Average case analysis of multichannel sparse approximations using p- thresholding

This paper introduces $p$-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We work out both worst case and average case recovery analyses of this algorithm and show that the latter results in much weaker conditions on the dictionary. Numerical simulations confirm our theoretical findings and show that $p$- thresholding is an interesting low complexity alternative to simultaneous greedy or convex relaxation algorithms for processing sparse multichannel signals with balanced coefficients.


Published in:
SPIE Optics and Photonics, Wavelet XII
Presented at:
SPIE Optics and Photonics, Wavelet XII
Year:
2007
Publisher:
San Diego
Keywords:
Laboratories:




 Record created 2007-07-30, last modified 2018-03-17

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)