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Abstract

Numerous applications demand that we manipulate large sets of very high-dimensional signals. A simple yet

common example is the problem of finding those signals in a database that are closest to a query. In this paper,

we tackle this problem by restricting our attention to a special class of signals that have a sparse approximation

over a basis or a redundant dictionary. We take advantage of sparsity to approximate quickly the distance between

the query and all elements of the database. In this way, we are able to prune recursively all elements that do

not match the query, while providing bounds on the true distance. Validation of this technique on synthetic and

real data sets confirms that it could be very well suited to process queries over large databases of compressed

signals, avoiding most of the burden of decoding.

I. INTRODUCTION

The tremendous activity in the field of sparse approximation [1], [2], [3] is strongly motivated by the

potential of theses techniques for typical tasks in signal processing such as denoising, source separation or

compression. Given a signal f in the space of finite d-dimensional discrete signals Rd, the central problem of

sparse approximation is the following: compute a good approximation f̃N as a linear superposition of N basic

elements picked up in a collection of signals D = {φk} that spans the entire signal space, referred to as a

dictionary :

f̃N =
N−1∑

k=0

ckφk, φk ∈ D , ‖f − f̃N‖2 ≤ ε . (1)

The approximant f̃N is sparse when N ¿ d and is called a sparse representation if additionally ‖f− f̃N‖2 = 0.

If D is an orthogonal basis, it is easy to solve (1) for the best approximant. However, for a generic redundant

dictionary the problem becomes much more complicated and attempts at solving it have sparked an intense

research stream. Schematically, it is by now known that if a representation is sufficiently sparse then it is unique

and can be recovered by standard practices such a convex relaxation (Basis Pursuit) [2] or greedy algorithms

like Orthogonal Matching Pursuit (OMP) [3]. If we face an approximation problem, then greedy algorithms

and convex relaxation techniques can provide provably good approximants, see for example [4], [5] and the

references therein.
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This paper does not deal with algorithms to compute sparse approximations. In fact we will assume that we

are given sparse approximations of signals and we will ignore how they have been computed. We will however

require that our approximants possess a particular structure. Suppose first that the terms in (1) are re-ordered

in decreasing order of magnitude, i.e such that | c0 |≥| c1 |≥ · · · ≥| cN−1 |. Strict sparsity requires that the

number of non-zero coefficients N be small. However we can slightly relax this definition by asking that the

magnitude of the coefficients drops quickly to very small values such that there are only few big coefficients.

A signal that is well approximated by such an expansion over a dictionary is termed compressible, highlighting

the idea that most of the information is contained in few coefficients [6]. Usually, and that is the case in this

paper, the sorted coefficients are assumed to follow a power-law decay; the ith largest is such that:

| ci |≤ C i−γ . (2)

for γ ≥ 1 and some positive constant C. The decay parameter γ may depend on both the signal and dictionary.

Dictionaries used to define the class of compressible signals need not be redundant. Piece-wise smooth signals

for example are compressible on wavelet bases and that characteristic is at the heart of the good performances

of wavelets for compression or denoising [7]. In many cases however, a simple basis cannot efficiently capture

signal characteristics within a compressible representation. Dictionaries offer more flexibility and dramatically

enlarge the class of compressible signals. However, when using redundant dictionaries, a decomposition is no

longer unique; in addition, finding the best possible representation is a daunting task and it was long believed

that it could prevent these techniques from being used in applications. Recent research shows that this bottleneck

is not far from being broken. The MPTK toolkit [8] provides a very fast implementation of matching pursuit

and efficient implementations of techniques for solving large scale linear or quadratic programs have recently

emerged [9]. Working on the algorithmic side can also provide smarter ways to achieve sparse decompositions

[10], [11]. Using redundant systems gives more freedom for the design of the dictionary, which can then be

efficiently tailored, or even learned from training data, to closely match signal structures [12], [13], [14], [15],

[16], [17].

With the advent of digital cameras and portable music players, modern digital signal processing has also to

face the challenge of voluminous databases of signals. Clearly, signal processing algorithms must be adapted to

problems where each user manipulates large collections of signals. Finding the nearest neighbor in a database

is fundamental for many applications; [18] presents a good overview of this field. Generally, when the data is

lying in a high dimensional space, a dimensionality reduction step is used to lower the complexity of the query.

In the field of signal processing, the dimensionality reduction resulting from the sparsity of an approximation

has been exploited for different tasks such as analysis, de-noising or compression. Roughly speaking, the sparser

the representation, the better it is for applications. In this paper, we explore how sparsity can be used to handle

huge amount of data at a lower cost. More precisely, we tackle the problem of computing in an efficient manner

the correlation of a single query signal with a huge set of compressible signals. Our algorithm uses only the

components ck, φk of the signal model (1), hence can be seen as working in the transform domain. Since

compression is key in storing large collections of signals, we thus potentially avoid the extra burden of having

to decode large amounts of data for searching or browsing through the database.
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In section III-A we derive the scalar product of two signals according to the parameters of their respective

sparse representation. It allows to bound parts of the scalar product when dealing with compressible signals. In

section III-B we present an algorithm to compute efficiently the projection of a signal on a set of signals. The

algorithm uses the bound previously introduced. Section III-C and IV present improved versions of the simplest

bound. Section V presents different experiments to illustrate the different bounds as well as the algorithm itself.

We conclude in section VI on the benefits of this new approach and list the perspectives we will consider.

II. PRIOR ART

Before moving on to the core of this paper, let us briefly describe how our contributions can be compared

with existing techniques. The field of nearest-neighbor algorithms is very wide and still extremely active, we

thus certainly couldn’t hope to provide here a fair survey. However, we would like to highlight some key results

and orientations and this will also allow us to specify constraints used in our framework.

Finding the nearest neighbor of a query in a set F of I d-dimensional vectors can be solved by brute

force with O(dI) operations. Clearly, when I is big (and that is the case in most applications), this could be

prohibitive. A lot of work has been devoted to trying to reduce the amount of computations needed to deal

with large data sets. Most of the recent approaches have a cost scaling like O(exp d log I) provided the data

base is first pre-processed to create an efficient data structure [19], [20], [21], [22]. It has to be noted that a

computational cost exponential in d does not improve on the brute force technique when d is large enough, i.e

d > log I , highlighting the so called curse of dimensionality. Various algorithms have been proposed to solve

this problem, with complexity that roughly scales in O(dβpolylog(dI)), for some β > 1 and an appropriate

data structure [18], [23], [24].

This short survey brings us to our main constraint. In this paper, we target applications in user centric

multimedia databases, i.e images, audio that reside on the user’s computer, and in this setting we cannot afford

large preprocessing time. More particularly we must be able to add and remove entries in the database at no

cost. We don’t extract low dimensional feature vectors from our signals. Instead we use sparse representations

both for compression and description of the data. Our data structure is thus simple and forced upon us: the

description of each item in terms of the coefficients and atoms’ indexes in (1). As for how sparsity N depends

on the dimension d, it is hard to give a precise rule. Though N is much smaller than d, we will assume that

is scales linearly with d. We thus have high-dimensional vectors in our database.

III. A SIMPLE DETERMINISTIC ALGORITHM

A. Notations and warm-up

For the sake of generality, we will work from now on with a dictionary, i.e a collection of unit L2 norm

atoms φi ∈ Rd, i = 1, ..., L, with L possibly much larger than d. The dictionary is often represented as a matrix

Φ whose columns are the atoms φi. Using this formalism, G = Φ∗Φ is the Gram matrix of the dictionary and

contains all possible scalar products between atoms, i.e. Gij = 〈φi | φj〉.
Let us consider a set of compressible signals F = {f i}I

i=i:

f i =
N∑

j=1

ci
jφki

j
. (3)
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where φki ∈ D. The vector ki contains the indices of the atoms in the dictionary and is such that the projections

ci
j are in decreasing order of magnitude. Note that we have voluntarily discarded the N -term approximation

error in (3), and we will keep on doing so from now on. We will discuss later the influence of this term.

The aim of this paper is to provide an efficient method to find, in the set of signals F , the one that is closest

to a query signal g =
∑Ng

l=1 blφkl
that is also compressible with Ng terms. The magnitudes of the projections

are also decreasing with l. The scalar product 〈f i | g〉 between a signal from the set and the new one can be

written as follows:

〈f i | g〉 = 〈
N∑

j=1

ci
jφki

j
|

Ng∑

l=1

blφkl
〉,

=
N∑

j=1

Ng∑

l=1

ci
jblGki

j
,kl

. (4)

where Gki
j
,kl

= 〈φki
j
| φkl

〉 is an entry of the Gram matrix of the dictionary D.

The aim of the algorithm is to exploit sparsity, i.e Ng, N ¿ d, in order to find the best matching signal.

It is done by eliminating rapidly the signals whose scalar products with the query is too small. To do so, we

rewrite the scalar product presented in eq. (4) as follows:

〈f i | g〉 =
N+Ng∑

k=2

si
k, (5)

where si
k represents the part of the scalar product coming from atoms participating in both decompositions

such that the sum of j and l is equal to k. For the ith signal of the set F , it corresponds to:

si
k =

∑

j,l
j+l=k

j≤N,l≤Ng

cki
j
bkl

Gki
j
,kl

. (6)

The signals of the set F and the query g are compressible. According to eq. (2), there exists γ and a constant

C such that | ci
j |≤ Cj−γ and | bl |≤ Cl−γ . Since the entries of the Gram matrix are between −1 and 1, it is

possible to bound the magnitude of si
k as follows:

| si
k |≤

∑

j,l
j+l=k

j≤N,l≤Ng

C2j−γ l−γ (7)

B. Iterative candidate rejection

Computing the scalar product of two discrete d-dimensional signals requires d multiplications and d − 1

additions. Let us now suppose that these signals have an exact-sparse representation using respectively N and

Ng terms and that the entries of the gram matrix G have been pre-computed. Computing the scalar product

using eq. (4) needs 3N ∗Ng multiplications and N ∗Ng−1 additions. If N = Ng, there is a computational gain

only if N <
√

d
2 , so for very sparse signals. However, using the formalism described in the previous section,

it is possible to compute iteratively the scalar product of two signals that have a sparse and compressible

representation. When searching for the best matching signal in a huge set F , it is of great interest to be able

to eliminate in an early stage the signals that have no chance to match. If the scalar product is computed in

June 14, 2007 DRAFT



5

an iterative way, our aim is to eliminate signals by estimating at each step an upper and a lower bound on the

final scalar product, which is possible by using the bound presented by eq. (7). To do so, let us first define:

Si
K =

K∑

k=2

si
k, (8)

which represents the part of the scalar product 〈fi | g〉 found by taking into account the atoms whose sum of

indices is smaller or equal to K. Using the same formalism, it is possible to express the missing part of the

scalar product:

Ri
K =

N+Ng∑

k=K+1

si
k. (9)

If we had kept track of the approximation error in our initial model (3), we would have to add it to this residual.

We simply assume that this error is sufficiently smaller than the typical values of Ri
K we will be working with.

If the signals are well-compressible, this will be the case and this is indeed what our simulations suggest. Using

the two preceding equations, let us express the scalar product as 〈f i | g〉 = Si
K + Ri

K , ∀K, 2 ≤ K ≤ N + Ng.

The value of Si
K can be computed iteratively as Si

K = Si
K−1 + si

K .

When looking for the signal that is most correlated with the query, one computes the absolute value of the

scalar product, disregarding the sign of the projection. Thus, ∀K, 2 ≤ K ≤ N + Ng the following relation

holds:

| Si
K | − | Ri

K |≤| 〈fi | g〉 |≤| Si
K | + | Ri

K | . (10)

Using eq. (7), it is possible to upper bound the residual part of the correlation | Ri
K |.

| Ri
K |≤

N+Ng∑

k=K+1

| si
k |≤ C2

N+Ng∑

k=K+1

ck,N,Ng (
k2

4
)−γ = R̃i

K , (11)

where ck,N,Ng is the number of possible products between atoms such that the sum of their indices is equal to

k and knowing that we have N terms for fi and Ng terms for the query:

ck,N,Ng =





k − 1 if 2 ≤ k ≤ Ng + 1;

Ng if Ng + 1 < k ≤ N ;

N + Ng − k + 1 if N < k ≤ N + Ng;

0 otherwise.

(12)

Using the bound R̃i
K defined in eq. (11) it is possible to upper and lower bound the correlation at any

iteration K as follows :

mi
K ≤| 〈fi | g〉 |≤ M i

K , (13)

where mi
K =| Si

K | −R̃i
K and M i

K =| Si
K | +R̃i

K are respectively the lower and the upper bound. It is obvious

that if ∃K s.t. M j
K < mi

K then | 〈fi | g〉 |>| 〈fj | g〉 |. This principle is illustrated by fig. 1 where the maximal

value some candidates could eventually reach is lower than the worst case of the best matching candidate. The

pseudo-code illustrating the proposed algorithm is presented by table 1.
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Algorithm 1 Find best matching signal in a database of exact-sparse N -terms signals

INPUTS: A signal g =
∑Ng

i=1 aiφi, gi ∈ D.

A set of signals F having a exact-sparse representation using N terms.

The Gram matrix G of the dictionary used to represent the signals.

OUTPUT: mini | 〈fi | g〉 |, the index of the signal that best matches g.

INITIALIZATION: P = {i}‖F‖i=1 the indices of the signals in the set F .

K = 2.

Si
1 = 0, ∀i.

while card(P ) > 1 do

Compute all Si
K = Si

K−1 + si
K .

Compute all mi
K and M i

K .

S = {fi}Mi
K

<maxi mi
K

P = P \ S.

K = K + 1.

end while

1 2 3 4 5 6 7 8

Candidates

Fig. 1. Elimination of candidates 2,6 and 7.

C. Improved bounds

The absolute value of the projection is not decreasing at uniform rate. The slope is much steeper at the

beginning than at the end. This behavior is closely related to the redundancy of the dictionary. Suppose now

that the slope is bounded as | ai |≤ Ci−γi i.e. for each projection ai, we learn a local parameter instead of

using a global constant value for γ. It is now possible to bound | si
k | as follows:

| si
k |≤

∑

i,j
i+j=k

i≤N,j≤Ng

C2i−γij−γj . (14)

One reason for locally adjusting the decay parameter γ is that greedy algorithms for example tend to produce

compressible approximants that have a non-monotonic decay : usually γ is much bigger for the first few
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coefficients and then tends to decrease slowly.

Let {fn} be a huge collection of signals having an exact-sparse representation using N terms. The projection

of the ith atom of the decomposition of fj is denoted by aj
i . Let also have the maximal ith projection Ai =

maxj | aj
i |. The best parameters C and γ used previously can be found by solving:

{C, γ} = argmin
C,γ

N∑

i=1

(Ai − Ci−γ)2, Ci−γ ≥ Ai,∀i. (15)

Using the C we have learnt, we define the values γi for the improved bound as follows :

γi = − logi

Ai

C
. (16)

Using the locally optimized values better matches the behavior of the absolute values of the projections. The

bound is used in the algorithm to eliminate the worst matching candidates. Thus, improving the quality of this

bound directly acts on the quality of the results of the proposed algorithm. It has to be noticed that the values

of the bound do not depend on which signal the algorithm is working with and it can thus be computed offline.

IV. A PROBABILISTIC APPROACH

The worst case bounds presented in the previous sections are based on the hypothesis that the signs of the

scalar products between atoms conspire against us and the entries of the Gram matrix of the dictionary are

always equal to 1. These worst case hypotheses are far from typical cases. It is straightforward to see that if

the signs are positive or negative with equal probability, then the sequences si
k (for sufficiently big values of

k) would be zero mean. Results in the field of concentration of measure show that functions defined on a large

probability space most of the time take values that do not fall too far away from the average case. We will

now use these techniques to obtain much sharper bounds for Ri
K . We will have to accept that these bounds

hold with high probability and not with absolute certainty.

Without loss of generality, we assume that the coefficients are always positive. The dictionary could simply

be augmented to contain also all opposite atoms so that this property holds. At each step of the algorithm, we

estimate the following amplitude:

| Ri
K | = |

2N∑

k=K+1

si
k | (17)

= |
∑

j,l
j+l≥K+1
j≤N,l≤N

ci
jblGki

j
,kl
| . (18)

First, let suppose that the worst case is met for the values of the Gram matrix but that the corresponding

signs are random, +1 or −1 with probability 1
2 . From these considerations, we rewrite the previous equation

June 14, 2007 DRAFT
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as follows:

| Ri
K | = |

2N∑

k=K+1

si
k | (19)

= |
∑

j,l
j+l≥K+1
j≤N,l≤N

εj,lc
i
jbl | (20)

= |
∑

n

εnan | . (21)

where
∑

n εn is a Rademacher sequence i.e. εi is +1 or −1 with equal probability.

Theorem 1: Let a be a real vector and ε a Rademacher sequence. Then ∀t > 0

P (|
∑

n

εnan |> t) ≤ 2e−
1
2 t2/‖a‖22 . (22)

The proof of Theorem 1 can be found in chapter 4 of [25]. Using this theorem, it is straightforward to see

that

P (|
∑

n

εnan |≤ t) ≥ 1− 2e−
1
2 t2/‖a‖22 . (23)

Since the magnitude of the coefficients are bounded, the entries of a are also bounded and this gives us a

simple upper bound of its l2-norm. It is then easy to find an upper bound R̃i
K for a given probability p by

solving 1 − 2e−
1
2 (R̃i

K
)2/‖a‖22 = p. This bound will be discussed in our experiments (Section V) for different

values of p. Note that R̃i
K is influenced in a unfavorable way by the l2-norm of a. On the other hand, this

reasoning remains general enough to be valid for any dictionary D; in particular for orthogonal bases.

The hypothesis that the vector containing the coefficients signs is a Rademacher sequence is certainly more

reasonable than the worst case. However, we still have a levee to pull. So far indeed, we supposed that the

entries of the Gram matrix are always 1 and that is very far from reality. We will now investigate how much

we can squeeze from a probabilistic model, assuming that the entries of the Gram matrix are drawn at random

and that the projections are always positive as before. The residual Ri
K can be rewritten as follows:

| Ri
K | = |

2N∑

k=K+1

si
k | (24)

= |
∑

n

Gnan | . (25)

where Gn are chosen as independent random variables modelling the entries of the Gram matrix of the dictionary.

Let us now turn to the choice of these variables. By definition, all values of the Gram matrix are in the interval

[−1, 1]. It is hard to deduce any general rule. For redundant dictionaries used in practice an histogram of the

entries of the Gram matrix has a peak around zero signaling weakly correlated atoms, and a dirac at one

representing the values on the diagonal. Without more exploitable structure, we choose the simplest random

variables, i.e uniform random variables. This choice will lead to pessimistic bounds, but note that since (25)

models Ri
K as a large sum of these variables we will be able to easily evaluate and control the resulting

distribution.

Let U(n) be a symmetric uniform random variable. Its associated probability density function is:

June 14, 2007 DRAFT
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fU(n)(x) =





1
2n if −n ≤ x ≤ n;

0 otherwise.
(26)

Eq. (25) can be rewritten as a sum of not identically distributed independent uniform random variables:

| Ri
K | = |

∑
n

anUn(1) | (27)

= |
∑

n

Un(an) | (28)

The probability distribution of uniformly distributed random variables with different symmetrical ranges is

presented in [26]. For a more general approach and a survey of different results, please refer to [27]. The

probability density function of a sum of uniform random variables
∑m

n=1 Un(an) is given by Theorem 1 of

[27] and in [26], the cumulative density function is given as follows:

Fm(x) =
∑

−→ε ∈{0,1}m

(−1)
∑m

i=1
εi(

1
2
(x +

m∑

i=1

ai −
m∏

i=1

εiai))m

/ m!
m∏

i=1

ai. (29)

Fm(x) is combinatorial and becomes difficult to evaluate in presence of a large number m of random

variables. An asymptotic density distribution f̂m(x) exists and is presented in [26]. For small values of K,

the number m of uniform random variables in the sum is large and represents a typical case for using this

approximation :

f̂m(x) ≈
[

3
2π

∑m
i=1 a2

i

] 1
2

exp
[
−3

2
x2

∑m
i=1 a2

i

]
. (30)

Since this asymptotic probability density function is gaussian, the associated asymptotic cumulative density

function is a simple error function :

F̂m(x) ≈
1
2

(
1 + Erf

(√3
2

x

‖a‖2
))

. (31)

Given a probability parameter p, we simply have to find the bound R̃i
K such that Fm(R̃i

K)− Fm(−R̃i
K) = p.

V. EXPERIMENTS

In this section, we evaluate our rejection techniques on simulated and real data. First, we consider the

aspects related to the estimation of the different bounds. Second, we show their influence on the behavior of

the algorithm. Finally, we present two experiments of finding the closest image in a set of compressible images.

In order to illustrate the different properties and behaviors of the algorithm, we constructed a simple synthetic

dataset as follows. A set of 7200 images from the COIL-100 database [28] normalized to have the same

energy have been approximated using matching pursuit with a dictionary made of anisotropic atoms [29]. This

yields compressible approximants, with nicely decaying projection coefficients. We then synthesized signals

by multiplying these coefficients with atoms randomly selected in a dictionary made of the union of the Haar
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Fig. 2. Locally optimized {γi} compared to overall learnt γ.

and DCT bases. The choice to take projections values coming from real approximations is motivated by the

fact that the bounds mostly rely on them. Our experiments will thus be representative of the behavior of the

algorithm in real cases.

The non probabilistic upper bounds do not depend on the dictionary that is chosen but only on the projections,

on the number of terms N and Ng of the sparse representations and on the amount of atoms that have already

been taken into account by the algorithm. Figure 2 presents the values γi bounding the amplitudes of the

projections. These values have been learnt from the projections and this figure illustrates well the fact that the

amplitude of the projections is not decreasing at uniform rate. The slope is steeper at the beginning than at the

end.

Figure 3 exhibits the values of the different bounds presented in this paper. The simple bound is far from

reality especially for small values of K whilst the bound using the learnt values γi (shown in figure 2) is

almost half. This fact is illustrated by the upper plot. The two other plots present probabilistic approaches. In

the middle, the signs come from a Rademacher sequence whilst on the lower part, the entries of the Gram matrix

are modelled as uniform random variables. Varying the value of the parameter p leads to different bounds. For

both probabilistic models, when p = 1 the obtained curve would be the bound obtained using the learnt values

γi on the upper part of the figure. Using small values for p leads to sharper bounds at the cost of increasing the

probability that the algorithm commits errors whilst still guaranteeing that P (error) ≤ 1− p. Notice that, even

when p is large (i.e p = 0.9), the associated bound is an order of magnitude smaller than in the deterministic

case.

The computational gain of the algorithm greatly depends on its ability to eliminate at early stages non suitable

candidates. Figure 4 illustrates the relation between the number of potential candidates and the different bounds.

Most of the energy of the signals is caught by the first terms of the decompositions. Signals whose first atoms

have low correlation with the first atoms of the query signal are not likely to be the best ones and should rapidly

be eliminated by the algorithm. This favorable case happens if the bound is tight enough. The upper part of

June 14, 2007 DRAFT
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Fig. 3. The simplest bound is greatly improved by using a better upper bound for the energy (up). The signs modelled as a Rademacher

sequence (middle). The entries of the Gram matrix modelled by a uniform random variable (down).

figure 4 presents the evolution of the cardinality of the set of potential candidates during the execution of the

algorithm for the simple bound and the one based on the learnt values γi. For these bounds, the elimination

of non suitable candidates happens late during the execution of the algorithm. Clearly, the probabilistic bounds

are much tighter and this has a direct influence on the behavior of the algorithm. Indeed, one can observe on

the other plots of figure 4 that the cardinality of the set of potential candidates is decreasing very quickly in

earlier stages. The choice of the value of p has a major influence on the behavior of the algorithm and on its

ability to eliminate non suitable candidates given a query signal.

At step K of the algorithm, the computational complexity depends on the number signals in the set of potential

candidates. The evolution of the cardinality of this set is closely linked to the chosen bound. By extension, the

overall complexity of the algorithm also depends on the chosen bound. When using a probabilistic approach,

it is possible that the algorithm commits mistakes and eliminates the best matching signal. Note though that

our models are pessimistic and the true probability of error is smaller than the corresponding 1 − p. Figure

5 (middle-top) shows the relationship between the probability parameter p of the used probability model and

the computed probability of error. The computations were done for p going from 0.01 to 0.99 by steps of

0.01. According to the model, the probability of error should be lower than 1 − p which is the case for all

experiments. It has to be noticed that the real probability of error is much lower than the theoretic bound of

the model. For example, the algorithm committed no error for values of p bigger than 0.43. However, we can

not derive any general rule as these results depends on the characteristics of the dictionary.

During its execution, the algorithm considers successively pairs of atoms. For each of them, it has to multiply
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Fig. 4. A database of 3000 signals having 2000 samples is used. The three parts of the figure present the cardinality card(P ) of the set of

potential candidates for the different bounds defined in the paper averaged over 20000 queries.

the corresponding entry of the gram matrix by both projection parameters and add it to the current estimation of

the scalar product. We considered that each of these individual operation has unit weight. Thus, for each pair,

the algorithm makes 3 operations. We did not take into account the computations needed to find the candidates

to eliminate. Figure 5 (top) presents the number of operations needed for different values of p. The direct

computation of the scalar product would require 2000 multiplications and 1999 addition for each signal in the

database. Thus, the overall number of operations is approximatively 40× 106.

When computing nearest neighbors in high dimensional spaces, one often seeks for a (1 + ε)-approximate

nearest neighbor fi ∈ F of g such that ∀fk ∈ F , dist(fi, g) ≤ (1+ ε)dist(fk, g). Where dist() is some distance

function or some norm. Our algorithm computes scalar products between signals, we have thus used the simplest

distance:

dist(fi, g) =

(
1−

( | 〈fi, g〉 |
‖gi‖2‖g‖2

)2
)1/2

. (32)

Since all signals have approximatively unit norm, dist(fi, g) ≈
√

1− | 〈fi, g〉 |2. Note that one could use more

complicated distances, for example kernel distances, provided they are still based on evaluating scalar products.

The traditional kernels used in classification are based on scalar products between vectors. Some of them are

listed below, but the interested reader can get more insight in any textbook, for example [30] :

Polynomial kernel: k(fi, g) = 〈fi, g〉α

Radial basis function: k(fi, g) = exp−‖fi − g‖2
2σ2

Sigmoid: k(fi, g) = tanh (κ〈fi, g〉+ c)
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Choosing the best distance, though, is application dependent and out of the scope of the present paper. We

will thus perform all our experiments using the simple euclidean distance. Note as well that some classification

schemes, most notably support vector machines [30], rely heavily on selecting particular data points based

on their scalar products with reference vectors. These techniques could potentially benefit from fast rejection

algorithms.

For each experiment, we computed the value ε, called slackness. The two lower parts of figure 5 presents

the mean and the maximal values of the slackness. The mean slackness is very near 0; this is due to the fact

that when the algorithm correctly identifies the best signal, the corresponding ε is 0. Generally, one is more

interested in the maximal possible value for ε as it bounds the worst case. For small values of p, the maximal

value of the slackness is quiet high whilst it decreases rapidly when p increases.
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Fig. 5. Comparing the value of the parameter p with the real probability error (middle up) and its influence on the complexity (up). The

maximal slackness (middle down) and the mean slackness (down) are also presented. The algorithm uses a global probabilistic bound; the

signals have 2000 samples, the database contains 10000 signals. The results are the mean of 20000 experiments.

Since no conditions were imposed on the dictionary apart from the fact that the signals should be compressible,

it is straightforward to see that the bound using the Rademacher sum is valid whatever dictionary is used. In

the present experiment, a set of 7200 images from the COIL-100 database [28] where approximated with 200
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terms of a wavelet decomposition (i.e the dictionary is an orthogonal basis). The images are of size 128× 128

and the filter used for the wavelet transform is a Daubechies of length 20. The database of signals is made of

2500 randomly chosen images and the other ones where used to test the algorithm. Figure 6 shows that the

cardinality of the set of potential signals decays quickly with the number of iterations. Different parameters

p have been used to obtain the bound, but this didn’t change significantly the behaviour of the algorithm.

Moreover, it has to be noticed that the algorithm always found the best signal in the database.
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Fig. 6. Cardinality of the set of potential candidates during the execution of the algorithm for images approximated with wavelets.

For our next set of experiments, we turn to a redundant dictionary. Let the set F be a collection of images

having a sparse decomposition using a dictionary D. We used images from the ORL face database [31].The

dictionary is built using generating functions that are scaled, rotated and translated [29]. The generating function

is made of a Gaussian in one direction and its second derivative in the other direction. It has a good ability to

capture edges and is well located in space and frequency.

In our experiments, the atoms have translation parameters that take any positive integer value smaller than

the size of the image. The rotation parameter varies by increments of π
18 . The scaling parameters are uniformly

distributed on a logarithmic scale from one up to an eighth of the size of the image, with a resolution of one

third of octave. The scaling along the second derivative part is always smaller. The dictionary also contains

Gaussian atoms. Their translation parameters can take the same values as for the anisotropic atoms, their scaling

is isotropic and varies from 1
32 to 1

4 of the size of the image on a logarithmic scale with a resolution of one

third of octave. Due to isotropy, rotation is obviously useless for this kind of atoms.

An atom is uniquely defined by the set of parameters defining the generating function, the translation, the

scaling and the rotation. Using images of size 128× 128, the dictionary is made of 40′271′872 atoms, which

makes it difficult to store the Gram matrix. However, due to their particular analytical form, it is possible to

compute at low cost any entry of the gram matrix knowing the parameters of the atoms without having to

create them.

Figure 7 presents the last steps of the execution of the algorithm when one or more candidates are eliminated.
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The candidates are shown using the number of atoms at disposal at the current step. The cardinality of the

set of face images is 300; at step K = 17, corresponding to the second row of the figure, 9 candidates are

remaining. The images representing the same person are likely to have a strong correlation with the reference

image and are massively present in the remaining candidates.
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Fig. 7. The column most left presents the reference images whilst the other contain the candidates. The first row contains all fully recreated

images whilst in the other rows, the images are reconstructed according to the number of atoms the algorithm takes into account.

The same experiment has been done with wavelet representations of images from the COIL-100 database

[28]. A simple pretreatment consisting in normalizing the energy of the images has been done. The database

contained 1500 images chosen randomly and all the images of size 128x128 were approximated using 1000

terms. Figure 9 presents the evolution of the cardinality of the set of potential candidates during the first 85

steps. The following steps are presented by figure 8. The first row presents the query image and the images

present in P after 85 steps reconstructed using 1000 wavelets. In the next rows, the images are reconstructed

using only the wavelets that have been taken into account by the algorithm at this step. The algorithm is efficient

in eliminating signals that are not from the good class. The four last rows contain the same object and as they

are very similar, the algorithm need many steps to identify the best one. However, as the cardinality of the set

of potential candidates is very low, the complexity is low too.

VI. CONCLUSION

The sparse structure of compressible signals offers a rather straightforward way to reduce the dimensionality

of complex signals. In this paper, we have exploited this structure to recursively localize those elements of

a large set of signals that are closest to a fixed query. Our technique requires fundamental inputs. First, the

coefficients of the expansion of each signal in the database must be stored and easily accessible. Note this is

not a particularly stringent requirement since it is very likely that one would store compressed signals, using
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Fig. 9. Evolution of the cardinality of the set of potential candidates before reaching the state shown in Figure 8.

precisely the sparsity of their representation over a given basis or dictionary. Our technique is then able to work

on the compressed signals, in the sense that one doesn’t have to reconstruct them for processing. Second, the

gram matrix of the dictionary used to express signals must be stored or computed, too. If this not a problem

when the dictionary is an orthogonal basis, it could be a severe limitation in the case of a general redundant

dictionary since the gram matrix is a priori large and without particular structure. However, the gram matrix

entries of many dictionaries used in practice can be computed in a fast way.

We showed that is possible to maintain deterministic or probabilistic bounds on the true distance between the

query and the tested signals. Clearly though, probabilistic bounds are much more favorable than our worst case

deterministic bounds. Indeed, we presented clear experimental evidence showing the ability of the algorithm to

eliminate non suitable candidates at early stages.

In view of the recent results in compressed sensing, one may wonder wether it would be possible to avoid

computing sparse approximations over a fixed dictionary since most of the information of compressible signals

can be captured by random projections [32]. Exploring the possibility of working solely with random projections

will be one of our future research directions.
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