 = w2}.

By the Markov string Y ↔ X ↔ (W1,W2), it follows that for each w2 ∈ W2

H(X|W2 = w2) = h(D2,w2), H(Y |W2 = w2) = h(p ∗D2,w2), (73)

and for each each (w1, w2) such that w1 ∈ A,

H[X|(W1,W2) = (w1, w2)] = h(D1,w1w2), H[Y |(W1,W2) = (w1, w2)] = h(p ∗D1,w1w2). (74)
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We will also need the following quantities

θ
∆= P{(W1,W2) : W1 ∈ A}, θ1

∆= P{(W1,W2) : W1 ∈ B(W2)}. (75)

Apparently, we have

H(X) −H(Y |W2) = 1 −
∑

w2∈W2

Pw2H(Y |W2 = w2)

= 1 −
∑

w2∈W2

Pw2h(p ∗D2,w2)

≥ 1 − h(p ∗D′
2) (76)

where we have used the concavity of function h(p ∗ u) in the last step and

D′
2

∆=
∑

w2∈W2

Pw2D2,w2 .

Furthermore we have

H(Y |W1W2) −H(X|W1W2)

=
∑

w2∈W2

∑

w1∈A

Pw1,w2 [H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

+
∑

w2∈W2

∑

w1∈Ac

Pw1,w2 [H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

The first term can be bounded as follows

∑

w2∈W2

∑

w1∈A

Pw1,w2 [H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

=
∑

w2∈W2

∑

w1∈B(w2)

Pw1,w2 [h(p ∗D1,w1w2) − h(D1,w1w2)] +
∑

w2∈W2

∑

w1∈B∗(w2)

Pw1,w2 [h(p ∗D1,w1w2) − h(D1,w1w2)]

≥ θ1G(β) + (θ − θ1)G(α), (77)

where

α
∆=

∑

w2∈W2

∑

w1∈B∗(w2)

Pw1w2

θ − θ1
D1,w1w2 , β

∆=
∑

w2∈W2

∑

w1∈B(w2)

Pw1w2

θ1
D1,w1w2 , (78)

and the convexity of function G(u) is used in the last step. Next, notice the identity that for each w2 ∈ W2

Pw2D2,w2 = P{X �= f2(w2),W2 = w2}

=
∑

w1∈B(w2)

P{X �= f1(w1, 0),W1 = w1,W2 = w2}

+
∑

w1∈B∗(w2)

P{X = f1(w1, 0),W1 = w1,W2 = w2}

+
∑

w1∈Ac

P{X �= f2(w2),W1 = w1,W2 = w2}

=
∑

w1∈B(w2)

Pw1w2D1,w1w2 +
∑

w1∈B∗(w2)

Pw1w2(1 −D1,w1w2)

+
∑

w1∈Ac

Pw1w2P{X �= f2(w2)|W1 = w1,W2 = w2}. (79)
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It follows that

∑

w2∈W2

∑

w1∈Ac

Pw1,w2 [H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

=
∑

w2∈W2

∑

w1∈Ac

Pw1,w2G[P{X �= f2(w2)|(W1,W2) = (w1, w2)}]

≥ (1 − θ)G(γ), (80)

where again the convexity of function G(u) is used, and because of the identity (79), we have

γ =
∑

w2∈W2

∑

w1∈Ac

Pw1w2

1 − θ
P{X �= f1(w1)|W1 = w1,W2 = w2}

=
D′

2 − θ1β − (θ − θ1)(1 − α)
1 − θ

. (81)

To bound the first stage rate, we write

I(X;W1|Y ) = H(Y |W1) −H(X|W1)

≥
∑

w1∈A

Pw1 [H(Y |W1 = w1) −H(X|W1 = w1)] (82)

≥ θG(λ) (83)

where

λ
∆=

1
θ

∑

w1∈A

Pw1D1,w1

=
1
θ

∑

w1∈A

P{X �= f1(w1, 0),W1 = w1}

=
1
θ

∑

w2∈W2

∑

w1∈A

P{X �= f1(w1, 0),W1 = w1,W2 = w2} (84)

=
1
θ

∑

w2∈W2

∑

w1∈B(w2)

P{X �= f1(w1, 0),W1 = w1,W2 = w2}

+
1
θ

∑

w2∈W2

∑

w1∈B∗(w2)

P{X �= f1(w1, 0),W1 = w1,W2 = w2} (85)

=
1
θ

∑

w2∈W2

∑

w1∈B(w2)

Pw1w2D1,w1w2 +
1
θ

∑

w2∈W2

∑

w1∈B∗(w2)

Pw1w2D1,w1w2 (86)

=
θ1β + (θ − θ1)α

θ
. (87)

It was shown in [4], that

E[d(X, X̂1)|W1 ∈ Ac] ≥ p. (88)

By the hypothesis

D′
1

∆= θ1β + (θ − θ1)α+ (1 − θ)p ≤ D1

D′
2 ≤ D2.
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We have apparently 0 ≤ α, β, γ, θ, θ1 ≤ 1 from their definition. So far we have already shown that there exists

(α, β, θ, θ1,D′
2) ∈ Q such that

I(X;W2) + I(X;W1|W2, Y ) ≥ 1 − h(D′
2 ∗ p) + θ1G(β) + (θ − θ1)G(α) + (1 − θ)G(γ), (89)

which indeed establishes the claim.
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