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Abstract

The authors present the integration of the Intelligentdz8cheduling System into the VIOLA meta-scheduling
environment which itself is based on the UNICORE Grid sofewarhe goal of the new, integrated environment is
to enable the submission of jobs to the Grid system besta (it the application workflow. For this purpose a cost
function is used that exploits information about the typamflication, the characteristics of the system architestu
as well as the availabilities of the resources. This documessents an active collaboration between Ecole Poly-
technique Fédérale de Lausanne (EPFL), Ecole d'Ingésiet d’Architectes (EIF) de Fribourg, Forschungszentrum
Jlich, Fraunhofer Institute SCAI, and Swiss National Sapemputing Centre (CSCS).

1 Introduction

The UNICORE middleware has been designed and implementedrious pro-jects world-wide, for example the
German UNICORE Plus project [1], the EU projects EUROGRID4Ad UniGrids [3], or the Japanese NaReGl
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project [4]. A recently developed extension to UNICORE, YH®OLA Meta-Scheduling Service, strongly increases
its functionalities by adding capabilities needed to sciedrbitrary resources in a co-ordinated fashion. Thisamet
scheduling environment provides the software basis foMi@LA testbed [5] and offers the opportunity to include
proprietary scheduling solutions. The Intelligent (Gi&bheduling System (ISS) [6] is such a scheduling system. It
uses historical runtime data of an application to schedulelasuited computational resources for execution based
on the performance requirements of the user. The goal of trk mresented here is to integrate the ISS into the
meta-scheduling environment to realise a Grid systemfgatisthe requirements of the SwissGRID. The Intelligent
Scheduling System will add a data repository, a broker andfanmation service to the resulting Grid system. The
scheduling algorithm used to calculate the best-suitetdsys based on a cost function that takes the data collected
during previous executions into account describing intarthe type of the application, its performance on the défe
machines in the Grid, and their availability.

In the following section, the functions of UNICORE and thetet&cheduling Service are shortly presented. Then,
the ISS model is introduced followed by a description of thierall architecture which illustrates the integration of
the ISS concept into the VIOLA environment (Sections 3 andSBction 5 then outlines the processes that will be
executed to schedule application workflows in the meta¢gliveg environment. Subsequent to the generic process
description an ORB5 application example that runs on mashivith over 1000 processors is discussed in Section 6.
We conclude this document with a summary and a brief outleotuture work.

2 UNICORE and the M eta-Scheduling Service

The basic Grid environment we use for our work comprises tNeAORE Grid system and the Meta-Scheduling

Service developed in the VIOLA project. It is not the purpo$¢his document to introduce these systems in detail,
but a short characterisation of both is given in the follogviwo sections. Descriptions of UNICORE’'s models

and components can be found in other publications [1],E§pective in publications covering the Meta-Scheduling
Service [8], [9], [10].

21 UNICORE

A workflow is in general submitted to a UNICORE Grid via the WWORE Client (see Fig. 1) which provides means
to construct, monitor and control workflows. In addition itlent offers extension capabilities through a plug-in
interface, which has for example been used to integrate #ta{8cheduling Service into the UNICORE Grid system.
The workflow then passes the security Gateway and is mappie teite-specific characteristics at the UNICORE
Server before being transferred to the local scheduler.

The concept of resource virtualisation manifests itsellMICORE'’s Virtual Site (Vsite) that comprises a set of
resources. These resources must have direct access tothachaouniform user mapping, and they are generally
under the same administrative control. A set of Vsites isaspnted by a UNICORE Site (Usite) that offers a single
access point (a unique address and port) to the resourcesaifyuone institution.

2.2 Meta-Scheduling Service

The meta-scheduler is implemented as a Web Service regeiMist of resources preselected by a resource selection
service (a broker for example, or a user) and returning vasens for some or all of these resources. To achieve
this, the Meta-Scheduling Service first queries selecteal kcheduling systems for the availability of these resesir
and then negotiates the reservations across all local sthgdystems. In the particular case of the meta-scheglulin
environment the local schedulers are contacted via an edapich provides a generic interface to these schedulers.
Through this process the Meta-Scheduling Service suppohisduling of arbitrary resources or services for deditate
times. It offers on one hand the support for workflows wheredgreements about resource or service usage (aka
reservations) of consecutive parts should be made in advaravoid delay during the execution of the workflow. On
the other hand the Meta-Scheduling Service also supporddl@cation of resources or services in case it is required
to run a parallel distributed application which needs sa@versources with probably different characteristics at th
same time. The meta-scheduler may be steered directly beratlmough a command-line interface or by Grid
middleware components like the UNICORE client through i@A® interface (see Fig. 1). The resulting reservations
are implemented using the WS-Agreement specification [11].
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Figure 1: Architecture of the VIOLA Meta-Scheduling Envient

3 Intelligent Scheduling System M odel

The main objective of the Intelligent GRID Scheduling Sysi@SS) project [6] is to provide a middleware infrastruc-
ture allowing optimal positioning and scheduling of refd lpplications in a computational GRID. According to data
collected on the machines in the GRID, on the behaviour offh@ications, and on the performance requirements
demanded by the user, a well suited computational resosidetécted and allocated to execute the application. The
monitoring information collected during execution is puotta a database and reused for the next resource allocation
decision. In addition to providing scheduling informatjtime collected data allows to detect overloaded resouraks a
to pin-point inefficient applications that could be furtlogtimised.

3.1 Application types
The Intelligent Scheduling System model is based on theviafig application type system:

e Single Processor Applications These applications do not need any internode communicakioey may benefit
from backfilling strategies.

e Embarrassingly parallel applications This kind of applications requires a client-server concé&pt internode
communication network is not important. S8Home is an example of an embarrassingly parallel applinatio
for which data is sent over the Web.

¢ Point-to-point applications Point-to-point communications typically appear in finiteraent or finite volume
methods when a huge 3D domain is decomposed in sub-domalrenaexplicit time stepping method or an
iterative matrix solver is applied. If the number of proagssgrows with the problem size, and the size of a
sub-domain is fixed, the local problem size is fix. Hence, itived of applications can run well on a cluster with
a relatively slow and cost-effective communication netathiat scales with the number of processors.

e Multicast communications applications The parallel 3D FFT algorithm is a typical example of an aggtion
that is dominated by multicast operations. The internodernanication increases with the number of proces-
sors. Such an application needs a faster switched networkasuMyrinet, Quadrics, or Infiniband. If thousands
of processors are needed, special-purpose machines sReli&torm or BlueGene might be required.
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e Multi components applications Such applications consist of well-separable componeiaish ene being a
parallel job with little inter-component interaction. Thidferent components can be submitted to different
machines. An example is presented in [13].

The ISS concept is straight-forward: if a scheduler is ablditferentiate between the types of applications pre-
sented above, it can decide where to run an application. ff®ptrpose the so-calldd model has been developed
which is described in the following.

3.2 Thel modd

In thel” model described in [12], it is supposed that each comporfeheé@pplication is ideally parallelized, i.e. each
task of a component takes the same CPU and communicatios.time

The most important paramet€ris a measure of the ratio of the computation over the comnatinit times of
each component. An application component adapted panadiehine should havela> 1. Specifically,’ = 1 means
that communication and computation times are equal.

4 Resulting Grid Middleware Architecture

The overall architecture of the ISS integration into the arstheduling environment is depicted in Fig. 2 and the
different modules and services are presented in this sedfilzase note that it is assumed that the executables of the
application components already exist before execution.

4.1 Meta-Scheduling Service

The Meta-Scheduling Service (MSS) receives from the ResoBroker (RB) the resource requirements of an appli-
cation, namely the number of nodes (or a set of numbers ofsiodease of a distributed parallel application) and the
planned or estimated execution time. The MSS queries foathaability of known resources. MMS selects a suited
machine by optimizing an objective function composed byitmodel (described above) and the evaluation of costs.
The MSS tries to reserve the proposed resource(s) for theTjob result of the reservation is sent back to the RB to
check whether the final reservation matches the initialestjun case of a mismatch the reservation process will be
re-iterated.

4.2 Resource Broker

The Resource Broker receives requests from the UNICOREC®llects the necessary information to choose the
set of acceptable machines in the prologue phase.

4.3 DataWarehouse

We assume that information about application componeritdseat the Data Warehouse (DW) module. It is also
assumed that at least one executable of all the applicatimponents exists.
The DW is the database that keeps all the information retattte application components, to the resources, to the
services provided by the Vsites, to monitoring, and to offaameters potentially used to calculate the cost function
Specifically, the Data Warehouse module contains the fatigunformation:

1. Resources Application independent hardware quantities.

2. Services The services a machines provides (software, librariealiest, etc.).

3. Monitoring Application dependent hardware quantities collected aieh execution.

4. ApplicationsI" model quantities computed after each execution of an agifgit component.

5. Other Other information needed in the cost function such as coshefhour engineering time.
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Figure 2: Integration of ISS into the Meta-Scheduling eowiment.

4.4 System Information

The System Information (SI) module manages the DW, accahsegsite-specific UNICORE information service
periodically to update the static data in the DW, receiveda ffam the Monitoring Module (MM) and the MSS, and
interacts with the RB.

4.5 Monitoring Module

The Monitoring Module collects the application relevantadper Vsite during the runtime of an application. Specif-
ically, it collects dynamic resource information (like CRidage, network packets number and size, memory usage,
etc..), and sends it to the SI (It is an extension of the prteEsH).

5 Detailed Scheduling Scenario

Fig. 2 also shows the processes which are executed afterkdlovois submitted to the Grid system we have devel-
oped. The 18 steps are broken down into three different ghaselogue, scheduling/execution, and epilogue.

First phase: Prologue
(1) The user submits a workflow to the RB through the UNICORIg@!
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(2) The RB asks Sl for systems able to run each workflow compisrie terms of cost, amount of memory, parallel
paradigme, etc...)

(3) The Sl request the information from the DW
(4) The Sl sends the information back to the RB.
(5) According to the information obtained in (3) the RB s&daesources that might be used to run the job.

(6) The RB sends the list of resources together with furthfarmation (like number of nodes, expected run-time,
etc.) and a user certificate to the MSS.

(7) The MSS collects information across all pre-selectsdueces about availability (e.g. of the compute nodes or
of necessary licenses), user-related policies (like axighbts), and cost-related parameters.

(8) The MSS notifies the RB about the completion of the protogliase.
Second phase: Optimal Scheduling and execution

(9) The MSS can now choose among a number of acceptable neachiat could execute the workflow. To select
a well suited one, it uses consolidated information abocit &site, e.g. the number of nodes, the memory size
per nodeMy e, Or the cost for 1 CPU hour per node. The MSS then calculatesdst function to find a well
suited resource for the execution of the workflow. Knowing #imount of memory needed by the application,
M,, the MSS can determine the number of no#ed® > M, /My s;:.) and compute the total tiniE:

Total time T = Waiting Time T, + Computation Time T,
needed in the cost function. The MSS chooses the machine(s).

(10) The MSS contacts the local scheduling system(s) ofdleeted resource(s) and tries to obtain a reservation.
(11) If the reservation is confirmed the MSS creates an aggaersends it to the UNICORE Client via the RB.
(12) The MSS then forwards the decision made in (9) via thedBeé Sl which puts the data into the DW.

(13) The UNICORE Client creates the workflow based on theeagemt and submits it to the UNICORE Gateway.
Subsequent parts of the workflow are handled by the UNICOR#EeBef the submission Usite.

(14) During the workflow execution, application characts, such as CPU usage, network usage, number and size
of MPI and NFS messages, and the amount of memory used, ésetedlby the MM.

(15) The MM stores the information in a local database.
(16) The result of the computation is sent back to the UNICQHENt.
Third phase: Epilogue
(17) Once the workflow execution has finished, the MM sends statred during the computation to the SI.
(18) The SI computes the model parameters and writes the relevant data into the DW.

The user only has to submit the workflow, the subsequent stepsling the selection of well suited resource(s)
are transparent to him. Only if an application is executedtfe first time, the user has to give some basic information
since no application-specific data is present in the DW.

There is a number of uncertainties in the computation of 4 model. The parameters used in the cost function
are those that were measured in a previous execution of the application. However, this previous execution could
have used a different input pattern. Additionally, the mfiation queried from the different resources by the MSS is
based on data that has been provided by the applicationdarsttr) before the actual execution and may therefore be
rather imprecise. In future, by using ISS, such estimatemad be improved.

During the epilogue phase data is also collected for sizdigburpose. This data can provide information about
reasons for a resource’s utilisation or a user’s satigfactf this is bad for a certain HPC resource, for instancebse
of overfilled waiting queues, other machines of this typeutthbe purchased. If a resource is rarely used it either has
a special architecture or the cost charged using it is tol. Higthe latter case one option would be to adapt the price.
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6 Application Example: Submission of ORB5

Let us follow the data flow of the real life plasma physics &gilon ORBS5 that runs on parallel machines with over
1000 processors. ORBS5 is a particle in cell code. The 3D doisaiiscretised inV,;zNox N3 mesh cells in which
movep charged particles. These particles deposit their chargeeilocal cells. Maxwell’s equation for the electric
field is then solved with the charge density distribution asree term. The electric field accelerates the particles
during a short time and the process repeats with the new elangsity distribution. As a test casé, = N, = 128,
N3 = 64, p = 2’000’000, and the number of time stepstis= 100. These values form the ORB5 input file.

Two commodity clusters at EPFL form our test Grid, one havig single processor nodes interconnected with
a full Fast Ethernet switch (Pleiades), the other has 160pwoessor nodes interconnected with a Myrinet network
(Mizar).

The different steps in decision to which machine the ORBSieafion is submitted are:

(1) The ORBS5 execution script and input file are submittecheoRB through a UniCORE client.
(2) The RB requests information on ORB5 from the SI.

(3) The SI selects the information from the DW (memory neet@IGB,I" = 1.5 for Pleiades]" = 20 for Mizar,
1 hour engineering time cost Sfr. 200.-, 8 hours a day).

(4) Sl sends back to RB the information.

(5) RB selects Mizar and Pleiades.

(6) RB sends the information on ORB5 to MSS

(7) MSS collects machine information from Pleiades and Miza

e Pleiades. 132 nodes, 2 GB per node, SFr. 0.50 per node*h, 2400 h*nodknjity availability table (1
day for 64 nodes), user is authorised, executable ORB5. exist

e Mizar: 160 nodes, 4 GB per node, SFr. 2.50 per node*h, 32 nodes jdth diailability table (1 hour for
32 nodes), user is authorised, executable ORB5 exist.

(8) Prologue is finished.
(9) MSS computes the cost function values using the estareatecution time of 1 day:

e Pleiades. Total costs = Computing costs (24*64*0.5=SFr. 768.-) + Wagittime ((1+1)*8*200=SFr.
3200.-) = SFR 3968.-

e Mizar: Total costs = Computing costs (24*32*2.5=SFr.1920.-) +tigitime ((1+8)*200=SFr. 1800.-)
= SFR 3720.-

MSS decides to submit to Mizar.
(10) MSS requests the reservation of 32 nodes for 24 hounstine local scheduling system of Mizar.

(11) If the reservation is confirmed the MSS creates the ageag sends it to UC. Otherwise the broker is notified
and the selection process will start again.

(12) MSS sends the decision to use Mizar to Sl via the RB.

(13) UC submits the ORBS5 job to the UNICORE gateway.

(14) Once the job is executed on the 32 nodes the executiarigledllected by MM.
(15) MM sends execution data to local database.

(16) Results of job are sent to UC.

(17) MM sends the job execution data stored in the local desalo the SI.

(18) Sl compute$’ model parameters (e.f. = 18.7, M = 87 GB, Computing time=21h 32") and stores them into
DW.
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7 Conclusion

The ISS integration into the VIOLA Meta-Scheduling envimoent is part of the SwissGRID initiative and will be
realised in a co-operation between CoreGRID partners. glaisned to install the resulting Grid middleware by the
end of 2007 to guide job submission to all HPC machines in Zanlénd.
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