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Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed
connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient
methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead,
human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the
entire brain. For two human subjects we find that their individual brain networks have an exponential node degree
distribution and that their global organization is in the form of a small world.

Citation: Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, et al (2007) Mapping Human Whole-Brain Structural Networks with Diffusion
MRI. PLoS ONE 2(7): e597. doi:10.1371/journal.pone.0000597

INTRODUCTION
Biological neuronal networks, and in particular the human brain,

are remarkable natural systems capable of complicated patterns of

behavior. This capability seems possible due to the combination of

an enormous computational capacity given by a huge amount of

neurons, and a highly evolved communication network [1]. To

understand the mechanisms behind higher-level brain functions,

a detailed study of the individual neural cells is clearly insufficient

[2]; global functional and structural properties of such a complex

system need to be considered as well [3]. This requires, first of all,

a good knowledge of the network architecture of the entire brain.

A graph representing the connectivity of the brain (henceforth

called a ‘brain network’) can be analyzed at various scales.

Probably the most obvious is at the neuronal level, where each

neuron is a separate node in the graph and physical connections

between neurons are reflected by the edges. This detailed view,

however, is feasible only for the most primitive animals such as C.

elegans with a brain made of 302 neurons [4]. A graph of the

human brain consisting of 1011 nodes and 1016 edges is not only

impossible to obtain with current techniques, but it also would

carry a great deal of information that is irrelevant from the global

organization point of view. We must therefore resort to a different

level of granularity, where a node represents thousands or millions

of neurons grouped together. Unfortunately, such available graphs

are today limited to small post-mortem datasets (only 50–70 nodes)

of rat [5], cat [6,7] and monkey [8] brains, whereas larger datasets

of animal and human brains are missing [9]. In the coming years,

an immense effort will be needed to map at various scales and to

create a large database of reliable information on the brain

connectivity of higher order animals, especially of the human

[10,11].

Crick and Jones stated that ‘‘Clearly what is needed for a modern

human brain anatomy is the introduction of some radically new techniques’’

[9]. In this paper we propose a methodology derived from

diffusion MRI tractography [12–15] to map at a millimetric scale

the structural white matter connectivity of the whole brain. The

resulting network consists of nodes representing small areas of

white matter–gray matter (WGM) interface, and weighted edges

that capture long distance connection densities between these

areas. The innovation it brings is fourfold. First, our methodology

has a relatively high resolution; the resulting networks consist of

thousands of nodes, which are 1–2 orders of magnitude larger than

the networks currently available (thousands versus tens of nodes).

This opens several innovative investigation possibilities. Mainly it

allows us to study brain connectivity not only locally but also

globally by characterizing the topological features of this large-

scale network. Such global characterizations are essential for

a better understanding of brain communication. Second, our

approach is non-invasive. This allows us to study the topology not

only of animal or post-mortem brains, but also, for the first time, of

the living human brain. Third, for each subject we infer an

individual network of the entire brain. This potentially allows us to

compare individual subjects or groups of subjects, e.g., brains from

healthy controls and from patients with clinical conditions. In

contrast, the datasets available to date were collected part by part

from a number of animals of the same species, and hence reflect

a kind of ‘‘average’’ brain in the population. Fourth, our approach

is efficient. It only requires performing an MRI scan on the subject

(which takes about an hour or less depending on resolution and

signal-to-noise ratio of the imaging system), and to process the data

on a computer.

As an illustration of our approach, we analyze the basic brain

graph properties of two healthy volunteers. In particular, we study

a number of distributions derived for nodes (e.g., degree, strength)
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and edges (weight, length). We also answer some questions related

to the topology, e.g., ‘‘Is the brain network a small world?’’. With

technology improvements, finer resolution and a better Signal-to

Noise Ratio (SNR), or a deeper analysis of the network, more

complex and accurate network characteristics will be accessible,

thus potentially contributing to the answers of some key questions

in neuroscience.

MATERIAL AND METHODS
The path from diffusion MRI to a graph mapping brain connectivity

is a four step process: (1) diffusion MRI acquisition, (2) white matter

tractography, (3) white matter-gray matter interface partition into

Regions Of Interest (ROIs) and (4) network construction. We present

a general scheme of our methodology in Figure 1. Below we first

describe each step illustrated with intermediary results. In the next

section, we investigate some fundamental properties of the brain

network inferred with our approach.

Step 1: MRI acquisition
We use Diffusion Spectrum Imaging (DSI) [15,16] . It is a diffusion

MRI method that images the 3-dimensional diffusion function in

every brain voxel and results in a 6-dimensional image called

a diffusion map. This new method has, contrary to Diffusion

Tensor MRI (DTI) , sufficient angular resolution to map

accurately the diffusion with a non-Gaussian behavior. Accord-

ingly it can see intra-voxel diffusion heterogeneity caused by

crossing neuronal tracts, which is essential for an accurate

mapping of axonal trajectories.

In the present experiment, after having obtained the informed

consent of two healthy volunteers, two data sets are acquired at 3T

Figure 1. Mapping the network of brain structural connectivity with diffusion MRI is a process made of four steps. First, Diffusion Spectrum MRI
(DSI) is performed on a subject or sample. This acquisition provides a 3D diffusion function at every location in the brain. This data set is called
a diffusion map. It is shaped by the local tissue characteristics, in particular by the orientation of axonal bundles existing in the brain. Second, based
on this map we generate a number of 3D curves (called fibers) that follow the path laid by the white matter axonal bundles. Third, independently
from the previous step, we use a heuristic that partitions the brain white matter-gray matter interface into small areas of equal surface (called Regions
Of Interest-ROIs) covering the whole cortex and deep cerebral nuclei boundaries. Finally, in the fourth step, we combine the output of steps two and
three: the ROIs become nodes and the fibers are transformed into edges in the resulting graph. This graph estimates the density of white matter
connections between any two regions of gray matter.
doi:10.1371/journal.pone.0000597.g001
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with an Achieva (Philips, Einthoven, The Netherlands) MRI

scanner using a diffusion weighted spin echo EPI technique

[17,18]. The timing parameters of the pulse sequence are TE/

TR/D/d = 154/3000/47.6/35 ms, maximum diffusion gradient

intensity is 80 mT/m, yielding a maximal b value of 12000 s/mm2

[19]. The matrix size is 1286128 and the slice number is 30. The

field of view is 2566256 mm2 and the slice thickness 3 mm, which

yields a voxel size of 26263 mm3. The classical DSI scheme we

use goes as follows: diffusion-weighted images covering the whole

brain are acquired for 515 different values of diffusion sensitizing

gradient intensity and direction (i.e., different q-vectors) [20],

comprising in q-space the points of a cubic lattice within the

sphere of 5 lattice units in radius. We take q = aqx+bqy+cqz, with

a,b,c integers and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2zc2
p

ƒ5, and qx, qy, qz denoting the

unit diffusion sensitizing gradient vectors in the three respective

coordinate directions. Next, we process these 515 images as

follows. First, we reconstruct the 3D diffusion function, or

Probability Density Function (PDF) at each brain location by

taking the discrete 3D Fourier transformation of the signal

modulus sampled in q-space. The signal is pre-multiplied by

a Hanning window before the Fourier transformation in order to

ensure a smooth attenuation of the signal at high |q| values. With

this procedure and the above parameters, the PDF is sampled over

an isotropic 3-dimensional field of view of 100 mm with a nominal

isotropic resolution of 10 mm. The result, called a diffusion map, is

a 6-dimensional image that associates a 3-dimensional diffusion

function with every brain position voxel. From this map, at each

voxel, we compute an Orientation Density Function (ODF) w(u),

by projection of the PDF in the radial direction. If u is a 3D vector

with |u| = 1, we define:

w(u)~

ð
p(ru)r2dr ð1Þ

where p(.) is the 3D PDF, r is the radius, r 2dr is the 3D volume

element and the integral is evaluated as a discrete sum over the

available range rM[0,5]. The ODF w(u) is a function defined on

a discrete sphere and captures the diffusion ‘‘intensity’’ in every

direction. It is evaluated for a set of vectors ui that are the vertices

of a tessellated sphere that has a mean nearest-neighbour

separation about 10u.
In Figure 2 A and B we show a diffusion map, i.e., the ODF at

every location in the brain. The ODFs are represented as

deformed spheres with the radius proportional to w(u). The color-

coding adds some more clarity, with blue codes for the cranio-

caudal, red for left-right and green for antero-posterior direction.

Step 2: White matter tractography
Tractography is a post-processing method that based on the

diffusion map, constructs 3-dimensional curves of maximal

diffusion coherence. These curves, called fibers, are the estimates

of the real white matter axonal bundle trajectories [21]. We use

a tractography algorithm specifically designed for DSI data to

create a set of such fibers for the whole brain [15,22] which is

summarized below:

1. Detection of the directions of maximum diffusion. At each

voxel, we define a set of directions of maximum diffusion as

local maxima of w(u) (i.e., vectors Ui such that w(uj),w(Ui) for

all uj adjacent to Ui in the sampled tessellated sphere (Figure 2

C).

2. Fiber computation. We initiate the same number of fibers for

every direction of maximum diffusion in every white matter

voxel. For example, in a voxel with 2 directions, we initiate 30

fibers along each direction, total 60. The starting points are

chosen at random within the voxel. Next, from each such

point we begin growing a fiber in two opposite directions with

a fixed step of 1 mm. On entering a new voxel, the fiber

growth continues along the direction of the vector Uj (in the

new voxel) whose orientation is the closest to the current

direction of the fiber. If this results in a change of direction

sharper than 15u/mm, the fiber is stopped. The growth

process of a valid fiber finishes when both its ends leave the

white matter. The resulting fibers can be interpreted as an

estimate of the white matter axonal bundle trajectories (see

Figure 2 D); in this article we use about 3 million initialization

points of which only about one half to two third connect the

white-gray matter interface and are retained (See also Vie).

3. Filtering the edges. In each of our data sets we have

around 1.5 to 2 million fibers. For the graph of ,1’000 nodes

they translate into about 50’000 edges. The number of edges

in the final network depends on the number of initialized

fibers. To investigate network properties over a wider range of

connection densities we devised two ways to filter edges by

varying the number of initialized fibers or by taking into

account the edge weight:

a. Random fibers. Although for every data set we generate

around 3 million fibers, this is not any special number. We

could as well take 100 thousand or 10 million fibers. As

presented in Figure S1 in Supporting Information, this would

strongly affect the number of resulting edges. Therefore our

first approach to limit the number of edges is to take a random

Figure 2. Tractography. A) The result of the ‘‘diffusion MRI acquisition’’
step. In every voxel of a coronal slide the Orientation Density Function
(ODF) captures locally for every direction the diffusion ‘‘intensity’’. B)
Zoom in the centrum semi-ovale C) Each ODF is replaced by a set of
vectors defining its local maxima. D) Fibers are computed following the
local diffusion maxima; they are uniformly initiated over the whole brain
white matter. See also Video S1 in Supporting Information.
doi:10.1371/journal.pone.0000597.g002
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subset of a given size out of our 3 million fibers, which boils

down to reducing the number of fiber initialization. The study

of the whole spectrum of fiber numbers gives us a better view

than the study based on one, arbitrarily chosen number.

b. Top-weight edges. In the second method we consider the

edges built based on all fibers, and delete only the edges with

the smallest weights (according to some threshold). The

heavy-tailed distribution of edge weights guarantees that we

always retain most of the ‘‘edge mass’’ and reject only the

edges with very small weights that are possibly the result of

noise. Indeed noise may create aberrant diffusion maxima

that in turn produce thin aberrant diffusion coherence paths

across the data resulting into artefactual edges of small weight.

Step 3: White matter-gray matter (WGM) boundary

partition into ROIs
The goal of the third step is to partition the WGM interface in

a number of areas that we call Regions Of Interest (ROIs). In this

step we use exclusively the 3D mask of the brain WGM interface

(i.e., the cortex and the thalamus for simplicity). The ROIs should

be compact and of similar surface (counted in the number of

voxels), which is a non-trivial task to achieve for the complex,

strongly folded shape of the brain. For instance, a straightforward

approach would be to partition this interface according to some

3D regular lattice [23]. Unfortunately, this approach results in

large differences in ROI sizes-up to two orders of magnitude.

Furthermore we do not want to partition the WGM into

predefined areas like for example Brodmann’s as they are too

coarse (only about 50 to 55 areas) to analyze large scale network

properties at high resolution. We have therefore developed a two-

phase partitioning heuristic, as follows. First, we choose a WGM

interface voxel at random and iteratively connect it to the

neighbouring WGM interface voxels until it reaches the desired

size; this structure becomes our first ROI. Similarly, we grow other

ROIs, one by one, always starting near the ones that have already

been created. We repeat this procedure until all the WGM

interface is covered with ROIs. This gives us already quite a good

partition, however, it can be easily further improved. Therefore, in

the second phase of our heuristic we restart the ROI growth

process. This time we grow all the ROIs simultaneously, starting

from the centres of gravity of the ROIs found in the first phase.

This results in a much better compactness of the ROIs with

surface variations of less than 10% (See Figure S2 of Supporting

Information). An example of the final result is shown in step 3 of

Figure 1 (see also Video S2 in Supporting Information).

Step 4: Network construction
Finally, in the fourth step, we combine the output of steps two and

three and create the graph of brain connectivity. Every ROI

constructed in step three becomes a node in the graph. We denote

by ROI(v) the ROI that is associated with the node v. Two nodes v

and u are connected with an edge e = (v, u) if there exists at least

one fiber f with end-points in ROI(v) and ROI(u). For each edge e

we define its length l(e) and weight w(e), as follows. Denote by Fe the

set of all fibers connecting ROI(v) and ROI(u) and hence

contributing to the edge e. The length l(e) of the edge e is the

average over the lengths of all fibers in Fe, i.e., l(e) = 1/

|Fe|?SfMFel(f), where l(f) is the length of fiber f along its trajectory.

The weight w(e) captures the connection density (number of

connections per unit surface) between the end-nodes of the edge

e, and is defined as w(e) = SfMFe1/l(f). The correction term l(f) in the

denominator is needed to eliminate the linear bias towards longer

fibers introduced by the tractography algorithm. Indeed let us

assume that an axonal bundle b exists in reality and has a length

l(b). The tractography algorithm starts in some voxel of the white

matter and follows the most probable direction of a bundle. If it

happens to start in a voxel that is traversed by the bundle b, the

algorithm follows b until it reaches the white matter boundary. As

every voxel in the white matter is chosen as a starting point the

same number of times, the longer the bundle b is, the more voxels

it traverses and the more often it is followed by the tractography

algorithm, introducing a linear bias that must be corrected.

ROI size is a parameter of our methodology. On the one hand,

a natural lower limit for this size is one voxel of the WGM

interface. However, we prefer to combine at least several voxels

into one ROI to be sure to have a representative number of fibers

connecting this ROI to the rest of the brain. On the other hand,

taking ROIs that are too large results in a network of insufficient

resolution and of trivially small size. In our simulations we set the

ROI size to between 8 and 64 voxels of WGM interface. This

results in a weighted network of between 500 to 4000 nodes

representing small areas of WGM interface between ,250 mm2

(64 voxels/ROI) and ,30 mm2 (8 voxels/ROI), respectively. This

graph has between 25’000 to 100’000 edges that represent axonal

bundles of millimetric or centimetric diameter. For simplicity, in

the remainder of this text we analyze graphs of about 1’000 nodes.

In particular, |V1| = 1’013 nodes and |E1| = 47’217 edges for

suject 1, and |V2| = 956 and |E2| = 50’199 for subject 2. The two

graphs were built based on about |F| = 3 million fibers generated

by the tractography algorithm. Results obtained for other

granularities, from |V| = 500 to 4’000 nodes, are qualitatively

similar (see Figure S3 of Supporting Information).

RESULTS AND DISCUSSION
Once the network constructed, several graph statistics character-

izing the architecture of the network can be computed and

examined.

Node statistics
We first turn our attention to the nodes of our graph. A basic

characteristic of a node v is its degree, i.e., the number of edges

incident on v. Many complex networks such as the World Wide

Web, Internet, protein networks, ecological networks or cellular

networks, have been shown to follow a heavy-tailed node degree

distribution [24]. In other words, they have a very significant

number of high degree nodes, called hubs. As such networks, also

called ‘‘scale free’’[24], are characterized by relatively short

distances between any two nodes and by high robustness to

random failures [25], they seem, at first sight, to be good

candidates for brain topology. Surprisingly, we find in our dataset

that this is not the case. In Figure 3, we plot the node degree

distribution (a), and a closely related node strength distribution (b).

(The strength s of a node v is the sum of weights of all edges incident

on the node v, s(v) = Se:vMew(e)[26].) Although these distributions

cover more than two decades, they are roughly linear in the log-lin

scale, which indicates their exponential tail. This is probably the

first time that a claim about the node degree distribution of

cortical structural connectivity mapped at high spatial resolution

can be made. The networks available and studied to date [27,28]

are simply too small to judge if their node distribution is

exponential, heavy tailed, or yet different. It is worth mentioning

that in contrast to structural analyses, some functional brain

networks have been described as scale-free [29].

A closer look at node degrees suggests that, from a develop-

mental and energy optimization point of view, hubs do not seem to

Structural Brain Networks
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be favored. This was suggested by [30] who modeled the

development of frontal macaque cortex by a spatially embedded

growing graph where preferential attachment occurs as an

exponentially decaying function of spatial distance and growth

limited in space. Amaral et al. [31] modeled network growth

where the node degree expansion is attenuated through node

aging and energy limitations. These two models, like our

measurements, resulted in networks with an exponentially decay-

ing distribution. Furthermore, it is quite unlikely to find hubs in

the gray matter, because we know that the neuronal density does

not change over orders of magnitude across the cortex [32,33].

Edge statistics
The edge length l distribution decays exponentially (Figure 4a),

indicating that the number of long connections is small. The edge

weight w distribution is much broader and close to heavy-tailed

(Figure 4b). Therefore, there are a significant number of very

strong connections that are predominantly short as demonstrated

in Figure 4c. This observation is in agreement with the results of

other complementary studies on the organization of the brain that

suggest that brain favors, with some intriguing exceptions, locally

dense communication and minimizes the number of long distance

connections [34]. For instance, by examining many alternative

arrangements of macaque pre-frontal cortex, [35] showed that the

layout of cortical areas minimizes the total lengths of the axons

needed to join them. A similar observation was made by [36]

about the intrinsic gray matter connectivity of mice where the

volume fraction of axons and dendrites seems close to optimal.

The work of [37] indicate that there is an evolutionary conserved

scaling of the volume of the white matter as the 4/3 power of the

volume of the gray matter, which can be explained by the fact that

global geometry of the cortex minimizes the average length of the

long-distance fibers while keeping the average connection density

of long-distance connection fibers constant. However recent

reports suggest the organization of neural networks is not only

shaped by the minimization of total wiring length. Multiple

constraints seem to be involved, not only wiring length but also the

average number of processing steps (related to the average distance

between node) [38].

Network topology
Having examined separately the distributions of nodes and edges,

we now discuss the topology of the graph itself. An interesting

question one can ask is: ‘‘Is the brain a small world?’’. The more

formal definition of a small world graph involves two metrics,

clustering coefficient c and average shortest path length ,sp.. We follow

[39], who define the clustering coefficient c as the probability that

two randomly chosen neighbors of a node are also direct neighbors

of each other, i.e., c = 1/|V|?SvMVc(v), where c(v) is the number of

edges interconnecting the neighbors of the node v divided by the

number of all possible edges. The average shortest path length

,sp. is the average distance between any two nodes in graph. If

the graph is disconnected, only the largest connected component is

considered. A graph is called a small world if it has (i) a clustering

coefficient much greater than that of equivalent random graphs

and (ii) the average shortest path length ,sp. is comparable with

that of a random graph with the same number of nodes and edges

[39].

There are two issues that we have to address before we attempt

to decide if our graph G of brain connectivity is a small world.

First, G is weighted. As there exists no standard way of generalizing

the clustering coefficient to weighted graphs [see e.g. [40], [41]]

and it is not obvious how to interpret edge weights when

computing the average shortest path length, we have decided to

treat every edge equally and apply the classic unweighted

approach [39]. Second, the number of fibers that are initiated

during tractography determines the density of graph G. In order to

explore the effect of connection density on our results, we exclude

some of the edges by applying the two filtering techniques

described above.

We present the results in Figure 5. As a reference we take

a random graph not only with the same number of nodes and

edges (as proposed in [39]), but also with the same degree

distribution as the brain graph. This graph was generated with the

rewiring technique described in [42]. Preserving the degree

distribution allows us to rule out this factor from the set of

possible reasons of observed differences between the brain and the

reference topology. For any number |E’| of edges remaining after

the filtering, the graph of brain connectivity has a much higher

Figure 3. Basic characteristics of nodes in the graph of brain connectivity. P(d) [P(s)] is the probability that a randomly chosen node has the degree
[strength] equal to d [s]. The node degree distribution (a) and node strength distribution (b) are lin-binned and plotted in log-lin scale. Color code:
subject 1 (blue circles), subject 2 (green diamonds)
doi:10.1371/journal.pone.0000597.g003
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clustering coefficient than the corresponding random graph; this is

especially well pronounced for the ‘‘Top-weight edges’’ graph. At

the same time their average shortest path lengths ,sp. are

comparable. Hence our measurements suggest that the small-

world model fits the brain network. Indeed, the small-world

topology seems well suited for the neuronal network of the brain

when thinking in evolutionary and developmental terms. This is

because it is a good compromise between full connectivity, which

Figure 4. Basic characteristics of edges in the graph of brain connectivity. (a) The distribution of edge lengths l in log-lin scale, lin-binned. (b) The
distribution of edge weights w in log-log scale, log-binned. (c) Scatter plot of w vs l. The symbols are lin-binned average values for subject 1 (blue
circles) and subject 2 (green diamonds).
doi:10.1371/journal.pone.0000597.g004

Figure 5. Average shortest path ,sp. and clustering coefficient c as a function of the number of edges in the brain graph |E’|. The edges are
chosen from the set of all edges E either giving the priority to the edges with high weights (‘‘Top-weight edges’’, left column), or based on a random
subset of fibers (‘‘Random fibers’’, right column). As a reference we take a random graph with the same number of nodes and edges, and the same
degree distribution. Color code: subject 1 (blue circles), subject 2 (green diamonds), random graph reference (black filled circles). The results are
averaged over 10 realizations of the ‘‘random fibers’’ filtering and random graphs; the confidence intervals (not shown) are comparable with the
symbol size.
doi:10.1371/journal.pone.0000597.g005
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would be very costly in terms of wiring (i.e., brain volume) and

power supply [43], and a lattice topology that impairs massively

long distance communication. Furthermore, the combination of

high local clustering and small average shortest path length with

efficient neural coding [44] allows for a distributed computing

where only a small fraction of local intense computation needs to

be transmitted to distant regions, which may be sufficient for

synchronous brain activity [45]. The small-worldness of the brain

network was already advocated before, based on relatively small

networks (50-70 nodes) resulting from post-mortem tracing studies

in rat, macaque monkey and cat brain regions [27,46,47]. In

contrast, the approach presented in this article provides, for the

first time, evidence for the presence of small-world topology in the

structural connectivity of the human cerebral cortex. Moreover,

the one to two orders of magnitude higher resolution resulting

from our method (thousands vs. tens of nodes) increases the

confidence we have in the derived statistics.

Intra- and inter-individual network differences
In order to test the robustness of our methodology and because of

uncertainty about the ideal number of nodes for the presented

methodology, we measured the brain network at 4 different node

resolutions on data set 1 (see Figure S3 of Supporting In-

formation). We notice that for scales varying between 500 and

4000 nodes and 25’000 and 100’000 edges respectively, the global

network topology is preserved. This is a range of scales that

matches the sensitivity of the method, as we do not expect to be

able to accurately map tracts smaller than several milimeters in

diameter, which is presently the size of our ROIs. Pushing the

network ‘‘resolution’’ higher by increasing the number of nodes

and reducing the surface area of the ROIs would increase the

quantification noise (limiting the number of fibers per ROI), which

ultimately would destroy the information contained in the network

model. On the other hand, increasing the ROI size, limits the

precision of the mapping, potentially grouping together pieces of

gray matter that are functionally different. At the scale we use in

this study, we expect that the chance that ROI overlaps several

critically different cortices is not higher than the inaccuracy related

to the matching of template atlas on our data. Notwithstanding the

advantage with a fine grain method to always be able to group

arbitrarily sets of nodes in order to study connectivity patterns

between for example well known functional or anatomical areas

like Brodmann’s.

While basic connectivity parameters differed slightly for data

sets 1 and 2 (see Table 1), the global properties are quite similar.

The differences that we observe in Figures 3, 4, 5 may or may not

reflect the individual properties of the subjects. Clearly, more

experiments and studies are needed to be able to address the issue

of between-subject variability with a high level of confidence. We

plan to address these issues in our future work.

The question of investigating structural network deteriorations

in diseased populations like schizophrenics or demented patients is

challenging and should be addressed in the future [48,49]. The

first issue is to decide on the most representative measure of tract

degradation. Should we use the connection density as presented in

this article? Or are differences in connectivity better captured

through the use of the mean fractional anisotropy or the diffusion

trace along a connection as is done in several DTI studies [50,51]?

If we want to capture the global network topology, the only

requirements are to use the same MRI acquisition and simulation

parameters, such as the number of nodes and the way fibers are

initiated. The task becomes much more challenging if our goal is

to perform an edge-by-edge comparison. The problem is twofold.

First, we have to match the nodes across subjects. This requires

precise cortical registration tools that work with a sub-centimetric

precision. Second, identifying significant changes when testing

thousands of edges at once will either require a large cohort or

strong network changes, as the significance threshold needs to

account for multiple testing.

Although our methodology yields promising results, we need to

keep in mind that there are some steps prone to various kinds of

noise and distortions whose effect is difficult to evaluate. First of all,

we work at a given level of granularity. The spatial and angular

resolution of our diffusion MRI experiment is limited, which

makes it difficult to tell much about submillimetric fiber tracts and

crossing axonal bundles separated with angles smaller than 20u.
The ROIs have a given size, which automatically groups tens of

thousands of neurons into a single node. Noise is also introduced

during the MRI acquisition, and the tractography algorithm might

not perfectly model the relationship between water diffusion and

axonal orientation. Although all these points are constantly being

improved, there will always remain a huge discrepancy between

our constructed graph and the real neuronal network made of 1011

neurons and several orders more connections.

Quality control
Nevertheless, diffusion MRI tractography is a widely used and

accepted method to map axonal bundle trajectories. Furthermore

it was validated experimentally to large extent in the case of DSI.

First, [21] show that the ODFs produced by DSI match accurately

the fiber orientations in a phantom and follow accurately the optic

tracts in the rat. Second, [52] validate the method in the monkey

by comparing DSI tractography with histological autoradiograph-

ic tracing over 10 association tracts. This study shows a remarkable

agreement of results between two fundamentally different

techniques. In addition to these general arguments, we have also

tested our particular data set. Figure 6 presents a qualitative

impression of the type of data revealed by our method, by showing

the connectivity of part of the cortical visual system. More

specifically we investigate the well-studied connections between

areas V1, V2, V3, V5 and the lateral geniculate body [53–55].

The different visual areas were identified manually based on the

gyral anatomy and consist each of a set of ROIs. A set of well

known connections was identified for the purpose of illustrating

the tractography method without claiming to be a detailed study of

the visual system which would require a functional retinotopic

mapping of the visual areas and an extensive search and study of

the individual fiber bundles. Our data not only reveals in-

termediate length connections between V1 and V2 or between V2

and V3, but also the well known long range connections such as i)

the optic radiation–linking the lateral geniculate body to V1 , ii)

V1 homotopic callosal projections, which are connections that

take actually their origin more at the junction between V1 and V2

[56] and iii) V2–V5. Furthermore, the weights of these edges are

by far higher than the corresponding median weights over the

whole brain (see Figure S4 in Supporting Information). This gives

Table 1. Network construction parameters for data set 1 and 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Data Set 1 Data Set 2

Number of nodes 1013 956

Number of fibers 1’677’892 1’833’794

ROIs area 1.28 cm2 1.44 cm2

Number of edges 47’217 50’199

doi:10.1371/journal.pone.0000597.t001..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
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a good level of confidence that the observed visual connections are

not caused by some random effect.

Conclusion
In this article we have proposed a methodology for mapping

networks of structural connectivity in the brain. Our approach is

non-invasive, efficient, individual and of relatively high-resolution.

For the first time we can globally characterize brain connectivity

with individual tract properties or network statistics in an

individual living subject. Based on the analysis of two healthy

subjects we found that the graph of the human brain is a small

world, but not a scale-free network. Large new areas of application

are foreseen; in basic neuroscience our technique may contribute

to the discovery of the general principles regulating communica-

tion, evolution and development of the brain; in clinical

neuroscience it may shed new light into diseases of disorders that

involve disruptions of anatomical brain connectivity.

SUPPORTING INFORMATION

Figure S1 The number of edges in the resulting graph as

a function of the number of fibers connecting two points in the

gray-white mater interface. The straight line represents the y = x

relation.

Found at: doi:10.1371/journal.pone.0000597.s001 (0.05 MB TIF)

Figure S2 Histograms of ROI sizes for the number of ROIs

ranging from N = 506 to 4052 in subject 1. One voxel translates to

about 4 mm2.

Found at: doi:10.1371/journal.pone.0000597.s002 (0.94 MB TIF)

Figure S3 The results generated for all four considered scales in

subject 1. The symbols in the last two rows are (as in the main

paper): blue circles-‘‘Top-weight edges’’, red triangles-‘‘Random

fibers’’, and black disks-‘‘Random graph’’.

Found at: doi:10.1371/journal.pone.0000597.s003 (6.92 MB TIF)

Figure S4 Comparison of edge weights inside the visual system

with the rest of the brain. Each box plot represents all edge weights

in the brain of similar white matter length. The big black dot

represents the weight of the considered connection, namely V1-

V2, V2-V3, V2-V5, as well as the connections between the lateral

geniculate body and V1 (LGB-V1), and between left and right V1

areas (V1left-V1right). Each connection is compared with the other

connections in the brain of same white matter length as short

connections are usually denser that long ones. The considered

connections in the visual system are largely above their respective

medians (horizontal line in within each box, whiskers represent 5th

and 95th quantiles).

Found at: doi:10.1371/journal.pone.0000597.s004 (0.39 MB TIF)

Video S1 Whole brain tractography result in subject 1.

Found at: doi:10.1371/journal.pone.0000597.s005 (5.23 MB

MPG)

Video S2 Partition of the white-gray matter interface in

approximately 1000 ROIs.

Found at: doi:10.1371/journal.pone.0000597.s006 (2.01 MB

MPG)

Video S3 Connections between different visual areas.

Found at: doi:10.1371/journal.pone.0000597.s007 (1.65 MB

MPG)
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