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Abstract. We consider a discontinuous Galerkin finite element method for
the advection–reaction equation in two space–dimensions. For polynomial ap-
proximation spaces of degree greater than or equal to two on triangles we
propose a method where stability is obtained by a penalization of only the
upper portion of the polynomial spectrum of the jump of the solution over
element edges. We prove stability in the standard h-weighted graphnorm and
obtain optimal order error estimates with respect to mesh-size.

Discontinuous Galerkin method, advection-reaction equation, local mass conser-
vation, interior penalty.

1. Introduction

The discontinuous Galerkin method (DG) for hyperbolic equations was intro-
duced by Reed and Hill [21]. The method was then analysed in the framework of
Friedrichs systems by Lesaint and Raviart [20]. A sharpened analysis was provided
by Johnson and Pitkäranta [19]. During the nineties the discontinuous Galerkin
method experienced a further development in the work by Cockburn and Shu where
numerical schemes for hyperbolic problems were proposed by combining discontin-
uous Galerkin type approximation in space with Runge-Kutta type time stepping
strategies [9, 10, 11]. A DG-method using high order approximation spaces was
analysed by Houston, Schwab and Süli in [17]. In particular they proved quasi-
optimal hp-error estimates for hyperbolic problems. More recently the case of
Friedrichs systems was revisited in the thesis of Jensen [18] and by Ern and Guer-
mond [14]. In all the above works the basic strategy is the same: consider a poly-
nomial approximation on each element and impose continuity weakly by adding
a penalization term on the jump of the solution over interelement boundaries or
equivalently choosing a numerical flux that has a dissipative property. The penal-
ization can take the form of a so called upwind flux which corresponds to weak
imposition of continuity on the inflow boundary or, as was pointed out by Brezzi
and coworkers in [3], can be written as one term on the faces that assures positivity
of the convective term and another term which is a pure penalization of the solution
jumps. For a certain choice of the stabilization parameter in the latter case the two
stabilizations coincide. An overview of different stabilization mechanisms in DG
methods was recently proposed by Brezzi and coworkers in [1].

In parallell to the development of DG-methods for hyperbolic equations a method
using continuous approximation but stabilizing the jump of the gradient over ele-
ment edges has been proposed by Burman and Hansbo in [6] drawing on earlier ideas
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of Douglas and Dupont [12]. This interior penalty method using continuous ap-
proximation spaces was then generalized by Burman to the case of non-conforming
approximation spaces in [4] and to the hp-framework by Burman and Ern in [5].

In the recent paper [7] we studied theoretically and numerically what type of
interior penalty stabilization is needed to obtain a stable, optimally converging
scheme in the case of continuous or discontinuous approximation. Rather surpris-
ingly we found that for a DG method using piecewise quadratic polynomials it was
sufficient to stabilize the jump in the tangential derivative of the solution only. An
optimal order a priori error estimate was proved and it was shown that for this
method the local mass conservation is independent of the stabilization parameter
of the numerical scheme, which is in general not the case for DG-methods.

In this paper we extend these ideas to the case of general polynomial order. In
particular we prove that on triangular conforming meshes only the highest polyno-
mial orders of the solution jumps need to be penalized. This can be considered as
applying a high pass filter to the solution jumps before penalization or more precisly,
projecting the jump onto the subspace consisting of the highest modes. Hence low
order modes (approximately the lowest third of the polynomial spectrum) are not
directly affected by the penalization term. This property leads to local mass con-
servation independent of the stabilization parameter. This is in general not true for
DG-methods and when it does hold it often comes with decreased accuracy. Here
we show both theoretically and numerically that our method leads to local mass
conservation independently of the stabilization parameter without loss of accuracy.
Shifting the numerical dissipation to higher order polynomial modes can be seen
as a realization in the DG-framework of a spectral viscosity type of stabilization:
low order modes will propagate without any explicit dissipation. For a discussion
of minimal stabilization procedures in the framework of continuous approximation
spaces see [2] and [4].

The main idea behind the proof is to construct a projection operator with or-
thogonality properties both on the elements and on the element faces. In this paper
we restrict the analysis to the case of a linear scalar hyperbolic problem in two space
dimensions to keep down redundant technical detail, however the same analysis is
expected to carry over in a straightforward manner to more general first order sys-
tems such as symmetric Friedrichs systems in the framework proposed in [14], the
wave equation or Maxwell’s equations.

An outline of the paper is as follows: In the next section we first introduce the
model problem and define our notation, then we give a serie of technical results
concerning the projection operator used in the stability analysis. In section 3 we
propose a discontinuous Galerkin method based on stabilization of the projected
jumps and give some elementary lemmas. The proposed method is then analysed in
section 4, where the main result is a discrete inf-sup condition showing that we may
recover a priori control of the whole solution jump in the L2-norm despite the fact
that we only stabilize the highest modes of the jump. Once we have established the
discrete inf-sup condition an h-optimal convergence analysis follows in a standard
fashion. In section 5, we give a full analysis of the projection introduced in section
2. Finally, in section 6, we show the numerical performance of our method on some
simple model problems with varying regularity.
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2. The problem setting

Let Ω be an polygon in R
2 with outer normal n. We consider the following

advection-reaction equation with homogeneous Dirichlet boundary conditions on
the inflow boundary:

Find u : Ω → R such that

(2.1)

{
β·∇u + µu = f,

u|∂Ω− = 0,

where f ∈ L2(Ω) and the vector field β ∈ [Lip(Ω)]2 is supposed to be Lipschitz
continuous. Assume that µ − 1

2∇·β ≥ µ0 > 0. The inflow boundary is defined by

∂Ω− = {x ∈ ∂Ω; β(x)·n(x) < 0}. For a discussion about the well-posedness of this
problem we refer to [14].

2.1. Definitions. Let K be a subdivision of Ω ⊂ R
2 into non-overlapping triangles.

Assume that K is shape-regular. For an element κ ∈ K, hκ denotes its diameter.
Set h = maxκ∈K hκ and let h̃ be the function such that h̃|κ = hκ. Assume that
K covers Ω exactly and that K does not contain any hanging nodes. Suppose that
each κ ∈ K is an affine image of the reference element κ̂. Let Fi denote the set of
interior faces (1-manifolds) of the mesh, i.e., the set of faces that are not included in
the boundary ∂Ω. The set Fe denotes the faces that are included in ∂Ω and define
F = Fi∪Fe. In addition we split the exterior boundary in an inflow and an outflow
boundary, i.e. Fe = F− ∪ F+, where F± = {F ∈ Fe; ±β(x)·n(x) > 0 ∀x ∈ F}.
For a face F ∈ F , hF denotes its length and let h̃F be the function such that
h̃F |F = hF .

For s ≥ 0, let Hs(K) be the space of piecewise Sobolev Hs–functions and denote
its scalar product and norm by (·, ·)s,K resp. ‖ · ‖s,K. In the case of s = 0 the
subscript s is dropped. For a subset R ⊂ F or R ⊂ K, (·, ·)R denotes the L2(R)–

scalar product and ‖ · ‖R = (·, ·)1/2
R the corresponding norm.

For v ∈ H1(K) and an interior face F = κ1 ∩ κ2 ∈ Fi, where κ1 and κ2 are two
distinct elements of K with respective outer normals n1 and n2, define the jump by

[v]β = (v|κ1
n1 + v|κ2

n2) ·eβ ,

where eβ = β
|β| with |β| =

√
β·β. The average is defined for all functions v ∈ H1(K)

by

{v} = 1
2 (v|κ1

+ v|κ2
) .

On outer faces F = ∂κ ∩ ∂Ω ∈ Fe with outer normal n, the jump and the average
are defined as [v]β = v|κn·eβ and {v} = v|κ.

The shape-regularity implies that there exists a constant c > 0 independent of
the mesh size h such that on any face F ∈ F

hF ≤ {h̃} ≤ c hF .

In this paper c > 0 denotes a generic constant and can change at each occurrence,
while an indexed constant stays fix. Any constant is independent of the mesh size
h.
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2.2. Projections and finite element spaces. Let us first define some polynomial
spaces. Let p ≥ 0 and l ≥ 0 be two arbitrary integers and let κ be an arbitrary
element of the mesh K. Further let Pp(κ) be the space of polynomials of total
degree p on κ and introduce the global discontinuous finite element space

(2.2) V
p
h = { vh ∈ L2(Ω); vh|κ ∈ Pp(κ), ∀κ ∈ K}.

Define the following polynomial space on ∂κ:

Pl(∂κ) = {v ∈ L2(∂κ); v|F ∈ Pl(F ), ∀F ∈ F(∂κ)}

where Pl(F ) is the usual one dimensional polynomial space of total degree l on F .
F(∂κ) denotes the set of faces of κ. Observe that no continuity is required on the
vertices of κ. On a global level we define

W l
h = {v ∈ L2(F); v|F ∈ Pl(F ), ∀F ∈ F}.

Associated to W l
h, define the L2-projection Pl : L2(F) →W l

h by

(Plv, zh)F = (v, zh)F ∀zh ∈ W l
h.

Consequently we have the following property for any function zh ∈W l
h:

(2.3) ((I − Pl)v, zh)F = 0 ∀F ∈ F .

Since Pl is the facewise L2-projection of order l we have the following estimates

(2.4) ‖whPlv‖2
F ≤ ‖whv‖2

F and ‖wh(I−Pl)v‖2
F ≤ ‖whv‖2

F ∀wh ∈ W 0
h .

Proposition 2.1 (Global Projection). Let v1 ∈ L2(Ω) and v2 ∈ L2(F), then there
exists a projection Πh = Πh(v1, v2) ∈ V

p
h , with p ≥ 2, such that

∫

K

(Πh − v1)wh = 0 ∀wh ∈ V
p−1
h ,(2.5)

∫

F

({Πh} − v2) zh = 0 ∀zh ∈W l
h,(2.6)

for all 0 ≤ l ≤ ⌊p+1
3 ⌋ − 1. In addition for all v ∈ L2(F) the projection satisfies the

following local stability property

(2.7) ‖Πh(0, v)‖2
∂κ ≤ c ‖v‖2

∂κ,

and its global variants

‖{Πh(0, v)}‖2
F + ‖[Πh(0, v)]β‖2

F ≤ c ‖v‖2
F ,(2.8)

‖Πh(0, v)‖2
K ≤ c ‖h̃

1
2

Fv‖2
F .(2.9)

Proof. The proof of Proposition 2.1 is given in section 5. �

Remark 2.1. The result of (2.9) can be generalized by

‖whΠh(0, v)‖2
K ≤ c ‖h̃

1
2

F{wh}v‖2
F , ∀wh ∈ V 0

h .(2.10)
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2.3. Some technical lemmas. In this section we present some known lemmas.
The first is a generalized trace inequality and the second a standard inverse in-
equality. The proofs of these results can be found in textbooks such as [22] and
[8].

Lemma 2.2 (Trace inequality). Let ζh ∈ [V p
h ]m, m ≥ 1, then there exists a constant

cT > 0, independent of the mesh size h, such that

‖{ζh}‖2
F + ‖[ζh]β‖2

F ≤ cT ‖h̃− 1
2 ζh‖2

K.

On the other hand if ζ ∈ H1(K), then there exists a constant cT > 0, independent
of the mesh size h, such that

‖{ζ}‖2
F + ‖[ζ]β‖2

F ≤ cT

(
‖h̃− 1

2 ζ‖2
K + |h̃ 1

2 ζ|21,K

)
.

Lemma 2.3 (Inverse inequality). Let vh ∈ V
p
h , then there exists a constant c > 0,

independent of the mesh size h, such that

‖∇vh‖2
K ≤ c ‖h̃−1vh‖2

K.

3. The discontinuous finite element method

In this and further sections we restrict the choice of the polynomial order of the
approximation to p ≥ 2. The discrete problem consists of seeking uh ∈ V

p
h such

that

(3.1) a(uh, vh) + j(uh, vh) = (f, vh)K ∀vh ∈ V
p
h

where

a(v, w) = ((µ−∇·β)v, w)K − (v, β·∇w)K + (|β|{v}, [w]β)Fi∪F+
,

j(v, w) = γs(|β|∞(I − Pl)[v]β , (I − Pl)[w]β)Fi∪F−
,

and l = ⌊p+1
3 ⌋ − 1. Pl denotes the projection defined in section 2.2, γs denotes a

stabilization parameter and |β|∞ ∈ W 0
h is defined by |β|∞|F = ‖β‖L∞(F ) on all

faces F ∈ F .

Remark 3.1 (Local mass conservation). Considering the model problem (2.1) with
∇ · β ≡ 0 leads to the following local mass conservation property choosing the
characteristic function of an element κ ∈ K as test function:∫

κ

µuh +

∫

∂κ

β·nκ{uh} =

∫

κ

f.

Here nκ denotes the outer normal of the element κ. Observe that this property
does not depend on the stabilization parameter γs and can be considered as gener-
alization of the exact conservation property for double-valued functions.

Remark 3.2 (Efficient implementation). Using the Bramble-Hilbert lemma one eas-
ily shows that the (I − Pl) operator may be replaced by a differential operator of
order l+ 1 in the tangential directions of the face. In particular when l = 0 we get

‖|β|
1
2
∞(I − P0)[v]β‖Fi∪F−

≤ ‖|β · n| 12 h̃F [∇v]T ‖Fi∪F−
,

where here [∇v]T = ∇v|κ1
×n1 +∇v|κ2

×n2 is the tangential jump of the gradient.
It follows that an equivalent stabilization term is obtained penalizing the jumps of
certain derivatives, leading to a term that is no more complicated or expensive to
compute than in the standard case. The following analysis holds in this case also
with minor modifications.
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3.1. Some Lemmas. The following lemma is basically only the integration by
parts of the advection term.

Lemma 3.3. Let v, w ∈ H1(K), then

a(v, w) = (β·∇v + µv,w)K − (|β|[v]β , {w})Fi∪F−
,(3.2)

a(v, v) = ((µ− 1
2∇·β)v, v)K + 1

2 (|β·n|v, v)Fe
.(3.3)

Proof. The first equation is developed using integration by parts.. The second uses
additionally the fact that v = w. �

Corollary 3.4 (Coercivity). Let v ∈ V
p
h , then there exists a constant cL > 0,

independent of h, such that

cL a(vh, vh) ≥
(
‖vh‖2

K + ‖|β| 12 [vh]β‖2
Fe

)
.

This result follows immediately from (3.3) taking into account that |n·eβ| ≤ 1.

Lemma 3.5 (Consistency). Let u ∈ H1(Ω) be the exact solution of problem (2.1)
and let uh be the solution of (3.1), then

a(u − uh, vh) + j(u− uh, vh) = 0

for all vh ∈ V
p
h .

Proof. Since uh is the discrete solution it satisfies

a(uh, vh) + j(uh, vh) = (f, vh)K ∀, vh ∈ V
p
h .

On the other hand since u ∈ H1(Ω)

([u]β , vh)Fi
= 0 ∀vh ∈ V

p
h ,

and thus j(u, vh) = 0 using additionally the boundary condition. Further applying
Lemma 3.3 and the boundary condition yields

a(u, vh) = (β·∇u+ µu, vh)K − (|β|[u]β , {vh})Fi∪F−

= (β·∇u+ µu, vh)K − (|β|[u]β , {vh})F−

= (β·∇u+ µu, vh)K = (f, vh)K.

�

4. Convergence Analysis

The triple norm is defined for all v ∈ H1(K) by

|‖v‖|2 = ‖v‖2
K + ‖h 1

2β·∇v‖2
K + ‖|β| 12 [v]β‖2

F .

It allows to control the graph-norm as well as the solution jumps. First we develop
some general results. The function |β|∞ ∈W 0

h defined in section 3 has the following
property

(4.1) ‖|β| − |β|∞‖L∞(F ) ≤ c hF ‖β‖1,∞,F

for every face F ∈ F since β is Lipschitz continuous. Additionally define β̄ ∈ V 0
h

as the elementwise average of β, i.e.

β̄|κ =
1

|κ|

∫

κ

β ∀κ ∈ K.
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Since β is Lipschitz continuous we have

(4.2) ‖β − β̄‖L∞(κ) ≤ c hκ ‖β‖1,∞,κ.

From this we deduce, that for any face F = ∂κ ∪ ∂κ′ ∈ F we have

(4.3) ‖|β| − {|β̄|}‖L∞(F ) ≤ c {h̃}‖β‖1,∞,κ∪κ′ ≤ c hF ‖β‖1,∞,κ∪κ′.

Proposition 4.1 (Inf-Sup Condition). Assume that β ∈ [Lip(Ω)]2, then there exists
a constant c > 0, independent of the mesh size h, such that

c |‖vh‖| ≤ sup
v′

h
∈V p

h

a(vh, v
′
h) + j(vh, v

′
h)

|‖v′h‖|
∀vh ∈ V

p
h .

Proof. For the proof of Proposition 4.1 we introduce the following two lemmas.

Lemma 4.1. For all vh ∈ V
p
h there exists v′h ∈ V

p
h and c > 0 such that

c |‖vh‖|2 ≤ a(vh, v
′
h) + j(vh, v

′
h).

Lemma 4.2. Fix vh ∈ V
p
h and let v′h ∈ V

p
h be the function defined in Lemma 4.1,

then there exists a constant c > 0 such that

|‖v′h‖| ≤ c |‖vh‖|.

Combining these two lemmas leads to the result. Indeed for all vh ∈ V
p
h there

exists v′h ∈ V
p
h and c > 0 such that

c |‖vh‖| ≤
a(vh, v

′
h) + j(vh, v

′
h)

|‖v′h‖|
.

�

Proof of Lemma 4.1. Let us define

wh = h̃ β̄·∇vh ∈ V
p
h ,(4.4)

zh = Πh(0, Pl[vh]β) ∈ V
p
h ,(4.5)

with 0 ≤ l ≤ ⌊p+1
3 ⌋ − 1. Let us first prove two preliminary results. Firstly, there

exists a constants cβ > 0 such that

(4.6) ‖wh‖K ≤ cβ min(‖h̃β·∇vh‖K + ‖h̃vh‖K, ‖vh‖K).

Indeed on one hand we have that

‖wh‖K ≤ ‖h̃β·∇vh‖K + ‖h̃(β̄ − β)·∇vh‖K ≤ ‖h̃β·∇vh‖K + c ‖h̃2∇vh‖K
≤ ‖h̃β·∇vh‖K + c ‖h̃vh‖K,

using (4.2) and Lemma 2.3, and on the other hand we note that by an inverse
inequality

‖wh‖K = ‖h̃β̄·∇vh‖K ≤ c ‖vh‖K.
Secondly there exists a constant c > 0 such that

‖|β|
1
2
∞{zh}‖2

F + ‖|β|
1
2
∞[zh]β‖2

F ≤ ‖|β|
1
2
∞Pl[vh]β‖2

F + c ‖vh‖2
K,(4.7)

‖|h̃
1
2

F{zh}‖2
F + ‖|h̃

1
2

F [zh]β‖2
F ≤ ‖|h̃

1
2

FPl[vh]β‖2
F + c ‖vh‖2

K.(4.8)
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Indeed let us fix an element κ ∈ K with boundary ∂κ = F ∪ F1 ∪ F2. For j = 1, 2
let us note cF = |β|∞|F resp. cF = hF and cFj

= |β|∞|Fj
resp. cFj

= hFj
. Then

using the local stability property of the projection (2.7) we develop

‖c
1
2

F zh‖2
F ≤ ‖c

1
2

F zh‖2
∂κ ≤ c ‖c

1
2

FPl[vh]β‖2
∂κ

≤ c
(
‖c

1
2

FPl[vh]β‖2
F + ‖c

1
2

FPl[vh]β‖2
F1

+ ‖c
1
2

FPl[vh]β‖2
F2

)

Then using a triangle inequality we may write for j = 1, 2

‖c
1
2

FPl[vh]β‖2
Fj

≤ ‖c
1
2

Fj
Pl[vh]β‖2

Fj
+ ‖(c

1
2

F − c
1
2

Fj
)Pl[vh]β‖2

Fj
.

The second term can further be developed using that β ∈ [Lip(Ω)]2 resp. |hF −
hFj

| ≤ c hFj
(shape-regularity), the stability of the projection (2.4) and the trace

inequality

‖(c
1
2

F − c
1
2

Fj
)Pl[vh]β‖2

Fj
≤ c ‖h

1
2

Fj
Pl[vh]β‖2

Fj
≤ c ‖h

1
2

Fj
[vh]β‖2

Fj
≤ c ‖vh‖2

κ.

Thus

‖β|
1
2
∞zh‖2

F ≤ ‖β|
1
2
∞Pl[vh]β‖2

∂κ + c ‖vh‖2
κ(4.9)

‖h
1
2

F zh‖2
F ≤ ‖h̃

1
2

FPl[vh]β‖2
∂κ + c ‖vh‖2

κ(4.10)

Cumulating (4.9) resp. (4.10) for all elements leads to (4.7) resp. (4.8). After these
preliminary results, we prove the lemma in three steps.

Step 1 First we prove that there exists a constant cw > 0 such that

‖h̃ 1
2β·∇vh‖2

K ≤ a(vh, cwvh + 4wh) + j(vh, cwvh + 4wh) + cw ‖|β| 12 [vh]β‖2
Fi
.

By the definition of the bilinear form a(·, ·) we obtain

‖h̃ 1
2β·∇vh‖2

K = a(vh, wh) + (β·∇vh, h̃(β − β̄)·∇vh)K − (µvh, wh)K

+(|β|[vh]β , {wh})Fi∪F−
= a(vh, wh) + I1 + I2 + I3.(4.11)

Then develop each term. For the first we use relation (4.2):

|I1| ≤ c ‖h̃ 1
2β·∇vh‖K‖h̃

3
2∇vh‖K ≤ c ‖h̃ 1

2β·∇vh‖K‖h̃
1
2 vh‖K

≤ c ‖h̃ 1
2 vh‖2

K + δ1 ‖h̃
1
2 β·∇vh‖2

K(4.12)

where δ1 > 0 is an arbitrary constant. For the second one we use (4.6)

(4.13) |I2| ≤ c ‖vh‖K ‖wh‖K ≤ c ‖vh‖2
K.

To get an upper bound of the last term we use the trace inequality, Lemma 2.2,
followed by (4.6):

|I3| ≤ c ‖|β| 12 [vh]β‖2
Fi∪F−

+ δ2 ‖{wh}‖2
Fi∪F−

≤ c ‖|β| 12 [vh]β‖2
F + δ2cT ‖h̃− 1

2wh‖2
K

≤ c
(
‖|β| 12 [vh]β‖2

F + ‖vh‖2
K

)
+ δ2cT cβ ‖h̃ 1

2 β·∇vh‖2
K(4.14)

where δ2 > 0 is an arbitrary constant. Respect all bounds (4.12), (4.13), (4.14) and
choose δ1 = 1

4 , δ2 = 1
4cT cβ

. Then injecting these bounds in (4.11) yields

1
2‖h̃

1
2 β·∇vh‖2

K ≤ a(vh, wh) + c
(
‖vh‖2

K + ‖|β| 12 [vh]β‖2
F

)
.(4.15)
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We now consider the penalization term and use the trace inequality, Lemma 2.2,
and (4.6) to develop

−j(vh, wh) ≤ c j(vh, vh)
1
2 ‖(I − Pl)[wh]β‖F ≤ c j(vh, vh) + δ2 ‖[wh]β‖2

F

≤ c j(vh, vh) + δ2 cT ‖h̃− 1
2wh‖2

K

≤ c j(vh, vh) + δ2 cT cβ ‖h̃ 1
2β·∇vh‖2

K + δ2 cT cβ ‖h̃ 1
2 vh‖2

K.

Since δ2 = 1
4cT cβ

we get

(4.16) 0 ≤ j(vh, cvh + wh) + 1
4‖h̃

1
2 β·∇vh‖2

K + 1
4‖h̃

1
2 vh‖2

K.

Combining (4.15), (4.16) and the coercivity of Lemma 3.4 leads to

1
4‖h

1
2β·∇vh‖2

K ≤ a(vh, wh) + j(vh, cvh + wh) + c
(
‖vh‖2

K + ‖|β| 12 [vh]β‖2
F

)

≤ a(vh, cvh + wh) + j(vh, cvh + wh) + c ‖|β| 12 [vh]β‖2
Fi
.

Step 2 Then we prove that there exists a constant cz > 0 such that

‖|β| 12 [vh]β‖2
Fi

≤ a(vh, czvh − 4zh) + j(vh, czvh − 4zh).

By Lemma 3.3 and the property of the projection, relation (2.5), we obtain

a(vh, zh) = (β·∇vh + µvh, zh)K − (|β|[vh]β , {zh})Fi∪F−

= ((β − β̄)·∇vh, zh)K + (µvh, zh)K − (|β|∞[vh]β , {zh})Fi∪F−

−([vh]β , (|β| − |β|∞){zh})Fi∪F−

= ((β − β̄)·∇vh, zh)K + (µvh, zh)K − (|β|∞Pl[vh]β , {zh})Fi∪F−

−(|β|∞(I − Pl)[vh]β , {zh})Fi∪F−
− ([vh]β , (|β| − |β|∞){zh})Fi∪F−

Thus by (2.6):

‖|β|
1
2
∞Pl[vh]β‖Fi

≤ −a(vh, zh) + ((β − β̄)·∇vh, zh)K + (µvh, zh)K

−(|β|∞(I − Pl)[vh]β , {zh})Fi∪F−

−([vh]β , (|β| − |β|∞){zh})Fi∪F−

= −a(vh, zh) + I1 + I2 + I3 + I4.(4.17)

For the first term I1, we apply relation (4.2), the inverse inequality of Lemma 2.3,
property (2.9), relation (2.4) and the trace inequality of Lemma 2.2:

|I1| ≤ c ‖h̃∇vh‖K‖zh‖K ≤ c ‖vh‖K‖h̃
1
2

FPl[vh]β‖F ≤ c ‖vh‖K‖h̃
1
2

F [vh]β‖F
≤ c ‖vh‖2

K(4.18)

Use property (2.9), relation (2.4) and the trace inequality, Lemma 2.2, for the
second term
(4.19)

|I2| ≤ c ‖vh‖K‖zh‖K ≤ c ‖vh‖K‖h̃
1
2

FPl[vh]β‖F ≤ c ‖vh‖K‖h̃
1
2

F [vh]β‖F ≤ c ‖vh‖2
K

and property (4.7) for the third one

|I3| ≤ c j(vh, vh)
1
2 ‖|β|

1
2
∞{zh}‖F ≤ c j(vh, vh) + δ3 ‖|β|

1
2
∞{zh}‖2

F

≤ c
(
j(vh, vh) + ‖vh‖2

K

)
+ δ3 ‖|β|

1
2
∞Pl[vh]β‖2

F .(4.20)
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Then for the last term we may write

|I4| ≤ c ‖h̃
1
2

F [vh]β‖F‖h̃
1
2

F{zh}‖F ≤ c ‖h̃
1
2

F [vh]β‖F
(
‖h̃

1
2

FPl[vh]β‖F + ‖vh‖K
)

≤ c ‖h̃
1
2

F [vh]β‖F
(
‖h̃

1
2

F [vh]β‖F + ‖vh‖K
)
≤ ‖vh‖2

K(4.21)

using (4.1), property (4.8), relation (2.4) and the trace inequality, Lemma 2.2. Thus
respecting all bounds (4.18), (4.19), (4.20) and (4.21) in (4.17) with δ3 = 1

2 leads
to

(4.22) 1
2‖|β|

1
2
∞Pl[vh]β‖2

Fi
≤ −a(vh, zh) + c

(
‖vh‖2

K + ‖|β|
1
2
∞[vh]β‖2

Fe

)
+ cj(vh, vh).

Then use (4.7) to develop

j(vh, zh)

≤ j(vh, vh)
1
2 ‖|β|

1
2
∞(I − Pl)[zh]β‖F ≤ j(vh, vh)

1
2 ‖|β|

1
2
∞[zh]β‖F

≤ c j(vh, vh) + δ4‖|β|
1
2
∞[zh]β‖2

F ≤ c
(
j(vh, vh) + ‖vh‖2

K

)
+ δ4‖|β|

1
2
∞Pl[vh]β‖2

F .

Choose δ4 = 1
4 and therefore

1
4‖|β|

1
2Pl[vh]β‖2

Fi

≤ 1
4‖|β|

1
2
∞Pl[vh]β‖2

Fi
≤ −a(vh, zh) + c

(
‖vh‖2

K + ‖|β|
1
2
∞[vh]β‖2

Fe

)
+ j(vh, cvh − zh).

Additionally observe that

‖|β|
1
2
∞[vh]β‖2

Fe
≤ ‖|β| 12 [vh]β‖2

Fe
+ ‖(|β|∞ − |β|) 1

2 [vh]β‖2
Fe

≤ ‖|β| 12 [vh]β‖2
Fe

+ c ‖h̃
1
2

F [vh]β‖2
Fe

≤ ‖|β| 12 [vh]β‖2
Fe

+ c ‖vh‖2
K

using (4.1) and the trace inequality. Thus we have the following upper bound for
the solution jumps

1
4‖|β|

1
2Pl[vh]β‖2

Fi
≤ −a(vh, zh) + c

(
‖vh‖2

K + ‖|β| 12 [vh]β‖2
Fe

)
+ j(vh, cvh − zh).

Now apply the coercivity, Corollary 3.4, to conclude

1
4‖|β|

1
2 [vh]β‖2

Fi
≤ a(vh, cvh − zh) + j(vh, cvh − zh).

Step 3 Finally combining the coercivity of Corollary 3.4, Step 1 and Step 2,
we may write

|‖vh‖|2 = ‖vh‖2
K + ‖h̃ 1

2β·∇vh‖2
K + ‖|β| 12 [vh]β‖2

F

≤ a(vh, cLvh) + ‖h̃ 1
2β·∇vh‖2

K + ‖|β| 12 [vh]β‖2
Fi

≤ a(vh, (cL + cw)vh + 4wh) + j(vh, cwvh + 4wh) + (1 + cw)‖|β| 12 [vh]β‖2
Fi

≤ a(vh, v
′
h) + j(vh, v

′
h)

with v′h = (cL + cw + (1 + cw)cz)vh + 4wh − 4(1 + cw)zh = c1vh + c2wh − c3zh. �

Proof of Lemma 4.2. By definition of the triple norm:

(4.23) |‖v′h‖|2 = ‖v′h‖2
K + ‖h̃ 1

2β·∇v′h‖2
K + ‖|β| 12 [v′h]β‖2

F .

Recall the definition for v′h = c1vh + c2wh − c3zh and develop the first term of
(4.23):

(4.24) ‖v′h‖2
K ≤ c

(
c21‖vh‖2

K + c22‖wh‖2
K + c23‖zh‖2

K

)
.
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For the second term of (4.24) use (4.6):

‖wh‖2
K ≤ ‖h̃ 1

2β·∇vh‖2
K + c ‖vh‖2

K,

then use property (2.9) for the third term of (4.24):

‖zh‖2
K ≤ c ‖h̃

1
2

FPl[vh]β‖2
F ≤ c ‖h̃

1
2

F [vh]β‖2
F ≤ c ‖vh‖2

K.

Thus

(4.25) ‖v′h‖2
K ≤ c |‖vh‖|2.

Now we develop the second term of (4.23):

(4.26) ‖h̃ 1
2 β·∇v′h‖2

K ≤ c
(
c21‖h̃

1
2 β·∇vh‖2

K + c22‖h̃
1
2β·∇wh‖2

K + c23‖h̃
1
2β·∇zh‖2

K

)
.

For the second term of (4.26), the inverse inequality, Lemma 2.3, and (4.6) is used:

‖h̃ 1
2 β·∇wh‖2

K ≤ c ‖h̃− 1
2wh‖2

K ≤ c ‖h̃ 1
2β·∇vh‖2

K + c ‖vh‖2
K.

Before the third term of (4.26) can be bounded we use (4.3) to develop

‖{|β̄|}[vh]β‖2
F = ‖({|β̄|} − |β|) 1

2 [vh]β‖2
F + ‖|β| 12 [vh]β‖2

F

≤ c ‖h̃
1
2

F [vh]β‖2
F + ‖|β| 12 [vh]β‖2

F ≤ c ‖vh‖2
K + ‖|β| 12 [vh]β‖2

F .(4.27)

Thus

‖h̃ 1
2β·∇zh‖2

K

≤ c
(
‖h̃ 1

2 β̄·∇zh‖2
K + ‖h̃ 1

2 (β − β̄)·∇zh‖2
K

)
≤ c

(
‖h̃ 1

2 |β̄|∇zh‖2
K + ‖h̃ 3

2∇zh‖2
K

)

≤ c
(
‖h̃− 1

2 |β̄|zh‖2
K + ‖h̃ 1

2 zh‖2
K

)
≤ c

(
‖{|β̄|}Pl[vh]β‖2

F + ‖h̃FPl[vh]β‖2
F

)

≤ c
(
‖{|β̄|}[vh]β‖2

F + ‖h̃F [vh]β‖2
F

)
≤ c

(
‖|β| 12 [vh]β‖2

F + ‖vh‖2
K

)

where we have applied (4.2) followed by Lemma 2.3, property (2.10), (2.4) and
(4.27). It follows that

(4.28) ‖h̃ 1
2 β·∇v′h‖2

K ≤ c |‖vh‖|2.
Finally the third term of (4.23) is developed

(4.29) ‖|β| 12 [v′h]β‖2
F ≤ c

(
c21‖|β|

1
2 [vh]β‖2

F + c22‖|β|
1
2 [wh]β‖2

F + c22‖h̃|β|
1
2 [zh]β‖2

F

)
.

Use the trace inequality of Lemma 2.2, (4.6) and Lemma 2.3 for the second part of
(4.29):

‖|β| 12 [wh]β‖2
F ≤ c ‖[wh]β‖2

F ≤ c ‖h̃− 1
2wh‖2

K ≤ c ‖h̃ 1
2β·∇vh‖2

K + c ‖vh‖2
K,

and (4.7), (2.4), (4.1) and the trace inequality, Lemma 2.2, for the third term of
(4.29):

‖|β| 12 [zh]β‖2
F

≤ ‖|β|
1
2
∞[zh]β‖2

F ≤ ‖|β|
1
2
∞Pl[vh]β‖2

F + c ‖vh‖2
K ≤ c

(
‖|β|

1
2
∞[vh]β‖2

F + ‖vh‖2
K

)

≤ c
(
‖|β| 12 [vh]β‖2

F + c ‖(|β|∞ − |β|) 1
2 [vh]β‖2

F + ‖vh‖2
K

)

≤ c
(
‖|β| 12 [vh]β‖2

F + c ‖h̃
1
2

F [vh]β‖2
F + ‖vh‖2

K

)
≤ c

(
‖|β| 12 [vh]β‖2

F + c ‖vh‖2
K

)
.
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Thus

(4.30) ‖|β| 12 [v′h]β‖2
F ≤ c |‖vh‖|2.

Respecting all bounds (4.25), (4.28) and (4.30) leads to the result. �

Let u denote the exact solution of (2.1) and uh the solution of (3.1), then define

(4.31) η = u− Phu and ξh = uh − Phu,

where Ph denotes the elementwise L2-projection of order p. To prove continuity of
the bilinear form a(·, ·) + j(·, ·) we need to define an auxiliary norm:

|]v[|2 = ‖h̃− 1
2 v‖2

K + ‖[v]β‖2
F + ‖{v}‖2

F ∀v ∈ H1(K).

Proposition 4.2 (Continuity). Let η and ξh be defined by (4.31). Then there exists
a constant c > 0 such that

a(η, ξh) + j(η, ξh) ≤ c |]η[| |‖ξh‖|.
Proof. Develop the first part

(4.32) a(η, ξh) = −(η, β·∇ξh)K + (|β|{η}, [ξh]β)Fi∪F+
+ (µη, ξh)K

and treat these three terms separately. We conclude immediately that the first
term of (4.32) can be bounded using a Cauchy-Schwarz inequality,

−(η, β·∇ξh)K ≤ ‖h̃− 1
2 η‖K‖h̃

1
2β·∇ξh‖K ≤ ‖]η[‖ |‖ξh‖|.

And similarly for

(|β|{η}, [ξh]β)Fi∪F−
≤ ‖{η}‖F‖|β|

1
2 [ξh]β‖F ≤ |]η[| |‖ξh‖|,

and
(µη, ξh)K ≤ c ‖η‖K‖ξh‖K ≤ |]η[| |‖ξh‖|.

Finally use the Cauchy-Schwarz inequality and the stability result (2.4) for the last
term

j(η, ξh) ≤ j(η, η)
1
2 j(ξh, ξh)

1
2 ≤ |]η[| |‖ξh‖|.

Respecting all bounds yields

a(η, ξh) + j(η, ξh) ≤ c |]η[| |‖ξh‖|.
�

Proposition 4.3 (Approximability). Assume that the exact solution of (2.1) sat-
isfies u ∈ Hr(K) with r ≥ 1 and let η be defined as in (4.31), then

|‖η‖| ≤ c hs− 1
2 |u|s,K

|]η[| ≤ c hs− 1
2 |u|s,K

for 0 ≤ s ≤ min(p+ 1, r).

Proof. Let us develop each term of both norms using the approximation properties
of the elementwise L2-projection, then

‖η‖K ≤ c hs|u|s,K and ‖∇η‖K = |η|1,K ≤ c hs−1|u|s,K.

Thus
‖h̃ 1

2 β·∇η‖K ≤ c ‖h̃ 1
2∇η‖K ≤ c hs− 1

2 |u|s,K.

Finally applying the trace inequality for non-discrete functions, Lemma 2.2, yields

‖|β| 12 [η]β‖F ≤ c ‖|[η]β‖F ≤ c
(
‖h̃− 1

2 η‖K + ‖h̃ 1
2 η‖1,K

)
≤ c hs− 1

2 |u|s,K.
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In the same manner we develop

‖{η}‖F ≤ c hs− 1
2 |u|s,K.

Combining these bounds leads to the result. �

Theorem 4.3 (Convergence). Let us denote u the exact solution of the problem
(2.1), and uh the solution of the discrete problem (3.1). Further, assume that
u ∈ Hr(K) ∩H1(Ω) with r ≥ 1, and that β ∈ [Lip(Ω)(Ω)]2. Then

|‖u− uh‖| ≤ c hs− 1
2 |u|s,K

for 0 ≤ s ≤ min(p+ 1, r).

Proof. Let η, ξh be defined by (4.31). Then use the triangle inequality

|‖u− uh‖| ≤ |‖η‖|+ |‖ξh‖|.
By Proposition 4.3 the first term is bounded by

(4.33) |‖η‖| ≤ c hs− 1
2 |u|s,K.

For the second term apply the Inf-Sup condition, the consistency, the continuity
and the approximability result, Proposition 4.1, Lemma 3.5, Proposition 4.2 and
Proposition 4.3,

|‖ξh‖| ≤ c sup
v′

h
∈V p

h

a(ξh, v
′
h) + j(ξh, v

′
h)

|‖v′h‖|
= c sup

v′

h
∈V p

h

a(η, v′h) + j(η, v′h)

|‖v′h‖|

≤ c sup
v′

h
∈V p

h

|]η[| |‖v′h‖|
|‖v′h‖|

= |]η[|

≤ c hs− 1
2 |u|s,K.(4.34)

Combining (4.33) and (4.34) leads to the result. �

5. Analysis of the projection

We first investigate in the local projection and then build a global projection in
a second step based on the local one.

5.1. Local projection.

Lemma 5.1 (Local Projection). Let κ ∈ K be an arbitrary element. For v1 ∈ L2(κ)
and v2 ∈ L2(∂κ), there exists a unique local projection πh = πh(v1, v2) ∈ Pp(κ) such
that ∫

κ

(πh − v1)wh = 0 ∀wh ∈ Pp−1(κ),(5.1)

∫

∂κ

(πh − v2)zh = 0 ∀zh ∈ Pl(∂κ),(5.2)

for all 0 ≤ l ≤ ⌊p+1
3 ⌋ − 1. In addition if v ∈ Hr(κ), r ≥ 1,

|v − πl(v, v)|m,κ ≤ c hs−m|v|s,κ

for 0 ≤ s ≤ min(p+ 1, r) and 0 ≤ m ≤ r. Additionally the projection satisfies the
following stability properties

‖πh(0, v)‖κ ≤ c ‖h̃ 1
2 v‖∂κ and ‖πh(0, v)‖∂κ ≤ c ‖v‖∂κ

for all v ∈ L2(∂κ).
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Proof. We first investigate in the formulation of the problem and then prove Lemma
5.1 in three steps: i) Existence and uniqueness (Lemma 5.2), ii) Approximability
(Lemma 5.5) and iii) Stability estimates (Lemma 5.6).

First fix the reference element κ̂ by its vertices a1 = (−1, 1), a2 = (−1,−1)
and a3 = (1,−1). Let Γi, i = 1, 2, 3, denote the faces of κ̂ opposite to ai on ∂κ̂.
The projection is constructed on the reference element and then transformed to the
physical element using the affine transformation.

Observe that dim(Pp(κ̂)) = (p+1)(p+2)
2 and dim(Pl(∂κ̂)) = 3(l + 1). Thus the

dimension of the trial space is (p+1)(p+2)
2 whereas the dimension of the test space

for the two conditions (5.1) and (5.2) is p(p+1)
2 +3(l+1). Since 3(l+1) ≤ p+1 observe

that dim(Pp(κ̂)) ≥ dim(Pp−1(κ̂)) + dim(Pl(∂κ̂)). This means that the uniqueness
can not always be guaranteed by the two conditions (5.1) and (5.2). In the family
of functions which satisfies the two conditions (5.1) and (5.2) we pick the function
πh ∈ Pp(κ) which minimizes the L2-error.

Let us introduce the following two bilinear forms

a(v, w) = (v, w)bκ and b(v, w) = (v, w)∂bκ,

for all v, w ∈ H1(κ̂). Then the proposed projection is defined by the following
problem:

min
πh∈Pp(bκ)

‖πh − v1‖bκ

such that a(πh − v1, wh) = 0 ∀wh ∈ Pp−1(κ̂)

b(πh − v2, zh) = 0 ∀zh ∈ Pl(∂κ̂)

Introducing the Lagrange multipliers for the side conditions we can consider the
following equivalent problem:

(5.3) find (πh, λh, ηh) ∈ Pp(κ̂) × Pp−1(κ̂) × Pl(∂κ̂) such that

a(πh − v1, vh) + a(λh, vh) + b(ηh, vh) = 0 ∀vh ∈ Pp(κ̂)

a(πh − v1, wh) = 0 ∀wh ∈ Pp−1(κ̂)

b(πh − v2, zh) = 0 ∀zh ∈ Pl(∂κ̂).

Before we prove existence and uniqueness of the projection let us introduce the
basis functions for the polynomial spaces. For Pp(κ̂) we choose the Dubiner basis
[13]. Let k = (k1, k2) be such that 0 ≤ k1, k2 and k1 + k2 ≤ p, then the set {φk}
with

φk(x, y) = P
(0,0)
k1

(
2
1 + x

1 − y
− 1

)
(1 − y)k1P

(2k1+1,0)
k2

(y)

forms a modal basis of Pp(κ̂). P
(α,β)
n (x) denotes the orthogonal Jacobi polynomial

of degree n associated to the weight function (1 − x)α(1 + x)β . Thanks to the

orthogonality of Jacobi polynomials, one has for k 6= k̃,

a(φk, φk̃
) = 0.

Then the Dubiner basis satisfies the following properties on the faces:

φk(x, y)|Γ1
= c P

(0,0)
k1

(x),(5.4)

φk(x, y)|Γ2
= (1 − y)k1P

(2k1+1,0)
k2

(y),(5.5)

φk(x, y)|Γ3
= (y − 1)k1P

(2k1+1,0)
k2

(y).(5.6)



MINIMAL STABILIZATION FOR DG-FEM 15

As a basis of Pl(∂κ̂) we choose the set {ψs}, with s = (s1, s2) and 1 ≤ s1 ≤ 3,
0 ≤ s2 ≤ l, such that

ψs|Γ1
= P (0,0)

s2
(x) and ψs|Γi

= 0 for i = 2, 3 if s1 = 1,(5.7)

ψs|Γ2
= 2−1/2(1 − y)s2 and ψs|Γi

= 0 for i = 1, 3 if s1 = 2,(5.8)

ψs|Γ3
= (1 − y)s2 and ψs|Γi

= 0 for i = 1, 2 if s1 = 3.(5.9)

Lemma 5.2 (Existence and uniqueness). The discrete solution (πh, λh, ηh) of prob-
lem (5.3) exists and is unique.

Proof of Lemma 5.2. Writing

πh =

p∑

i=0

i∑

k=0

π(k,i−k)φ(k,i−k) ∈ Pp(κ̂),

λh =

p−1∑

i=0

i∑

k=0

λ(k,i−k)φ(k,i−k) ∈ Pp−1(κ̂),

ηh =

3∑

s1=1

l∑

s2=0

η(s1,s2)ψ(s1,s2) ∈ Pl(∂κ̂),

leads to the following problem:

find the vector U = (π, λ, η) such that

PU = b,

where the vector U is composed by the coefficients of πh, λh and ηh in the above
defined basis. The matrix P is of the form

(5.10) P =

(
A B⊤

B 0

)
.

The square submatrix A is generated the bilinear form a(·, ·) with trial and test
space Pp(κ̂) whereas the matrix B is divided again in two submatrices:

(5.11) B =

(
A

B

)
.

The matrix A is generated by the bilinear form a(·, ·) with trial space Pp(κ̂) and
test space Pp−1(κ̂). B is generated by the bilinear form b(·, ·) with trial space Pp(κ̂)
and test space Pl(∂κ̂).

To show uniqueness and existence of the projection we have to show that the
matrix P is non singular. Since the bilinear form a(·, ·) is symmetric and coercive
the matrix A is symmetric and positive definite. In fact, due to the orthogonality
of the basis the matrix A is even diagonal. Therefore it remains to prove that the
matrix B is of full rank.

Lemma 5.3. The matrix B is of full rank.

Proof of Lemma 5.3. Let us first focus on the submatrix A. The trial space is Pp(κ̂)

and the test space is Pp−1(κ̂). Thus the dimensions of A are (p+1)(p+2)
2 × p(p+1)

2 .
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By the orthogonality of the Dubiner basis, A is of the following form:

A =





∗ 0 · · · 0 0 · · · 0
0 ∗ · · · 0 0 · · · 0
...

...
. . .

... 0 · · · 0
0 0 · · · ∗ 0 · · · 0





where the ∗ denotes non zero entries. Therefore, using condensation, it remains to
analyze the part of B which is generated by the trial space Pp(κ̂)\Pp−1(κ̂) and test
space Pl(∂κ̂). Let us call this matrix B123. Then

(B123)ŝ,k+1 = b(φ(k,p−k), ψ(s1,s2)), 1 ≤ ŝ ≤ 3(l + 1), 0 ≤ k ≤ p

using the relation ŝ = (s1 − 1)(l + 1) + s2 + 1. First let us analyze the part of
B123 corresponding to 1 ≤ ŝ ≤ l + 1, resp. s1 = 1, 0 ≤ s2 ≤ l. Note that this
part corresponds to the conditions on the face Γ1. Additionally observe that the
restriction of the Dubiner basis to Γ1, see (5.4), as well as the basis of Pl(∂κ̂), see
(5.7), on Γ1 are Legendre polynomials, i.e.

(B123)ŝ,k+1 = (B123)s2+1,k+1 = b(φ(k,p−k), ψ(1,s2)) = c (P
(0,0)
k , P (0,0)

s2
)Γ1

= δs2,k

for all 0 ≤ s2 ≤ l, 0 ≤ k ≤ p by orthogonality of the Legendre polynomials. Thus
the matrix B123 is of the following form

B123 =

(
D1 0
∗ B23

)
.

where D1 ∈ R
(l+1)×(l+1) is diagonal and B23 ∈ R

2(l+1)×(p−l). Once again we reduce
the system by condensation. It remains to prove that the matrix B23 is of full rank.
First we focus on the upper half of the matrix B23, let us call it B2 ∈ R

(l+1)×(p−l),
defined by

(B2)ŝ,k̂ = b(φ(k,p−k), ψ(2,s2)), 0 ≤ s2 ≤ l, l + 1 ≤ k ≤ p,

using the relations ŝ = l+ s2 + 2 (since now s1 = 2) and k̂ = k− l. B2 corresponds
to the conditions on the face Γ2. Let us develop an explicit formula for the entries
of this matrix

(B2)ŝ,k̂ = b(φ(k,p−k), ψ(2,s2)) = (φ(k,p−k), ψ(2,s2))Γ2

=

∫ 1

−1

(1 − y)k+s2P
(2k+1,0)
p−k (y)dy = 2k+s2+1 (k + s2)!(p− s2)!

(k − s2)!(p+ s2 + 1)!

using (5.5), (5.8) and (7.391)4 of [15]. Thus

(5.12) (B2)ŝ,k̂+1 = 2
(k + s2 + 1)

(k − s2 + 1)
(B2)ŝ,k̂ = 2

(k̂ + ŝ− 1)

(k̂ + 2l− ŝ+ 3)
(B2)ŝ,k̂.

This relation will later be useful. Let us come back to the matrix B23 which is
composed by

B23 =

(
B2

B3

)

where B3 is defined by (B3)ŝ,k̂ = (−1)k̂+l(B2)ŝ,k̂ for all 1 ≤ ŝ ≤ l + 1 and 1 ≤ k̂ ≤
p− l. This property follows directly from (5.5) and (5.6). Observe that the rank of
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B23 is invariant under a permutation of its columns. By choosing a permuation we
have that B23 is of full rank if and only if the matrix

(5.13)

(
M2k̂−1 M2k̂

(−1)l+1M2k̂−1 (−1)l+2M2k̂

)

is of full rank. The matrices M2k̂−1 and M2k̂ are defined by

(5.14) (Mν)ŝ,k̂ = (B2)ŝ,ν(k̂)

with ν(k̂) = 2k̂ and ν(k̂) = 2k̂ − 1 for all k̂ = 1, 2, . . . such that 1 ≤ ν(k̂) ≤ p − l.
Again the matrix defined by (5.13) is of full rank if and only if the matrix

(
M2k̂−1 0

0 M2k̂

)

is of full rank. Now, if M2k̂−1 and M2k̂ are both of full rank the matrix B is of full
rank and the proof is complete. The following lemma allows us to conclude.

Lemma 5.4. The matrices Mν , defined by (5.14), are of full rank.

�

Now since the matrix A is positive definite and B is of full rank, the matrix P is
nonsingular. Therefore the projection exists and is unique. �

Proof of Lemma 5.4. First we develop a formula to pass horizontally from one ele-
ment to the next one in Mν . By definition of Mν and by relation (5.12) we have

(Mν)ŝ,k̂+1 = (B2)ŝ,ν(k̂+1) = (B2)ŝ,ν(k̂)+2 = 2
(ν(k̂) + ŝ)

(ν(k̂) + 2l− ŝ+ 4)
(B2)ŝ,ν(k̂)+1

= 4
(ν(k̂) + ŝ− 1)

(ν(k̂) + 2l− ŝ+ 3)

(ν(k̂) + ŝ)

(ν(k̂) + 2l− ŝ+ 4)
(B2)ŝ,ν(k̂).

Thus

(5.15) (Mν)ŝ,k̂ =
1

4

(ν(k̂) + 2l− ŝ+ 3)

(ν(k̂) + ŝ− 1)

(ν(k̂) + 2l− ŝ+ 4)

(ν(k̂) + ŝ)
(Mν)ŝ,k̂+1.

Observe that Mν is not necessarily a square matrix, but we know that the number
of columns is equal to or larger than the number or rows.

To show that Mν is of full rank it remains to show that Mν contains a square
matrix of dimension l + 1 which is non singular. We will prove this by induction.
First observe that the principal submatrix of Mν of order 1 is positive, i.e. (Mν)1,1 =
2l+2

p+1 > 0. Then assume that the principal submatrix of order r with 1 ≤ r ≤
l is nonsingular which is equivalent with the fact that all its rows are linearly
independent. Thus there exists a unique set of coefficients {αŝ}r

ŝ=1, with at least
one αŝ 6= 0, such that

(5.16) (Mν)r+1,k̂ =

r∑

ŝ=1

αŝ(Mν)ŝ,k̂

for all 1 ≤ k̂ ≤ r. So (5.16) holds in particular for k̂ = r:

(5.17) (Mν)r+1,r =

r∑

ŝ=1

αŝ(Mν)ŝ,r.
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Now applying relation (5.15) to both sides of (5.17) yields

(ν(r) + 2l− r + 2)

(ν(r) + r)

(ν(r) + 2l − r + 3)

(ν(r) + r + 1)
(Mν)r+1,r+1

=

r∑

ŝ=1

αŝ
(ν(r) + 2l − ŝ+ 3)

(ν(r) + ŝ− 1)

(ν(r) + 2l − ŝ+ 4)

(ν(r) + ŝ)
(Mν)ŝ,r+1.

Thus

(Mν)r+1,r+1 =

r∑

ŝ=1

αŝ α̃ŝ (Mν)ŝ,r+1

with

α̃ŝ =
(ν(r) + 2l − ŝ+ 3)

(ν(r) + 2l− r + 2)

(ν(r) + 2l− ŝ+ 4)

(ν(r) + 2l− r + 3)

(ν(r) + r)

(ν(r) + ŝ− 1)

(ν(r) + r + 1)

(ν(r) + ŝ)
.

Using that ŝ < r+1 yields immediately that α̃ŝ > 1. But for the principal submatrix
of order r+1 to be singular all α̃ŝ must be equal to 1 in order to satisfy (5.16) with

k̂ = r + 1. Thus the principal submatrix of order r + 1 is nonsingular. The claim
follows by induction. �

Lemma 5.5 (Approximability). The projection defined by (5.1) and (5.2) in Lemma
5.1, with v1 = v2 = v ∈ Hr(κ), has optimal approximation properties, i.e.

|v − πh(v, v)|m,κ ≤ c hs−m|v|s,κ

for 0 ≤ s ≤ min(p+ 1, r) and 0 ≤ m ≤ r.

Proof. Again we show the result on the reference element κ̂ and conclude the more
general result by the affine transformation. Our goal is to apply the Bramble-Hilbert
lemma. For this one need to verify that the projection πh(·, ·) : Hr(κ̂) → Hm(κ̂) is
linear, complete and continuous.

The linearity is obvious. To show that the projection is complete one needs to
prove that πh(vh, vh) = vh for all vh ∈ Pp(κ̂). Indeed this property is equivalent to
the fact that the projection exists and is unique, or equivalently that the matrix P
in (5.10) is non singular. Finally the continuity is given by the following argument.

Firstly introduce the following triple norm

|‖v, w, z‖|2 = a(v, v) + a(w,w) + b(z, z) = ‖v‖2
bκ + ‖w‖2

bκ + ‖z‖2
∂bκ

for all v, w ∈ L2(κ̂), z ∈ L2(∂κ̂). The wellposedness of the projection is also equiv-
alent to: there exists (vh, wh, zh) ∈ Pp(κ̂) × Pp−1(κ̂) × Pl(∂κ̂) and c > 0 such that

c |‖πh, λh, ηh‖| ≤ a(πh, vh) + a(λh, vh) + b(ηh, vh) + a(πh, wh) + b(πh, zh)

|‖vh, wh, zh‖|

=
a(v1, vh) + a(v1, wh) + b(v2, zh)

|‖vh, wh, zh‖|
.

By continuity of the bilinear forms a(·, ·) and b(·, ·) it follows that

(5.18) c |‖πh, λh, ηh‖| ≤ |‖v1, v1, v2‖|.
Finally we conclude by (5.18) with v1 = v2 = v ∈ H1(κ̂) and the norm equivalence
on the reference element that

‖πh(v, v)‖m,bκ ≤ c ‖πh‖bκ ≤ c |‖πh, λh, ηh‖| ≤ c |‖v, v, v‖| ≤ c ‖v‖1,bκ ≤ c ‖v‖r,bκ.

�
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Lemma 5.6 (Stability Estimates). The projection defined by (5.1) and (5.2) in
Lemma 5.1, with v1 = 0 and v2 = v ∈ L2(∂κ), satisfies the following stability
properties

(5.19) ‖πh(0, v)‖κ ≤ c ‖h̃ 1
2 v‖∂κ and ‖πh(0, v)‖∂κ ≤ c ‖v‖∂κ.

Proof. Once again we show the result on the reference element κ̂ and conclude the
more general result by the affine transformation. From (5.18) we conclude by the
norm equivalence on the reference element that

‖πh(0, v)‖bκ ≤ |‖πh, λh, ηh‖| ≤ c |‖0, 0, v‖| = c ‖v‖∂bκ.

Applying the transformation to the physical element κ leads to the first estimate
of (5.19) with appropriate scaling in h.

For the second estimate we firstly observe that the matrix P in (5.10) is non
singular. Thus we can write U = P−1b. Additionally define the mass matrix M
generated by the bilinear form (·, ·)∂bκ with test and trial space Pp(κ̂) and define in
a global way

M =




M 0 0
0 0 0
0 0 0



 .

Then we may write

‖πh(0, v)‖2
∂bκ = U⊤MU = b⊤P−1MP−1b ≤ ρ(P−1MP−1)b⊤b.

where ρ denotes the spectral radius. Let us analyze b⊤b,

b⊤b =

3∑

s1=0

l∑

s2=0

b(v, ψs)
2 =

3∑

s1=0

l∑

s2=0

(v, ψs)
2
Γs1

≤
3∑

s1=0

l∑

s2=0

‖v‖2
Γs1

‖ψs‖2
Γs1

,

where ψs denotes the basis defined by (5.7) - (5.9). By the definition of the functions
ψs we may estimate ‖ψ(1,s2)‖2

Γ1
= ‖Ls2

‖2
Γ1

≤ 1 and compute

‖ψ(2,s2)‖2
Γ2

=
22s2+1

2s2 + 1
, ‖ψ(3,s2)‖2

Γ3
=

22s2+1

2s2 + 1
.

Therefore

b⊤b ≤ ‖v‖2
Γ1

(l + 1) + ‖v‖2
Γ2∪Γ3

l∑

s2=0

22s2+1

2s2 + 1

≤ ‖v‖2
Γ1

(l + 1) + ‖v‖2
Γ2∪Γ3

22l+1(l + 1). ≤ ‖v‖2
∂bκ22l+1(l + 1)

and thus

‖πh(0, v)‖2
∂bκ ≤ ρ(P−1MP−1)22l+1(l + 1)‖v‖2

∂bκ.

Once again we apply the transformation to the physical element κ. �

These three Lemmas (5.2, 5.5 and 5.6) build the proof of Lemma 5.1. �
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5.2. Global projection. In this section we proof Proposition 2.1 using its local
version Lemma 5.1. We shall define the projection Πh of Proposition 2.1 element-
wise using its local version πh. For every element κ ∈ K define

Πh(v1, v2)|κ = πκ
h(v1, v2)

where πκ
h(v1, v2) denotes the projection defined in Lemma 5.1 on κ. In addition,

using the affine transformation we get

|v − Πh(v, v)|2m,K =
∑

κ∈K

|v − πκ
h(v, v)|2m,κ ≤ c

∑

κ∈K

h2(s−m)|v|2s,κ = c h2(s−m)|v|2s,K.

In a similar fashion we develop the global stability estimates (2.8) and (2.9).

6. Numerical examples

In this section we report some basic numerical result for our method applied to
the following transport problem. Let Ω ∈ R

2 be the square Ω = (−1, 1)2. The
problem consists of seeking u : Ω → R such that:

{
β·∇u + µu = f,

u|∂Ω− = g(y),

where β = (1, 0)⊤ and µ are constant coefficients.

6.1. h-convergence. In this section we compare the h-convergence of the classical
upwind-method and the method introduced in this paper with l = ⌊p+1

3 ⌋ − 1.
Polynomial orders p ∈ {2, . . . , 5} are considered.

6.1.1. Smooth case. We choose f(x, y) = 0 and g(y) = sin(πy
2 ) in the manner that

u(x, y) = e−µx sin(
πy

2
) ∈ C∞(Ω).

Observe that µ = 0.01 is choosen sufficiently small such that the transport is
dominating the reaction. The exact solution of problem (2.1) satisfies u ∈ Hr(K)∩
H1(Ω) for all r ≥ 1. Thus the theoretical accuracy for the numerical approximation
becomes

|‖u− uh‖| ≤ c hp+ 1
2 |u|p+1,K,

where uh denotes the numerical approximation defined by (3.1).
Figure 1(a) illustrates the the L2-norm of the difference between the exact solu-

tion u and the approximation uh. We note that for all polynomial orders we have

superconvergence of the order h
1
2 for both methods. Note also that the performance

of the new method matches that of the standard upwind method with increasing
polynomial order.

6.1.2. Irregular case. We now investigate how the method behaves when approxi-
mating irregular solutions. In this case the source term is choosen as

f(x, y) = 2e(x+1) + (x+ 1)2.5 + 2.5(x+ 1)1.5,

the boundary condition as g(y) = 1 and µ = 1. This gives an exact solution of the
form

u(x, y) = e(x+1) + (x+ 1)2.5 ∈ H3−ε(K) ∩H1(Ω)

for all ε > 0.
In this case the DG-method behaves as u ∈ H3(K)∩H1(Ω) and a rate of O(h2.5)−

O(h3) can be observed as h tends to zero, for all polynomial orders (compare [17]).
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Figure 1. L2-norm of error for h-refinement and different poly-
nomial orders p.

Figure 1(b) illustrates the the L2-norm of the difference between the exact solu-
tion u and the approximation uh. We see that both methods yields similar results.

6.2. Violating the limit for l. Here the following pure transport problem is
considered. Find u : Ω → R such that:

(6.1)

{
β·∇u = 0,

u|∂Ω− = g(y),

with

g(y) =

{
0 if y < 0,

1 otherwise.

The exact solution is then given by u(x, y) = g(y). Observe that no L2-coercivity
is given and that the theoretical estimates are no longer valid. It is known however
that an L2-coercivity can be recovered from the convective term using a weighted
test function (see [16]).

In this case where the exact solution is discontinuous there is a strong need for
stabilization, otherwise spurious oscillations may propagate from the singularity in
the whole domain. We consider a fixed 8 × 8 unstructured mesh and polynomial
order p = 5. We then compute the solution using four different stabilizations, first
without any projection of the jump (similar to upwind stabilization) then using the
projection coefficient l = 0, l = 1 and l = 2. Note that for l = 2 the stability result
no longer holds, since the limit value is given by ⌊p+1

3 ⌋− 1 = 1 for p = 5. In Figure
2 we present the four different approximations of the exact solution. Figure 2(a)
shows the solution of the method without filtering. Figures 2(b)-(d) illustrates the
solutions of the method for the cases l = 0, l = 1 and l = 2. In all cases spurious
local oscillations are present close to the front. However the cases without any
projection of the jumps in the stabilization or for l = 0 or l = 1, the solutions
are qualitatively similar with overshoots of 14%, 15% and 23% respectively on the
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Figure 2. The approximations of the solution of the problem (6.1)
for fixed mesh and polynomial order p = 5. Figure (a) shows the
solution using the method without filtering whereas figures (b)-(d)
illustrates the solution using the new approach with l = 0, 1, 2.

discontinuity only. In vicinity of the layer the approximate solutions obtained using
the projected jumps features larger discontinuities, an effect of the relaxation of the
penalization of the low polynomial orders of the jump. This is an interesting feature
of our method since the exact solution is indeed discontinuous.

In the case of l = 2 the theoretical limit for l is violated and in this case the
maximum overshoot is 53% of the exact solution and spurious oscillations are not
limited to the elements neighboring to the layer, but strong crosswind propagation
of oscillations can be observed (see Figure 2 d). This shows that there is a significant
loss of stability when the limit value for l is violated indicating that the theoretical
limit for l is sharp.

7. Conclusion

We have proposed and analysed a discontinuous Galerkin method for the trans-
port equation with local mass conservation properties that are independent of the
choice of the stabilization parameter. This is made possible by using a stabiliza-
tion term that only acts on the projection of the jump of the discrete solution
over element faces onto the upper 2

3 of the polynomial spectrum. Similar a priori
error estimates for the convergence in h as for the standard upwind method are
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obtained in spite of the fact that the lowest polynomial modes are unperturbed
by the stabilization. This result shows that for high order polynomials on trian-
gles the lowest polynomial modes may be left unstabilized without deterioration
of the convergence order for the approximation of smooth solutions. Preliminary
numerical tests indicate that the method has similar convergence properties as the
upwind method also under refinement in p and that the approximations remain
robust for discontinuous exact solutions, even though the local conservation now
is independent of the stabilization. Moreover they provide some evidence that the
proposed upper bound on l is sharp also in practice.
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Galerkin finite element methods, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 25-28,
3293–3310. MR MR2220920

2. F. Brezzi and M. Fortin, A minimal stabilisation procedure for mixed finite element methods,
Numer. Math. 89 (2001), no. 3, 457–491. MR MR1864427 (2002h:65176)
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