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SUMMARY: Efforts to provide support for collaborative work in the AEC industry have resulted in systems that
offer various levels of assistance. Although some systems support information transfer in a wide range of
formats, they offer little in terms of decision support such as conflict management and negotiation. Other
systems provide more decision support but require strict formats for information input and transfer. Nearly all
current proposals offer very limited facilities for viewing information. The objective of this paper is to present an
environment which has been specifically designed for multiple ways to represent and manipulate information.
Several representations, when coupled with appropriate visualization techniques, lead to opportunities for
increasing understanding of AEC project characteristics. More specifically, when a numerical constraint solver
(SpaceSolver) is integrated within a document-centric collaboration environment (ICC), synergies between
information exchange and solution space exploration contribute very positively to the quality of projects. In
particular, the ICC environment provides a framework for representing and visualizing information structures
that are created during collaboration. Conceptually, an information architecture and visualization techniques to
support the virtual AEC enterprise are emphasized. A plug-in architecture allows for the addition of process-
specific functionality. The constraint solver SpaceSolver presents a complementary collaborative approach, with
strict semantics to support decision making and conflict management. The use of solution spaces during
collaborative negotiation avoids premature decisions in the design process, allows detection of conflicting
project requirements at early stages of the project, and increases the designers’ understanding of hidden
relations between design parameters. Together, the ICC environment supports the management of an
information space that, when linked to a constraint satisfaction problem, can explain important restrictions and
decisions for an effective negotiation. The combination of a flexible framework with more rigid modules, such as
constraint solvers, provides a useful compromise and, thus, comprehensive support for a range of AEC projects.
Two recently completed construction projects are used to validate the approach.

KEYWORDS: collaboration, negotiation, electronic document management, information architecture,
information visualization, feedback.

1. INTRODUCTION

Most engineering tasks require collaboration between many partners. Collaboration tasks are complicated by
factors such as time and data losses during information exchange, misunderstandings because of ill-defined
information, and iterative negotiation when subtask solutions conflict. Moreover, changes in context, costs,
requirements, deadlines, etc., require constant renegotiation of issues that can modify important project
characteristics. During this negotiation it is entirely the responsibility of the collaborators to ensure consistency,
to consider all important alternatives, and to inform the partners of important justifications for decisions.
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Working with our AEC industry partners in the scope of the project “A tool set for the virtual AEC industry”
(Schmitt et al, 1999) has demonstrated the need for software tools that would enable these and other companies
to interact and exchange information with several partners without the need for time-consuming physical
meetings, complemented by the wish to have up-to-date, secure and consistent information on project
characteristics. At the same time, many companies do not consider the AEC community in general to be ready to
embrace such technologies on a large scale. These companies are particularly worried that if all except one
partner in a team have access to and experience with new technology, the one without it may slow and possibly
break the information flow. This company might be crucial for the team for other reasons, so that a cycle of
partial implementation – partial success starts.

Even when adopting paperless technology, much trouble may be caused during negotiation among collaborators
due to the practice of participants suggesting only single solutions. Collaborators do not usually gather the
necessary information in order to determine whether the problem at hand actually has a consistent solution.
Furthermore, if a solution exists, ranges of possible values for variables are not determined. The use of
constraints as mathematical equations on continuous variables for specifying requirements can assist in deriving
such information. When collaborators specify their requirements in this way, computational tools can
approximate the space of potential solutions, thus providing means to detect conflicts and to guide negotiation.

We suggest the combination of both approaches for communication and information representation. The ICC
(Information, Communication, and Collaboration) environment provides support for general information sharing
in the context of a collaborative building project. SpaceSolver is a communication platform based on the strict
semantics of variables and constraints as information entities. Together, these enable the same design
information to be represented and exchanged both in a strict mathematical way as well as in a free-form way.
SpaceSolver provides specific support for negotiation and decision making using constraint satisfaction
techniques. The ICC environment allows this information to be extended with explanatory and other types of
information, and contains additional tools for visualizing information structures that are created during
collaboration.

In this paper, we present an information architecture and visualization techniques to support the virtual AEC
enterprise, and their implementation in the ICC environment, in section 3. Details on the use of constraints
during collaboration and the role of SpaceSolver in this use are given in section 4. The combination of the two
platforms is described in section 5.

2. BACKGROUND

The AEC industry has a rich history of collaboration, even within a context of fierce competition. In a struggle to
become more agile (Preiss et al, 1997, Herbert, 1997), well-defined and understood control hierarchies and
relationships make place for more ad hoc and intricate collaborative processes that are not as easily planned and
controlled. Building collaborations are special in that both the project and the team, and as a result the processes,
are potentially unique from project to project (Buckley et al, 1998). This requires an increasingly networked
thinking that brings partners to closer interaction but, without appropriate computational support, impedes the
ease of overview and understanding. The use of electronic data exchange in the AEC industry is sparse and,
where available, localized around specific interactions (Almeida et al, 1998). Efforts to organize and support
electronic exchange are hampered by the fragmented nature of the industry and the heterogeneity introduced by
the fast technological evolution.

Most recent research efforts focus on long-term advances in product and process modeling (Almeida et al, 1998,
Anumba et al, 1998, Buckley et al, 1998, Scherer, 1998). Even when development support is available from the
industry (Wix, 1997, Beetz et al, 1998), the challenge remains to convince all participants in a building project to
adopt the same technology. In the fragmented AEC industry, e-mail and access to the Web generally constitute
the least common denominator for electronic exchange. This has resulted in a generation of Web applications for
design project management that provide facilities for organizing, viewing, and redlining drawings and images
(Roe, 1999). Methodologies of viewing shared documents in the form of hierarchies, lists, hyperlinked
documents, or tables increasingly illustrate the limitations of such presentations. Instead, an advanced
representation that captures the information structures built during collaboration, combined with appropriate
visualizations of these structures, can empower the partners in the analysis and understanding of the
collaborative processes and increase their effectiveness during collaboration.
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Although communication and collaboration tools recently became more attractive with the success of the
Internet, little work proposes support for maintaining project consistency. Many projects, e.g. (Cutkosky and
Tennenbaum, 1996, Divita et al, 1998, Fruchter, 1996, Roddis, 1998, Rezgui et al, 1998), contain proposals for
communication and information management facilities. However, inconsistent construction projects are costly
and therefore, there has been research into explicit computer support for negotiation and conflict mitigation.
Beginning with work into design rationale (Peña-Mora et al, 1995), Peña-Mora has recently proposed a
combination of negotiation and game theory to support negotiation between partners (Peña-Mora, 1998, Peña-
Mora and Wang, 1998). Ndumu and Tah (1998) suggest a computational market model to resolve conflicts.
Mokhtar et al (1998) focus on change management to provide an information model that assists in planning and
scheduling design changes. None of this work proposes constraint solving or solution spaces for negotiation
support.

When constraint solving is used, only local consistency is usually assured. Bahler et al (Bahler et al, 1995,
Bowen and Bahler, 1993) proposed a design advice tool that uses constraints to support negotiation and conflict
resolution. An exception handling approach studied by Klein (1997) also uses local methods for enhancing
consistency. Realizing the need for constraint solving in the Redux system, Petrie has enhanced the framework
to include a constraint manager that would plug into remote solvers (Petrie et al, 1997). Khedro and Genesereth
(1994) have developed a progressive negotiation strategy for conflict resolution where locally consistent
solutions are used to converge on a global consistency. However in these studies, no explicit use of solution
spaces has been found for constraints expressed in terms of continuous variables.

3. AN INFORMATION ARCHITECTURE FOR THE AEC INDUSTRY

The ICC system employs a Web-based environment to share and manage information in the context of a
collaborative building project (Stouffs et al, 1998). It serves as a framework for the development and
dissemination of tools that can be used by both a single partner and the entire team. Of particular interest is the
development of tools to support collaborative processes and the visualization of information structures that are
built during collaboration. Use of these tools leads to a better understanding of collaborative activities.

3.1 Aspects of the information architecture

FIG. 1: Schematic view of the data structures underlying the information architecture.

A few information aspects are indispensable for defining, building, and visualizing information structures. These
are the information entities that provide the resources for all activities, a project organization that assists in
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managing these entities, authoring information that attributes credits and assigns responsibilities, and
relationships that embed the collaborative structure. Fig. 1 presents a schematic view of the data structures that
support these aspects.

Fig. 2 illustrates these information aspects in a view of the prototype interface. The top frame enables the search
and retrieval of information entities through access to the project organization. Entity sets are presented in the
left frame; the presentation hierarchy is derived from entity relationships. Detailed information of an entity,
including authoring information, is shown in the right frame. The frame below the two main frames contains an
alternative presentation of the same entity set. Finally, the bottom left frame provides iconized access to
environment plug-ins.

FIG. 2: View of the ICC prototype interface. Bige Tunçer and Rudi Stouffs.

3.1.1 Information entities

A document modeling approach, where the information entities in the collaborative structure are defined by the
documents submitted by the participants, allows for maximal flexibility in specifying the information space.
Each entity corresponds to a single document (or text) and its related information, including authoring
information, a categorization with labels, and user-defined attributes. The formats for these documents are
defined by the tools and applications that the participants adopt. Their exact formats do not necessarily have to
be known to the environment; additional support for different formats may be provided by browser plug-ins or
environment extensions. One such extension constitutes the link to SpaceSolver. Through this link, the ICC
environment provides for the management of design constraints and variables with related information. Whilst
these constraints and variables are considered textual information entities by the environment, they correspond
one-to-one to design entities as recognized by the constraint solver (see section 5).

3.1.2 Organization

An appropriate organization of the information entities assists participants when searching, browsing, and
managing project information. The ICC system uses a classification of the information entities within a project
according to three dimensions, similar to the ZIP cube (Arb et al, 1997). Whereas the indices of the ZIP cube are
exactly defined (according to established practices in the Swiss AEC industry) the specification of these
dimensions in this environment is left to the project team in order to reflect on the specifics of the project and the
anticipated processes. Documents can be submitted, selected, and visualized by project and with respect to this
three-dimensional structure. A VRML visualization of this organizational structure provides a navigable
overview of the project organization (Fig. 3). Component cubes are sized with respect to entity count, and
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highlighted in the structure according to selected criteria, e.g., whether there are new documents or entities
waiting attention. Upon selecting a cube, an overview of relevant entities is presented in the interface.

FIG. 3: A 3-dimensional visualization of the organizational structure of a project. Bige Tunçer.

 

FIG. 4: Decision support plug-in: overview (left) and view of a discussion status (right). Kuk Hwan Mieusset
and Benjamin Stäger.

3.1.3 Authoring information

For a collaboration to be effective, it is important that the participants are known and recognized for their part in
the collaborative process and resulting information space, both in terms of credit and responsibility. Registered
project partners are authenticated by the environment. Authoring information is automatically recorded and
assigned to a document, and collaborative authors can be ascribed to individual documents. Authoring
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information credits individual contributions and affords feedback on the role of a participant in the collaborative
process. Ascribing collaborative authors to a document assigns both access rights and responsibilities. An
environment plug-in for decision support (Fig. 4) uses this ascription facility to specify and manage decision
teams, and elicit discussions. It presents the user with an overview of all current discussions that involve the
user, highlighting those that await a decision or standpoint from the user. Participants’ responses are collected
and attached to the discussion entity and managed by the plug-in in order to determine a discussion’s progress
status.

3.1.4 Relationships

The information structure resulting from a collaborative process is visualized from the information entities and
the corresponding links between these entities, as created by the participants in the process. Links allow the user
to express relationships, browse the data space, and can assist in interpreting the information space. A measure
of density, as expressed by the number of links that connect to an entity, especially in combination with time
information, can also lead to the recognition of activity centers. Some types of links are self-evident and are
maintained by the environment. These allow one to group entities, e.g., a set of images with the documents these
appear in, specify threads of messages or attach messages or comments to other information entities, and specify
versioning sequences in collaborative work. Other links are left to the discretion of the users, or are additionally
supported by extensions to the environment.

3.2 Visualization of the information structures

Effective visualizations should enable a more effective and efficient collaboration among the participants
through a visual analysis of the information structure and the underlying collaborative processes. In particular,
these can serve to guide the user to zones or nodes of interest, highlight problems or issues that need
consideration, determine activity centers, and illustrate complex processes.

In order to achieve such presentations, entity attributes such as position, size, shape, and color can be used to
distinguish components with respect to any aspect that is deemed important. Additionally, using grades of size,
intensity, or transparency, entities and relationships can be emphasized and de-emphasized (or even omitted) in
order to accentuate certain aspects. In order to alter the character and the focus of a visualization one can vary
the scope (from a single entity to the entire structure), the interactivity (whether solely for the purpose of
browsing and selection or augmented with all activities associated to an entity or relationship), and the
presentation technique (from a static, pure-HTML page to a dynamic, four-dimensional visualization including
time).

3.2.1 Time and authoring

Time and authoring information can illustrate the effect of individual actions and allow for a history of changes.
The latter is especially important when dealing with collaborative documents. Fig. 5 shows an example from
Phase(x) (Hirschberg and Wenz, 1997), an entry level CAAD course at the Chair for Architecture and CAAD
(ETH Zurich), with an emphasis on collaborative authorship: an organization into different learning phases
allows the results of one phase and one author to be taken as the starting point for the work in the next phase by a
different author.

An overview (top) of the students’ exercises and their relationships organized by the time of submission provides
testimony to periods of increased or decreased activity, and hints at time dependencies between exercises in
consecutive phases. The X-axis (horizontal) specifies the time of submission, the Y-axis lists the authors. The
height of the solids corresponds to their respective rating by the authors’ community; contributions near the end
of the semester were not rated. Another view (bottom) characterizes each contribution both by the duration
between start and submission of the exercise (length of the solid) and the number of dependent or derived
exercises (height of the solid), enabling an interpretation of the effect of the former on the latter. The location of
each contribution on the X-axis (horizontal) reflects on the phase, on the Y-axis on the genealogy (the
relationships between exercises in consecutive phases). The color scheme in Fig. 5 highlights the threads of
exercises that build upon an initial contribution, presenting feedback on the role of an individual exercise in the
collaborative process.
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FIG. 5: Visualization of authoring and time information: Two Phase(x) outworld views showing the time of
submission (top) and the duration and number of dependents (bottom) for each work. Urs Hirschberg.

3.2.2 Links and organization

Relationships assist the user in organizing and browsing the information space. These can be defined explicitly
in the information structure or recognized using data mining techniques. Such virtual relationships can connect
information entities that are otherwise not obviously related. This connectivity enables users to broaden their
views beyond the immediate context of recent activities in time and scope.

Explicit relationships serve to link entities according to semantic information. Fig. 6 shows a (Java) visualization
of project partners and their organization into groups or companies. The interface allows the user to drag
individual components in order to rearrange the layout, and provides visual mechanisms for specifying new or
altering existing relationships. Furthermore, the interface can assist the user when arranging the layout by
keeping related components together and avoiding components to overlap. A constraint-based implementation
will enable the optimization of such a layout.

Alternatively, explicit and virtual relations can serve as attractors for the positioning of information entities.
Further control can be provided through selective visualization and a characterization of the entities and
relationships using weights. Size, color, intensity, or transparency can all be used to express a component’s
weight; a terminological control may serve the user to specify these weights (Engeli, 1998).
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FIG. 6: Groups and partners visualization plug-in. Mikako Harada.

Fig. 7 illustrates a dynamic visualization of an entities hierarchy (in JavaScript). Entity titles are positioned with
respect to a number of attractors, reflecting on both explicit and virtual relations. Different types of attractors are
illustrated. The specification of a single category (‘pipes’) or a set of categories serves to attract entities that
share one or more of the specified categories. Alternatively, two categories can be placed in opposition within a
single attractor (‘security <-> existing’); entities are pulled to either end of the attractor corresponding to their
specified categories. Fig. 7 also shows an attractor based on explicit grouping relations (‘high hierarchy low’).
The interface allows the user to define, select, position, and resize different attractors into a single field. The
entity titles oscillate about their equilibrium positions, so as to facilitate the recognition of individual entities
within local clusters.

FIG. 7: Snapshot of a dynamic visualization of an entities hierarchy using attractors. David Kurmann.
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3.3 Prototype framework and implementation

The environment’s multi-tier architecture (Fig. 8) includes a service-based application server, a JDBC bridge to
the database, an object-oriented middleware (implemented in Java), and dynamically linked software
components to extend the environment’s functionality. On the client-side, the prototype interface is developed in
HTML and JavaScript, supporting an easy adaptation of the interface to particular needs or preferences.

The database does not serve as a central repository for documents created by the partners, instead it supports an
information management system with the purpose of making project information accessible to all partners.
Documents can either be referenced as URLs or uploaded to an HTTP-accessible directory. Security is provided
through passwords for user authentication and digital signatures for the authentication of individual software
components.

In order to alleviate the bottleneck of the Web, the basic configuration can be extended with an additional tier in
the form of a webtop server (Gupta et al, 1998) that supports data caching in memory and duplicates most of the
services on the application server, except for those that require database access. Ideally, such a webtop server
can be installed at every partner company. Push technology, in the form of events and event handlers, ensures
that all environment components are informed of changes in the project database.

FIG. 8: Overview of the ICC architecture.

The prototype interface is accessible from http://iccs.arch.ethz.ch/.

3.4 Discussion

The ICC environment is being tested and evaluated both in-house and independently by the project’s industry
partners. The research team uses the environment for information management and publishing within the context
of this research project, and evaluates the environment on realistic examples supplied by an industry partner.
Independent evaluation is provided for in an educational and design collaboration involving different
universities, and is considered by an IT partner in its use as a multiproject information environment and by a
building engineering partner to support the management of a forthcoming construction project.

While the project’s industry partners are very enthusiastic about the ICC environment and its adoption into
practice, the fragmented and conservative nature of the AEC industry (in Switzerland) forms a serious obstacle
to any practical use. The very essence of the environment, its support for collaboration, proves to be a hindrance
to its adoption at the same time. Although the environment has been designed from the very onset keeping in
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mind that not all collaborative partners may choose to participate, the environment’s success still hinges on a
concerted adoption by a number of partners. Furthermore, time constraints and delays that are all too common in
construction projects obstruct the learning and adoption of new technology.

Nevertheless, the adoption of this environment, even if used only for data sharing and information gathering,
yields clear advantages in time and information access. Time constraints and a lack of information can lead to
errors and higher costs: a time constraint may impose the start of an activity before the necessary approval or
other related information has arrived (see also section 4.1). Instead, electronic data sharing gives partners
instantaneous access to published information.

Data sharing and exchange is only a narrow aspect of collaboration and such an environment should offer
additional incentives to ensure a prominent place in the collaborator’s tool set. These incentives can be presented
in the form of visualizations that provide the partners with a better understanding and support during
collaboration. Such context-sensitive and process-specific functionality is best captured in plug-ins and
extensions to the environment that can be adopted and activated by the user when appropriate.

4. COLLABORATIVE DESIGN USING CONSTRAINT SATISFACTION
TECHNIQUES

One extension to the ICC environment implements a constraint-based approach to collaborative design. It is
possible to augment traditional design that uses point solutions by specifying requirements through constraints.
Rather than considering design parameters and constraints exclusively as abstract data entities, taking semantics
into account through constraints enables advanced support for negotiation and decision making in collaborative
design.

When data transmission is augmented with explicit project constraints, collaboration systems can provide much
additional engineering support. More specifically, representation, exchange, and manipulation of constraints
have the following advantages:

• A description of solution spaces is available

• Artificial conflicts are avoided

• The initiator of a change retains responsibility for maintaining consistency

• When changes in requirements occur, much work can be reused

• Negotiation is guided within feasible spaces

More details and an illustrative example are given below.

4.1 The traditional point design approach

In traditional approaches to collaborative design, responsibilities for subtasks are distributed among several
project partners. Collaborators determine a single solution to this subtask and meet again in order to negotiate for
the integration of all partial solutions. This negotiation can become very difficult as conflicts are likely to arise
due to premature decisions collaborators had to take while determining the single solutions.

For example, Table 1 illustrates the evolution of the values for four variables as project partners apply
constraints related to their goals for the task. It refers to geometrical parameters of a beam with holes for passing
ventilation ducts. Parameter d is the hole diameter, e is the hole spacing (center to center), h is the height of the
beam, and x is the distance to the first hole as illustrated in Fig. 9. Each row in Table 1 represents one iteration;
the partner named in the row initiates the change and changed values are typeset in bold. This example was
inspired from the design, fabrication, and erection of a steel-framed building in Geneva, Switzerland. More
details are provided in section 5.

TABLE 1: Possible negotiation process for the dimensioning of the beams in Fig. 9. Numbers are in mm.

d e h x

Architect 550 650 650 500

Steel fabricator 550 900 650 1100

Engineer 200 900 650 1100

Architect 200 900 650 1000
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Ventilation subcontractor 450 800 650 600

Engineer 400 900 730 700

Steel fabricator 400 900 730 800

M M M M M

From Table 1 it is not clear if these iterations will ever converge on values that are acceptable to all partners. In
reality, the steel contractor had to assume values before these iterations had terminated in order to satisfy the
construction schedule. Several thousand dollars were wasted because eventually another partner refused the
assumed values.

FIG. 9: Beam with holes for ventilation ducts.

4.2 Augmenting single solutions by solution spaces

Constraint Satisfaction Problems (CSPs) offer the possibility to calculate, represent, and manipulate solution
spaces. Through departing from traditional point solutions (one value for each variable), CSPs augment the
amount of information available for subsequent decisions. For example, CADRE (Hua et al, 1996) and IDIOM
(Smith et al, 1996) use constraint solving on constraints on geometric parameters to enhance apartment floor
layout plans, thereby facilitating adaptation of cases taken from previous designs.

Use of CSPs helps delay decisions for variable values until these become essential for the completion of the
project. When premature decisions are reduced, information related to possible alternatives is retained. This is a
variant of the least commitment paradigm often employed for planning tasks. In the automotive industry,
decision delay strategies have already been adopted by major manufacturers (Ward et al, 1995), while it is a
rather new concept in the AEC industry (Lottaz et al, 1999).

The specification of project requirements using mathematical expressions, i.e., equalities and inequalities, makes
information explicit that may be invisible at first glance. Not only can conflicts be detected automatically but
causal links can be deduced from the structure of the CSP. Moreover, solution spaces help to understand crucial
tradeoffs and therefore support informed decision-making.

4.2.1 Conflict detection using local consistency techniques

Many conflicts in traditional collaboration arise from forced early decisions related to the values of variables.
Often, there is no real conflict even though a negotiated change between two partners does not converge to an
acceptable solution for all partners. When negotiating over single values for parameters, collaborators provoke
artificial conflicts that lead to needless iterations of negotiation without revealing situations where actually no
solution can be found (see section 4.1).

When collaborators use constraints to express their requirements, such artificial conflicts do not arise because no
early decisions are taken. Moreover, the elaboration of constraints for a collaborative design task can help to
detect real conflicts at early stages. When important requirements are expressed as mathematical relations, real
conflict due to diverging design goals can be detected, even though the formalized information may not yet be
complete. In this case, the collaborators have to compromise on a higher level before the work can go into a
reasonable direction, revising certain goals to be reached with the design at hand.

For the ventilation example, a conflict may arise when the architect imposes the use of only two ducts for
ventilation for cost reasons, while the engineer limits the size of the holes for structural integrity, and the
ventilation subcontractor requires large ventilation capacity. Local consistency techniques may detect such a
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situation very quickly although detecting the problem by hand may be difficult. When attempting to trace down
the cause of the conflict, the structure of the CSP can show hidden dependencies and exploring these may lead to
the discovery of conflicting goals.

4.2.2 Computational support for negotiation

When designers provide constraints that specify the requirements for their subtask, constraint satisfaction
techniques can approximate the space of alternative solutions. In collaboration such solution spaces have the
potential to simplify negotiation. When a solution space is known for each subtask, any solution for the whole
task must be in the intersection of the solution spaces of the subtasks. This helps to choose alternative solutions
for subtasks in a consistent way.

As such, negotiation is not avoided, but knowledge of the shape of the solution spaces encourages partners to be
less restrictive during negotiation because any choice of parameters within the solution space guarantees that the
specified requirements remain verified. Therefore, solution spaces provide useful support for negotiation.

Simplifying the problem concerning the dimensioning of the holes for ventilation ducts, the collaborators could
specify constraints as shown in Table 2. Fig. 10 shows a three-dimensional projection of the corresponding
solution space. As soon as this solution space is computed the collaborators can deduce from its shape where to
search for solutions.

TABLE 2: Simplified constraints for the dimensioning of holes for ventilation ducts. Numbers are in mm.

Collaborator Constraints

Architect x < 1000, 600 < e < 1200

Engineer x > 2d, d < 400, e > 900

Ventilation subcontractor d > 300

Steel fabricator x > 700, e > d + 50

FIG. 10: A three-dimensional projection of the solution space for the dimensioning of beams with holes for
ventilation ducts. Numbers are in mm.

Projections of the solution space as shown in Fig. 10 are also appropriate in more complex cases to visualize
tradeoffs in order to understand, where compromises have to be made. When several optimization criteria have
to be considered, projecting the solution space on these criteria supports good decision making.

4.3 SpaceSolver – an Internet-based CSP-tool set

SpaceSolver is a constraint solver for continuous CSPs based on the Internet. It provides extensions for
collaboration. The constraint satisfaction techniques applied are best described in (Sam-Haroud, 1995, Sam-
Haroud and Faltings, 1996). It provides an interface to the Web and is therefore well adapted to implement the
collaborative design approach presented here. Its use involves a solving process in four phases:

• Specify parameters and constraints

• Perform an algebraic reformulation into ternary constraints

• Convert symbolic constraints into a spatial representation
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• Compute consistency

This section describes SpaceSolver’s functionality as a stand-alone application, while several issues raised in
section 3, such as authoring information, automatic generation of links between data entities and visualization
are taken into account. SpaceSolver is publicly available at http://liawww.epfl.ch/~lottaz/SpaceSolver/.

4.3.1 System architecture

SpaceSolver is an Internet-based application. It relies on the Common Gateway Interface (CGI) and performs
most of the computation on the server. Its system architecture is illustrated in Fig. 11. Any Web browser can be
used on the client-side, while on the server-side a dedicated Web server handles data management tasks and
permanently communicates with various SpaceSolver modules. These modules include a Symbolic Manipulator
for rewriting CSPs, a Constraint Converter for the generation of the spatial representation of constraints, a
Consistency Solver to compute several degrees of consistency and a VRML Generator to visualize constraints
and consistent spaces.

FIG. 11: SpaceSolver‘s system architecture.

The SpaceSolver server is implemented using the popular Apache Web server. CGI scripts compiled into the
Apache server allow for efficient access to those scripts written in PERL and call the other modules using UNIX
system calls. The Symbolic Manipulator is a collection of Maple V scripts. Maple V is a powerful symbolic
algebra package. The communication between the server and the module is established using bi-directional
pipes. The algorithms used for reformulation of the CSPs are described in (Lottaz, 1999). The Constraint
Converter is implemented in C++. It reads the symbolic representation of a CSP in a file and generates octrees
which represent the feasible spaces of the constraints (Samet, 1990). SpaceSolver’s Consistency Solver
implements the algorithms for arc-, path- and (3,2)-relational consistency as proposed by Sam-Haroud and
Faltings in C++. Finally, the VRML-Generator reads files containing octree representations of constraints or
solution space approximations and generated 3D-models in VRML.

4.3.2 Basic functionality

SpaceSolver provides support for a subset of the information aspects presented in section 3.1: information
entities are restricted to variables and constraints; these are collected and organized by project; authorship is
maintained; and relations between constraints and the variables these involve are established.

User registration and authentication: SpaceSolver is free to use. However, user registration and authentication
is needed in order to distinguish the data from different users and manage access rights to projects. SpaceSolver
maintains the data of registered users, allows them to create projects, and lets them participate in active
collaborative projects.



ITcon Vol. 5 (2000), Lottaz et al., pg. 14

Specifying constraints and variables: After login the user can choose a project from the selection list at the top
of SpaceSolver’s entry screen, initiate a new project, or select the page to adapt SpaceSolver’s layout (Fig. 12).
The Navigator Frame in the blue area on the left-hand side and the Work Frame on the white background at the
right-hand side both update according to the choice made. The Navigator Frame allows users to switch between
the different phases in the solving of the constraint satisfaction problem: a link is provided for each phase for
which data is available. The Work Frame presents information on the creator of the project, the project’s name,
its abbreviation, and the definition of its corresponding constraint satisfaction problem.

Users can write their constraints in the text area provided, using Maple’s format for mathematical expressions.
Blank lines and comments may be included: anything to the right of a #-sign is ignored. When submitting a set
of constraints, SpaceSolver automatically generates a table for the variables, with one row for each variable it
finds in the users’ constraints. This table allows the user to specify the range of valid values and a default value,
as well as a small description for each variable.

Algebraic reformulation and submitting projects: Upon completion, the user needs to submit the
specifications to the SpaceSolver server. The last choice to be made is the method for the algebraic reformulation
adopted for the subsequent algorithms. The most important task of reformulation is to express the CSP
exclusively in terms of ternary constraints. A ternary constraint is an equality or inequality, which involves at
most three variables. This is done by introducing auxiliary variables for intermediary results in expressions.

Before adding auxiliary variables SpaceSolver can be asked to remove intermediary variables in order to keep
the number of variables in the reformulated CSP low. The methods provided eliminate constants or intermediary
variables, which depend on up to three variables. Variables are only eliminated if the CSP rewritten in ternary
form can be expected to contain fewer variables through the elimination.

After the reformulation, a summary of the project is presented in the Work Frame. This summary includes the
reformulated constraints from all collaborators, the remaining variables, the removed intermediary variables, and
the added auxiliary variables.

4.3.3 Visualization

Section 3.2 recognizes visualization as an important means to improve the understanding of project information.
SpaceSolver applies this to constraint information by allowing interactive analyses of the shape of constraints
and potentially feasible spaces.

Generating spatial representations of total constraints: Whereas constraints are specified in a symbolic form
as mathematical expressions, the consistency algorithms implemented in SpaceSolver use explicit spatial
approximations of the feasible spaces according to these constraints. This conversion is done automatically and
the user can choose its precision. Constraints involving the same set of variables are collected into one single
constraint called a total constraint. A total constraint is the conjunction of all constraints involving the same set
of variables.

When the generation of the spatial approximation of the feasible spaces for the total constraints is completed, the
user is given the opportunity to analyze the characteristics of the constraints in a visual manner. VRML models
of the feasible regions of the total constraints are generated and the collaborators can use a VRML plug-in to
their Web browser, or any other VRML viewer, to analyze its spatial structure (see Fig. 13).
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FIG. 12: Constraints are entered in a common format, used in the algebraic computation package Maple V.

FIG. 13: Approximation of the total constraint aux2 = 3.37 ha d and ha <= 100 d.

Computing consistency: Several consistency algorithms for different degrees of consistency are provided.
Weak consistency algorithms only check for very local inconsistencies while stronger consistency algorithms
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can provide global consistency in special cases. SpaceSolver provides facilities to compare the different results
in an intuitive fashion. Fig. 14 shows the same projection of the approximation of a solution space computed by
different consistency algorithms.

 

FIG. 14: Three-dimensional projection of solution space approximated by arc-, path-, and (3,2)-relational
consistency (from left to right).

After the calculation of a certain consistency algorithm has finished, any one-, two-, and three-dimensional
projections of the corresponding consistent space can be visualized. Similar to visualizing total constraints,
VRML models are generated and displayed using an adequate viewer. Moreover, for each variable SpaceSolver
can provide a set of intervals that represents potentially feasible ranges for this variable.

Such visualization allows the analysis of dependencies, which were not explicit in the original formulation of the
problem. It is thus possible to visualize tradeoffs inherent in a problem but not stated explicitly.

4.3.4 Collaboration extensions

Collaborating simultaneously on one project: Several collaborators are allowed to participate in the same
project. All collaborators maintain their own file of constraints, but they can share variables, i.e., a variable can
be implied in constraints by different collaborators. The creator of a project specifies who is allowed to
contribute to the project (Fig. 15). Collaborators can be added and removed at any time. Moreover, the creator of
a project can also change the project’s name and abbreviation.

Finding information about collaborators’ constraints: The constraints and variables submitted by other
collaborators can be investigated through links generated by SpaceSolver. For every collaborator a link is
provided that brings up a page displaying the constraints posted by that collaborator.

Since certain variables will be shared, collaborators must be able to find which variables are already defined and
use these common variables. SpaceSolver provides a summary of all variables defined with their minimum,
maximum, and default value, as well as a short description.

Collecting data into one constraint satisfaction problem: The constraints and variables defined in such a
distributed way are collected into a constraint satisfaction problem whenever collaborators submit their data. The
specification of project requirements is thereby not necessarily complete. Nevertheless, SpaceSolver collects all
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data so far submitted to the current project, shows it on the Prepared Constraints page, and allows for further
possibly preliminary analysis.

FIG. 15: SpaceSolver allows collaborators to work simultaneously on a project.

4.4 Discussion

We suggest constraint-based support for collaborative design. The use of solution spaces makes collaboration
more efficient through avoiding artificial conflicts and providing computational support during negotiation.

SpaceSolver is a tool set for analyzing and solving constraint satisfaction problems on continuous domains. It
provides an intuitive user interface including the specification of constraints in usual mathematical writing and
an interactive three-dimensional visualization of constraints and solution space approximations. Moreover,
SpaceSolver provides the necessary extensions for collaborative work and thus implements the solution space
approach to collaboration, it is in fact a communication platform for highly structured data.

The current implementation is restricted to numeric CSPs expressed using mathematical expressions. The
treatment of discrete variables and constraints would need some more development of appropriate user interfaces
as well as adaptations of the solver. Also disjunctive problems cannot be treated in the current version,
integration and further development of recent research into dynamic constraint satisfaction (Gelle, 1998) would
be necessary.

Although some work in collaborative design and concurrent engineering proposes constraints to capture
requirements, there is only little research into the explicit use of solution spaces. Most collaboration approaches
using constraints concentrate on constraint checking e.g. (Klein, 1997) or use local constraint propagation to
suggest potential solutions when conflicts occur e.g. (Bahler et al, 1995). Spaces of solutions have been used by
Darr and Birmingham (1996). In their work, local consistency techniques help to prevent combinatorial
explosion in configuration design problems. However, all of these approaches aim to determine single optimized
solutions for collaboration projects, while our approach proposes to support cooperative negotiation using
exploration and visualization of solution space approximations.

SpaceSolver provides a way of communication with strict semantics. Collaborators must provide information in
formal languages, i.e., mathematical expressions which enable rapid syntheses to be carried out. However, it was
observed that the restricted form of communication imposed by SpaceSolver is not sufficient for efficient
collaboration. During collaborative work the need for communication with free-form documents arises very
quickly. For instance, short descriptions are not sufficient to define a variable accurately. Drawings and textual
documents may also be needed to explain and justify constraints. Therefore additional information on a platform
such as the ICC environment is needed to facilitate explanations and discussions.
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5. INTEGRATING SPACESOLVER AND THE ICC ENVIRONMENT

We observe that neither a completely free communication platform such as the ICC environment (section 3) nor
the restricted way of communicating as suggested by SpaceSolver (section 4) provides optimal support for
collaborative design. However, both improve the communication between collaborators on complementary
aspects. Therefore, the combination of the two is of interest.

5.1 Working together

An extension to the ICC environment enables SpaceSolver to automatically store and update a constraint
satisfaction problem in the project database of the ICC environment (Fig. 16). The resulting information space
contains an entity for each constraint and each variable in the CSP. Representing the bipartite graph of the CSP,
each constraint entity relates to all variables it is defined over while each variable entity has relationships to all
relevant constraints it is involved in.

This extension consists of a small Java applet that provides the necessary functions to create and update
constraint and variable entities in the project database through JavaScript. It also allows SpaceSolver to navigate
the information space remotely by specifying the entities to be displayed in the user’s ICC interface. Links in the
SpaceSolver interface update the ICC interface accordingly. Alternatively, the user can explore the CSP in the
ICC interface by following the relationships between the constraint and variable entities.

Finally, CSPs are enriched using features of the ICC environment. New and existing documents or entities can
be linked to provide definitions and explanations to constraint and variable entities created by SpaceSolver.
These entities themselves can be modified with new attribute information and, as long as such changes do not
overwrite information provided by SpaceSolver, the ICC environment will maintain them even when
SpaceSolver updates the constraint and variable entities.

5.2 Evaluation examples

Two building engineering projects have been selected in order to illustrate the benefits of combining both
environments for collaborative design.

FIG. 16: SpaceSolver (top) and ICC (bottom) view of a simple constraint satisfaction problem.
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5.2.1 A steel-framed computer building

The project: This example is inspired by an existing building in Geneva, Switzerland, where poor collaboration
resulted in higher than necessary construction costs. In this and other buildings that house various types of
servers and other large computers, ventilation requirements are important design criteria. Good ventilation
maintains satisfactory operating temperatures and this leads to greater equipment reliability. Therefore, space has
to be reserved for ventilation ducts. However, increasing the building height has a strong impact on construction
and operating costs.

Adopting beams with holes allows the passage of ventilation ducts where beam material is not used efficiently,
thereby providing effective solutions at reasonable costs (Fig. 17). The choice of the number of holes and ducts,
the spacing of the beams, and the beam height, hole diameter, and other geometric parameters, is however not
easily established. This issue generated much discussion and negotiation between the collaborators on this
building project.

The project collaborators that are most concerned with this issue are the architect, the engineer, the steel
fabricator and the ventilation subcontractors. Architects generally aim for an aesthetically pleasing distribution
of holes and good proportions of hole size with respect to other dimensions. Engineers typically require few
small diameter holes so that beam strength is not compromised. The steel fabricator prefers high values for hole
spacing and no hole proximity to connections in order to avoid effects of stress concentrations caused by the
holes. Finally, ventilation subcontractors want large, closely spaced holes everywhere so that they can
accommodate later changes most easily. Such conflicting goals are common in every construction project.

 

FIG. 17: Construction site of the steel-framed building example. Holes in beams hold ventilation ducts.

Expressing requirements with constraints: When collaborators want to benefit from solution spaces as
suggested in section 4 they must express the requirements they impose as constraints. The parameters involved
in the equalities and inequalities must be defined precisely and the shared parameters in constraints of several
collaborators need agreement upon their definition. For instance, variables involved in the project described are
x, d, e and h. In order to define these without ambiguity, collaborators most likely refer to drawings like Fig. 9.
Other non-geometric parameters such as cV, the coefficient of air renewal, need some textual definition such as
“which part of the air of the whole room is exchanged in one second.”

While the project partners are working on the specification of their respective requirements, these definitions
must be available and up to date. SpaceSolver only provides for a short textual description for each variable.
When combined with the ICC environment, each variable has a corresponding information entity in the project
database of the ICC environment and SpaceSolver provides a link to display this entity in the ICC interface.
Using the information management facilities provided by the ICC environment, collaborators can attach
clarifying documents to the variable entity, thus simplifying the specification of the requirements using
constraints.

5.2.2 Vibrations in Stacked Gym

The project: This example is taken from a completed project to build two triple gymnastic halls in the city
center of Bienne, Switzerland (Fig. 18). Due to limited space, one gym was placed on top of the other. This led
to special constraints related to vibrations of the floor beams of the upper gym. In addition, the owners had
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special requirements related to the position of these beams since these are used to fix equipment that is used in
the lower gym. Local building laws include a building height restriction for this zone and, in addition, the
building is situated on a near-surface aquifer. If foundations were placed below the water table, pumping and
waterproofing costs would have been unacceptable. Therefore, a solution for squeezing two gyms between the
building height limit and the water table, while avoiding vibration problems and meeting owner requirements,
had to be found.

 

FIG. 18: Two triple gymnastic halls, one placed on top of the other.

Exploring solution spaces: After most of the collaborators have stated their constraints, SpaceSolver can
provide an approximation of the solution space. This solution space can be projected on any set of up to three
variables. Fig. 19 shows a projection of the solution space on three of the geometric parameters, which determine
the shape of the floor beams of the upper gym. As long as the solution space approximations determined by
SpaceSolver are not empty, collaborators can negotiate within these spaces.

FIG. 19: Projection of solution space on half cover plate width (c) and thickness (t), as well as beam height (ha).
To the left: a cut through two beams.

Finding and resolving conflicts: A tradeoff between several design goals is often necessary. In such cases,
SpaceSolver can determine whether a conflict exists where no choice for the parameters will satisfy all
constraints. However, it is not able to determine the cause of the conflict; in fact, this task has been shown to be
intractable in the general case. Nevertheless, the combination of SpaceSolver with the ICC environment provides
some support for humans to search for the cause of a conflict and subsequently negotiate to resolve it.

Suppose that a conflict arises when the civil engineer introduces an additional constraint on E (the spacing of the
floor beams). When SpaceSolver is launched in combination with the ICC environment, it provides a link for E
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to display the corresponding entity in the ICC interface. This view includes a list of all constraints in which E is
involved. Among these constraints the engineer finds E > 2.5. This constraint seems very arbitrary and might be
the cause of the conflict. Therefore, the engineer follows the corresponding link and the resulting constraint
entity view reveals two justifications for this constraint: the architect needs the space for hanging lamps and the
client asks for it in order to mount sports equipment such as rings and basketball baskets.

FIG. 20: Exploring the information space in order to find conflicts.

Since this constraint seems not to be negotiable, the engineer backs up to the SpaceSolver interface. He finds the
link that allows the information about the constraint last added, the one which caused the conflict, to be
displayed in the ICC interface. From the relationships to all variables involved in that constraint, the engineer
follows the link to ha (the beam height), because this parameter is most influenced from outside the engineer’s
own constraints. From the information for ha, the engineer finds the constraint Hs1 + Hs2 + ha + ht < Lz + p, which
seems critical for its high number of variables involved. The engineer then follows the relationship to p (the
footing depth), because this parameter was not yet examined. The engineer finds the definition as well as the
justification for its upper limit from the geologist. After this exploration of the information space (Fig. 20),
including the screening of the definitions of the variables and the explanations of the constraints, and including
the exploitation of the relationships between constraints and variables, the engineer starts to negotiate with the
client about the height of the gyms (Hs1 and Hs2). Finally the client accepts a slightly smaller height of the upper
hall.
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5.3 Integration architecture

When SpaceSolver is started for concurrent use with the ICC interface, both clients are started at once, each in its
own browser window. A third client, without user interface and contained in the SpaceSolver browser window,
incorporates the extension to the ICC environment and enables the synchronization of the other clients (and their
servers) during the concurrent session. This extension searches for the interface client on the ICC network that is
opened by the same user, and forwards all instructions from the SpaceSolver client running in the same browser
to this interface. In this way, the two software packages can work together smoothly, even though the ICC
application server and the SpaceSolver server are located in different geographical areas and do not
communicate directly between each other.

5.4 Discussion

We suggest an integration of two complementary information and communication platforms. The technical
integration allows the two servers involved to be located in geographically different places with no need for
direct communication between them. The communication link is established locally between the SpaceSolver
client and the ICC extension client operating within the same browser window, such that the other components,
including the respective servers, behave exactly as in stand-alone use.

From a user’s point of view the integration is especially smooth. The only interface changes are additional links
in the SpaceSolver interface that allow the user to control the navigation and display in the ICC interface from
the SpaceSolver client.

6. CONCLUSIONS

With growing complexity and shrinking construction time the need for efficient collaboration in the construction
industry is becoming more and more important. Collaboration may be hindered by the lack of effective and
efficient facilities for exchanging and organizing project information.

The ICC system implements an environment for the management and presentation of distributed, related data
generated and exchanged in the context of a collaborative building project. It aims to augment the partners’
current computing environment with support for information sharing and collaboration, in support of existing
work processes and concurrent to existing applications. The ICC environment has been extended with tools to
manage decision making and visualize the information structures that are built in a collaborative effort.

Collaborative design using constraint solving constitutes a complementary collaborative approach. Information
with strict semantics, i.e., constraints and variables, supports decision making for collaboration. SpaceSolver
implements this approach and provides support by making implicit relations between parameters visually
explicit. Its consistency algorithms can detect conflicts and determine tradeoffs, assisting the user in making
informed decisions. Moreover, SpaceSolver helps in adopting a least commitment approach. It has been shown
that this approach has the potential to improve both the time for developing and building an artifact as well as its
quality.

Integrating both environments provides additional benefits. Synergies have been validated in two projects from
the construction industry. From a civil engineering point of view, working with constraints is a natural approach.
The determination of solution space approximations allows simpler negotiation between collaborators and helps
to detect conflicts. The ICC environment allows management of all information and documents generated and
exchanged in the collaboration. These information entities may then be linked to constraints in order to explain
important restrictions and decisions for an effective negotiation.
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