European Research Network on Foundations, Software Infrastructures and Applications

for large scale distributed, GRID and Peer-to-Peer Technologies

A Metwork of Excellence funded by the European Commission

Application-oriented scheduling for HPC Grids

Kevin Cristiano®, Alain Drotz', Ralf Gruber', Vincent Keller !,

Peter Kunszt', Pierre Kuonen?®, Sergio Maffioletti’, Pierre Manneback’,
Marie-Christine Sawley”, Uwe Schwiegelshohn®, Michela Thiémard", Ali Tolou',
Trach-Minh Tran', Oliver Wildrich*, Philipp Wieder, Christoph Witzig®,
Ramin Yahyapour®, Wolfgang Ziegler*

VEcole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland
2Ecole d’Ingénieurs et d’Architectes, CH-1705 Fribourg, Switzerland
3 Forschungszentrum Jilich, D-52425 Jilich, Germany
4 Fraunhofer SCAI, D-53754 St. Augustin, Germany
SCETIC, B-6041 Charleroi, Belgium
SIRF-IT, University of Dortmund, D-44221 Dortmund, Germany
TCSCS, CH-6928 Manno, Switzerland
8Switch, CH-8021 Zurich, Switzerland

. CoreGRID Technical Report
(oreGRMB—_ Number TR-0070

—— February 22, 2007

Institute on Resource Management and Scheduling

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework
Programme

Project no. FP6-004265

Application-oriented scheduling for HPC Grids

Kevin Cristiano?, Alain Drotz!, Ralf Gruber!, Vincent Keller !,

Peter Kunszt”, Pierre Kuonen?, Sergio Maffioletti’, Pierre Manneback®,
Marie-Christine Sawley”, Uwe Schwiegelshohn®, Michela Thiémard!, Ali Tolou?,
Trach-Minh Tran!, Oliver Wildrich*, Philipp Wieder3, Christoph Witzig®,
Ramin Yahyapour®, Wolfgang Ziegler?

Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland
?Ecole d’Ingénieurs et d’Architectes, CH-1705 Fribourg, Switzerland
3Forschungszentrum Jiilich, D-52425 Jiilich, Germany
4Fraunhofer SCAI, D-53754 St. Augustin, Germany
SCETIC, B-6041 Charleroi, Belgium
SIRF-IT, University of Dortmund, D-44221 Dortmund, Germany
"CSCS, CH-6928 Manno, Switzerland
8Switch, CH-8021 Zurich, Switzerland

CoreGRID TR-0070
February 22, 2007

Abstract

The Intelligent Grid Scheduling Service (ISS) aims at finding an optimally suited computational
resource for a given application component. An objective cost model function is used to decide it. It
includes information on a parametrization of the components and the machines in a Grid, and on the
availability of the clusters. The paper presents a detailed formulation of the environment and outlines
the integration of the ISS model into the UNICORE-based VIOLA meta-scheduling Grid middleware.
This document is an active collaboration between EPFL, ETA-FR, Forschungszentrum Jiilich, Fraunhofer
Gesellschaft, University of Dortmund, CETIC, CSCS, and Switch.

1 Introduction

The different communication needs of different HPC application components demand a Grid that can offer
different parallel computer architectures: SMP or NUMA machines for shared memory parallel applications,
a NoW (Network of Workstations) interconnected by a bus for embarrassingly parallel applications, scalable
but cost-effective networked clusters for applications dominated by point-to-point communications, and more
expensive machines with faster networks for communication intensive applications.

There is currently little feedback about application components that are not adapted to the hardware
infrastructure, and little incentive to do so: if for instance a user notices that the network is too slow and
hampers the performance of its application, he may try to find another machine to run it. On the other
hand, running an embarrassingly parallel application on a costly NUMA machine, the user will probably
not recognise this as a problem. In the future, one would like to choose a well suited hardware for an
application component (according to peak processor performance, main memory bandwidth, or inter-node
network communication system), and this in a most automatic manner.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission
(Contract IST-2002-004265).

The ISS (Intelligent Grid Scheduling Service) project is precisely aimed at solving this latter problem.
In a first phase, the ISS middleware will be integrated with UNICORE [5] and the MetaScheduling Service
(MSS) [6] developed by the German VIOLA project [27]. In a later phase, ISS could also be embedded in
other existing Grid middlewares such as Globus [21], EGEE [19], or GridLab [20].

The architecture of the ISS system is built around a Smart Grid Node (SGN) that includes a Data
Warehouse (DW), a System Information (SI), a Resource Discovery System (RDS), a Resource Broker
(RB), and a Monitoring System (MS). The RDS is looking for all eligible machines that can satisfy binary
constraints such as user rights, existence of a program on the machine, memory size, availability of a token,
or number of processors. The RB includes the Cost Function Model (CFM) in which the sum over all the
relevant real and virtual costs is minimized with respect to constraints on time and money. The system
submits the job to the machine having the lowest value of the cost function. This function includes costs
related to CPU time, license fees, maintenance, interests on the investment, electrical energy, data transfer,
and waiting time expressed in form of salaries or time-to-market losses. The data needed in the CFM on
the computer architecture (node performance, memory bandwidth, network communication) and on the
behaviour of an application on a machine (number of operations and memory accesses, number and size of
messages) are collected after execution by the MS, put on the DW and reused to compute the CFM for the
next submission. Data on the availability of the different machines in the Grid are delivered by the MSS
and enter the CFM just prior to execution.

The ISS/VIOLA middleware [2, 27, 5, 6] will be validated by more than 100’000 job executions from the
Pleiades clusters [23] collected by the VAMOS monitoring system during one year. A simulator has been
written to apprise a number of free parameters in the CFM.

The ISS concept is first presented, with a short description of the I model [3] and a description of
the different types of components that can be found in HPC applications. The cost function model is
then detailed. It incorporates a set of free parameters and functions that have either to be given by the
computing centres or are determined through simulation. The architecture of the VIOLA meta-scheduling
environment is then discussed, followed by a detailed execution scenario by means of the real-life plasma
physics application ORB5.

An implementation plan follows in Chapter 7. Different simulators are discussed in Chapter 8. In a first
phase, the SwissGrid testbed will be used to run the first ISS/VIOLA prototype middleware. In a near
future, the concept of the HPC Grid will be generalised to Switzerland

2 ISS concept

The ISS middleware is supposed to help deciding on which Grid resources a scientific application should be
executed. Such an application consists of £ = 1, ..., n components, called C}, to be executed on the machine i
which is one of the r resources in a Grid. To help finding the adequate resource, all the application components
and the machines are parametrized using the T model [3]. This parametrization and other information on
the availability of the resources are used to determine the optimal machines by a cost function model.

2.1 Grid Architecture

Suppose that a Grid consists of i = 1, ..., machines, each one having P computational nodes (the indexes i
and k are omitted in this chapter). Each node has a peak performance of R, [Gflops/s|, and a peak main
memory bandwidth of M., [Gwords/s] (1 word — 64 bits). The nodes are interconnected by a communication
network with a total peak bandwidth of Co, [Gwords/s]. Then, one can define the following quantities

R

Vu = M. (1)
R
VC = Pa

These two parameters measure the number of floating point operations the processor can perform during the
transfer time of an operand from main memory to cache (Vjs) or from one computational node to another

CoreGRID TR-0070 2

Cluster Vendor processor procs | cores network network
type node 1 2

NoW heterogeneous 1 1 FE bus

Pleiadesl Logics Pentium 4 1 1 FE switch

Pleiades?2 DELL Xeon 1 1 GDbE switch

Pleiades2+ | DELL Woodcrest 2 2 GbE switch

Mizar Dalco Opteron 2 1 Myrinet

Blue Gene IBM Power 4 2 1 Grid network | Fat Tree

Horizon Cray Opteron 1 1/2! 3D Torus

SX-5 NEC vector 1 1 Switch

Table 1: Some typical machines.! For the Cray Machine, baby system is dual cores, production system one
core

Cluster P R M Vs Cs Ve
[Gflops/s] | [Gwords/s] [Gwords/s]
NoW 25 6.4 0.8 8 0.0016 100000
Pleiadesl 132 5.6 0.8 7 0.2 3600
Pleiades2 120 5.6 0.8 7 1.8 360
Pleiades2+ 92 21.3 2.7 8 1.4 1400
Mizar 160 9.6 1.6 6) 300
Blue Gene | 4096 8 1 8 192 170
Cray XT3 1664 5.2 0.8 9.8 1760 3.3
SX-5 16 8 8 1 128 -

Table 2: Characteristic parameters of some clusters.

one (Vo).

Some typical machines are listed in Table 1, with their respective parameters in Table 2. The data
corresponds to machines with one (NoW, Pleiades, Horizon) or two (Mizar, Blue Gene) processors per node.
Specifically, the parameter V), distinguishes between a vector machine (Vj; =~ 1) and a RISC processor
(Vi = 7). One also sees that the quantity Vi can vary from 3.3 for a Cray XT3 to 100000 or even more for
a bus-based machine. The cost of a machine often increases with decreasing values of V.

2.2 [model

In the following analysis, we will assume that the tasks of a parallel application component Cj are well
balanced, and that computations and communications do not overlap. Let assume that the total execution

time T can be divided in two parts:
T=Tp+Tc, (2)

where Tp is the time spent to compute and T the time spent to communicate and synchronise on each
processor. The speedup A of a C) running on pj processors can be expressed as:
el (3)

= = = e
Tc+1Tp 1—|—% Pr

where

S
Te=Ts+TL=7 + L2 (4)

T is the time to transfer the data from one node to another one, S the message size in 64bit words, b the
network communication bandwidth in words/s, T}, the total latency time in seconds, L the latency time per
message, Z the number of messages, and e is the average CPU usage of Cy, or the efficiency (e = A/px). In
a GbE, for a message size of 200 64bit words, Ts ~ Tp.

CoreGRID TR-0070 3

We define I' as the ratio Tp/T¢ and decompose Tp and T into component and hardware specific
parameters. For T, < T, one can separate the two contributions:

_Tp OJr, O/S Ya

_T_C_ S/b _Ta/b_’YM-

()

The quantity O denotes the number of operations per node [flops] one has to perform during the execution
of Cy, and S is the amount of data (in 64-bit words) that has to be sent through the internode network by
each node [words|. The quantities

b = Cy/<d>P (6)
ra = Min(Reo, Vi * Mso)
Vo = O/W

measure the peak bandwidth of the network per node [Gwords/s], the peak performance of the application
component C, per node [Gflops/s]|, and the average number of times data can be found in cache, respectively.
The quotient < d > in the equation for b is the average distance between two nodes in the communication
network and W is the number of 64bit words that have to be transferred from main memory to cache. If V, >
Ve, 7a = Roo. If Vo < Vay 1y is directly related to the main memory bandwidth. In scientific applications,
rq varies between 10% and 100% of R.,. The smaller r,/R, the bigger I, and the communication needs
diminish.

One sees that T' can be used to get a good insight on the suitability of a given hardware to run Cj
efficiently. For instance, a value of I' = 1 means that C} spends as much time in communications than in
processing, and is equivalent to a speedup of pi/2, or e = 0.5. In fact, I should be as large as possible but
the larger T is, the more expensive the communication network. We have to find a compromise. Experience
shows that I" > 2 corresponds to a cost-effective match between C) and the hardware. Let us describe a few
of such cost-effective component /machine combinations.

2.3 HPC applications
2.3.1 Embarrassingly parallel applications

These applications do not demand inter-node communications. A big number of cases have to be distributed
among many slave nodes, the results collected and handled by a server. No data is exchanged between slave
nodes. In this case, Tp >> T and thus I' >> 1. As a consequence, very high ~,; communication networks
such as a bus, the Pleiadesl cluster (see Table 2), or even the Internet can be used. A typical example
is the seti@home project that collects computational cycles over the Internet. Other examples of such
applications are the immense amount of independent data in high energy physics that has to be interpreted,
the sequencing algorithms in proteomics, parameter studies in plasma physics to predict optimal magnetic
fusion configurations, or a huge number of data base accesses for statistical reasons.

2.3.2 Applications with point-to-point communications

Point-to-point communications typically appear in finite element or finite volume methods when a huge 3D
domain is decomposed in subdomains [9] and an explicit time stepping method or an iterative matrix solver
is applied. If the number of processors grows with the problem size, and the size of a subdomain is fixed,
Yo is constant, and, consequently, I' does not change. The per processor performance is determined by the
main memory bandwidth. The number O of operations per step is directly related to the number of variables
in a subdomain times the number of operations per variable, whereas the amount of data S transferred to
the neighboring subdomains is directly related to the number of variables on the subdomain surface, and
0/S becomes big. For huge point-to-point applications using many processing nodes, I' << 1 for a bus,
2 < I' < 10 for the Pleiadesl cluster with a Fast Ethernet switch, 10 < I" < 50 for the Pleiades2 and Mizar
clusters, and I' >> 100 for Cray XT3. Hence, that kind of applications can run well on a cluster with a Fast
Ethernet or a GbE switch.

CoreGRID TR-0070 4

2.3.3 Applications with multicast communication needs

The parallel 3D FFT algorithm is a typical example with important multicast communication needs. Here,
v, decreases when the problem size is increased, and the communication network has to become faster. In
addition, r, = R for FFT,), is big, and, as a consequence, the communication parameter b must be big
to satisfy I" > 1. Such an application has been discussed in [3]. It has been showed that with a Fast Ethernet
based switched network, the communication time is several times bigger than the computing time. It needs
a fast switched network, such as Myrinet, Quadrics, Infiniband, or special vendor specific networks such as
those of a Cray XT3 or an IBM BlueGene.

2.3.4 OpenMP applications

There are a few applications that demand a shared memory computer architecture. The parallelism of the
component is expressed with OpenMP. A typical example is the one described in [10]. This implies that a
HPC Grid should also include SMP nodes that can run OpenMP applications such as the new multi-cores
and multi-processors units (Intel Woodcrest or AMD Socket F)

2.3.5 Components based applications

An application can be separated into components. If inter-component communication is not too big, each
component can run on a separate machine. This is the reason why we talk about components instead of
applications. However, most of the present HPC applications consist of one single component.

3 Cost Function Model

3.1 Mathematical formulation

. T

Execution Post-execution
i

. . ! , Collection of !
Turn-around time execution data

Figure 1: ISS job submission timing

The choice of a well suited machine depends on user requisites. Some users would like to obtain the
result of their application execution as soon as possible, regardless of costs, some others would like to obtain
results for a given maximum cost, but in a reasonable time, and some others for a minimum cost, regardless
of time.

We will describe here in a few words the various elements that compose a cost function z being able to
satisfy users’ requests. This cost function depends on costs due to machine usage, denoted by K., license
fees K, energy consumption and cooling K..,, waiting results time K,,, and amount of data transferred K.
All these quantities depend on the application components (C}), on the per hour costs (K;) on machine (R;)
with altogether P; computational nodes, on the number of processors (px) used in the computation for each
component, and on data transfer costs over the Internet. The user can prescribe the two constraints K ;4 x
(maximum cost) and Thsax (maximum turn around time). The optimization problem writes:

CoreGRID TR-0070 5

min z = SK,, (U (CkaRiapk)> +) Fo (Ri,pr)
\k=1 =1
such that Z Ko(Cx, Ri,pr) + Ki(Cy, Ri, pr)
L Keeo(Cr, Ripr) + Kd(ck;Riapk)) < Kpax

max(tzﬁi) —min(t)) < Taax
(Ri,pr) € R(Ch),
V 1<k <n, where
Fo,(Rispr) = oy (Ke(ck,Ri;pk) + Kl(ck,Riapk))

+7k (Keco(ckru RM%))
+ O (Kd(Ck, Riqu)) [ECU],

ap, 67 Yk 51@207
a4+ B4+ vk + 0k > 0,

and R(Ck),k = 1,...,n is the eligible set of machines for component Cj. We express the money quantity
as Electronic Cost Unit ([ECU]). The quantities ¢ and tgﬂ- represent the job submission time and the time
when the user gets the result, respectively (see Fig. 1).

In our model, the parameters ay, 3, Vi, and 0 are used to weight the different terms. They can be fixed
by the users and/or by a simulator. For instance, by fixing ay = vy, = dp = 0 and § # 0, one can get the
result as rapidly as possible, independent of cost. By fixing 8 = 0 and ag, vk, 0k # 0, one can get the result
for minimum cost, independent of time. These four parameters have to be tuned according to the policies
of the computing centres and user’s demands. In the case of the Swiss Grid Initiative, the overall usage of
the machines should be high. For instance, increasing § will increase usage of underused machines. One
recognizes that a simulator, presented in section 8, is needed to estimate these parameters. In fact, the user’s
(resource consumer) and the computing center’s (resource furnisher) interests are complementary, the first
ones would like to get a result as soon as possible and for the smallest costs, and the second ones would like
to get highest profit. The simulator will be used to try to satisfy both somewhat contradictory goals. This
implies a constant tuning of the free parameters.

3.2 CPU costs K,

S 9 "z o v g
o =2 0O = < t
=RRSIN- =R

Figure 2: Example of CPU costs as a function of daytime.

e
thi

Ko(CiBiom) = [Ke(Co R, t) de [ECU,
thi
Each computing center has its specific accounting policy, but often they just bill the number of CPU hours

used. Figure 2 shows an example of k. (t) when day time, night time and weekends have different CPU costs.

CoreGRID TR-0070 6

The CPU costs include the investment S% made at the start of the service period T¢, the maintenance fees
S¢., the interests S¢ that have to be paid to the bank, the personnel costs S’Zi), the infrastructure S% including
the building, the electricity installations, and the cooling, the management S! overhead, the insurance fees
S}, and the margin S;. If a real bill is sent to a user, sales tax has to be included. Presently, the costs for
CPU time, data storage and archiving are not separated. In future, a special (costly) effort has to be made
to guarantee data security. Note, that the energy costs E per hour and node are taken care of by a separate
term in the cost function.

The price/performance ratio of the most recent machines appearing on the market reduces typically by
a factor of close to two every year. This implies that the investment S’ should enter the CPU costs in a
non-linear manner. It is reasonable to define a regression curve p(T, R;) for each machine in the Grid that
measures the depreciation of the resource as a function of time

Siriln(y:) _,.
p(T, R;i) = 1 —EWTB i

(2
with

TE+T;)
[o roar = s;

75

that takes this fact into account. The machine installation date is T¢, the life time in years of a machine
is T; and T is the running time in years. Choosing y; = 2, ; = 1, and T; = 3 implies that the value of a
machine reduces by a factor of 2 every year, and that the machine will be closed after 3 years.

To compute the CPU costs of C}, it is supposed that k. = 1, not changing during the week time. Admitting
that the machine with P; nodes runs with an efficiency of e;% over the year (d = 8760 hours/year), the CPU

cost K, of Cy (p nodes, execution starts at t*, and ends at t¥) is

S B AN A Gt
Ke(Cr, Rispr) = pr | —— =77 (yz o Oy ’) + Sy (th — t’;)]

1—y

where

Si = (Sh, + S+ 8L+ St + Si+ Sk + S1)/(deiPy).

The new quantity S; denotes the fix costs per CPU hour for one node, and ¢ is the age of machine i in
hours. With the normalisation of r; by de;, the times t’; and t’; are measured in hours (upper case times are
in years, lower case times are in hours). All those values can be given by the computing centre through a
GUI described later on. With the ISS model, we hope that it will be possible to estimate 7}, i.e. the time
at which a machine should be replaced by a more recent one.

The ¢ parameter introduces the priority notion (see [22] for details). Some computing centres do not
permit priority (¢ = 1 for all users). Others accept preemption for users who have to deliver results at given
times during the day. A good example is weather forecast that has to be ready at 6 pm such that it can be
presented after the news at 8. This implies that the needed resources have to be reserved for the time needed
to finish at 6, and this every day. All jobs running on those nodes at start time of the weather forecast
must be checkpointed and rerun after 6. The CPU time of preempted jobs should cost more, whereas the
checkpointed jobs should benefit from a cost reduction.

If priority can be used without preemption, it is necessary to define a very strict policy. In this case, a
high priority job jumps ahead in the input queue, increasing the waiting time of all the jobs that are pushed
back. As a consequence, higher priority should imply higher CPU costs, and lower CPU costs for all those
jobs that end with higher turn-around times.

In the academic world (as at CSCS), a user often gets a certain monthly CPU time allocation. When
this time is passed, the priority automatically is lowered. As a consequence, his jobs stay longer in the input
queue, or, according to the local policy, he only enters a machine when the input queue of higher priority
jobs is empty.

During a first phase, priority is put to 1 for all Cj.

CoreGRID TR-0070 7

3.3 License fees
te

k
Kz(Ok,Ri,pk):/ ki (Ck, R, pr, t) dt [ECU].

ty
A license fee model is very complex. The most simple model is to directly connect the license fees to the
CPU costs, K; = aK.. In some cases the computing centre pays an annual fee and puts this fee into the
CPU time, a = 0. Clearly, those users who do not use this program are not happy to pay for other users.
Another simple model is to pay only if the program is really used. Then, the fee can directly be proportional
to the CPU costs, a > 0. This model is applied when the CFD code FLUENT is used in a project including
academia and industry. In a first phase, we will restrict ourselves to these two models.

Note that the licensing problem also affects the availability of tokens. Specifically, if not enough tokens
are free, the program has to wait until he can get them. In a first step, we propose to solve the token problem
in the prologue phase. If there is no token at t’g, then the machine is not eligible.

3.4 Costs due to waiting time

K K

Figure 3: Examples of waiting cost graphs. Left: Engineer’s salary cost function k,,(t) due to waiting on the
result. Right: Time-to-market arguments can push up priority of the job.

t%
Kw(Ok, Ri,pk) = /0 kw(Ok, t) dt [ECU]
tk:
This cost is machine and application component dependent since ¢ is machine and component dependent.
It could be engineer’s salary or a critical time-to-market product waiting cost.

Figure 3 shows an example of k,, concerning engineer’s salary. Here, it is supposed that the engineer looses
his time only during working hours. A more sophisticated function could be yearly graphs also including
unproductive periods like vacations. Figure 3 also shows an example of k, of a critical time-to-market
product.

But this cost has to be computed over all application components. It could be written as following:

Koy <O(Ck7Riapk)> =/t K (CJ(@),t) dt [ECU].

k=1 1 k=1
This parameter could also be used to tune the overall usage of the whole machine park of a user community.
Increasing 3 in the cost function will activate machines that are underused. Putting 6 = 0 in the simulator
offers the opportunity to recognize overused machines, i.e. type of resources that should be purchased in
future.

3.5 Energy costs
th
Keco(ck;Rivpk) - / keco(ck;Riapkvt) dt [ECU]

th

CoreGRID TR-0070 8

keco keco

t t

Figure 4: Examples of graphs for the energy costs. Today (left): Excessive costs of energy consumption
and cooling. Future (right): Energy consumption reduction due to frequency adaptation to application
component needs. Computer manufacturers are invited to open for on-line frequency underclocking.

Energy costs over the lifetime of a node are a non-negligible part in the cost model. It enters strongly when
the machine becomes old, and the investment costs become a small part of the CPU costs. For components
that are memory bandwidth bound, the frequency of the processor could be lowered. The energy consumption
grows with the second power of the frequency, a reduction by a factor of 2.5 of the processor frequency reduces
its energy consumption by a factor of 6. Tests have been made with a laptop computer. When reducing
frequency from 2 GHz to 800 MHz, the overall performance of a memory bandwidth bound application
was only reduced by 10%. We have to mention here that for low-cost PCs energy costs (power supply -+
cooling) over 5 years can become comparable to investment costs. Thus, in future it is crucial to be able to
underclock the processor, adapting its frequency to the application component needs [7]. This could reduce
the worldwide PC energy consumption by a factor and could free in the near future many nuclear power
plants. Computer manufacturers must be convinced to be able to have energy consumption graphs as the
one depicted at the right of Figure 4.
In fact, the hourly energy costs for one node corresponds to

e

. k
B = [E@Fad,

1
where E;(t) and F; are the hourly energy consumption of one node (electricity and cooling), and the price

per kWh, respectively.

3.6 Data transfer costs

Let us consider that different application components run on different servers located in different computing
centers. The following data has then to be transferred between the different sites:

e Transfer of the component and its input data between the client and the computing center (client-server,
cs)

e Data transfer between the different components (server-server, ss)

e Data transfer during execution to the client, for instance for remote rendering (server-visualisation,
s-v)

e Transfer of the final result to the client (server-client, sc)

Then:
Kd(ck7 Rz) = Kd,cs(ck; R’L) + Kd,ss(ck; R’L) + Kd,sv(ck7 Rz) + Kd,sc(ck7 Rz)

In Switzerland there is no precise model that estimates these K4 quantities. Presently, the traffic into
the commodity Internet is charged, but only during peak traffic periods (Monday to Friday, 08:00-20:00),
1ECU/GB for academic users, 3ECU/GB for others. In addition, there are flat rates for connecting to the

CoreGRID TR-0070 9

Item Pleiades 1 Pleiades 2 Pleiades 2+
i=1 1=2 i1=3

Té 01.01.2004 01.01.2006 01.01.2007

Nodes Pentium 4 Xeon Woodcrest,

Architecture 32bits 64bits 64bits

Operating System Linux SUSE 9.0 Linux SUSE 9.3 | Linux SUSE 10.1

P 132 120 92

Procs/node 1 1 4

R 5.6 Gflops/s 5.6 Gflops/s 21.33 Gflops/s

Moo 0.8 Gwords/s 0.8 Gwords/s 2.67 Gwords/s

Ve 7 7 8

Network Fast Ethernet switch GbE switch GbE switch

" 15 2 2

r; 1/year 1/year 1/year

T; 4.5years 3years 3years

E; 0.4 kW 0.4 kW 0.4 kW

Uu; 0.8 0.72 0.76

F; 0.1 /kWh 0.1 /kWh 0.1 /kWh

St 320k 270k 420k

St 20k 0 0

S 16k 14k 21k

Sk 100k 85k 135k

St 30k 28k 22k

S 50k 40k 70k

S;} 0 0 0

Sy 0 0 0

S 0.23 0.22 0.40

E} 0.04 0.04 0.04

p(i,01.01.2007) 46k 93k 290k

K} 0.05 0.12 0.47

K; 0.32 0.38 0.91

Table 3: Characteristic parameters for the Pleiades clusters.

Internet in dependence of the bandwidth (Kyc)! and size of the university (Kys). In the case of a specific
university that transfers about 160 TB/year, the mix of these costs result in an estimated GB transfer price

of the order of 2.5ECU/GB (= 1ECU + (K4c+Kg4s)/(160TB)).

3.7

The cost model must be tuned for each machine by each administrator in a non-centralized manner. This
means that the "server side" of ISS must provide a simple tool (like a GUI application or a webpage) to tune

the cost model parameters.

Graphical user interface

Note that these parameters should also be tuned with a simulator.

3.8 Example: The Pleiades clusters

Let us give an example of how to determine the CPU and energy costs of the three Pleiades clusters.

In Table 3 all the values representing costs are given in arbitrary units. A "k" after a number means
"thousand". The interests Sy, the personnel costs S}, and the management overhead S are distributed
among the three machines according to the initial investment S?. The infrastructure costs are distributed

Harge universities have 10 Gbit/sec

CoreGRID TR-0070 10

with respect to the number of nodes. For the Pleiades 1 machine y; has been chosen such that after 5 years
the value of one node corresponds to the value of one Pleiades 2 node after 3 years. The idea behind is that
a single node of Pleiades 1 and Pleiades 2 have the same performances, even though Pleiades 1 has been
installed 2 year before. The quantity p(4,01.01.2007) corresponds to the basis value of the machine i at first
of January 2007.
The result
Ki =K} +8; + E},

reflects the total hourly costs (investment, auxiliary, and energy) of one computational node at 01.01.2007,
and K}; is the hourly node cost contribution due to the investment costs. The newest installation, Pleiades
2+ , counsisting of the most recent Woodcrest nodes with two dual cores each one is 3 to 5 times more
powerful than Pleiades 1 or Pleiades 2. This factor depends on the type of applications. Thus, from a user
point of view, the Woodcrest machine is clearly the most interesting machine to choose, since 4 Pleiades 1
or Pleiades 2 nodes cost about 50% more than one Woodcrest node. The performance/price ratio is about
50% better for Woodcrest than for the two other machines.

4 ISS/VIOLA architecture

4.1 Overall ISS/VIOLA architecture

The overall architecture of the ISS/VIOLA system is depicted in Fig. 5. The different modules and services
are presented in the following sections.

i i /\ ®
(Tay, 23) (18,) i

K\ (7a) UNICORE CLIENT R .

ﬁ;mm& 1SSSGN / 1SS Smart Grid Node: © © @
[\
i : ®
{ @ m \ m
. Meta Scheduling Resource —— .| 12302)| T 1 1,39 | 1
/ ! Sarvice Broker Daa System E=i bt svee |
({ Warchouse Information w7l | }——‘(u >
3 (5,14) (16)
.

-

|
oRiD /
]
7777777 @
S~ . a8
I
i H H
I
I

(9,10)

sz

Figure 5: The overall architecture of the ISS/VIOLA system

4.2 UNICORE

Please note that any reference to the UNICORE Grid middleware made in this paper is related to UNICORE
version 5 [17], the production-ready version of UNICORE. The succeeding version, UNICORE version 6, is
currently developed in a number of European projects.

A workflow is in general submitted to a UNICORE Grid via the UNICORE Client (see Fig. 6) which
provides means to construct, monitor and control workflows. In addition, the client offers extension capabil-
ities through a plug-in interface, which has for example been used to integrate the Meta-Scheduling Service

CoreGRID TR-0070 11

into the UNICORE Grid system. The workflow then passes the security Gateway and is mapped to the
site-specific characteristics at the UNICORE Server before being transferred to the local scheduler.

The concept of resource virtualisation manifests itself in UNICORE’s Virtual Site (Vsite) that comprises
a set, of resources. These resources must have direct access to each other, a uniform user mapping, and
they are generally under the same administrative control. A set of Vsites is represented by a UNICORE
Site (Usite) that offers a single access point (a unique address and port) to the resources of usually one
institution.

UNICORE Meta-
. Scheduling
Client .
Service
WS-Agreement/Notification
ulti-site jobs
I— |
UNICORE UNICORE UNICORE
Server Server Server
Adapter | Adapter Adapter
Local Local Local
Scheduler Scheduler Scheduler
Vsite Vsite Vsite
Usite Usite

Figure 6: Architecture of the VIOLA meta-scheduling environment

4.3 MetaScheduling Service

The meta-scheduler is implemented as a Web Service receiving a list of resources preselected by a resource
selection service (a broker for example, or a user) and returning reservations for some or all of these resources.
To achieve this, the MetaScheduling Service first queries selected local scheduling systems for the availability
of these resources and then negotiates the reservations across all local scheduling systems. In the particular
case of the meta-scheduling environment the local schedulers are contacted via an adapter which provides a
generic interface to these schedulers. Through this process the MetaScheduling Service supports scheduling of
arbitrary resources or services for dedicated times. It offers on one hand the support for workflows where the
agreements about resource or service usage (aka reservations) of consecutive parts should be made in advance
to avoid delay during the execution of the workflow. On the other hand the MetaScheduling Service also
supports co-allocation of resources or services in case it is required to run a parallel distributed application
which needs several resources with probably different characteristics at the same time. The meta-scheduler
may be steered directly by a user through a command-line interface or by Grid middleware components like
the UNICORE client through its SOAP interface (see Fig. 6). The resulting reservations are implemented
using the WS-Agreement specification [31].

4.4 Resource Broker

The Resource Broker (RB) is responsible for two distinct tasks : the cost function calculation and the starting
of resource discovery process described in detail in section 4.11 of this document. The cost function has been
described in section 3. The RB is the only part of ISS that connects to the VIOLA Metascheduling Service.
The RB computes a list of best suited machines for each component and sends it to the MSS for decision.
This list uncludes all machines for which z,,,;, < 2 < zmin + tol, where tol is a tolerance value to be given
for each component.

4.5 Data Warehouse (DW)

The DataWareHouse (DW) is the repository of all the informations related to the application components,
to the resources found, to the services provided by the V-Sites, to the monitoring after each execution, and

CoreGRID TR-0070 12

to some other useful information (like the cost of an hour of an engineer taken into account in the cost
function). Specifically, the DW contains the following informations:

1. Resources : Application independent hardware quantities.

2. Services : Which services does the machines provide (software, libraries installed, etc...).
3. Monitoring : Application dependent hardware quantities collected after each execution.
4. Applications : ' model quantities computed after each execution.

5. Other : Other informations needed for the cost function such as cost of one hour engineering time,
tolerance, priority, or for the resource discovery process (information about the neighborhood, ...).

The Data Warehouse includes stable information and volatile information. In this context, the stable part
of the DW uses a schema for resource modelling which includes some information about the cost function,
information about grid resources and also other kind of information needed.

The volatile part of the DW is managed by a database in which some information about the network and
other information related to the resource discovery, the monitoring are stored.

4.6 System Information (SI)

The System Information is the frontend of the Data Warehouse. It receives information from the Monitoring
Module (MM) if the chosen machine was a local one, from the remote RB through the local RB if the chosen
machine was a remote one.

The ST has the capability to estimate, using the I' model, how a component will behave on an unknown
machine, according to the behavior known on a known machine.

All historical data about a component needed in the cost function computation are sent to the RB.

4.7 Monitoring Module (MM)

The Monitoring Module (MM) collects the information about the behavior (MFLOPS/s rate, memory needs,
cach misses, communication, network relevant information, etc..) of the component during its execution. At
the end of the execution, the MM prepares and sends data to the SI. These data will be resued later for the
evalutation of the cost function.

4.8 VAMOS: Attribute monitored data to application components

The goal of VAMOS is to monitor the behaviour of a specific application component and to collect application-
oriented data such as the CPU usage figures as the one for the whole machine (Fig. 7). For this purpose,
the system has to map hardware monitored data (Ganglia for instance) to the accounting data specific to
the application and the user (the local RMS).

On the accounting files it is possible to get information about start and end of the execution, and on
the number of processors that have been reserved during this period of time. VAMOS supposes that all
the reserved processors have fully been attributed to one single application (no node sharing). For HPC
applications, this makes sense since most of the existing parallel HPC applications are coded such that in
each task the computing time between two barriers is about the same. If, in such a situation, one node is
part-time taken to run on another program, all the other tasks must wait at the barrier.

Each application runs differently on different computational resources. The I' model presented in section
2.2 enables a parametrization of the behavior of an application on a machine. Parameters valid on one
machine can also be used to predict the behavior of the same application on another machine. These
parameters can be determined with historic monitored data stored after each execution.

The VAMOS tool has been implemented with this background model. It uses the well accepted Ganglia
monitoring system and the RMS data on users and accounting (an interface to OpenPBS, Torque and
PBSPro is implemented).

CoreGRID TR-0070 13

Geners 1 Statistics for Pleisdes cluster Jan - Mar 2085
35800

200000

EE R

ze0000

150800

Ocourences

100000

seeaa -

8L T
[10 26 a0 1a se
CPU Usage (%) Cavg = 64.38925693180133 %)

aa

Statistics Job ID 62254 CjobMame DVN , Hbr of CPU 32 , duration $57@ mind
3080 [T

2500 |
zaeo [
1588 [

1000

Tl

a 10 ea e s £ 8 78 =0
CPU Usage <x) (avg = 56.B2712477396822 %)

Statiztics Job 1D 64799 C(jobliame test =c go o Mor of CPU 32 » duration 1698 mind
3580 [T T T

2000 [

=560 [

ze@0 |

1508 [

1000

- Al

L L f L L
a 18 ea 38 48 sa 8 78 =0 98 108
CPU Usage (%) (avg = 75.52832142857143 %)

Figure 7: Up: CPU usage of all the 132 processors of the Pleiadesl cluster (V3;=3600) during the first 3
months in 2005. Average CPU usage was collected for each processor every 10’. The overall average CPU

usage is 64%. Center: Profile of one job of a CFD application. Low: Profile of one job of a plasma physics
application.

As an example, data on the CPU usage was collected on the Pleiadesl cluster using VAMOS [7]. The
gathering was made during the first 3 months of 2005, with snapshots being taken on each node every 10
minutes.

The top part of Fig. 7 shows the histogram of the 1682806 collected snapshots. The 10% zero CPU usage
is due to non-allocated processors when the scheduler blocks resources for a large job, to resources that are
reserved for interactive testing and not used, to lost cycles due to a blocking in a parallel application, or
to intensive I/0O operations during which processors are idle. The 100% usage peak is mainly due to single
processor applications that represent about 20% of the total CPU time.

Parallel jobs running on Pleiadesl share their time between computations and MPI and I/O communi-
cations, and use on average 10 processors. The average utilization of CPUs is 64%, with two peaks around

CoreGRID TR-0070 14

55%, and 82%. This can be considered as a fair score by a low-cost cluster with a Fast Ethernet switch with
Var=3600 (see Table 2).

For the application analysis, we chose two user applications that consumed 17% and 9% of the total
computing time during the considered period. Fig. 7 shows the distribution of CPU usage for one run of
each application. The first application (middle of Fig. 7) comes from fluid dynamics. It used 32 processors
and ran for 5570 minutes, leading to a profiling with 17824 (=557*32) snapshots. About 10% of the snapshots
show a CPU usage of 0%, and 15% show a 100% usage. This application shows an average CPU usage of
e—0.56, i.e. following eq. 3 a I" of 1.27. It could run more efficiently on a machine with a better internode
communication system, but we would need to determine whether the price/performance ratio would improve
when going on a more expensive machine.

The second application (bottom graph of Fig. 7) comes from plasma physics. It also used 32 processors
and ran for 1690 minutes, giving 5408 (=169*32) snapshots. Processors were idle for about 15% of the time.
The efficiency was 75.5%, i.e. I' = 3.1. This is a typical application that contributes to the peak around 82%
CPU usage in the upper graph. The Pleiades] cluster seems to be a well-suited machine for this application.

We have to mention that the zero CPU usage peak of the upper graph in Fig. 7 aggregates contributions
from different sources: although I/O is the most frequent one, MPI message passing and idle processors in
unbalanced jobs must be taken into account as well. In pathological cases, one task of a parallel job dies,
and the other processors remain idle until the job is killed by the scheduling system.

These first results show that improvements have to be made: the I' model must include I/O, and being
able to distinguish between the sources of inefficiencies would be most welcome. Monitoring already had a
positive impact: badly behaving applications have already been detected and improved.

We show in Figure 8 the behavior of the SpecuLOOS fluid dynamics code on 3 different machines of the
Pleiades cluster (see 3.8). Data have been collected with VAMOS. The conditions of these 3 runs were the
same on each cluster : 32 processing elements running the same problem for 10 hours.

The number of iteration performed during this time was 1291 on Pleiadesl, 1827 on Pleiades2 and 1206
on Pleiades2+. Thus, according to table 3, the CPU cost per 1000 iterations was 7.36 on Pleiadesl, 6.65 for
Pleaides2 and 6.04 for Pleiades2+. It the meantime, we have discover that using Nemesis-MPICH instead of
MPICH further reduces the costs on the Pleiades2+ cluster. As consequence, the most cost effective machine
for this application is Pleiades2+.

4.9 Archiving Module

Periodicaly, the content of the DW is reduced by the SI. The eliminated data are stored in an archiving
module (AM) for further statistical evaluation. The goal of these statistics here is to detect and to help to
decide on future optimal hardware installations.

4.10 The ISS Smart Grid Node (ISS-SGN)

All the elements presented in section 4 (RB, MSS, SI and DW) form the, so called, ISS Smart Grid Node
(ISS-SGN). ISS-SGN is an instance of the more generic concept of Smart Grid Node (SGN) as presented
in [15]. A SGN is a grid node which has the capability to evolve progressively during his life time according to
requests it receives from its environment and to actions it performs. The concept of SGN is a virtualisation
of a computer network as sketched on figure 5. It can represent different types of hardware ranking from
a single workstation to the front end of a local network or of a supercomputer. Each SGN is connected
to other SGNs thus forming a network of GRID nodes and manages a local system (see figure 9). A SGN
evolves thanks to information contained in its DW. This information is regularly updated using information
gathered by the SI. One important mechanism to gather information on surrounding SNGs is the resource
discovery process. This process is presented in the next section.

4.11 Resource discovery

As mentioned in the broker section (section 4.4), the SGN concept contains a resource discovery mechanism
[15]. In this section, we present this process in the context of the ISS-SGN. When a workflow is sent to
the initial ISS-SGN, called initial node ng, the request is analysed, the local resources are checked using

CoreGRID TR-0070 15

CPU Usage for job 143664
14888

12808

10008

8080

6088

an88

2000

[10 20 30 a8 58 60 70 80 o8 100

CPU Usage for job 189316 (produced by VAMDS)
25008

20000

15000

168008

5080

[10 20 30 a8 58 60 78 80 o8 1608

CPU Usage for job 169888
168088

9888

sae0

7080

6088

5080

anee

3000

2088

1000

Figure 8: The fluid dynamics code SpecuLOOS|[8] CPU usage on different machines. Up :
CPU usage of SpecuLOOS on Pleiades] cluster (32 Pentium IV processors with FastEthernet interconnect).
Middle : CPU usage of SpecuLOOS on the Pleiades2 cluster (32 Xeon with GigaBitEthernet switch). Low:
CPU usage of SpecuLOOS on the Pleiades2+ cluster (8 nodes of bi-dual cores Woodcrest processors with
GigabitEthernet switch).

information contained into the DW and if necessary the resource discovery process is started. According to
the list of its direct neighbours contained in the DW, the workflow is sent, through the RB, to remote SGNs.
Each resource discovery request contains a unique identifier to avoid the creation of cycles during the resource
discovery process; already received requests are skipped. When ng starts the resource discovery process, it
inserts into the request a list containing its identity followed by identities of all its direct neighbours. During
the resource discovery process, when a SGN receives a resource discovery request, it carries out the two
operations presented below:

e it evaluates the request in order to determine if it can fulfil the request with the required QoS. If yes,
it answers to ng.

CoreGRID TR-0070 16

User's User .

login / g
Smart Grid Nod -
e NS seae NS B ’-\‘: —————————————
SN A\ fffffffff \\ fffffffffffff \R\ ,,,,,,,,,,,,,,,
Resources) Local . ‘ Lo\ \e ‘
b e System e

Figure 9: A SGN in its environment

e it adds to the received request a list containing the ID of all its direct neighbours and it forwards the
resource discovery request to its direct SGNs that are not already present in the list it received.

The list associated to each request is used to avoid, as much as possible, to contact SGNs that were already
contacted for the same request. The Fig. 10 shows the structure of these lists. The resource discovery process
is parametrised by two values called Neighbours Depth and Mazimum absolute Depth. The Neighbours Depth
has two purposes: to avoid to completely flood the network by the request and to limit the size of the lists
associated requests. When Neighbours Depth is reached, i.e. if there are enough discovered resources to
fulfill the requested service, the resource discovery process is stopped. If not the resource discovery process
continues. In this case the size of lists associated to requests is strictly limited by suppressing from these
lists the identity of the oldest neighbours. This heuristics is based on the assumption that the probability
for two SGNs of having common neighbours decreases with the distance between the SGNs. The second
parameter, the Maximum absolute Depth, is used to limit the maximum propagation depth of requests in
the GRID. When this depth is reached the resource discovery process is stopped. Figure 10 illustrates the
use of lists associated to requests.

5 Scenario and example

5.1 Detailed scenario

Figure 5 presented in the previous section shows the integration of the ISS-SGN in the context of the
UNICORE GRID middleware. This section describes the reference scenario of a job submission using ISS-
SGN with a UNICORE/MetaScheduler environment.

The job submission process has been divided into 4 phases :

e Prologue (1-10)
e Decision (11-17)
e Submission (18-19)
e Epilogue (20-23)

Each flow of data is represented by a number and an arrow on Fig. 5. Thus, the reference scenario is
presented in detail below.

CoreGRID TR-0070 17

3a
3b

Ta
7(11

7

10
11
12
13
14
15
16

Before the Neighbors depth After the Neighbors depth

Path depth Path depth
Ly P O T T
no i i nS Current SGN no|nt [ns|| n6 || n7||ns
ni|l no| ni ni| n5||n6 | | n2
n2| n2 || ne Neighbors n6 | n7||n8 | | nio
n5 n2
Neighbors depth Neighbors depth
Maximum Absolute depth Maximum Absolute depth

Figure 10: Description of the lists used during the resource discovery process.

User defines a workflow in the UNICORE client and associates the requested user QoS

UNICORE client submits the workflow to the metascheduler (MSS)

MSS sends the workflow to the RB

RB sends the workflow to the SI

SI requests information on the requested service from DW (requirements for the requested service)
DW sends the collected information to SI

ST analyses the collected information from DW and prepares a list of questions to know the availability
of the eligible machines, to be answered by MSS. This list contains for each component of the workflow
a set, of eligible machines of the local system.

SI sends this list to the RB

RB starts the resource discovery process presented in section 4.11.

RB sends the list created in 6 to the MSS

MSS prepares the query in order to check the availabilities and access rights of the local system
MSS checks for availability and access rights

Local systems return information about availabilities of local resources to the MSS

MSS sends availability information to the RB

RB requests I model information from SI

SI requests I' model information from DW

DW sends I' model information to SI (Parameters of available machines, cost of one hour engineer, ...)
SI sends I' model information to RB

RB evaluates cost function and prepares a list of cost function values and tolerances. This list contains
for each available machine, the number of nodes, the cost, the component, the MSS.

CoreGRID TR-0070 18

7as Remote RBs send cost functions to RB
17 RB merges the list in 16 and the list in 7as and sends the merged list to MSS
18 MSS reserves the well suited resource

181 MSS negotiates with the remote MSS and starts the execution of the selected part of workflow on the
remote node

19 During execution : the monitoring module (MM) save on a local database the component relevant data
20 Local system sends results to the UNICORE client

207 The remote node sends results to the UNICORE client
21 At the end of component execution, MM computes the data to be stored into the Data WareHouse
22 MM computes the relevant quantities to be sent to SI
23 MM sends to SI the relevant data to be stored into the DW

231 Remote RB sends data if needed to the RB in order to be stored

23> RB sends received data from remote node to SI in order to be stored

The lists of information to send between the different modules can be found in Appendix C.

5.2 Data flow example: Submission of ORB5

Let us follow the data flow of the real life plasma physics application ORBS that runs on parallel machines
with over 1000 processors. ORB5 is a particle in cell code. The 3D domain is discretized in N1z Nox N3 mesh
cells in which move p charged particles. These particles deposit their charges in the local cells. Maxwell’s
equation for the electric field is then solved with the charge density distribution as source term. The electric
field accelerates the particles during a short time and the process repeats with the new charge density
distribution. As a test case, Ny = Ny = 128, N3 = 64, p = 2'000’000, and the number of time steps is
t = 100. These values form the ORB5 input file.

Two commodity clusters at EPFL form our test Grid, one having 132 single processor nodes interconnected
with a full Fast Ethernet switch (Pleiades), the other has 160 two processor nodes interconnected with a
Myrinet network (Mizar).

In this example, we consider that we have a GRID containing only two ISS-SGN which have eligible
machine for the requested job. The different steps in decision to which machine the ORB5 application is
submitted are:

1 User defines a workflow using the ORB5 input file in the UNICORE client

2 UNICORE client submits the workflow to the metascheduler (MSS). This workflow contains the com-
ponents and the ORBJ5 input file

3a MSS sends the workflow to the RB

3b RB sends the workflow to the SI
4 ST requests information from DW on ORB5 (requirements for ORB5)
5 DW sends information on ORB5 to SI

6 SI analyses information from DW: it selects the information (memory needed 100 GB) and prepares a
list of questions to be answered by MSS. This list contains for each component of the workflow a set
of eligible machines. In this case, the eligible machine is Mizar

7a SI sends this list to the RB

CoreGRID TR-0070 19

7a1

10

11
12
13
14

15
16

7(12

17
18
181
19
20
204
21
22

23

23
23,

RB starts the resource discovery process. It sends the workflow sent by the UNICORE client to the
remote RB

MSS prepares the query to Mizar
MSS checks for availability and access rights

Local systems return information to the MSS:
Mizar: 160 nodes, 4 GB per node, SFr. 2.50 per node*h, 32 nodes job limit, availability table (1 hour
for 32 nodes), user is authorised, executable ORB5 exist)

MSS sends availability information to the RB
RB requests I' model information from SI for Mizar
SI requests I' model information from DW

DW sends I' model information to SI : I' = 20 for Mizar, 1 hour engineering time cost Sfr. 200.-, 8
hours a day

SI sends I' model information to RB

RB evaluates cost function and prepares a list of cost function values and tolerances. This list contains
for each available machine, the number of nodes, the cost, the component, the MSS. In this case, this
list is composed only by information about Mizar (160 nodes, 4 GB per node, cost: SFR 3720.-)

The remote RB sends a list containing for each available machine, the number of nodes, the cost, the
component and the MSS to contact the machine if needed. In this case, this list is composed only by
information about Pleiades (132 nodes, 2 GB per node, cost: SFR 3968.-)

RB merge the two lists and sends the merge list to MSS

MSS reserves and starts the execution on Mizar

** no remote machine selected in this example **

During execution : the monitoring module (MM) save on a local database the component relevant data
Mizar sends results to the UNICORE client

** no remote machine selected in this example **

At the end of component execution, MM computes the data to be stored into the Data WareHouse
MM computes the relevant quantities to be send to SI

MM sends to SI the relevant data to be stored into the DW. SI computes I model parameters (e.g.
' =18.7, M = 87 GB, Computing time—21h 32’) and stores them into DW

** no remote machine selected in this example **

** no remote machine selected in this example **

CoreGRID TR-0070 20

6 Security aspects

Security is a crucial aspect in distributed systems where the sharing and the access of resources is often
regulated by a centralized trusted entity; in peer networks the individual entities have to agree on the level
of trust.

Grids can be used to harness computational power, provide access to unified data, or other intensive
tasks. From a security viewpoint, a grid represents a high-value target for anyone who would want to gain
unauthorized access. Grids need to be protected and secure because they represent a point of access to the
resources of the different institutions involved.

From a Grid perspective, the following challenges are raised:

e How to manage heterogeneous environments?

Without a common agreed and coordinated effort, organizing a multitude of hardware and software
configurations owned by different institutions, providing services to multiple communities of users with
different needs could become an impossible task, and a reason for a project to fail.

e How to deal with authorization and authentication?

In a Grid project there are multiple layers of ownership: The network is owned and managed by the
organization. Individual machines are also owned by the organization, but for practical purposes,
are run by the person assigned to it. Finally, tasks that are run on the Grid are owned by the task
originator, but the task has to make its way through the myriad possible authorization scenarios. Each
of these layers call for authenticated and authorized access.

There are a number of authorization systems currently available for use on the Grid and they all have
similar semantics. These systems give a description of the initiator, a description of an action being requested,
details about the target resource to be accessed, and any contextual information such as time of the day,
and they provide an authorization decision whether the action should be processed or rejected.

The current implementation of ISS is based on UNICORE that has a security model based on job
authentication and secure transmission of data. The security model supports both job signing and data
encryption, which protects remote users against data theft and data manipulation.

Relevant for the individual organizations participating in a Grid, UNICORE provides the following func-
tionalities:

e Provision of user authentication mechanism based on X.509 certificates.

e Compatibility to the organization authorization mechanisms and policy; UNICORE IDs are mapped
to local Unix user IDs reflecting access policies disk quotas etc.

e Site and system specific incarnation of UNICORE jobs driven by a declarative Incarnation Database
that can be adapted to the organization’s needs.

e Declarative description of available resources, both traditional capacity resources, like processor count,
computation time, memory size, and capability resources, like available software packages and special
hardware capabilities.

Additionally ISS has to take into account secure access to organization’s resources during the resource
discovery algorithm. Traversing organization’s firewall to inspect local Data Warehouses of resources sitting
in private networks demand of a high level of access that may conflict with the site access policies. Individual
sites need to agree on access policies that somehow will be mapped and cope with their own internal policies;
as a consequence of that, the discovery algorithm must take site’s restrictions into account when trying
accessing the site’s resources Data Warehouse.

CoreGRID TR-0070 21

7 Implementation aspects

7.1 VAMOS : An implementation of the Monitoring Module

The Veritable Application MOnitoring Service is an implementation of the Monitoring Module. It has
been installed on the Pleiades testbed (Pleiadesl, Pleiades2, Pleiades2+ clusters). The model is quite simple
: perform a mapping between hardware monitored data (using the Ganglia[13] service) and application
relevant data (using the RMS/Local Scheduler Torque/Maui) and store the information in a local database
to be reused.

Technical aspects

VAMOS has been written in PHP. It uses XML files to store configuration files. The main class is called
every hour through the UNIX tool cron. Ganglia stores its relevant information in a round robin database,
keeping information during 2 hours.

Scenario

The scenario for each machine (configuration file see 8.1.2) is the following :
1. get the list of running/submitted/stopped jobs
2. compare it with the list already stored
3. update the database. For each running job in the list :

o get start time
e get list of assigned nodes for that job

e for each node, read information in the Ganglia round robin database from start time to present
time

e store information in the VAMOS database
4. update database. For each finished job in the list :

o get start time

e get stop time

e get list of assigned nodes for that job

e for each node, read information in the Ganglia round robin database from start time to stop time

e store information in the VAMOS database

5. clean database from incorrect data

Note that the chosen metric information read from Ganglia (such as CPU utilization, network usage,
etc...) is a table in the VAMOS DB. That database can grow rapidly.

Metrics stored in VAMOS

In its present version, VAMOS stores the following information :

e CPU usage (idle, system, user)
e Network usage (packets IN/OUT, bytes IN/OUT)

e Memory usage (Swap usage, memory usage)

CoreGRID TR-0070 22

What Ganglia monitors is what the Linux kernel (or Windows) provides. All this information is taken
from the pseudo file system /proc. This is not sufficient to compute the I' values. We need other quantities
(such as MFlops/s rate, Cache misses, etc..) for each component. These quantities can be computed using
direct access to hardware counters using PAPI [32, 12] which are accessible directly on Itanium or AMD
Opteron based machines or through specific library (Perfctr on Pentium for instance available on Linux,
Windows, etc.. OS’s).

Results for Pleiades1, Pleiades2 and Pleiades2+ can be found on http://pleiades.epfl.ch/"vkeller/
VAMOS

8 Simulators

8.1 Cost model simulator : ISS-SIM2
This simulator has been developed at EPFL.

Goals of ISS-SIM2
ISS-SIM2 has been designed to achieve 2 complementary goals :

1. To test different configurations for the cost model. It can test the CFM function weights as well as
the functions used in the cost model. The aim is to understand how to tune the cost function model
without using real production systems.

2. To predict the future machines to be added in the Grid that best improve the overall Grid performance.
While one can parametrize hardware using the I' model, ISS-SIM2 can add new imaginary machines
in the Grid.

Hypothesis

ISS-SIM2 assumes that a resource discovery algorithm has been performed. The situation is the following :
the middleware has a complete view of the Grid resources. Each resource has its own policy and is accessed
by local users as well as by Grid users.

8.1.1 Model

A Grid is a set of r resources accessed by a number Grid clients. An universal Grid clock ensures that every
transaction on the Grid is performed respecting an universal time (named GUT for Grid Universal Time).
It exists one broker and one MetaScheduler Service for per simulated Grid.

Each resource of the Grid is a parallel machine with P computing elements of p processors of a given
architecture (Intel x386, AMD Socket F, etc..), ¢ cores each. A simple workstation is described as P =p =1
(¢ varies with the type of processor). The model supposes that each resource has its own local clients, its own
VAMOS system, its own local RMS, and its own local Scheduler with its scheduling table. This table keeps
the information about the queues of the local resource starting at the Grid installation time and ending with
the last submitted job.

Time is divided into seconds. The simulation is perform increasing the GUT.

8.1.2 Implementation

ISS-SIM2 has been implemented in Java using the Java Threads mechanisms to simulate the users. It uses
XML to describe the resources (see 8.1.2). The first prototype uses its own description schema, future re-
leases should adopt an official and standardized description schema (aka GLUE). Every client (local or Grid)
is a Java Thread.

CoreGRID TR-0070 23

The database is a remote mysql DB accessed by the common Connector/J. Note that VAMOS hourly
updates the DB with data from Pleiadesl, Pleiades2, and Pleiades2+. It is possible to create an empty DB
locally.

XML files are parsed using Xerces.

Machine description

<?7xml version="1.0" encoding="I1S0-8859-1" 7>

<!-- This XML document describes the Pleiades2 cluster in real life. -->
<!-- it is the same document used by the VAMOS tool -=>
<!-- Author : Vincent Keller (Vincent.Keller@epfl.ch) -->
<config>

<parallelSystem>

<system_name>Pleiades 1</system_name>
<nbrNodes>132</nbrNodes>
<CPUType>Pentium 4</CPUType>
<CPUClock>2.8</CPUClock>
<CPUCPI>2</CPUCPI>
<CPUWordLength>32</CPUWordLength>
<CPUArch>i686</CPUArch>
<CPUPerNode>1</CPUPerNode>
<CoresPerCPU>1</CoresPerCPU>
<RamBandwith>800</RamBandwith>
<RamAmountPerNode>2000</RamAmountPerNode>
<InterconnectType id="1">FE</InterconnectType>
<InterconnectTopology>switch</InterconnectTopology>
<InterconnectLatency>1.9</InterconnectLatency>
<InterconnectBandwidth>12.5</InterconnectBandwidth>
<InterconnectAvgDistance>1</InterconnectAvgDistance>
</parallelSystem>

<CFMValues>
<alpha>0.00</alpha>
<beta>0.00</beta>
<gamma>0.00</gamma>
</CFMValues>

<ganglia>
<server>pleiadesl.epfl.ch</server>
<path>/var/lib/ganglia/rrds/Pleiades</path>
</ganglia>

<scheduler>
<name>maui</name>
<server>pleiades.epfl.ch</server>
<path>/usr/local/src/maui/maui-3.2.6/stats/</path>
</scheduler>

<RMS>

CoreGRID TR-0070 24

<name>openpbs</name>
<server>pleiades.epfl.ch</server>
<path>/opt/pbs/bin</path>

</RMS>

<local_database>
<server>linpc2.epfl.ch</server>
<driver>mysql</driver>
<name>pleiadesl_db</name>
<user>vkeller</user>
<password>pleiades</password>
</local_database>

<QSTAT>
<name>tmpjob</name>
<server>pleiades.epfl.ch</server>
<path>/tmp/runningJobsT_P1.txt</path>
<pathQ>/tmp/runningJobsQT_P1.txt</pathQ>
</QSTAT>

<system_information>
<server>linpc2.epfl.ch</server>
<driver>mysql</driver>
<name>sysinfo_db</name>
<user>vkeller</user>
<password>pleiades</password>

</system_information>

</config>

8.2 Resource discovery simulator: SGN-Sim

This simulator has been developped at ETA-Fr.

8.2.1 Implementation

We have developed a simulator in order to test the proposed resource discovery algorithm and to implement
a first prototype of Data Warehouse. SGN-Sim is based on the Smart Grid Node reference architecture
presented in section 5.1.

The SGN-Sim has been developed in Java. We have used SimJava to simulate a Grid environment which
is a process based discrete event simulation. In order to store some information during the simulation, a
first Data Warehouse prototype has been realised using MySQL. Figure 11 presents the architecture of the
simulator.

8.2.2 Simulator input files

e User request: The user request is described using an XML format as shown below.

CoreGRID TR-0070 25

<SGNRequest idType="user">
<Service name="add">
<Options>
<Option type="library">
optl
</Option>
<Option type="compilationParameters'">
opt2
</0Option>
</Options>
<Parameters>
<Parameter>
1
</Parameter>
<Parameter>
2
</Parameter>
</Parameters>
</Service>
</SGNRequest>

e Grid topologies: We have developed a Grid topology generator in order to generate automatically
different Grid topologies. These topologies are represented using XML. We present below an example
of XML Grid topologies.

<GRID>
<NODE>
<INFO0>
<NAME> mb5.eif.ch</NAME>
<PORT> 5555</PORT>
</INFO>
<SERVICES>
<SERVICE>
<NAME>mul</NAME>
</SERVICE>
<SERVICE>
<NAME>add</NAME>
</SERVICE>
</SERVICES>
<NEIGHBORS>
<NEIGHBOR>
<INFO> ...</INFD>
<SERVICES> ... </SERVICES>
</NEIGHBOR>
</NODE>

Remark: We generate a graphical output file in order to visualize the resource discovery process. This
output file is written using the dotty format in order to check the resource discovery algorithm.

8.2.3 First results

The performance of SGN-Sim resource discovery algorithm, described in section 4.11, has been analysed in
order to assess its effectiveness in a Grid environment. We have simulated a Grid network composed by

CoreGRID TR-0070 26

GRID Result
GENERATOR

& >
SGN1[SGN 2 | SGN 3 SGNn}
GRID)
Topology| < > Logfile
-—p MySQL Log files SGN n
User Data base
Request

Graphical representation
of the GRID

Figure 11: Architecture of SGN-Sim

Smart Grid Nodes. We increased the number of Grid nodes from 100 to 2000 in order to analyse the number
of requests sent during the resource discovery process. Results shown in Figure 13 are obtained with a 3D
torus topology and random Grid topology (Figure 12). Each node of the random Grid topology has an
average degree fixed to 6. We fixed the Neighbours Depth to 1’000’000 in order to visit all the nodes of the
Grid. It appears that the number of requests sent during the resource discovery process is very high. Several
nodes are visited several times and the number of requests sent is almost similar to the number of requests
sent using a simple broadcast (a node sends a request to all its neighbours excepted to the neighbour which
has sent to it the same request it wants to propagate).

2000 Nodes Random Grid

10000 T T . T T T T T T
: Nb of resource discovery rgst sent —+— !
: Visited nodes —-x-— !
9000 [Nb of request sent by Broadcast ---*--- : ¥ -
: Nb of connections &
8000 E
7000 —
IS
Q
2]
@ 6000 4
] B
3 =7
o
o 5000 -
S
& 4000 -
£
=}
z
3000 —
2000 JEVNVSE
1000 F _#7 o VI 4
e IRV
7.8 X
oy
i 1 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000

Number of nodes

Figure 12: Number of requests sent during the resource discovery process with a randomGrid

These results can be explained by the presence of cycles into the Grid topologies. Indeed, during a
resource discovery process, Fig. 14 and Fig 15 present the results obtained avoiding cycles (the presence of
cycles is stored into the DW, according to this information the request propagation is managed in order to
avoid entering into cycles). It appears that the number of requests sent is very low and all nodes are visited

CoreGRID TR-0070 27

2000 Nodes 3D Torus

10000 T

T T T T
Nb of resource discovery rgst sent —+— !
; Visited nodes --->---! .
9000 [Nb of request sent by Broadcast ---*--- ! ¥ =
: Nb of connections & : -

8000

7000

6000

5000

4000

Number of requests sent

3000

2000

1000

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of nodes

Figure 13: Number of requests sent during the resource discovery process with a Torus 3D

(almost) only one time.

2000 Nodes Random Grid knowledge

10000 T T T T T

: Nb of resource discovery rgst sent —+— !

: Visited nodes ---x--- !

9000 [Nb of request sent by Broadcast --- :
: Nb of connections &

8000 ,~*"x i
7000 ’#**' 4
6000
5000

4000

Number of requests sent

3000

2000

1000

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of nodes

Figure 14: Number of requests sent during the resource discovery process with a randomGrid avoiding cycles

9 First testbed at EPFL

Three departments are involved in ISS within the EPFL : the Central IT Domain (DIT), the Engineer-

ing Faculty through the ISE (Institut des Sciences de I'Energie) and the Plasma Physics Research Center

CoreGRID TR-0070 28

2000 Nodes 3D Torus knowledge

10000 T

T T T T

Nb of resource discovery rgst sent —+— !
: Visited nodes ---x--- ! -
9000 [Nb of request sent by Broadcast ---*--- ! ¥ E
: Nb of connections 8-} .

8000 | * i
7000 x 4
6000
5000

4000

Number of requests sent

3000

2000

1000

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of nodes

Figure 15: Number of requests sent during the resource discovery process with a Torus 3D avoiding cycles

Machine Type Node # Nodes | # CPU / # core Network Loc.
type per node
Pleiades1 Cluster P4 HT 132 1/1 FE Switch | SGM
Pleiades2 Cluster XEON 120 1/1 GbE Switch | SGM
Pleiades2+ || Cluster Woodcrest 92 2/2 GbE Switch | SGM
LINPC’s NoW | heterogeneous 32 1/1 FE bus SGM
Mizar Cluster Opteron 448 2/1 Myrinet DIT
Mizar NUMA Itanium 16 16/1 NUMA DIT
Alcor Cluster Woodcrest 24 2/2 Myrinet DIT
Greedy NoW | heterogeneous 250 - FE bus DIT

Table 4: First EPFL testbed machines

(CRPP). The first testbed will integrate several machines (Table 4) and specialized applications (Table 5)
from Mechanics, Fluid Dynamics and Plasma Physics. The alpha users will come from CSCS, EPFL and
ETA-Fr.

The machines are interconnected through the Fast Ethernet campus network.

The UNICORE/Metascheduler environment has been installed on the testbed. A first alpha version of
ISS should be ready by July 2007 and the beta version by the end of 2007.

10 The CoreGRID cooperation

The ISS implementation in UNICORE /MetaScheduler is part of the SwissGRID initiative and realised in
a co-operation between CoreGRID partners. It is planned to install the UNICORE/MetaScheduler/ISS
middleware by the end of 2007 to guide job submission to all HPC machines in Switzerland.

Within CoreGRID, the integration of ISS into UNICORE is a collaboration between 8 institutions, the
first 6 are CoreGRID partners:

1. Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

CoreGRID TR-0070 29

| Application || Type | Area |

SpeculLOOS Point-to-Point communication dominated CFD
ORB5 Multicast communication dominated Plasma Physics
OpenMP Helmholtz Solver Multicast communication dominated CFD

Table 5: First EPFL applications test set

2. Ecole d’'Ingénieurs et d’Architectes, CH-1075 Fribourg (Switzerland)

3. ForschungsZentrum Jiilich, D-52425 Jiilich (Germany)

4. Fraunhofer Gesellschaft SCAT Institut, D-53754 St. Augustin (Germany)
5. University of Dortmund, D-44221 Dortmund, Germany

6. CETIC, B-6041 Charleroi, Belgium

7. Swiss National Supercomputing Center, CH-6928 Manno (Switzerland)
8. Switch, CH-8021 Zurich, Switzerland

Acknowledgements

ISS is a Swiss project within the Swiss Grid Initiative managed by the Swiss National Supercomputing Center
CSCS. CoreGRID is an European Network of Excellence (NoE) funded by the European Commission’s IST
programme under grant #004265. Thanks go to Michel Reymond (EPFL) for his help in validating the CPU
cost model.

A Definitions and restrictions

In this section, we define the terms used in this technical report.

A.1 Definitions

e 1 Site = an entity managed by one MetaScheduling Service.
In the UNICORE model,

— 1 Site — 1 USite.
In the ISS project,

— 1 Site = 1 SGN.

1 Machine — an entity managed by one 1 Scheduler.
In the UNICORE model,

— 1 Machine = 1 VSite.

1 Node = one entity having one Uniform Memory Access (UMA)

e 1 Processing element = L2 cache (in reference to the Intel’s Woodcrest architecture)

1 Core = L1 cache (in reference to the Intel’s Woodcrest architecture)

1 application — a set of components (one or more)

CoreGRID TR-0070 30

A.2 Restrictions
We consider that :
e 1 Component is executed on, at most, one machine
e 1 distributed process is executed on, at most, one node
e 1 parallel process is executed on, at most, one core
In the ISS project, an application is characterized by:
e a number of components n

e number of processors p needed by Cj

a workflow (Cy)

memory size

type of application

number of Thread T} for each py

B Requests between modules

UNICORE client — MSS (2)
o (Workflow),,
e (Constraints)
MSS — RB — SI (3)
o (Workflow),,
e (Constraints)y
RB — Remote RB (7a1)
o (Workflow),,
e (Constraints)
e Information about the RB (how to contact RB from remote RB)
SI — RB — MSS (7)
o (Ci)i
* (pr)i
o (T1);
o Mj
e Software requirements
MSS — Local Systems (8, 9)
e User known?
e Software exists?

e Hardware properties sufficient?

CoreGRID TR-0070

31

e Component constraints
e Availabilities (py, input queues);
LS — MSS (10)
e (User rights);
e Availabilities (py, input queues);
MSS — RB (11)
e List of eligible machines with
e Availabilities (pg);
SI — RB (15)
o I(Ck, pr)i
Remote RB — RB (7az)
e all machines (Ck, pg, z); such that
® Zmin < 2 < Zmin + tol
RB — MSS (17)
e all machines (Ck, pg, z); such that
® Zmin < 2 < Zmin + tol
LS (by MM) — SI (23)

e Monitored data on machine i about C},
Glossary

A

Speedup

A

B

application

Yk

Ym

d

CFM

component

Components based applications

CoreGRID TR-0070

Free parameter in CFM (CPU costs and license
fees)

Free parameter in CFM (Turn-around time)
HPC program consisting of £k = 1,..,n compo-
nents

Effective per node internode communication

bandwidth

kth application component,

Peak communication network bandwidth of a
machine

CPU time/communication time

0/S

Free parameter in CFM (Data transfer costs)
Ta/b

Number of hours per year = 8760

Cost Function Model

part of an application

Application described by a workflow

N

T = N O W ot W N

3, 5,

6

32

Ok
DW
DW

e
€i

EGEE

Embarrassingly parallel applications

Gflops/s

Globus
Grid
GridLab
Gwords/s

HPC

1
ISS
ISS-SIM2

Kyax

machine
MS
MSS
MSS

Multicast applications

node

NoW
NUMA

CoreGRID TR-0070

Free parameter in CFM (Energy costs)
Data WareHouse
Data Warehouse, part of SGN

Efficiency

Efficiency of machine 4

CERN’s Grid middleware development project
Application which do not demand inter-node
communications (I' >> 1)

10° double precision floating point operations
per second

Grid management middleware

Set, of resources

A EU Grid middleware development project
10° double precision words per second

High Performance Computing

Index for machine
Intelligent Grid Scheduling Service
ISS Simulator used to test the cost model

Maximum costs

Index for application component

CPU cost function

Data transfer costs

CPU costs

Energy costs

Licence fees

Costs due to turn-around (waiting) time

Estimated memory size of (Ck, px)

Peak memory bandwidth of a node

Cluster or SMP managed by one RMS
Monitoring System

MetaScheduling Service

VIOLA MetaScheduling Service

Application where ~, decreases when problem
size grows

Number of components in an application
Reservable computational unit, can be one pro-
cessor, a NUMA, or a SMP

Network of Workstations

Virtual shared memory machine

Total number of operations performed in one
node

== O W

N = = =

Ut Ot Ot Ot Ot Oy N Ot

3,4

33

OpenMP

OpenMP applications

ORB5

P
P;
¥

Pk
Pleiades Clusters

Point-to-point applications

RB
RDS
resource

RMS
S

Si

a

S

Se
f
s
SGN
SI
SI
s
s,
SMP
sh
Ty
T
Ti
Tc
Tp
Thrax
tO
k

CoreGRID TR-0070

OpenMP is a specification for a set of compiler
directives, library routines, and environment
variables that can be used to specify shared
memory parallelism in Fortran and C/C++ pro-
grams.

Application which demand an SMP node
Single component plasma physics application

Number of nodes of a machine (index 7 left out)
Number of nodes of machine i

Priority

Number of processors needed by Cj

The Pleiades clusters are located in the Mechan-
ics Department at EPFL / Switzerland. Find a
description on http://pleiades.epfl.ch
Application where 7, keep a constant value
when problem size grows

Peak performance of a node

Resource on machine i

Total number of machines in a Grid

Nodal peak performance of an application
Parameter to normalise time

Resource Broker, part of Smart Grid Node
Resource Broker

Resource Discovery System, part of SGN
Series of nodes demanded by Cj

Resource management System

Total number of words sent through the network
by one node

Yearly management costs for machine ¢

Yearly interests to be paid to the bank for ma-
chine ¢

Initial investment for machine ¢

Yearly insurance fees for machine 4

Yearly profit with machine 4

Smart Grid Node

System Information, part of SGN

System Information

Yearly infrastructure costs for machine i

Free parameter in CFM (Yearly maintenance fee
for machine 7)

Shared memory machine

Yearly personal costs for machine i

Estimated execution time of (Ck, pk):
To+Tp

Life time of machine i

Internode communication time
Computing time on p nodes
Maximum turn-around time

Time of C job submission

N W~

© W o ot

@MMS[\DC}O&MU‘[\D

oL OO

o =

orTotw w o w

o =~

=~

16

34

tgﬂ- Time of C} results available 5,6

by Time of C} execution end 5,6

thi Time of C}, execution start 5,6

tol Tolerance value added to a cost for a chosen 12
machine

UNICORE Grid middleware 1

Ve R+ /Cx 2

VIOLA Vertically Integrated Optical Testbed for Large 1
Applications in DFN

VM R/ My 2

workflow Work described as a DAG or non-DAG where 11
each leaf is component

Yi Half value time of machine ¢ 6

References

[1] Sergio Maffioletti. Grid generic architecture. Please contact author: sergio.maffioletti@cscs.ch.

[2] Keller, V., Cristiano, K., Gruber, R., Spada, M., Tran, T.-M., Kuonen, P., Wieder, P., Ziegler, W., Maf-
fioletti, S., Nellari, N., Sawley, M.-C.: Integration of ISS into the VIOLA Meta-Scheduler environment.
TR CoreGRID 25, 2005.

[3] Gruber, R., Volgers, P., De Vita, A., Stengel, M., Tran, T.-M.: Parameterisation to tailor commodity
clusters to applications. Future Generation Computer Systems, 19:111 120, 2003.

[4] Gruber, R., Keller, V., Kuonen, P., Sawley, M.-C., Schaeli, B., Tolou, A., Torruella, M., and Tran, T.-M.,
Towards an Intelligent Grid Scheduling System, Proc. of 6th Int. Conf. PPAM 2005, Poznan, Poland,
Lecture Notes in Computer Science 3911 (Springer, 2006) 751-757

[5] Erwin, D., UNICORE plus final report — uniform interface to computing resource,Forschungszentrum
Jiilich, 2003, ISBN 3-00-011592-7

[6] Waldrich, O., Wieder, P., and Ziegler, W., A Meta-Scheduling Service for Co-allocating Arbitrary Types
of Resource, In Proc. of Conference on Parallel Processing and Applied Mathematics PPAM 2005, Poznan,
Poland, 2005, to appear.

[7] Keller,V., VAMOS web frontend to the Pleiades clusters, http://pleiades.epfl.ch/ vkeller/VAMOS

[8] Dubois-Pélerin, Y., Van Kemenade, V., and Deville, M., An object-oriented toolbox for spectral element
analysis, J. Sci. Comput. 14 (1999) 1-29

[9] Gruber, R. and Tran, T.-M. Scalability aspects on commodity clusters, EPFL Supercomputing Review,
14, 12-17 (2004)

[10] Gruber, R., Keller, V., Leriche, E., and Habisreutinger, M.A., Can a Helmholtz solver run on a cluster?,
accepted to appear in Procs. of Cluster 2006

[11] Manneback, P., Bergére, G., Emad, N., Gruber, R., Keller, V., Kuonen, P., Noél, S.,; and Petiton, S.,
Proposal of a scheduling policy for hybrid methods on computationsl Grids, CoreGRID workshop (Pisa,
2005)

[12] Dongarra, J., London, K., Moore, S., Mucci, P., and Terpstra, D., Using PAPI for hardware performance
mouitoring on Linux systems, www.netlib.org/utk/people/JackDongarra/PAPERS /papi-linux.pdf

CoreGRID TR-0070 35

[13] http://ganglia.sourceforge.net/

[14] Andreozzi, S., Burke, S., Field, L., Fisher, S., Konya, B., Mambelli, M., Schopf, J.M., Viljoen, M.,
Wilson, A., GLUE Schema Specification version 1.2, Final Specification. December 2005,

[15] Cristiano, K., Kuonen, P., Smart Grid Node : Un nceud intelligent pour la grille, accepted to appear in
Renpar’06, Perpignan, 2006.

[16] Gruber, R., Keller, V., Thiémard, M., Wéldrich, O., Wieder, P., Ziegler, W., and Manneback, P.,
Integration of Grid Cost Model into ISS/VIOLA Meta-Scheduler environment, accepted to appear in
Proc. of UNICORE Summit (Dresden, 2006).

[17] UNICORE Open Source — Download, http://www.unicore.eu/download/unicore5/.
[18] http://perso.wanadoo.fr/sebastien.godard/
[19] http://egee-intranet.web.cer.ch/egee-intranet

[20] Seidel, E., Allen, G., Merzky A., and Nabrzyski, J., GridLab-a grid application toolkit and testbed,
Future Generation Computer Systems, Volume 18, Issue 8, October 2002, Pages 1143-1153.

[21] Foster, I, and Kesselman, C., (Eds.)
Morgan Kaufman, San Francisco, 1999

"The GRID Blueprint for a new Computing Infrastructure",

[22] R. Gruber, V. Keller, M. Thiémard, O. Waldrich, W. Ziegler, P. Wieder, P. Manneback, P. Kuonen, K.
Cristiano, P. Kunstz, S. Maffioletti, M.C. Sawley, ISS concept, CoreGRID Integration workshop, Crakow,
2006

[23] http://pleiades.epfl.ch/
[24] The EUROGRID project, website, 2005. Online: http://www.eurogrid.org/.
[25] The UniGrids Project, website, 2005. Online: http://www.unigrids.org/.

[26] The National Research Grid Initiative (NaReGI)
http://www.naregi.org/index e.html

website, 2005. Online:

3

[27] VIOLA Vertically Integrated Optical Testbed for Large Application in DFEN, website, 2005. Ouline:
http://www.viola-testbed.de/.

[28] Streit, A., Erwin, D., Lippert, Th., Mallmann, D., Menday, R.,Rambadt, M., Riedel, M., Romberg, M.,
Schuller, B., and Wieder, Ph., UNICORE - From Project Results to Production Grids, L. Grandinetti
(ed.), Grid Computing and New Frontiers of High Performance Processing, Elsevier, 2005, to be pub-
lished. Pre-print available at: http://arxiv.org/pdf/cs.DC/0502090.

[29] G. Quecke and W. Ziegler, MeSch ~ An Approach to Resource Management in a Distributed Environ-
ment, In Proc. of 1st IEEE/ACM International Workshop on Grid Computing (Grid 2000). Volume 1971
of Lecture Notes in Computer Science, pages 47-54, Springer, 2000.

[30] Streit, A., Wildrich, O., Wieder, Ph., and Ziegler, W., On Scheduling in UNICORE - Extending the
Web Services Agreement based Resource Management Framework, In Proc. of Parallel Computing 2005
(ParCo2005), Malaga, Spain, 2005, to appear.

[31] Andrieux,A. et. al, Web Services Agreement Specification, July, 2005. Online:
https://forge.gridforum.org/projects/graap-wg/document / WS-AgreementSpecification /en/ 16.

[32] Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P. ; A Portable Programming Interface for Perfor-
mance Evaluation on Modern Processors , The International Journal of High Performance Computing Ap-
plications, Volume 14, number 3, pp. 189-204, Fall 2000, online : http://icl.cs.utk.edu/publications/pub-
papers/2000/papi-journal-final.pdf

CoreGRID TR-0070 36

