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Abstract

Minkowski sums are a very simple geometrical operation, with applications
in many different fields. In particular, Minkowski sums of polytopes have
shown to be of interest to both industry and the academic world. This thesis
presents a study of these sums, both on combinatorial properties and on
computational aspects.

In particular, we give an unexpected linear relation between the f-vectors
of a Minkowski sum and that of its summands, provided these are relatively in
general position. We further establish some bounds on the maximum number
of faces of Minkowski sums with relation to the summands, depending on the
dimension and the number of summands. We then study a particular family
of Minkowski sums, which consists in summing polytopes we call perfectly
centered with their own duals. We show that the face lattice of the result
can be completely deduced from that of the summands.

Finally, we present an algorithm for efficiently computing the vertices of
a Minkowski sum of polytopes. We show that the time complexity is linear
in terms of the output for fixed size of the input, and that the required
memory size is independent of the size of the output. We also review various
algorithms computing different faces of the sum, comparing their strong and
weak points.

Keywords: Minkowski sums, polytopes, zonotopes, f-vectors, perfectly
centered.





Résumé

Les sommes de Minkowski sont une opération géométrique très simple qui
a des applications dans de nombreux domaines. En particulier, les sommes
de Minkowski de polytopes se sont révélées intéressantes pour l’industrie
comme pour le monde académique. Cette thèse présente une étude de ces
sommes, aussi bien du point de vue des propriétés combinatoires que des
aspects calculatoires.

En particulier, nous montrons une relation linéaire inattendue entre le
f-vecteur d’une somme de Minkowski et ceux des sommants, si ceux-ci sont
relativement en position générale. Nous présentons aussi certaines bornes
sur le nombre maximal de faces d’une somme de Minkowski par rapport aux
sommants, selon la dimension et le nombre de sommants. Nous étudions en-
suite une famille particulière de sommes de Minkowski qui consiste à sommer
des polytopes que nous appelons parfaitement centrés avec leur propre dual.
Nous montrons que le treillis de faces du résultat peut être complètement
déduit de celui des sommants.

Finalement, nous présentons un algorithme pour calculer de manière ef-
ficace les sommets d’une somme de Minkowski de polytopes. La complexité
de son temps de calcul est linéaire en fonction de la taille du résultat, pour
une taille fixe du problème, et la taille mémoire nécessaire est indépendante
de la taille du résultat. Nous passons aussi en revue divers algorithmes calcu-
lant différentes faces de la somme, comparant leurs avantages et leurs points
faibles.

Keywords: Sommes de Minkowski, polytopes, zonotopes, f-vecteurs, par-
faitement centrés.
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Chapter 1

Overview
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But the principles ruling them are only known to God,
and those of men who are his friends.

Plato, The Timaeus.

1.1 Combinatorial geometry

The field of combinatorial geometry can roughly be divided into two families.
The first is of theoretical nature, and attempts to understand the combina-
torial properties of geometrical objects. Of particular interest are polytopes
which are a generalization of polygons and three dimensional polyhedra.

A well-known topic of combinatorial geometry, and probably the oldest
to be studied, is that of Platonic solids. Platonic solids are three-dimensional
polyhedra whose faces are identical regular polygons, and whose vertices are
contained in the same number of faces. There are five of them, which are
represented in Figure 1.1. Plato associated the “four most beautiful bodies”
(minus the dodecahedron) to the four elements, considering they were the
basis of all matter.

In the 16th century, Johannes Kepler attempted in his Myserium Cos-
mographicum to build a model of the solar system using the Platonic solids.
Though the attempt failed, the study led to Kepler’s laws.

Another famous result of combinatorial geometry is Euler’s formula, which
is a linear relation between the number of vertices, edges and faces of a poly-
hedron:

V − E + F = 2
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Figure 1.1: The five platonic solids.

That is, the Euler characteristic of a polyhedron is 2. Besides of being im-
portant in combinatorial geometry, this result also led to the creation of
topology, by looking for solids which had different Euler characteristics, such
as the torus, the Moebius strip and the Klein Bottle.

The second part of combinatorial geometry is of applied nature, and deals
with algorithms computing geometrical objects and solving geometrical prob-
lems. This branch, called computational geometry, only started its real ascent
with the development of computers. Since many general problems in compu-
tation, visualization, graphics, engineering and simulation can be solved by
geometrical models, the field of applications is very large.

1.2 Notions

We will present here the principal notions used in this thesis. More details
are given in Chapters 2 and 3. For a complete introduction, we refer to [21]
and [43].

Two concepts are fundamental to combinatorial geometry, radically op-
posed in definition, and yet dual to each other. The first concept is vectors,
and the second half-spaces.

A vector can be considered most simply as a point in a space. Since this
thesis mainly deals with Euclidean geometry, the space will usually be Rd.
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Vectors are then used to build larger sets. Two vectors v1 and v2 define a
unique line, whose equation is λ1v1 +λ2v2, with λ1 +λ2 = 1. If additionally,
we ask that λ1 and λ2 be non-negative, then the result is the line segment
linking v1 to v2. This is known as the convex hull of v1 and v2. Extending
the definition, we state that the convex hull of the vectors v1, . . . ,vr is defined
as λ1v1 + · · · + λrvr, with λ1 + · · · + λr = 1, and λi all non-negative. The
convex hull of a finite number of points is called a polytope. We can consider
this as a constructive definition, since each point of the result can be written
a weighted sums of vectors.

By contrast, half-spaces are used for restrictive definitions of geometrical
bodies. A pair (a, β), of one vector in Rd and one scalar in R, defines the
inequality 〈a,x〉 ≤ β on Rd. A half-space is the subset of Rd consistent
with an inequality: {x ∈ Rd | 〈a,x〉 ≤ β}, with a �= 0. By combining
half-spaces, we define the subset of Rd consistent with all inequalities, that
is the intersection of the half-spaces. The intersection of a finite number of
half-spaces is called a polyhedron.

An important theorem of combinatorial geometry, the Minkowski-Weyl
theorem, states that bounded polyhedra and polytopes are the same objects.

Let P be a polytope. We say (a, β) is a valid inequality for P if the
inequality 〈a,x〉 ≤ β holds for any point x ∈ P . The set of points x of
P so that 〈a,x〉 = β is then called a face of P . The empty set ∅ and the
polytope P itself are faces, for the inequalities (0, 1) and (0, 0) which are
always valid. For this reason, they are called trivial faces. All faces of a
polytope are polytopes themselves.

Faces of polytopes can be partially ordered by inclusion, that is, some
faces are contained in the others. The partially ordered set of faces of a
polytope is called its face lattice. A chain is a subset of a face lattice which
is totally ordered, that is, for any two distinct faces F and G in the set, either
F ⊂ G or G ⊂ F . The length of a chain is its cardinality minus one.

For any face F of a polytope, we define its rank as the length of the
largest chain made of faces contained in F . For instance, the rank of the
empty set, which only contains itself, is zero. The dimension of a face is
equal to its rank minus one. This is consistent with the usual meaning of
dimension. The faces of dimension 0 of a polytope, i.e. faces containing only
one vector, are called its vertices, and the faces of dimension 1 are called
edges. Again, these definitions are consistent with the usual meanings for
geometrical bodies in dimension 2 and 3. Additionally, the faces which are
only contained in themselves and the polytope are called facets.

Any polytope is the convex hull of its vertices. Conversely, any poly-
tope is the intersection of the half-spaces defined by the valid inequalities
corresponding to its facets.
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The faces of polytopes are a fundamental subject of combinatorial geom-
etry. Vectors in a same face share the same properties. Therefore, algorithms
of computational geometry usually do not need to distinguish them. Thus,
polytopes have a natural discrete decomposition into a finite number of faces.
This allows us to model continuous geometric objects with discrete objects
which are easier to use.

Polytopes also have a combinatorial structure. For any polytope P in
Rd, let fk(P ) denote the number of k-dimensional faces of P . The series
(f−1(P ), (f0(P ), (f1(P ), . . .) is called the f-vector of P . Then by Euler’s for-
mula,

d∑
i=−1

(−1)kfk(P ) = 0.

As a combinatorial structure, the face lattice of polytopes is also a subject
of considerable interest. Many tools of both topology and combinatorics, such
as CW-complexes and oriented matroids, can be said to have evolved from
it.

The Minkowski sum of two sets of vectors S1 and S2 is the set of vectors
which can be written as the sum of one vector of S1 and one of S2: S1+S2 :=
{x1 + x2 | x1 ∈ S1, x2 ∈ S2}. This definition can easily be generalized to
more than two summands. It is easy to see that the Minkowski sum is
commutative and associative.

The Minkowski sum of polytopes is also a polytope, since it is the convex
hull of the Minkowski sum of the vertices of the summands.

For each face F of a Minkowski sum of polytopes P1 + · · · + Pr, there
is a unique decomposition of F into faces of the summands, that is, a list
F1 ∈ P1, . . . , Fr ∈ Pr so that F1 + · · · + Fr = F . If dim(F ) is the dimension
of the face F , then we have that dim(F ) ≤ dim(F1) + · · · + dim(Fr), and
dim(F ) ≥ dim(Fi) for all i. Consequently vertices of a Minkowski sum are
decomposed into sum of vertices of the summands.

Also, if F and G are both faces of a Minkowski sum of polytopes P1 +
· · ·+Pr, and their decompositions are F1, . . . , Fr and G1, . . . , Gr, then F ⊆ G
if and only if Fi ⊆ Gi for all i.

Thus, Minkowski sums of polytopes are of interest not only as a geometric
operation, but also as a combinatorial operation on the face lattices of the
polytopes.
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1.3 Goals

The first goal of this thesis is to better understand the combinatorial prop-
erties of Minkowski sums of polytopes.

The number of faces of the result is of particular interest. The only exact
formulas which have been found up to now are for zonotopes, which are the
Minkowski sums of line segments ([42]). Our goal is to find such formulas for
new families of Minkowski sums.

If exact equations cannot be found, it is interesting to have bounds on
the number of faces of Minkowski sums in terms of that of the summands.
The combinatorial interest aside, this helps us find complexity results for
algorithms. The only bounds currently known have been published in [18].
They prove that for any k, the number of k-faces of a Minkowski sum is
smaller than that of the zonotope which is the sum of all the non-parallel
edges of the summands. Our goal is to find other bounds on the f-vector
of Minkowski sums in terms of that of the summands, depending on the
dimension and the number of summands.

The second goal of this thesis is to investigate and develop algorithms to
compute Minkowski sums of polytopes.

As most applications of Minkowski sums up to now have been in low
dimension, little is known about the general complexity of algorithms enu-
merating their faces. A problem of such algorithms is that the output can
easily be exponential. For instance, the sum of d orthogonal line segments in
Rd is the hypercube, which has 2d vertices. Therefore, their efficiency should
be evaluated not only in terms of the input, but also of the output.

A further problem is that the complexity of finding the vertices of a
polytope from its facets and inversely is an open problem. All currently
known algorithms can take exponential time and memory size, even if both
the input and the output is small.

Consequently, barring a significant advance in computational geometry,
any algorithm computing the facets of a Minkowski sum from the vertices of
the summands, or the vertices of the sum from the facets of the summands,
will have such an exponential complexity.

An algorithm has been proposed by Fukuda for computing the vertices
of the sum for those of the summands. It is our goal to implement this
algorithm and test its efficiency.
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1.4 Contents and results

Part I of the thesis is an introduction to the subject. Part II contains a
theoretical study on faces of Minkowski sums. Part III part contains all
studies about algorithms computing Minkowski sums of polytopes in various
forms. Part IV is the conclusion of the thesis.

1.4.1 Part I – Introduction

Chapter 1 introduces and resumes the thesis. Section 1.1 is an introduction
to combinatorial geometry. In Section 1.2, we present the necessary terms.
Section 1.3 introduces the goals of this thesis. This section, Section 1.4
resumes each part of the thesis. Section 1.5 presents the history of Minkowski
sums.

In Chapter 2, we give an introduction to polytopes, and all relevant re-
lated notions. Section 2.1 introduces sets generated by sums of vectors, and
hulls. Section 2.2 presents sets defined restrictively by half-spaces, and ex-
plains their identities with generated sets. Section 2.3 defines in detail faces
and their properties. Section 2.4 introduces the important notion of duality.
Section 2.5 presents particular families of polytopes, such as hypercubes and
simplices.

Chapter 3 presents Minkowski sums. Section 3.1 shows their general prop-
erties. Section 3.2 introduces particular geometric constructions in which
Minkowski sums occur. Section 3.3 presents the simplest of Minkowski sums,
which are zonotopes, and the formulas to compute the number of their faces.

1.4.2 Part II – Face study

In Chapter 4, we present different bounds on the number of faces of Minkowski
sums of polytopes. In Section 4.1, we show a trivial bound on the number of
vertices of the sum, which is the product of the number of vertices of the sum-
mands. We give the exact conditions on the dimension and the summands
for this trivial bound to be attainable. Namely, for the sum of r polytopes in
dimension d, the trivial bound can be attained if and only if r < d, or r = d
and all polytopes are line segments.

In Section 4.2, we give a construction showing how the trivial bound
presented in preceding section can be attained. Furthermore, we show two
specific constructions for polytopes in dimension three, maximizing respec-
tively minimizing the number of facets for a fixed number of vertices.

In Section 4.3, we give a general bound on the number of k-dimensional
faces of a Minkowski sum of r polytopes in dimension d, by extending the
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trivial bound presented in Section 4.2. Furthermore, we prove that this
bound is tight if 2(r + k) ≤ d, by showing that it is attained by polytopes
which have all their vertices on the moment curve: λ �→ (λ, λ2, . . . , λd).

In Chapter 5, we present a special family of Minkowski sums of polytopes.
For any face F of a sum of polytopes and its decomposition F1, . . . , Fr, we
say that F has an exact decomposition if dim(F ) = dim(F1)+ · · ·+dim(Fr).
If all facets of a Minkowski sum have exact decompositions, we say that the
summands are relatively in general position.

In Section 5.1, we present two important results about Minkowski sums
of polytopes which are relatively in general position. First, we show that
the maximum number of faces in a Minkowski sum is always attained by
summands relatively in general position. Then, we show that the f-vector of
the sum and that of summands are linked by a linear relation. Namely, if
P = P1 + · · · + Pr is a Minkowski sum of d-dimensional polytopes relatively
in general position, then

d−1∑
k=0

(−1)kk (fk(P ) − (fk(P1) + · · ·+ fk(Pr))) = 0.

The relation breaks down if the summands are of lower dimension.
In Section 5.2, we use this linear relation with the constructions of Sec-

tion 4.2 to show tight maximal bounds on the number of vertices, edges and
facets of the Minkowski sum of two polytopes in dimension three, for fixed
number of vertices or facets of the summands.

In Chapter 6, we present another special family of Minkowski sums. Let
P be a d-dimensional polytope containing the vector 0 in its interior. Its
dual polytope P ∗ is the set of vectors a so that (a, 1) is a valid inequality for
P . The dual polytope P ∗ has a face lattice which is anti-isomorphic to that
of P . That is, for any nonempty face F of P , and any vector x in the relative
interior of F , the inequality (x, 1) is valid for P ∗ and defines the associated
dual face F D of P ∗, so that dim(F D) = d − 1 − dim(F ).

In Section 6.1, we present a result of Nesterov proving that the Minkowski
sum of a polytope P with its dual polytope is more spherical than P . For
this reason, we call this operation Nesterov rounding.

In Section 6.2, we define the following notion. Let P be a polytope. We
say that P is perfectly centered if for any nonempty face F of P , there is
a vector mF in the relative interior of F so that (mF, 〈mF,mF〉) is a valid
inequality defining the face F .

We show that the Nesterov rounding of a perfectly centered polytope P
can be completely deduced from the face lattice of P . That is, the faces of
P + P ∗ can be characterized as the sum G + F D, for any nonempty faces G
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and F of P so that G ⊆ F . Also, for any faces G1 + F D
1 and G2 + F D

2 of the
Nesterov rounding, we have that G1 +F D

1 ⊆ G2 +F D
2 if and only if G1 ⊆ G2

and F2 ⊆ F1. Finally, we prove that a perfectly centered polytope and its
dual are always relatively in general position, and that the Nesterov rounding
of a perfectly centered polytope is also a perfectly centered polytope.

In Section 6.3, we show that successive Nesterov roundings of a perfectly
centered polytope in dimension three have a facet to vertices ratio which
tends towards one.

The fatness of a polytope in dimension four is the number of faces of
dimension 1 and 2 divided by the number of faces of dimension 0 and 3.
In Section 6.4, we show that successive Nesterov roundings of a perfectly
centered polytope in dimension four have a fatness which tends towards
three.

In Section 6.5, we compute the f-vectors of the Nesterov roundings of
perfectly centered hypercubes and simplices.

1.4.3 Part III – Algorithms

In Chapter 7, we present an algorithm of Fukuda to compute the vertices of
a Minkowski sum from the vertices of its summands. Section 7.1 states the
properties of edges and vertices of Minkowski sums which are used by the
algorithm.

Section 7.2 presents the reverse search method, on which the algorithm is
based. The reverse search method consists in enumerating the vertices of a
graph by covering them with an arborescence, which is explored by a depth-
first search. It requires two oracles, the first giving the list of adjacent vertices
in the graph, the second giving the parent of a vertex in the arborescence.
If properly implemented, a reverse search method has a number of steps
which is linear in the size of the output, and the required memory size is
independent of the size of the output.

Section 7.3 then shows how we can apply the reverse search method to
Minkowski sums of polytopes, and defines the two oracles with the help of
linear programming.

In Section 7.4, we present an implementation we did of the algorithm,
and we study its efficiency when used to solve different problems.

In Chapter 8, we study algorithms to compute the facets of Minkowski
sums. In particular, we explain why the problem is much harder than com-
puting vertices. In Section 8.1, we present the difficulty of computing the
facets of a polytope from its vertices, taking as example the double descrip-
tion method and the beneath and beyond method.
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In Section 8.2, we present an algorithm proposed in [22], which is efficient
for computing the facets of a Minkowski sum in dimension three, but difficult
to generalize to more dimensions.

In Section 8.3, we present a very fast algorithm developed and imple-
mented by Peter Huggins ([23]) for a special case of Minkowski sums, com-
puting both facets and vertices. It is actually an implementation of the
beneath and beyond method, which uses a black box to find the vertices as
it needs them.

1.4.4 Part IV – Conclusion

In Chapter 9, we present possible future developments of the thesis, on the
subject of bounds and combinatorial aspects as well as algorithms. Though
some progress was made during the course of this PhD, it is with some
pleasure that we can assert the combinatorial study of Minkowski sums has
barely begun.

1.5 Historical review

Minkowski sums are a very simple and intuitive operation. Though the Ger-
man mathematician Hermann Minkowski was not the first one to study them,
they were named after him due to the extensive research he did on them. A
first result about Minkowski sums was the Brunn-Minkowski Theorem, which
was presented by Brunn for his inaugural dissertation in Münich in 1887 ([7]),
and later completed and refined by Minkowski ([32]).

A formal definition of the sums can be found in Volumen und Oberfläche
[31], albeit in a rather different manner from today’s definitions. The arti-
cle examines in particular the so-called mixed volumes of the sums. Mixed
volumes have a multitude of theoretical applications in conjunction with
Minkowski inequalities.

This approach of Minkowski sums seems to have been the only one used
for almost a century. No studies appear to have been made on their combi-
natorial properties. A tentative explanation may be found in the preface of
Grünbaum’s “Convex Polytopes” ([20]):

About the turn of the century, however, a steep decline in the
interest in convex polytopes was produced by two causes working
in the same direction. Efforts at enumerating the different com-
binatorial types of polytopes, started by Euler and pursued with
much patience in ingenuity during the second half of the XIXth
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century, failed to produce any significant results even in the three-
dimensional case; this lead to a widespread feeling that the inter-
esting problems concerning polytopes are hopelessly hard. Simul-
taneously, the ascendance of Klein’s “Erlanger Program” and the
spread of its normative influence tended to cast the preoccupation
with the combinatorial theory of convex polytopes into a rather
disreputable rôle-and that at a time when such “legitimate” fields
as algebraic geometry and in particular topology started their spec-
tacular development.

It is understandable that the scientific community lost interest in a field which
brought comparatively little theoretical results. It is because of applications
that interest in combinatorial geometry was rekindled, in particular via linear
programming.

Linear programming consists in optimizing a linear function on a poly-
hedron. Though the initial studies of the geometrical problem go back as
far as Fourier, it is only during Second World War that linear programming
was developed and applied, as a means to enhance warfare and logistics. Be-
fore computers, little point was seen in studying such problems, since the
computational work seemed likely to outweigh the benefits of the solution.

However, in 1947, Dantzig proposed independently the simplex method
which solves linear programs by following a path to the optimal vertex along
the edges of the polyhedron, as had been suggested by Fourier. Though the
method can be inefficient in worst cases, it turned out to work well for most
instances encountered, and linear programming was soon to be applied to a
wide range of problems in management and engineering. If only for reasons
of efficiency, the combinatorial properties of polyhedra were then the object
of study again.

With the rise of computers, many problems of operations research, control
theory and computer graphics came to be formulated and solved as problems
of combinatorial geometry. The resulting field became known as computa-
tional geometry.

It is interesting to note that even then, little seems to have been done on
the particular subject of Minkowski sums of polytopes.

It is in 1979 that a seminal paper of Lozano-Pérez and Wesley ([29])
brought Minkowski sums to attention in a completely different field, showing
their usefulness in the planning of collision-free paths. These sums have since
then been studied extensively in related subjects, such as computer-aided
design ([10]) and robot motion planning ([26]).

These works, motivated by industrial applications, usually concentrated
on the geometric property of Minkowski sums, i.e. the growing of shapes
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by spherical balls first, then by polytopes. They did not address the com-
binatorial properties, especially since the applications were mostly in low
dimensions. However, it was the start of the search for algorithms comput-
ing Minkowski sums of polytopes. These algorithms were for the largest part
limited to dimension two or three ([9],[17],[22], [24]).

The first (and almost only) study of the complexity of Minkowski sums
of polytopes was done in [18]. The paper also introduces an application of
Minkowski sums in algebra, namely the computation of Gröbner bases.

In 2004, Fukuda published an algorithm for summing V-polytopes of any
dimension ([13]). The motivation came from an industrial application [37].
It was the starting point of this PhD.

Hermann Minkowski

Hermann Minkowski is born in Lithuania in 1864, to a German family.
He is the younger brother of Oskar Minkowski, who will later become
a renowned pathologist. When Hermann is eight, his family returns to
Germany and settles in Königsberg.
He does most of his studies there, occasionally spending a semester at
the University of Berlin. He becomes friends with Hilbert, who is also a
student in Königsberg. In 1883, he is awarded a prize from the French
Academy of Sciences for solving the problem of the number of represen-
tations of an integer as the sum of five squares. In 1885, he submits his
PhD about quadratic forms.
Minkowski starts teaching in 1887 at the University of Bonn, where he is
named professor in 1892. He then teaches at Königsberg for two years,
before receiving in 1894 a position at the Eidgenössisches Polytechnikum
in Zürich, where he has Albert Einstein as a student in his lectures.
Minkowski marries in 1897, and accepts in 1902 a chair at the University
of Göttingen, which is created for him at the instigation of Hilbert. There,
he supervises the PhD of Carathéodory.
In 1907, Minkowski invents a way of coupling time and space in a non-
Euclidean manner which explains in an elegant way the work of Einstein
and Lorentz. This “space-time continuum” will to be the foundation of
all mathematical works about relativity.
Minkowski dies suddenly from appendicitis at age 44.





Chapter 2

An introduction to polytopes

The time has come, the Walrus said,
To talk of many things:

Of shoes–and ships–and sealing-wax–
Of cabbages–and kings–

And why the sea is boiling hot–
And whether pigs have wings.

Lewis Caroll, Through the Looking-Glass.

In this chapter, we define the basic terms used throughout this thesis. Though
we define as many terms as possible for the sake of completeness, we assume
the reader has some understanding of vector spaces on real numbers.

Notations

The field of real numbers is denoted by R. Accordingly, vector spaces
defined on R are denoted by R1, R2, Rd, where the number in exponent
is an integer representing the dimension of the space.
Vectors are denoted in boldface type, such as x, y, z, x0, x1. The zero
vector is denoted by 0.
Matrices are denoted by capital letters, such as A, B, M0, M1.
Scalars are represented in italics. Scalars taking noninteger values are
denoted by Greek letters, such as α, β, λ, λ0, λ1, λ2. Integers are rep-
resented by Latin letters, such as a, b, c0. To simplify reading, some
of these keep the same signification for most of the thesis. The letter d
always represents the full dimension of the vector space, k represents the
dimension of objects in the vector space, and the letter r represents the
number of objects in a finite set.
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For the reader’s convenience, we introduce the main concepts without
proof, except when the proof itself offers insight into the subject. We advise
those wishing to study the topics in more details to refer to [21] or [43].

2.1 Generated sets

We introduce here different continuous combination of vectors which are
essential in the geometry of polytopes.

Definition 2.1.1 (Linear, Affine combination) Let x1, . . . ,xn be vectors
in a real vector space, and let λ1, . . . , λn be scalars in R. Then λ1x1 + · · ·+
λnxn is called a linear combination of the vectors x1, . . . ,xn. If, in addition,
λ1 + · · · + λn = 1, then it is an affine combination of x1, . . . ,xn.

Definition 2.1.2 (Conic, Convex combination) Let x1, . . . ,xn be vec-
tors in a real vector space, and let λ1, . . . , λn be non-negative scalars in R.
Then λ1x1+· · ·+λnxn is called a conic combination of the vectors x1, . . . ,xn.
If, in addition, λ1+· · ·+λn = 1, then it is a convex combination of x1, . . . ,xn.

Definition 2.1.3 (Independence) Vectors x1, . . . ,xn are called indepen-
dent or linearly independent if the representation of any of their linear com-
binations is unique.

λ1x1 + · · · + λnxn = μ1x1 + · · · + μnxn ⇔ λi = μi, ∀i.

Similarly, they are called affinely independent if the representation of any of
their affine combinations is unique.

Definition 2.1.4 (Dimension) The dimension of a set S of vectors, de-
noted by dim(S) is equal to the cardinality of the largest affinely independent
subset of S minus one.

Definition 2.1.5 (Hulls) The linear hull, respectively affine hull, conic
hull, and convex hull of a set S of vectors is the set of vectors which can
be written as linear, respectively affine, conic, and convex combinations of
elements of S.

Hulls of a set are necessarily larger than the set itself. Here is the opposite
concept:
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Definition 2.1.6 (Generated) We say a vector set S is generated by the
vector set T if S is the hull of T .

There is an essential distinction to make between these different types of
hulls. Inside a space of finite dimension (such as Rd, for instance), linear and
affine hulls can always be generated by a finite number of vectors. This is
not always the case for conic and convex hulls. Therefore, for the latter, we
sometimes say a set is finitely generated, which means it can be generated by
a finite number of vectors.

We now define for the first time the main concept of our work, the
Minkowski sum. Though the concept is needed in following paragraphs,
it is defined and studied in detail later in chapter 3.

Definition 2.1.7 (Minkowski sum) Let S1 and S2 be two sets of vectors.
Their Minkowski sum is defined as the set of vectors which can be written
as the sum of a vector in S1 and a vector in S2. Namely:

S1 + S2 := {x1 + x2 | x1 ∈ S1, x2 ∈ S2}

Definition 2.1.8 (Linear subspace) A linear subspace is a nonempty set
which is equal to its linear hull.

The smallest possible linear subspace only contains 0.

Definition 2.1.9 (Basis) An independent set is called a basis of the linear
subspace it generates.

The usual representation of a vector in Rd is the list of coefficients used
for writing the vector as the linear combination of a chosen basis of Rd, which
is called the canonical basis.

If the canonical basis of Rd is denoted by the vectors e1, . . . , ed, then a
vector x ∈ Rd such that x = λ1e1 + · · ·+ λded is represented as⎛

⎜⎝
λ1
...

λd

⎞
⎟⎠ := λ1e1 + · · ·+ λded

Definition 2.1.10 (Affine space) An affine space is a possibly empty set
which is equal to its affine hull.

Linear spaces are equivalent to affine spaces containing 0.



28 An introduction to polytopes

Definition 2.1.11 (Closed (convex) cone) A closed cone is a nonempty
set which is equal to its conic hull.

Again, the smallest possible closed cone only contains the zero vector (0).
The literature often defines these objects simply as cones or convex cones.
However, we later make a extensive usage of cones which are not closed, and
which should not be confused with those we define here.

Definition 2.1.12 (Convex set) A convex set is a possibly empty set which
is equal to its convex hull.

All closed cones are convex.
It is easy to see from these definitions that the linear hull of a set S is

the smallest linear subspace containing S, and equivalently for other hulls.

2.2 Polyhedral sets

While the definitions in the preceding section can be said to be constructive,
this section presents definitions which are on the contrary restrictive. The
duality principle ruling the relations between these two types of definitions
is considered by many as one of the most fascinating concepts of geometry,
if not mathematics. The subject is presented in details in Section 2.4.

The main element of restrictive definitions is the following:

Definition 2.2.1 (Half-space) Let a �= 0 be a vector of Rd and β a scalar.
The pair (a; β) defines a linear inequality in Rd:

〈a,x〉 ≤ β

The half-space of Rd defined by a linear inequality is the set of vectors in
Rd for which the inequality holds.

By combining a number of such restrictions, we get:

Definition 2.2.2 (Polyhedron) A polyhedron (plur: polyhedra), or poly-
hedral set in Rd is the intersection of a finite number of half-spaces.

Rather than enumerating a list of n pairs (ai; βi) defining single inequal-
ities, it is usual to define a n× d matrix A which has the different ai as its n
line vectors, and a vector b ∈ Rn with the βi, so that it is possible to write
the polyhedron as:

{x | Ax ≤ b}
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Though the meaning of polyhedra in everyday speech is usually three-
dimensional bounded bodies, the definition we have of polyhedra allows for
bodies of any dimension, which may well be unbounded.

For instance, points, straight lines, the empty set and Rd are all polyhedra
of Rd.

Theorem 2.2.3 (Minkowski-Weyl) Any polyhedron is the Minkowski sum
of a finitely generated closed cone and a finitely generated convex set, and
conversely. That is, P is a polyhedron if and only if there are vectors
v1, . . . ,vn, r1, . . . , rm of Rd such that:

P = {λ1v1 + . . . + λnvn + μ1r1 + . . . + μmrm | λ1 + . . . + λn = 1, λi, μi ≥ 0}
As we can see, polyhedra can be described either as a set of inequalities
or as a set of generators. These two representations are commonly called
H-representation (for half-space) and V-representation (for vertex). If the
representation is minimal, the vectors vi and ri in the V-representation pre-
sented here are called vertices and rays.

There are two natural restrictions of this theorem, by excluding either of
the conical and convex combinations.

Theorem 2.2.4 (Minkowski-Weyl for cones) Any polyhedral cone is a
finitely generated closed cone, and conversely. That is, P is a polyhedral
cone if and only if there are vectors r1, . . . , rm of Rd such that:

P = {μ1r1 + . . . + μmrm | μi ≥ 0}
Let us now define our main object of study:

Definition 2.2.5 (Polytope) A polytope is a bounded polyhedron.

We should note that the word polytope is sometimes also used in the
literature to describe non-convex objects, in which case the words convex
polytope are used instead for this definition. Nevertheless, this thesis uses
consistently the word polytope for convex objects.

We say a polytope P in Rd is full-dimensional if its dimension is d. Unless
specifically stated otherwise, we always assume the polytopes we are dealing
with are full-dimensional.

Theorem 2.2.6 (Minkowski-Weyl for polytopes) A polytope is a finitely
generated convex set, and conversely. That is, P is a polytope if and only if
there are vectors v1, . . . ,vn of Rd such that:

P = {λ1v1 + . . . + λnvn | λ1 + . . . + λn = 1, λi ≥ 0}
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Depending on the situation, it is often more efficient to consider a poly-
tope either as a convex combination or as an intersection of half-spaces.
When working on theoretical properties of polytopes, the previous theorem
tells us that we can jump from one representation to the other as it fits our
needs.

However, the actual conversion between the H-representation and the V-
representation of polytopes, and more generally polyhedra, is a nontrivial
problem. The known methods can take an exponential number of steps com-
pared to the complexity of the representation. These methods are described
later in Chapter 8.1.

2.3 Faces

Now has come the time to define a list of terms which are commonly used to
describe polytopes.

Definition 2.3.1 (Valid inequality) Let S be a set in Rd. A valid inequal-
ity for S is an inequality which holds for all vectors in S. That is, the pair
(a; β) is a valid inequality of S if and only if

〈a,x〉 ≤ β, ∀x ∈ S.

Definition 2.3.2 (Face) For any valid inequality of a polytope, the subset
of the polytope of vectors which are tight for the inequality is called a face
of the polytope. That is, the set F is a face of the polytope P if and only if

F = {x ∈ P | 〈a,x〉 = β} ,

for some valid inequality (a; β) of P .

The set of faces of a polytope P is denoted by F(P )
Two important faces are included in this definition, the empty set ∅ and

the polytope itself, which are defined by the always valid inequalities (0; 1)
and (0; 0). For this reason, these two faces are called trivial faces.

The faces of dimension 0, 1, d−2 and d−1 are respectively called vertices,
edges, ridges and facets. The set of vertices of a polytope P is denoted by
V(P ).

Theorem 2.3.3 A polytope is the convex hull of its vertices.

Proof. Let P be a polytope in Rd. We know P can be written as the
convex hull of a finite set of points S. Let us suppose that S is minimal.
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Let v ∈ S \ V(P ). Since S is minimal, v /∈ conv(V(P )). So there is a
valid inequality (a, β) for conv(V(P )) so that 〈a,v〉 > β. This means that
a defines a face F of P with F ⊂ P \ conv(V(P )), with V(F ) ⊆ V(P ), a
contradiction.

Theorem 2.3.4 Any face of a polytope is also a polytope.

Proof. Let P be a polytope in H-representation, and F a face of P defined
by the valid inequality (a, β). It is enough to add the inequalities (a, β) and
(−a,−β) to P to obtain an H-representation of F .

Definition 2.3.5 (Face lattice) Let P be a polytope. The face lattice of
the polytope L(P ) is the set of faces F(P ) partially ordered by inclusion.
That is, for F and G in L(P ), we have F ≤ G if and only if F ⊂ G.

When the term face lattice is used, it generally implies we are considering
the faces as abstract elements ordered by inclusion, leaving aside geometrical
notions.

Definition 2.3.6 (Chain) If L(P ) is the face lattice of a polytope, a chain
S is a subset of L(P ) which is totally ordered, that is, for any distinct F, G ∈
S, we have either F ⊂ G or G ⊂ F . The length of a chain is its cardinality
minus one.

If {F1, . . . , Fn} is a chain, there is an ordering i1, . . . , in such that Fi1 ⊂ · · · ⊂
Fin .

Theorem 2.3.7 (Face lattices) Let P be a polytope, and L(P ) its face
lattice. Then we have the following:

1. The face lattice L(P ) has a unique minimal element, which is the empty
set ∅, and a unique maximal element, which is P .

2. The face lattice L(P ) is graded, which means that all maximal chains
of L(P ) have the same length.

3. Let F and G be two faces in L(P ). Then there is a unique maximal face
F ∧G they both contain, and a unique minimal face F ∨ G containing
them.

Definition 2.3.8 (Rank) Let P be a polytope, and F a face of P . The
rank of F in the face lattice L(P ) is the length of the longest chain of L(P )
which has ∅ and F as minimal and maximal elements respectively.
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The following chart resumes some of these definitions.

Dimension Rank Name
d d + 1 polytope

d − 1 d facets
d − 2 d − 1 ridges
. . . . . . . . .
1 2 edges
0 1 vertices
−1 0 empty set

While defining the dimension of the empty set ∅ as minus one might seem
strange, it not only follows the logic of Definition 2.1.4, it will also be very
useful for stating some relations later.

A recurrent question in computational geometry is the study of the com-
plexity of polytopes. How many vertices do they have? How many facets?
What about other faces? Although the question seems rather straightfor-
ward, it is often difficult to find bounds on these numbers for particular
families of polytopes.

Definition 2.3.9 (F-vector) Let P be a polytope. we denote by fk(P ) the
number of faces of dimension k of P . The series (f−1(P ), f0(P ), f1(P ), . . .)
is called the f-vector of P

By definition, we have f−1(P ) = fdim(P )(P ) = 1. We also consider sometimes
that fk(P ) = 0 for k < −1 and k > dim(P ).

The most basic fact about f-vectors of polytopes is the following:

Theorem 2.3.10 (Euler) Let P be a d-dimensional convex polytope. Then:

d∑
k=−1

(−1)kfk(P ) = 0.

Equivalently, we can write this formula the following ways:

d∑
k=0

(−1)kfk(P ) = 1,

d−1∑
k=0

(−1)kfk(P ) = 1 − (−1)d.

In low dimensions, this means that 1-dimensional polytopes have two ver-
tices, and a 2-dimensional polytopes have as many vertices as edges. For
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3-dimensional polytopes, it means that if V is the number of vertices of a
polytope, E its number of edges and F its number of facets, then

V − E + F = 2,

which is the form it is usually taught in high school.
We show now that the Euler formula also applies to certain subsets of

face lattices.

Definition 2.3.11 (Interval) Let P be a polytope in Rd, and F and G two
faces of P so that F ⊆ G. The set of faces of P containing F and contained
in G is called an interval :

[F, G]P := {H ∈ F(P ) | F ⊆ H ⊆ G}.

Intervals inherit a partial order from the lattice they are part of.
Let us now state a theorem about intervals which is proved in the next

section, after the necessary definitions.

Theorem 2.3.12 (Intervals) Let P be a polytope in Rd, and F and G two
faces of P so that F ⊂ G. Then the Euler formula applies to the interval
[F, G]P . That is,

dim(G)∑
k=dim(F )

(−1)kfk([F, G]P ) = 0.

As we can see, the face lattices of polytopes are very structured. Let us now
present some more of their properties.

Definition 2.3.13 (Flag f-vector) Let P be a polytope in Rd. We de-
fine the flag f-vector of P as follows: For any S = {i1, . . . , in} subset of
{−1, 0, 1, . . . , d}, fS(P ) is defined as the number of distinct chains {F1, . . . , Fn}
of faces of P , with dim(Fk) = ik for all k.

For instance, the value f{0,1}(P ) is the number of pairs of a vertex and an edge
of the polytope P , with the edge containing the vertex. It is easy to see that
the f-vector of a polytope is contained in its flag f-vector: fi(P ) = f{i}(P ). To
simplify, brackets and commas are often omitted from the notation: f023 :=
f{0,2,3}.

Flag f-vectors partially encode the information of the face lattice of a
polytope. They also contain an equivalent of Euler’s formula, called Bayer-
Billera relations or sometimes extended Dehn-Sommerville relations:
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Theorem 2.3.14 ([2],[27]) Let P be polytope of dimension d. Let S be a
subset of {−1, . . . , d}, and i and k be in S so that i < k, and S contains no
j so that i < j < k. Then

k∑
j=i

(−1)jfS∪j(P ) = 0

Proof. These relations are direct consequences of the fact that Euler’s
formula applies to all intervals of a polytope. Thus, the proof consists in
showing that they are essentially a sum of multiples of Euler’s Formula.

Let P be a polytope of dimension d. Let S be a subset of {−1, . . . , d},
and i and k be in S so that i < k, and S contains no j so that i < j < k. Let
j be so that i ≤ j ≤ k. The value fS∪j(P ) represents a number of choices of
chains which we now decompose into three choices:

1. Choice of two faces Fi and Fk so that Fi ⊂ Fk, dim(Fi) = i and
dim(Fk) = k,

2. Choice of faces of dimension lower than i and higher than k,

3. Choice of a face Fj so that Fi ⊆ Fj ⊆ Fk, and dim(Fj) = j.

Let us now rewrite the sum to emphasize these three choices.

k∑
j=i

(−1)jfS∪j(P ) =

∑
Fi⊂Fk

(
fS∩[−1,i]([∅, Fi]P ) · fS∩[k,d]([Fk, P ]P )

(
k∑

j=i

(−1)jfj([Fi, Fk]P )

))

The sum between parentheses corresponds to Euler’s formula applied to an
interval, so it is equal to zero, and the whole equation is equal to zero.

It has been proved by Bayer and Billera that every linear relation holding for
the flag f-vector of all polytopes can be derived from these equalities ([3]).

2.4 Duality

The basis of duality is the study of real linear functions on a vector space.
If V is a vector space of finite dimension, it is not difficult to prove that
linear functions form another vector space, denoted by V ∗, which has the
same dimension as V . It is called dual space, or sometimes adjoint space.
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The easiest way to describe a linear function on a vector space V is by a
vector of V . The linear function described by a vector a is then:

fa(x) = 〈a,x〉
Another convention is to represent vectors of V as column vectors, and linear
functions on V as row vectors, or transposed vectors. The scalar product in
the previous description is then replaced by the standard matrix multiplica-
tion:

fa(x) = atx = (α1 . . . αd)

⎛
⎜⎝

ξ1
...
ξd

⎞
⎟⎠

Usually, the vector a is considered as belonging to a different space as the
vector x. However, it is sometimes desirable to consider both spaces as the
same (See Chapter 6).

The V-representation of a polytope, which we called constructive, con-
tains a set of vectors. The polytope represented is the smallest polytope
containing them. If the representation is minimal, then the vectors corre-
spond to the vertices of the polytope.

By contrast, the H-representation, or restrictive, can be said to describe
upper bounds for the values attained by different linear functions on the
polytope. Namely, each inequality (a, β) defines a linear function a and its
maximal value β. The polytope represented is the largest polytope within
these limits. If the representation is minimal, then the linear functions and
their maximal values correspond to the facets of the polytope.

In this sense, the H-representation can be said to be dual of the V-
representation.

Let us briefly introduce a property on valid inequalities:

Lemma 2.4.1 Let S be a nonempty bounded set in Rd. Let a be a vector.
Then there is a unique βa so that an inequality (a; β) is valid if and only if
β ≥ βa.

Proof. Let βa = supx∈S〈a,x〉. Since S is not empty and bounded, βa is
well defined.

This leads us to the following definition:

Definition 2.4.2 (Supporting function) Let S be a nonempty bounded
set in Rd. We call supporting function of S the function HS defined as:

Rd → R

a �→ HS(a) = sup
x∈S

〈a,x〉
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We shall see in a few paragraphs that supporting functions of polytopes are
piecewise linear. That is, for any polytope P , we can subdivide Rd into a
finite number of parts on which its supporting function HP (a) is linear. Let
us just state for now a quite trivial property:

Lemma 2.4.3 Let S be a nonempty bounded set in Rd. Let a ∈ Rd be a
vector. Then for any λ ≥ 0, λHS(a) = HS(λa).

This means that in any direction, the supporting function increases linearly
with distance from the origin.

Let us now define the principal notion of this chapter:

Definition 2.4.4 (Dual) Let S be a set in Rd, the dual or polar of S,
denoted by S∗, is the set defined by:

S∗ = {a | HS(a) ≤ 1}

The dual should be considered as a subset of the dual space, though it is not
uncommon to represent a set and its dual as being part of the same space.

The dual can be considered as an attempt to build an H-representation of
the set, allowing only half-spaces which contain the zero vector 0. The reason
of this restriction is that if the polytope doesn’t contain the zero vector 0,
then the supporting function has negative values in certain directions, and
so, never reaches 1.

Theorem 2.4.5 (Duals) Duals have the following properties:

1. The dual of a set S is the same as that of the closure of the convex hull
of S ∪ {0}.

2. The dual of a polyhedron is a polyhedron.

3. The dual of a convex set is bounded if and only if the interior of the set
contains the zero vector 0.

4. If S is a closed convex set containing the zero vector 0, then (S∗)∗ = S.

In particular, if P is a polytope containing the zero vector 0 in its interior,
then P ∗ is a polytope, and (P ∗)∗ = P .

To simplify, let us use the following definition:

Definition 2.4.6 (Centered) A convex set is called centered if it contains
the zero vector 0 in its interior.
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A centered polytope is therefore full-dimensional. Let us now study the
combinatorial properties of the dual polytope.

Definition 2.4.7 (Associated dual face) Let P be a centered polytope.
For every face F of P , we define an associated dual face F D in the dual
polytope P ∗ as

F D = {a ∈ P ∗ | 〈a,x〉 = 1, ∀x ∈ F}
As their name indicates, associated dual faces are faces of the dual polytope.
This can be deduced from the fact all equalities in the definition are valid
inequalities for P ∗. Here are the properties of associated dual faces:

Theorem 2.4.8 (Associated dual faces) Let P be a centered polytope in
Rd, and F, G faces of P . Then:

1. F ⊆ G ⇔ GD ⊆ F D

2. dim(F D) = d − 1 − dim(F )

From this, we can see that the face lattice of a centered polytope P is sym-
metrical to that of P ∗. We get the following associations between types of
faces in P and P ∗:

F FD

∅ ⇔ P ∗

vertices ⇔ facets
edges ⇔ ridges
· · · ⇔ · · ·

ridges ⇔ edges
facets ⇔ vertices

P ⇔ ∅
Since we have now introduced the properties of the face lattices of dual

polytopes, we now make a parenthesis intended to prove Theorem 2.3.12.

Theorem 2.4.9 Let P be a polytope in Rd, and F and G two faces of P so
that F ⊆ G. Then there is a polytope P ′ of dimension dim(G)− 1− dim(F )
such that its face lattice is identical to that of the interval [F, G]P .

Proof. Let P be a polytope in Rd, and F and G two faces of P so that
F ⊆ G. We know that any face of a polytope is a polytope. Therefore, G is
a polytope of dimension dim(G) containing the face F . If we project G in
Rdim(G) so that G is centered, we can take the dual G∗ of G. The polytope G∗

has a face lattice inversed from that of G, with GD as minimal element, and
contains the face F D of dimension dim(G)−1−dim(F ). Again, F D is a face
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of the polytope G∗, so it is a polytope. If we project F D in Rdim(G)−1−dim(F )

so that it is centered, then its dual (F D)∗ is a polytope which has the same
face lattice as the interval [F, G]P .

The Theorem 2.3.12 is now trivially proved.
Let us now introduce a notion which is essential for the study of Minkowski

sums of polytopes.
Let P be a polytope. Since P is closed, for any a, HS(a) is attained by

some x ∈ S. That is, HS(a) = maxx∈S〈a,x〉. And so we can define:

Definition 2.4.10 (Maximizers) Let S be a set in Rd, and a a vector of
Rd. The set of maximizers of a over S is defined as

S(S; a) = {x ∈ S | 〈a,x〉 = HS(a)}

It is not difficult to see that the faces of a polytope are equivalent to its sets
of maximizers, except for the empty set. It should be noted that different
vectors can have the same set of maximizers. In fact, if {a1, . . . , ar} is a list
of vectors which have the same set of maximizers, then the vectors in

{λ1a1 + · · · + λrar | λ1, . . . , λr > 0}

also have the same set of maximizers (note that the λi factors should not be
zero). This brings us to define the equivalence classes of vectors which have
the same maximizer sets:

Definition 2.4.11 ((Outer) Normal cones) Let P be a polytope in Rd.
For any face F of P , we define its normal cone N (F ; P ) as the set of vectors
for which F is the maximizer set over P . That is,

N (F ; P ) = {a | F = S(P ; a)}

It is important to understand that normal cones are generally not closed
cones. For instance, closed cones always contain the 0 vector, but only the
normal cone of the polytope itself N (P ; P ) = {0} contains it. Rather, the
cones are all relatively open, that is, they are open sets in their affine hulls
for the usual topology. However, their closure are polyhedral closed cones:

Theorem 2.4.12 (Closure of normal cones) Let P be a polytope in Rd,
and let F and G be faces of P . Then cl(N (F ; P )) and cl(N (G; P )) are
polyhedral closed cones. Also, F ⊆ G if and only if cl(N (G; P )) is a face of
cl(N (F ; P )).



2.4 Duality 39

Proof. By definition, we have that

a ∈ N (F ; P ) ⇔ 〈a;x〉 = 〈a;y〉 > 〈a; z〉, ∀x,y ∈ F, z ∈ P \ F.

We deduce from this that

a ∈ cl(N (F ; P )) ⇔ 〈a;x〉 = 〈a;y〉 ≥ 〈a; z〉, ∀x,y ∈ F, z ∈ P.

Since all vectors in F and P are convex combinations of vertices of F and
P , we can also write

a ∈ cl(N (F ; P )) ⇔ 〈a;x〉 = 〈a;y〉 ≥ 〈a; z〉, ∀x,y ∈ V(F ), z ∈ V(P ).

This clearly defines a polyhedral closed cone.
Since F ⊆ G if and only if V(F ) ⊆ V(G) ⊆ V(P ), we can write

cl(N (G; P )) = cl(N (F ; P )) ∩ {a | 〈a;y〉 = 〈a; z〉, ∀y, z ∈ V(G)},

Since all equalities of cl(N (G; P )) are equalities or inequalities of cl(N (F ; P )),
the former is a face of the latter.

We can now prove the piecewise linearity of supporting functions of poly-
topes:

Theorem 2.4.13 The supporting function HP (a) of a polytope P is linear
on the closure of any normal cone of P .

Proof. Let P be a polytope in Rd, and let F be a face of P . Let a
and b be two vectors in cl(N (F ; P )). By definition, HS(a) = maxx∈P 〈a,x〉.
Since a ∈ cl(N (F ; P )), HS(a) = 〈a,x〉, for any x ∈ F . Let λ ≥ 0. Since
cl(N (F ; P )) is a polyhedral closed cone, a + λb is also in cl(N (F ; P )) and
HS(a + λb) = 〈a + λb,x〉 = 〈a,x〉 + λ〈b,x〉 = HS(a) + λHS(b), for any
x ∈ F .

Theorem 2.4.14 Let P be a polytope in Rd, and let F be a face of P . Then
dim(N (F ; P )) = d − dim(F ).

Proof. By definition, the linear hull of the normal cone of a face is the
space of vectors orthogonal to the affine hull of the face.

Theorem 2.4.15 Let P be a centered polytope. Let F be a nontrivial face of
P . Then N (F ; P ) is the cone generated by the points in the relative interior
of the associated dual face F D. Namely,

N (F ; P ) = {λx | λ > 0, x ∈ relint(F D)}.
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Consequently,
cl(N (F ; P )) = {λx | λ ≥ 0, x ∈ F D}.

Proof. By definition, we have that

F D = {a | 〈a,x〉 = 1 ≥ 〈a,y〉, ∀x ∈ F,y ∈ P} .

Therefore, the relative interior is defined by

relint(F D) = {a | 〈a,x〉 = 1 > 〈a,y〉, ∀x ∈ F,y ∈ P} .

This means that

relint(F D) = {a | F = S(P ; a), 〈a,x〉 = 1 ∀x ∈ F} ,

and so,
{λx | λ > 0, x ∈ relint(F D)} = {a | F = S(P ; a)} ,

Which proves the theorem.

As we can see, the essential combinatorial properties of the polytope can
be found in the normal cones of its faces.

Definition 2.4.16 (Normal fan) Let P be a polytope in Rd. The subdi-
vision of Rd into normal cones of the faces of P is called the normal fan of
P .

If P is a polytope in a vector space V , the normal fan should then usually
be considered as a subdivision of V ∗.

Figure 2.1: A polytope and its normal cones, and the resulting normal fan.

As we can see, the normal fan of a polytope, its supporting function
and its dual are three different structures coding information in V ∗ about a
polytope in V (See Figure 2.2).

In certain cases, it is useful to think of the normal fan as being a subdi-
vision of the unit sphere rather than the whole space:
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Figure 2.2: A polytope (a,b, c), its normal fan, supporting function (in dark
gray) and dual (in white).

Definition 2.4.17 (Normalized normal cones) For any polytope P , we
call normalized normal cones of P the intersections of its normal cones with
the unit sphere:

N̂ (F ; P ) = N (F ; P ) ∩ {a | 〈a; a〉 = 1}.
In dimension three, for instance, it becomes difficult to represent a normal
fan. An easy way to avoid this problem is to represent the normalized normal
cones on the unit sphere. The normal cone of facets of the polytope corre-
sponds to a vertex on the sphere, and the normal cones of edges correspond
to great circle arcs. This way, we can represent the normal fan of a polytope
as a graph on the unit sphere.

For complicated normal fans, it is also possible to project the graph from
the sphere on a plane using a stereographic projection, as shown in Figure 2.3.

The disadvantage of this is that the normal cones of edges appear as arcs
of circles, which may look unintuitive. Also, the pole used for the stere-
ographic projection is projected on the “infinity” point of the plane. The
advantage is that it gives us a way to represent the normal fan of a three-
dimensional object on a plane. The stereographic projection also preserves
angles, which helps to understand the resulting figure.

Definition 2.4.18 (Polyhedral complex) A polyhedral complex C is a
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�

Figure 2.3: The stereographic projection

Figure 2.4: A tetrahedron, its normal fan, the intersection with the sphere,
and the stereographic projection

finite set of polyhedra such that:

1. Any face of a polyhedron in C is also in C,

2. The intersection of two polyhedra in C is also in C,

3. The empty set ∅ is in C.

Furthermore, the polyhedral complex is called homogeneous if all its maximal
elements by inclusion have the same dimension.

Theorem 2.4.19 (Polyhedral complex) Let P be a polytope in Rd. Then
the closure of the normal cones of the faces of P form an homogeneous poly-
hedral complex.

2.5 Interesting polytopes

Any introduction to polytopes should at least contain a presentation of some
of the most well-known families of polytopes.
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Definition 2.5.1 (Simple, Simplicial) Let P be a polytope in Rd. Then
P is called simple if each of its vertices is contained in exactly dim(P ) edges.
Similarly, P is called simplicial if each of its facets contain exactly dim(P )
ridges. The dual of a centered simple polytope is a centered simplicial poly-
tope, and conversely.

Definition 2.5.2 (Simplex) A simplex (Plural: simplices) is a polytope P
which has exactly dim(P ) + 1 vertices.

Since any full-dimensional polytope has at least that many vertices, Simplices
can be said to be the simplest polytopes in a given dimension, hence their
name. In fact, all simplices in Rd are combinatorially equivalent. Here are
some of their interesting properties:

Theorem 2.5.3 (Simplex) Let Δd be a d-dimensional simplex. Then:

1. Every k-dimensional face of Δd is a k-dimensional simplex.

2. The convex hull of any set of faces of Δd is also a face of Δd.

3. The number of k-dimensional faces of Δd is equal to the number of
possible choices of k + 1 vertices among the d + 1 vertices of Δd:

fk(Δd) =

(
d + 1
k + 1

)
.

4. The total number of faces of Δd is 2d+1.

5. The dual of Δd is also a d-dimensional simplex.

6. Δd is simple and simplicial. Additionally, the only polytopes to be both
simple and simplicial are simplices and two-dimensional polytopes.

Definition 2.5.4 (Hypercube) Formally, a hypercube in Rd, or d-cube, is
the Minkowski sum of d orthogonal line segments.

If the line segments are the convex hulls of {−ei, ei} for all i in 1, . . . , d, then
the restrictive description of the hypercube is

{x | − 1 ≤ 〈ei,x〉 ≤ 1, ∀i}
Here are some properties of the hypercube

Theorem 2.5.5 (Hypercube) Let �d be a d-dimensional hypercube. Then:
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1. �d is simple.

2. Every k-dimensional face of �d is a k-dimensional hypercube.

3. The Minkowski sum of any set of faces of �d is also a face of �d.

4. The number of k-dimensional faces of �d is equal to:

fk(�d) =

(
d
k

)
2d−k.

5. The total number of faces of �d is 3d + 1.

Definition 2.5.6 (Cross-polytope) A d-dimensional cross-polytope is the
dual of a hypercube.

Definition 2.5.7 (Cyclic polytopes) We call moment curve in dimension
d the image of the following function:

R → Rd

λ �→

⎛
⎜⎜⎜⎝

λ
λ2

...
λd

⎞
⎟⎟⎟⎠

A cyclic polytope is a polytope which has all its vertices on the moment curve.

Cyclic polytopes have very interesting properties:

Theorem 2.5.8 (Cyclic polytopes) Let Cn
d be a cyclic polytope, formed

by n distinct vertices on the moment curve in d-dimension.

1. ([30]) Cn
d is �d

2
�-neighbourly. That is, the convex hull of any k vertices

of Cn
d with 2k ≤ d is a face of Cn

d of dimension k − 1,

2. Every face of Cn
d except Cn

d itself is a simplex,

3. (Gale’s evenness condition) Let V be a set of d distinct vertices of Cn
d .

Then conv(V ) is a facet of Cn
d if and only if every two vertices of Cn

d

not in V are separated on the moment curve by an even number of
vertices in V .

4. For any polytope P in Rd with n vertices, fk(P ) ≤ fk(C
n
d ).

Cyclic polytopes have the maximal number of faces of all polytopes for fixed
number of vertices and dimension.



Chapter 3

Minkowski sums

AH? WELL, MATHS. GENERALLY I NEVER GET
MUCH FURTHER THAN SUBTRACTION.

Terry Pratchett, Thief of Time.

In this chapter, we define Minkowski sum again, in a slightly more general
manner than before. We also study the result of the Minkowski sum on the
various dual structures of the polytopes. We then present various construc-
tions.

3.1 Properties

Definition 3.1.1 (Minkowski sum) Let S1, . . . , Sr be sets of vectors. We
define their Minkowski sum, or vector sum, as the set of vectors which can
be written as the sum of a vector of each set. Namely:

S1 + · · · + Sr := {x1 + · · ·+ xr | xi ∈ Si, ∀i}

It is easy to see this definition inherits some of the attributes of the usual
sum. It is commutative and associative, and it has a neutral element, which
is the set {0}.

In the case of polytopes, the Minkowski sum is equivalent to the convex
hull of the Minkowski sum of vertices of the summands. This should be made
clear by the following theorem:

Theorem 3.1.2 (Decomposition) Let P1, . . . , Pr be polytopes in Rd, and
let F be a face of the Minkowski sum P = P1 + · · ·+Pr. Then there are faces
F1, . . . , Fr of P1, . . . , Pr respectively such that F = F1 + · · · + Fr. What’s
more, this decomposition is unique.
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Proof. Let a be a vector in N (F ; P ). Then F = S(P ; a). By the definition
of the set of maximizers, it is obvious that S(P ; a) = S(P1; a)+· · ·+S(Pr; a).
We choose Fi = S(P ; a) for each i.

Using the same property of sets of maximizers, we can immediately deduce
the following corollaries:

Corollary 3.1.3 Let P = P1 + · · ·+ Pr be a Minkowski sum of polytopes in
Rd, let F be a nonempty face of P , and let F1, . . . , Fr be its decomposition.
Then N (F ; P ) = N (F1; P1) ∩ · · · ∩ N (Fr; Pr).

Corollary 3.1.4 Similarly, let F1, . . . , Fr be nonempty faces of the polytopes
P1, . . . , Pr respectively, then F1 + · · · + Fr is a face of P1 + · · · + Pr if and
only if the intersection of their normal cones N (F1; P1) ∩ · · · ∩ N (Fr; Pr) is
not empty.

As we can see, the normal cones of a Minkowski sum are identical to the
set of nonempty intersections of normal cones of the summands. The result-
ing normal fan is called the common refinement of the normal fans of the
summands. An illustration is shown in Figure 3.1, using the stereographic
representation of normal fans presented in Section 2.4.

Figure 3.1: A cube, an octahedron and their sum, with their respective
normal fans.
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As we can see, the normal fan of a Minkowski sum is really easy to
find from the normal fans of the summands. The next corollary defines the
relations between faces of the Minkowski sum:

Corollary 3.1.5 Let P = P1 + · · · + Pr be a Minkowski sum of polytopes
in Rd, let F ⊆ G be faces of P , and let F1, . . . , Fr and G1, . . . , Gr be their
decomposition. Then Fi ⊆ Gi, for all i.

As for supporting functions, the result of a Minkowski sum is also very
simple:

Theorem 3.1.6 The supporting function of a Minkowski sum is the sum of
the supporting functions of its summands.

Proof. Let P = P1, . . . , Pr be a Minkowski sum of polytopes in Rd. Let a
be a vector in Rd. Let x = x1 + · · ·+ xr, with x ∈ S(P ; a) and xi ∈ S(Pi; a)
for all i. Then

HP (a) = 〈a,x〉 = 〈a,x1〉 + · · ·+ 〈a,xr〉 = HP1(a) + · · ·+ HPr(a).

3.2 Constructions of Minkowski sums

There are many constructions which give raise to Minkowski sums. Some of
them illustrate the closeness between Minkowski sums and the convex hull
problem.

3.2.1 The Cayley embedding

Let P1, . . . , Pr be polytopes in Rd. Let P be their weighted Minkowski sum,
that is:

P (λ1, . . . , λr) = λ1P1 + · · ·+ λrPr

With λi ≥ 0 for all i. (We consider here λiPi to be the scaling of Pi by a
factor λi.)

It is easy to see that the normal fan of λiPi does not change as long as λi is
greater than zero. Since the normal fan of a Minkowski sum can be deduced
from that of its summands, we can deduce from this that the combinatorial
properties of P (λ1, . . . , λr) stay the same as long as all λi are greater than
zero.
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The Brunn-Minkowski theorem

If P (λ1, . . . , λr) is the weighted sum of P1, . . . , Pr polytopes in Rd, with
λi ≥ 0 for all i. It is possible to write the volume of the Minkowski sum
as a polynomial over the factors λi. The factors of the polynomial are
called mixed volumes. They are at the center of the Brunn-Minkowski
theory, and the reason Minkowski’s name was attached to the sums. Here
is the best-known result of this theory, useful in many fields ([14]):

Theorem 3.2.1 (Brunn-Minkowski) Let S1 and S2 be convex sets in
Rd. Let Sλ be their weighted Minkowski sum Sλ = λS1 + (1 − λ)S2, and
let V (λ) be the dth root of the volume of Sλ. Then V (Sλ) is a concave
function. That is, for any λ1, λ2, and ρ in [0, 1], we have that

V (ρλ1 + (1 − ρ)λ2) ≥ ρV (λ1) + (1 − ρ)V (λ2)

λ
0 0.5 1.0

0

1

2

λ

V

Example of weighted sum: V (λ) =
√

4 − 2λ2

Let us define the simplex Δ = {(λ1, . . . , λr) | λ1 + · · ·+λr = 1, λi ≥ 0 ∀i}
We now define the Cayley embedding of the Minkowski sum of the polytopes
P1, . . . , Pr as follows:

C(P1, . . . , Pr) ⊆ Rd × Δ ⊆ Rd × Rr

C(P1, . . . , Pr) = conv((P1 × e1) ∪ · · · ∪ (Pr × er))
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Where ei are the vectors in Δ defined by λi = 1, λj = 0 ∀j �= i.
The intersection of the Cayley embedding with a plane fixing the value

of the λi, for instance λ1 = · · · = λr = 1/r, is equivalent to P (λ1, . . . , λr).
On the other hand, the projection of the Cayley embedding from Rd × Rr

on Rd by removing the last coordinates clearly gives us the convex hull of
P1 ∪ · · · ∪ Pr.

In other words, the polytopes P (λ1, . . . , λr) are combinatorially equivalent
to the Minkowski sum P1 + · · ·+ Pr for all choices of strictly positive λi, but
the closure of their union is the convex hull of P1 ∪ · · · ∪ Pr.

Let us now examine particularly the Cayley embedding of two polytopes:

C(P1, P2) = conv((P1 × e1) ∪ (P2 × e2)) ⊆ Rd × conv(e1, e2)

By construction, the last two coordinates of the vertices correspond either to
e1 or e2. We can deduce from this there are two kinds of faces in the Cayley
embedding. The first kind has all its vertices either on e1 or on e2, the second
kind has some vertices on e1, some on e2. Since for the computation of the
Minkowski sum, we intersect the Cayley embedding with a plane separating
the points on e1 from these on e2, only faces of the second kind intersect
with that plane and induce a face of the Minkowski sum. Therefore, the face
lattice of the Minkowski sum is equivalent to a subset of the face lattice of
the Cayley embedding. The relation by inclusion of these faces is the same
in the Minkowski sum as in the Cayley embedding, though the faces in the
Minkowski sum are smaller by one dimension.

The faces of the first type are characterized by the fact their last two
coordinates correspond to e1 or e2, or equivalently by the fact that they are
part of F1 = S(C(P1, P2); e1 − e2) or F2 = S(C(P1, P2); e2 − e1). So we have
that L(P1 + P2) is equivalent to L(C(P1, P2)) \ L(F1) \ L(F2).

Since the convex hull of P1 and P2 is the result of a projection from
Rd × conv(e1, e2) on Rd, the normal fan of the convex hull is the intersection
of the normal fan of the Cayley embedding with the plane Rd × (0, 0). As
we can see, the face lattice of the convex hull is also equivalent to a subset of
the face lattice of the Cayley embedding. As with the Minkowski sum, the
relation by inclusion of these faces is the same as in the Cayley embedding,
though this time their dimensions stay the same.

3.2.2 Pyramids

In the previous section, we have seen that it is possible to obtain the Minkowski
sum of polytopes by doing their convex hull in a certain way, then intersecting
the result with a plane.
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Let us now explain how to obtain the convex hull of polytopes by doing
their Minkowski sum in a certain way, and intersecting the result with a
plane.

A standard operation for constructing polytopes is the pyramid. It allows
us to build a polytope in Rd+1 from a polytope in Rd by placing the polytope
in Rd×{0}, adding a point “above” it in ed+1 = (0, . . . , 0, 1), and taking the
convex hull. For example, the pyramid of a square would create an Egyptian
pyramid. Simplices in dimension d can be defined as d successive pyramids
of a 0-dimensional point.

The position of the point we add is not actually important from the
combinatorial point of view.

Let P1, . . . , Pr be polytopes in Rd. We examine the Minkowski sum P of
their pyramids in Rd+1.

For any hyperplane Hλ of type (ed+1, λ), the intersection of Hλ with P
can be written in Rd as the union of all

λ1P1 + · · ·+ λrPr

with 0 ≤ λi ≤ 1 so that λ1 + · · · + λr = r − λ.

For instance, H0 ∩ P is the Minkowski sum of P1, . . . , Pr, and Hr−1 ∩ P
is their convex hull. In fact, Hn is the convex hull of all Minkowski sums of
r − n polytopes chosen in P1, . . . , Pr.

3.2.3 Cartesian product

Let P1, . . . , Pr be polytopes in Rd. Let P = P1 × · · · × Pr be their Cartesian
product in Rd × · · ·×Rd. Then the Minkowski sum P1 + · · ·+ Pr is equal to
the image of P in Rd by the following projection π:

π : Rd × · · · × Rd → Rd

(x1, . . . ,xr) �→ x1 + · · · + xr

Since the Minkowski sum is a projection of P , the normal fan of the
Minkowski sum is equivalent to the intersection of the normal fan of P with
the linear space of vectors orthogonal to the kernel of the projection. (Or,
to formulate it in the dual space, the space of linear functions fa so that
fa(x) = 0, for any x in the kernel of π.)

This construction of the Minkowski sum as a projection gives us very
powerful tools to analyze Minkowski sums, both computationally and com-
binatorially (See e.g. [39] and [40]).
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3.3 Zonotopes

We present here the simplest of Minkowski sums, which are zonotopes. Zono-
topes are Minkowski sums of line segments, that is, polytopes with two ver-
tices. This problem has been studied thoroughly, and quite early. In fact, the
dual problem, the common refinement of the normal fan, amounts to com-
puting a central hyperplane arrangement, which is a fundamental problem
of combinatorics.

Figure 3.2: A 3-dimensional zonotope, sum of 4 line segments

Hyperplane arrangements consist in subdividing the space with hyper-
planes and counting the number of cells it creates. In the words of R. C.
Buck ([8]): how many pieces can be obtained from a round flat cheese by
exactly n straight cuts? To get a more complete description, it suffices to
write Rd instead of “round flat cheese” (though a flat cheese is admittedly
a nice topological description of R2). Buck gives a solution to this problem,
and goes on to prove that the number of k-dimensional cells in a subdivision
of Rd by r hyperplanes in general position is:(

r
d − k

) k∑
i=0

(
r + k − d

i

)

What is closer to our subject are central hyperplane arrangements, that is,
arrangements of hyperplanes all containing the vector 0. In this case, we
can consider each hyperplane to be the normal fan of a segment which is
orthogonal to it. This means a central hyperplane arrangement is nothing
more than the normal fan of the Minkowski sum of the line segments, that
is a zonotope.

The number of k-dimensional faces in a d-dimensional zonotope, sum of r
line segments in general position, is therefore equal to the number of (d−k)-
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dimensional cells in a d-dimensional central arrangement of r hyperplanes in
general position. This number was introduced in [42] and is equal to:

2

(
r
k

) d−1−k∑
i=0

(
r − 1 − k

i

)
.

It is proved in [18] that this is the maximal number of faces for sums of
polytopes having at most r non-parallel edges in total. This was the first
known general bound on the number of faces of a Minkowski sum.

Zonotopes in Rd which are sums of r line segments can alternately be
defined as the projection in Rd of an n-dimensional hypercube. This is con-
sistent with the construction of Minkowski sums described in Section 3.2.3.
We can deduce from this that all faces of a zonotope are zonotopes them-
selves. If the line segments generating a d-dimensional zonotope are in general
position, then its faces are (d − 1)-dimensional hypercubes.



Part II

Face study





Chapter 4

Bounds on the number of faces

Oh quanto parve a me gran maraviglia
quand’io vidi tre facce a la sua testa!

O, what a marvel it appeared to me,
When I beheld three faces on his head!

Dante Alighieri, The Divine Comedy.

We discuss in this chapter the question of the maximum complexity of a
Minkowski sum in terms of its summands. This problem can itself be divided
into a multitude of questions, depending on the way we define either the input
or the output.

Let us introduce the different bounds on the number of vertices of the
sum, then faces, then present what little we know about facets.

4.1 Bound on vertices

Let us start by defining the problem.

Bound on vertices in terms of vertices: Let P be the d-dimensional
Minkowski sum of n polytopes. What is the maximal number of vertices of
P , in terms of n, d, and the summands?

From the decomposition properties of Minkowski sums, we can deduce
the following trivial bound :

Theorem 4.1.1 Let P1, . . . , Pr be polytopes and P their Minkowski sum.
Then:

f0(P ) ≤
r∏

i=1

f0(Pi).
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The trivial bound can be attained for n < d, as will be seen in the
construction shown in Section 4.2. However, it can be shown not to be tight
otherwise. Indeed, the following has been proved:

Theorem 4.1.2 [40] Let P1, . . . , Pr be polytopes with at least d + 1 vertices
and P their Minkowski sum. Then if r ≥ d,

f0(P ) ≤
(

1 − 1

(d + 1)r

) r∏
i=1

f0(Pi).

The complete proof is somewhat intricate, so we show here a weaker theorem
proving the unreachability for r > d, suggested by Rade Živaljević and Imre
Bárány, which uses the colored Helly theorem due to Lovász:

Theorem 4.1.3 [28]1 Let C1, . . . , Cr be collections of convex sets in Rd with
r ≥ d + 1. If ∩r

i=1Ci �= ∅ for every choice of Ci ∈ Ci, then there is a
j ∈ {1, . . . , r} such that ∩C∈Cj

C �= ∅, that is a family whose members have a
nonempty intersection.

In our case, the normal cones of vertices of the polytopes P1, . . . , Pr form
the r collections. If all choices of vertices in the summands add to a vertex
of P , it means that their cones intersect, which means that ∩r

i=1Ci �= ∅ for
every choice of Ci ∈ Ci. However, since the normal cones of a polytope are
all disjoint, the intersection of the members in a family is always empty, so
we have a contradiction.

These results encouraged us to search for a general result, which we
present now:

Theorem 4.1.4 (Attainability) Let P1, . . . , Pr be polytopes with more than
one vertex in Rd and P their Minkowski sum. Then it is possible to reach
the trivial bound for the number of vertices in the sum if and only if r < d,
or r = d and every polytope has exactly two vertices.

Proof. Let us consider separately all cases:

1. If r > d, then the trivial bound is unreachable by the previous theorem.

2. If r < d, then we can reach the trivial bound using the construction
shown in Section 4.2.

3. If r = d and every polytope has two vertices, then the d-dimensional
hypercube meets the criteria.

1Unique of all references in this thesis, this article was written in Hungarian. For this
reason, the author freely admits he didn’t read it, and is merely trusting his sources.
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4. If r = d and one polytope has three vertices or more, we now prove
that the trivial bound is unreachable.

Let P = P1 + · · · + Pd be a Minkowski sum of polytopes in Rd, with
Pi having only two vertices for i > 1, and P1 having three vertices. Let
us suppose that all vertex decompositions exist. Then the normal fan of
P contains 2d−13 d-dimensional cells. Since all decompositions exist, the
hyperplane N (Pd; Pd), which is the normal fan of Pd, separates in two each
of the 2d−23 cells of the normal fan of P1+ · · ·+Pd−1. So the restriction of the
normal fan of P to the (d − 1)-dimensional hyperplane N (Pd; Pd) contains
2d−23 cells. It is equivalent to the normal fan of the orthogonal projection of
P1 + · · · + Pd−1 on a (d − 1)-dimensional hyperplane orthogonal to Pd.

By induction, the restriction of the normal fan of P to the i-dimensional
intersection of hyperplanes N (Pi +1; Pi +1)∩ · · · ∩N (Pd; Pd) contains 2i−13
i-dimensional cells, for all i ≥ 1. In particular, N (P2; P2) ∩ · · · ∩ N (Pd; Pd)
is 1-dimensional and contains 3 cells, which is impossible for a normal fan,
since a 1-dimensional polytope is a segment and has only 2 vertices.

4.2 Minkowski sums with all vertex decom-

position

Let P be the Minkowski sum of the polytopes P1, . . . , Pr in Rd. In the
previous section, we stated that the number of vertices in the sum is bounded
by the number of possible decompositions into vertices of the summands.
Therefore, f0(P ) ≤ f0(P1) · · ·f0(Pr). We now present a construction reaching
this bound for any r < d.

Let Pi, i = 1, . . . , d−1, be d-dimensional polytopes, and vi,j their vertices,
j = 1, . . . , ni where ni ≥ 1 is the number of vertices of the polytope Pi. We
set the coordinates of the vertices to be:

vi,j = cos (αi,jπ) · ei + sin (αi,jπ) · ed,

with 0 = αi,1 < · · · < αi,ni
= 1 for all j, where ei’s are the unit vectors

of an orthonormal basis of the d-dimensional space. So the vertices of Pi

are distinct and placed on the unit half-circle in the space generated by ei

and ed. Observe that the polytopes are two-dimensional for now. By the
construction, one can easily verify that

vi,j ∈ N ({vi,j}; Pi).
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This stays true if we add anything to those vectors in the spaces orthogonal
to that of the half-circle:

vi,j +
∑
k �=i,d

βkek ∈ N ({vi,j}; Pi), ∀βk ∈ R.

So for any choice of S = {ji}d−1
i=1 , ji = 1, . . . , ni, we can build this vector:

vS =

d−1∑
i=1

cot (αi,ji
π) · ei + ed.

This vector vS, projected to the space generated by ed and any ei, is equal
to cot (αi,ji

π) · ei + ed which is collinear with cos (αi,ji
π) · ei + sin (αi,ji

π) · ed,
and thus belongs to N ({vi,ji}; Pi). So we have that:

vS ∈
d−1⋂
i=1

N ({vi,ji}; Pi),

and since this intersection is not empty, it means that vj1 , . . . ,vjd−1
is a

vertex of the Minkowski sum P1 + · · ·+ Pd−1. This stays true for any choice
of S = {ji}d−1

i=1 , so the Minkowski sum has
∏d−1

i=1 ni vertices. The polytopes
Pi thus defined are 2-dimensional. The property still stands if we add small
perturbations to the vertices to make the polytopes full-dimensional.

The resulting Minkowski sum is very similar to a “lifted pile of cube”, as
defined in Section 5.1 of [43].

4.2.1 Dimension three

Let us now show that when constructing a polytope in Rd as in the preceding
section, it is possible to perturb the vertices so as to make it simplicial or, if
it has an even number of vertices, simple.

Let P be a polytope in Rd such that its vertices v1, . . . ,vn can be written
as:

vj =

⎛
⎝ cos (αjπ)

sin (αjπ)
βj

⎞
⎠ ,

with 0 = α1 < · · · < αn = 1 all distinct. Independently of the combinatorial
properties of P , it is possible to divide the βj by a large number to make it
flat enough for a sum such as is described in the preceding section.

We suppose we would like P to be simplicial. Let us pose β1 = 1, βn = −1
and βj = 0 otherwise. An example is in Figure 4.1. It is easy to see that
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Figure 4.1: Simplicial polytope

(v1,vj) and (vj,vn) are edges, for any 2 ≤ j ≤ n − 1. Since (v1,vn) and
(vj,vj + 1) for 2 ≤ j ≤ n − 2 are edges, the polytope has 3n − 6 edges and
is simplicial.

We now suppose that n is even and we would like P to be simple. We
now build a polytope combinatorially similar to that on figure 4.2. To begin
with, we pose βj = ± sin αj , for all j so that vertices are disposed on either
of the two facets at the back of the figure. Both of these facets contain v1

and vn.

Figure 4.2: Simple polytope

Following the rules, we fix v2 and v3 anywhere so that α2 < α3 and
β2β3 < 0. We show that for any vj, vj+1 so that αj < αj+1 and βjβj+1 < 0,
it is possible to fix vj+2 and vj+3 so that vj, vj+1, vj+2 and vj+3 are coplanar,
αj+1 < αj+2 < αj+3, and βj+2βj+3 < 0.

The principle is explained in Figure 4.3. We fix vj+2 anywhere so that
αj+1 < αj+2 and βj+1βj+2 > 0. Since the line (vj+1,vj+2) is on a plane
containing the line (v1,vn), the two intersect in a point w. The line (vj,w)
in turn intersects the arc of a circle containing vj in a different point, where
we put vj+3. Since vj, vj+1, vj+2 and vj+3 are disposed on two lines which
intersect, they are coplanar.

To resume, for any n even, we can create a polytope which has n vertices
and n/2 + 2 facets, and is therefore simple.
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Figure 4.3: Construction step of vj+2 and vj+3

4.3 Bound on faces

We now introduce a general bound on faces. Again, we first give a trivial
bound. We then prove that this bound can be reached for lower dimensions
by sums of cyclic polytopes (See Section 2.5).

Let P1, . . . , Pr be d-dimensional polytopes. For each k = 0, . . . , d− 1 and
r ≥ 1, the number of k-faces of P1 + · · ·+ Pr is bounded by:

fk(P1 + · · ·+ Pr) ≤
∑

1 ≤ si ≤ f0(Pi)
s1 + · · ·+ sr = k + r

r∏
i=1

(
f0(Pi)

si

)
,

where si’s are integral.

To prove this, we show that the decomposition of a face of a Minkowski
sum contains a minimal number of vertices of the summands.

Let P1, . . . , Pr be d-dimensional polytopes, and F a k-dimensional face
of P1 + · · · + Pr. Let Fi ⊆ Pi, i = 1, . . . , r be the decomposition of F . Let
k1, . . . , kr be the dimensions of respectively F1, . . . , Fr. Then k1+· · ·+kr ≥ k.
The minimal number of vertices for a face of dimension ki is ki + 1. So the
total number of vertices contained in faces of the decomposition of F is at
least k + r. For any fixed k1, . . . , kr, the number of possible choices of si

vertices for each Pi is:
r∏

i=1

(
f0(Pi)

si

)
.
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This proves the bound. We now show that the bound is tight for faces of
lower dimensions.

Cyclic polytopes are known to have the maximal number of faces for any
fixed number of vertices. This property is somewhat carried over to their
Minkowski sum.

We recall that cyclic polytopes on the d-dimensional curve of moments are
�d

2
�-neighbourly, which means that the convex hull of any set of �d

2
� vertices

of a cyclic polytope P is a face of P [21, 4.7].
Note that if we choose a set S of points on the moment curve, with

|S| ≤ �d
2
�, conv(S) forms a face of any polytope P having S as a subset of

its vertices, no matter how the other vertices are chosen. That is, there is
always a vector aS so that S(P ; aS) = conv(S).

Theorem 4.3.1 In dimension d ≥ 4, it is possible to choose r ≤ �d
2
� poly-

topes P1, P2, . . ., Pr so that the trivial upper bound for the number of k-faces
of P1 + · · ·+ Pr is attained for all 0 ≤ k ≤ �d

2
� − r.

Proof. Let P be the Minkowski sum of polytopes P1, . . . , Pr whose vertices
are all distinct on the moment curve, with k = �d

2
� − r.

Let S1 ⊆ V(P1), . . . , Sr ⊆ V(Pr) be subsets of the vertices of the polytopes
such that Si �= ∅, ∀i and |S1|+ · · ·+ |Sr| = k + r. Since k + r ≤ �d

2
�, there is

a linear function maximized at S1, . . . , Sr on the moment curve. Therefore,
conv(Si) is an (|Si| − 1)-dimensional face of Pi, ∀i = 1, . . . , r.

Since the same linear function is maximized over each Pi on these faces,
they sum up to a face of P . Since the set of vertices S1 ∪ . . . ∪ Sr is
affinely independent, dim(conv(S1) + · · · + conv(Sr)) = dim(conv(S1)) +
· · ·+ dim(conv(Sr)) = |S1| + · · · + |Sr| − r = r + k − r = k.

We should note that this construction is somewhat overkill. For instance, to
reach the trivial bound for vertices of the sum of r polytopes, it requires that
d ≥ 2r, while we know from preceding sections that d ≥ r + 1 is enough.





Chapter 5

Polytopes relatively in general
position

Of course it is happening inside your head, Harry,
but why on earth should that mean that it is not real?

Joan K. Rowling, Harry Potter and the Deathly Hallows.

We introduce in this chapter a new relation concerning a special family of
Minkowski sums of polytopes. We show that, when summands are positioned
“relatively” in general position, the f-vector of the sum is linked by a linear
relation to the f-vectors of the summands ([15]).

5.1 Introduction

Let P = P1 + · · ·+ Pr be a Minkowski sum of polytopes in Rd, and F a face
of P . As stated in Theorem 3.1.2, F can be decomposed into faces of the
summands: F = F1 + · · · + Fr, with Fi face of Pi. The dimension of F is
then at least as large as the highest among the dimensions of the summands,
and can at most be equal to the sum of the dimensions of the summands:

max
i

(dim(Fi)) ≤ dim(F ) ≤ dim(F1) + · · · + dim(Fr)

If this maximum is attained, we say that F has an exact decomposition. The
reason for this term is that if F = F1 + · · ·+ Fr has an exact decomposition,
then for any x ∈ F , there is a unique decomposition x = x1 + · · ·+ xr with
xi ∈ Fi for all i.

For instance, the sum in Rd of r line segments in general position is a
zonotope whose nontrivial faces are all cubical and have exact decomposi-
tions.
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If every facet of a polytope has an exact decomposition, then by extension
every nontrivial face has an exact decomposition. We say that the summands
are relatively in general position.

An important point about polytopes relatively in general position is that
they can attain the maximal number of faces in a Minkowski sum:

Theorem 5.1.1 Let P = P1+· · ·+Pr be a Minkowski sum of polytopes in Rd.
There is a Minkowski sum P ′ = P ′

1+ · · ·+P ′
r of polytopes relatively in general

position so that fk(P
′
i ) = fk(Pi) for all i and k, and so that fk(P

′) ≥ fk(P )
for all k.

Proof. Let P = P1 + P2 be a Minkowski sum of polytopes not relatively
in general position. We show that if we rotate F1 by a small angle about an
axis in general position, then the number of faces does not diminish.

Let F = F1 + F2 be a face whose decomposition is not exact, that is
dim(F ) < dim(F1) + dim(F2). In terms of normalized cones, it means
that N̂ (F ; P ) = N̂ (F1; P1) ∩ N̂ (F2; P2), and dim(N̂ (F ; P )) > d − 1 −
dim(N̂ (F1; P1)) − dim(N̂ (F2; P2)). Let us perturb P1 by a small enough ro-
tation about an axe in general position. There is now a superface N̂ (G2; P2)
of N̂ (F2; P2) so that N̂ (F1; P1)∩N̂ (G2; P2) �= ∅, and so that dim(N̂ (F1; P1)∩
N̂ (G2; P2)) = dim N̂ (F ; P ). This means F1 and G2 sum to a face F ′ with
dim(F ′) = dim(F ). So for every face with an inexact decomposition, there
is now a new face of the same dimension with an exact decomposition. If
the angle is small enough, every face with an exact decomposition should
still exist. Therefore the number of faces won’t diminish, and the new sum
is relatively in general position.

By induction, we can slightly rotate the summands P1, . . . , Pr so that
they are relatively in general position, without diminishing the number of
faces in their sum.

Minkowski sums of polytopes in general position can therefore be used when
computing the maximum complexity of Minkowski sums. We now present
our most important result.

Theorem 5.1.2 Let P1, . . . , Pr be d-dimensional polytopes relatively in gen-
eral position, and P = P1 + · · ·+ Pr their Minkowski sum. Then

d−1∑
k=0

(−1)kk(fk(P ) − (fk(P1) + · · ·+ fk(Pr))) = 0.

Note that the form is rather similar to Euler’s formula:
d−1∑
k=0

(−1)kfk(P )) = 1 − (−1)d.
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By using Euler’s formula, we can rewrite the theorem slightly differently.

Corollary 5.1.3 Let P1, . . . , Pr be d-dimensional polytopes, and P = P1 +
· · ·+ Pr their Minkowski sum. Then for all a,

d−1∑
k=0

(−1)k(k + a)(fk(P ) − (fk(P1) + · · · + fk(Pr))) = a(1 − r)(1 − (−1)d).

To prove the theorem, we first introduce a few lemmas.

Lemma 5.1.4 Let P = P1 + · · ·+ Pr be a Minkowski sum of d-dimensional
polytopes. Let Fi be a face of Pi, and Ω(Fi) the set of faces of P which have
Fi as a subface in their decomposition, P excepted:

Ω(Fi) = {G1 + · · · + Gr ∈ F(P ) \ {P} | Fi ⊆ Gi}.
Let f(Ω(Fi)) be the f-vector of Ω(Fi). Then:

d−1∑
k=dim(Fi)

(−1)d−1−kfk(Ω(Fi)) = 1.

Proof. In the normal fan of P , the set Ω(Fi) corresponds to the set of
normalized normal cones contained in the closure of N̂ (Fi; Pi). Each face
G in Ω(Fi) corresponds to a normalized cone of dimension d − 1 − dim(G).
Let’s call M the resulting cell complex. We have that

d−1∑
k=dim(Fi)

(−1)d−1−kfk(Ω(Fi)) =

d−1−dim(Fi)∑
k=0

(−1)kfk(M).

The support of M is the closure of N̂ (Fi; Pi), which is contractible. So
we can use Euler’s formula to prove the following:

d−dim(Fi)∑
k=0

(−1)kfk(M) = 1.

Lemma 5.1.5 Let F = F1 + · · · + Fr be a face of the Minkowski sum P =
P1 + · · · + Pr with an exact decomposition. Then:

d−1∑
k=0

(−1)kk(fk(F ) − (fk(F1) + · · ·+ fk(Fr))) = 0.
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Proof. Since F has an exact decomposition, all of its subfaces also have
one. What’s more, for any set (G1, . . . , Gr) so that Gi ⊆ Fi for all i, the sum
G = G1 + · · ·+ Gr is a subface of F . In other words, the face lattice of F is
the same as that of the Cartesian product of its summands F1 × · · · × Fr.

Let di be the dimension of Fi and f i its f-vector. It can be written as
(f i

0, . . . , f
i
di

), with f i
di

= 1. The f-vector fi verifies Euler’s formula, which
means

di∑
k=0

(−1)kf i
k = 1.

Let’s define the generating function pi(x) of the f-vector f i as follows:

pi(x) = f i
0t

0 + · · · + f i
di

tdi .

Euler’s formula can now be written as pi(−1) = 1.
Let f be the f-vector of F . Since any n-tuple of faces Gi of Fi sums to a

face of F , we can write:

fi =
∑

a1+···+ar=i

(f 1
a1
· · ·fn

ar
).

Therefore, if p(x) is the generating function based on the f-vector of F ,
we have p(x) =

∏n
i=1 pi(x).

The difference of the f-vectors can be represented by q(x) = p(x)−(p1(x)+
· · ·+ pr(x)) = q0t

0 + · · ·+ qdim(F )t
dim(F ). It is easy to see that

dim(F )∑
k=0

(−1)kkqk = −q′(−1).

Since p′(x) =
∑n

i=1

(
p′i(x)

∏
j �=i pj(x)

)
, and we have pj(−1) = 1 for all j,

q′(−1) = (p′1(−1) + · · ·+ p′r(−1)) − (p′1(−1) + · · ·+ p′r(−1)) = 0.

Lemma 5.1.6 Let P1, . . . , Pr be d-dimensional polytopes relatively in general
position, and P = P1 + · · ·+Pr their Minkowski sum. If F is a face of P , we
denote by ti(F ) the face of Pi in its decomposition. Then for all 0 ≤ i ≤ d−1,
we have:

fi(P ) − (fi(P1) + · · ·+ fi(Pr)) =∑
F∈F(P ),F �=P

(−1)d−1−dimF (fi(F ) − (fi(t1(F )) + · · · + fi(tr(F )))).
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Proof. We are going to show that the sum of coefficients for each separate
face is equal to 1.

Let G be a nontrivial face of P . The sum of its coefficients in the right
hand term contributed by G can be written as∑

F⊇G,F �=P

(−1)d−1−dim(F ).

Since polytope lattices are Eulerian posets,∑
F⊇G

(−1)d−1−dim(F ) = 0.

So we have that ∑
F⊇G,F �=P

(−1)d−1−dim(F ) = 1.

Now, let Gi be a nontrivial face of Pi. the sum of coefficients in the right
hand side contributed by Gi can be written as∑

F∈Ω(Gi)

(−1)d−1−dim(F ).

By Lemma 5.1.4, this is equal to 1.

We can now prove the main theorem:

Proof. In Lemma 5.1.6, we proved that f(P ) − (f(P1) + · · · + f(Pr)) is
sum of f(F ) − (f(t1(F )) + · · · + f(tr(F ))), where ti(F ) is the face of Pi in
the decomposition of F . In Lemma 5.1.5, we proved the theorem is true for
these vectors.

5.2 Applications

Now, let us examine what Theorem 5.1.2 tells us. Let P = P1 + · · · + Pr be
a Minkowski sum of polytopes in Rd relatively in general position. If d = 2,
the result is that

f1(P ) = f1(P1) + · · ·+ f1(Pr),

f0(P ) = f0(P1) + · · ·+ f0(Pr).

In other words, there are as many facets (or vertices) in the sum as in all
summands. Up to now, nothing very interesting!

If d = 3, we have:

2(f2(P ) − (f2(P1) + · · ·+ f2(Pr))) = f1(P ) − (f1(P1) + · · ·+ f1(Pr)),
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f2(P ) − (f2(P1) + · · · + f2(Pr)) = f0(P ) − (f0(P1) + · · ·+ f0(Pr)) + 2,

f1(P ) − (f1(P1) + · · · + f1(Pr)) = 2(f0(P ) − (f0(P1) + · · ·+ f0(Pr))) + 4.

This is much better! We are now able to link the augmentation of the number
of facets and edges during the Minkowski sum to the augmentation of the
number of vertices. Using the results of Section 4.1, we can now write bounds
for the maximum number of vertices, edges and facets when summing two
polytopes in R3.

Theorem 5.2.1 Let P1 and P2 be polytopes in R3. Then we have:

f0(P1 + P2) ≤ f0(P1)f0(P2),

f1(P1 + P2) ≤ f0(P1) + f0(P2) + 2f0(P1)f0(P2) − 8,

f2(P1 + P2) ≤ f0(P1) + f0(P2) − 6 + f0(P1)f0(P2),

f0(P1 + P2) ≤ 4f2(P1)f2(P2) − 8f2(P1) − 8f2(P2) + 16,

f1(P1 + P2) ≤ 8f2(P1)f2(P2) − 17f2(P1) − 17f2(P2) + 40,

f2(P1 + P2) ≤ 4f2(P1)f2(P2) − 9f2(P1) − 9f2(P2) + 26,

All these bounds are tight.

Proof. We already now that f0(P1 + P2) ≤ f0(P1)f0(P2) is a tight bound.
Therefore, if f0(P1) and f0(P2) are fixed, we need to maximize f1(P1) and
f1(P2) for the second bound, and f2(P1) and f2(P2) for the third. This can
be done by summing simplicial polytopes as indicated in Section 4.2, so that
f1(Pi) = 3f0(Pi) − 6 and f2(Pi) = 2f0(Pi) − 4.

if f2(P1) and f2(P2) are fixed, the maximum augmentation of the number
of faces is reached by having f0(P1) and f0(P2) as large as possible. This can
be done by summing simple polytopes as indicated in Section 4.2, so that
f1(Pi) = 3f2(Pi) − 6 and f0(Pi) = 2f2(Pi) − 4.



Chapter 6

Nesterov rounding

Géomètre : “Nul n’entre ici s’il n’est géomètre.”

Gustave Flaubert, Le dictionnaire des idées reçues.

We study in this chapter a special family of Minkowski sums, those of poly-
topes summed with their own dual. After presenting a geometrical result by
Yurii Nesterov, we show that in certain cases, the combinatorial properties
of the Minkowski sum can be deduced directly and completely ([16]).

6.1 Asphericity

We recall that a polytope is called centered if its interior contains the origin,
and that its dual is then also a centered polytope.

Let us denote the unit ball in Rd by Bd. That is,

Bd = {x ∈ Rd | 〈x,x〉 ≤ 1}.

Let S be a bounded closed centered convex set in Rd . we define its asphericity
γ(S) as follows:

r(S) = max{λ | λBd ⊆ S},
R(S) = min{λ | λBd ⊇ S},

γ(S) =
R(S)

r(S)
.

That is, the asphericity of S is the ratio between the radii of the smallest
ball containing and the largest ball contained in S. Obviously, γ(S) ≥ 1 for
any S, with equality only if S is a sphere.
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It was proved by Nesterov ([35]) that for well chosen factors α and β, we
have that

γ(αS + βS∗) ≤
√

1 + γ(S)

2
<
√

γ(S).

That is, summing a centered polytope (and more generally a centered full-
dimensional bounded closed convex set) with its dual has a rounding effect.
For this reason, we call this operation Nesterov Rounding.

Note that for this operation, we consider S and S∗ to belong to the same
vector space. In fact, for the rest of this chapter, we consider Rd and its dual
space as a unique space.

6.2 Combinatorial properties

As usual, multiplying either term of a Minkowski sum by a factor doesn’t
affect the combinatorial properties of the sum. Since these properties are
our main interest, we write “the” Nesterov rounding instead of “a” Nes-
terov rounding, to mean the class of all Nesterov roundings with the unique
combinatorial type. While the scaling factor is irrelevant for our study, the
position of the origin in P does affect the combinatorial structure of the Nes-
terov rounding. In other words, the combinatorial structure of the Nesterov
rounding of P is not uniquely determined by that of the polytope. However,
it is the case when the polytope has a certain property, which we introduce
now.

Definition 6.2.1 (perfectly centered) Let P be a centered polytope in
Rd. We say that P is perfectly centered if for any nonempty face F of P , the
intersection relint(F ) ∩ N (F ; P ) is nonempty.

It is easy to see that if the intersection is nonempty, then it consists of a
single point, since a face is orthogonal to its normal cone.

0

0
0

Figure 6.1: A perfectly centered and two non-perfectly-centered polytopes
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For instance, the polytope on the left in Figure 6.1 is perfectly centered,
and the two others are not. The one in the center can be made perfectly
centered by moving the origin, but the one on the right cannot be. The per-
fectly centered property was previously studied in an article due to Broadie
([6]) where it was called the projection condition. We prefer to use “perfectly
centered” because it gives a better insight into the core characteristic of these
sums.

Using the Theorem 2.4.15, we immediately get the following:

Lemma 6.2.2 A polytope P is perfectly centered if and only if P is centered
and the intersection N (F ; P )∩N (F D; P ∗) is nonempty, for every nontrivial
face F of P .

Proof. By Theorem 2.4.15, for any nontrivial face F ,

N (F D; P ∗) = {λx | λ > 0, x ∈ relint(F )}.
Thus, for every nontrivial face F of a polytope P , the relations relint(F ) ∩
N (F ; P ) �= ∅ and N (F D; P ∗)∩N (F ; P ) �= ∅ are equivalent. Since N (P ; P ) =
{0}, two statements relint(P ) ∩ N (P ; P ) �= ∅ and 0 ∈ relint(P ) are also
equivalent.

This gives us a simple proof of the following duality

Corollary 6.2.3 ([6], Lemma 4.4) The dual of a perfectly centered poly-
tope is perfectly centered.

Here is the main result of Broadie:

Lemma 6.2.4 ([6], Theorem 2.1) If P is a perfectly centered polytope,
then G is a facet of the Minkowski sum P + P ∗ if and only if G is the
sum of a face F of P with its associated dual face F D in P ∗.

Interestingly, Broadie’s article was about a quite different subject, and
this theorem appeared about a variant of the Cayley embedding, in a way
completely unrelated to Minkowski sums.

Corollary 6.2.5 A perfectly centered polytope and its dual are always rela-
tively in general position.

Proof. Let P be a perfectly centered polytope in Rd. For any facet G of
P + P ∗, with G = F + F D, F face of P , we have

dim(F ) + dim(F D) = dim(F ) + (d − 1 − dim(F )) = d − 1 = dim(G).
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We now extend the characterization of facets to all faces and to determine
the face lattice of the Nesterov rounding P + P ∗ of a perfectly centered
polytope.

Lemma 6.2.6 Let P be a perfectly centered polytope. If a facet of P +P ∗ is
decomposed into two faces F ⊆ P and F D ⊆ P ∗, then any nonempty subface
G of F generates with F D a subface of F + F D of dimension dim(G) +
dim(F D).

Proof. This is the case because the faces G and F D span affine spaces
which are orthogonal to each other.

In other words, for any two faces F and G of P with G ⊆ F , G and F D sum
to a face of P + P ∗. We show that there are no other faces in P + P ∗.

Lemma 6.2.7 Let P be a polytope. Let two nonempty faces of its Nesterov
rounding P + P ∗ be decomposed into G1 + F D

1 and G2 + F D
2 . Then

G1 + F D
1 ⊆ G2 + F D

2 ⇔ G1 ⊆ G2, F1 ⊇ F2.

Proof. Let two nonempty faces of its Nesterov rounding P + P ∗ be de-
composed into G1 + F D

1 and G2 + F D
2 .

If G1 ⊆ G2 and F1 ⊇ F2, we have F D
1 ⊆ F D

2 , and thus G1+F D
1 ⊆ G2+F D

2 .
For the converse direction, observe that for two faces A and B of a poly-

tope P , A � B if and only if cl(N (A; P ))∩N (B; P ) = ∅. Assume G1 � G2,
that is, cl(N (G1; P )) ∩ N (G2; P ) = ∅. This implies

cl(N (G1 + F D
1 ; P + P ∗)) ∩ N (G2 + F D

2 ; P + P ∗)

= cl(N (G1; P ) ∩ N (F D
1 ; P ∗)) ∩ N (G2; P ) ∩N (F D

2 ; P ∗)

⊆ cl(N (G1; P )) ∩N (G2; P ) ∩ cl(N (F D
1 ; P ∗)) ∩ N (F D

2 ; P ∗) = ∅.

Consequently, G1 + F D
1 � G2 + F D

2 , and by symmetry, F1 � F2.

Now we are ready to prove:

Theorem 6.2.8 Let P be a perfectly centered polytope. A subset H of P +P ∗

is a nontrivial face of P + P ∗ if and only if H = G + F D for some ordered
nontrivial faces G ⊆ F of P .

Proof. By Lemma 6.2.4, the facets of P +P ∗ are of form F +F D for some
nontrivial face F of P . Lemma 6.2.6 says that if F and G are nontrivial
faces of P with G ⊆ F , then G + F D is a face of the sum polytope. Finally,
Lemma 6.2.7 shows that all the faces are of that kind, since it proves that
there are no other subfaces to the facets.
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Corollary 6.2.9 The face lattice of the Nesterov rounding P + P ∗ of a per-
fectly centered polytope is determined by that of P .

Theorem 6.2.10 The Nesterov rounding of a perfectly centered polytope is
also perfectly centered.

Proof. Le P be a perfectly centered polytope. Let F and G be nontrivial
faces of P with G ⊆ F . We’ll denote by mF and mG the unique points in
their intersections with their respective normal cones. By Theorem 6.2.8, it
suffices to show that mG + mFD ∈ N (G; P )∩N (F D; P ∗). By Lemma 6.2.2,
mG ∈ N (G; P )∩N (GD; P ∗). Also, mFD ∈ N (F ; P )∩N (F D; P ∗). Since G ⊆
F , N (F ; P ) ⊆ cl(N (G; P )). Since mG ∈ N (G; P ) and mFD ∈ cl(N (G; P )),
mG +mFD ∈ N (G; P ). By symmetry, mG +mFD ∈ N (F D; P ∗), completing
the proof.

Note that the sum of two perfectly centered polytopes is not always per-
fectly centered. For example, in Figure 6.2, both rectangles are perfectly
centered, but their sum is not, since the sum of the two marked vertices is
not in its normal cone.

+ =

Figure 6.2: A non-perfectly-centered sum of perfectly centered polytopes

6.3 Repeated Nesterov rounding in dimen-

sion 3

We examine in this section the result of executing many times the Nesterov
rounding on a 3-dimensional polytope. We prove that the ratio of the number
of facets of that of vertices approaches 1, hinting that the repeated operation
tends towards a self-dual polytope not only geometrically, but also combina-
torially.

To simplify, let us use the following notation: f
(n)
k denotes the number

of k-dimensional faces in a centered polytope P after executing the Nesterov
rounding n times.



74 Nesterov rounding

Theorem 6.3.1 Let P be a perfectly centered 3-dimensional polytope. Then
the following relations hold:

f
(n)
0 = 4n−1f

(1)
0 ,

f
(n)
1 = 2 · 4n−1f

(1)
0 , and

f
(n)
2 = f

(1)
2 + (4n−1 − 1)f

(1)
0 .

Proof. Let P be a perfectly centered three-dimensional polytope. By
Corollary 6.2.9,

f
(n)
2 = f

(n−1)
0 + f

(n−1)
1 + f

(n−1)
2 .

It is a general property of face lattices that for two faces G ⊆ F so that
dim(G) + 2 = dim(F ) there are exactly two faces H1 and H2 of dimension
dim(G) + 1 so that G ⊆ H1 ⊆ F and G ⊆ H2 ⊆ F . In a Nesterov rounding,
it means that all (d − 3)-dimensional faces, which are sums of a face G and
F D, G ⊆ F so that dim(G) + 2 = dim(F ) are contained in four (d − 2)-
dimensional faces, which are G + HD

1 , G + HD
2 , H1 + F D and H2 + F D, and

four (d − 1)-dimensional faces, which are G + GD, H1 + HD
1 , H2 + HD

2 and
F + F D. In the 3-dimensional case, it means that all vertices are contained
in four incident edges and four facets. Since each edge contains exactly two
vertices, we have:

f
(n)
1 = 2f

(n)
0 , ∀n ≥ 1.

Since the number of vertices in the next Nesterov rounding is equal to the
number of pairs of a vertex and its containing facets, it also means that:

f
(n+1)
0 = 4f

(n)
0 , ∀n ≥ 1.

Thus we have the following equations:

f
(n)
0 = 4n−1f

(1)
0 ,

f
(n)
1 = 2 · 4n−1f

(1)
0 , and

f
(n)
2 = f

(n−1)
2 + 3 · 4n−2f

(1)
0

⇒ f
(n)
2 = f

(1)
2 + (4n−1 − 1)f

(1)
0 .

Note that the ratio of the number of facets to that of vertices tends
towards 1.
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6.4 Repeated Nesterov rounding in dimen-

sion 4

In this section, we examine the repetition of the Nesterov rounding on a
4-dimensional polytope.

As before, we use the following notation: f
(n)
k denotes the number of

k-dimensional faces in a centered polytope P after executing the Nesterov
rounding n times. Additionally, we define the following terms:

fat(n) =
f

(n)
1 + f

(n)
2

f
(n)
0 + f

(n)
3

is called the fatness of the polytope. It is a ratio between the number of
edges and ridges and that of vertices and facets. Note that the fatness of a
polytope is the same as that of its dual.

complex(n) =
f

(n)
03

f
(n)
0 + f

(n)
3

is called the complexity of the polytope. It is a ratio between the number of
pairs of a vertex contained in a facet and the total number of vertices and
facets. Again, the complexity of a polytope is the same as that of its dual.

These parameters have been introduced in [44], as tools to study the f-
vectors and flag f-vectors of polytopes in dimension four. Their study is of
some interest in the search for efficient convex hull algorithms. In particular,
in the case of algorithms enumerating all faces of a polytope rather than just
its facets, the efficiency is lower when computing “fat” polytopes.

Theorem 6.4.1 Let P be a perfectly centered polytope in Rd. The fatness
of the Nesterov roundings of P tends towards 3.

Proof. Let P be a perfectly centered polytope in Rd. Corollary 6.2.5 tells
us that P and its dual are relatively in general position, as well as all its
Nesterov roundings with their respective dual. Therefore we have:

3f
(n+1)
3 − 2f

(n+1)
2 + f

(n+1)
1 = 3f

(n)
3 − 2f

(n)
2 + f

(n)
1 + 3f

(n)
0 − 2f

(n)
1 + f

(n)
2 .

Using Euler’s formula, we get:

3

2
f

(n+1)
3 − 1

2
f

(n+1)
2 − 1

2
f

(n+1)
1 +

3

2
f

(n+1)
0 = 3f

(n)
3 − f

(n)
2 − f

(n)
1 + 3f

(n)
0 .

We can rewrite this as:

(f
(n+1)
3 + f

(n+1)
0 )(3 − fat(n+1)) = 2(f

(n)
3 + f

(n)
0 )(3 − fat(n)).
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From this we can conclude:

(3 − fat(n+1))

(3 − fat(n))
= 2

f
(n)
3 + f

(n)
0

f
(n+1)
3 + f

(n+1)
0

.

Since f
(n+1)
3 = f

(n)
3 + f

(n)
2 + f

(n)
1 + f

(n)
0 = (f

(n)
3 + f

(n)
0 )(1 + fat(n)), and that

the fatness of a polytope is at least 2, we can conclude that

(3 − fat(n+1))

(3 − fat(n))
<

2

3

And that fat(n) tends towards 3.

6.5 Special cases of Nesterov rounding

We examine in this section the Nesterov rounding on hypercubes and sim-
plices. Using Theorem 6.2.8, we show the resulting f-vectors are defined by
simple functions.

Theorem 6.5.1 Let Δd be a perfectly centered simplex of dimension d. Then,
the f -vector of the Nesterov rounding of Δd is given by

fk(Δd + Δ∗
d) =

(
d + 1
k + 2

)(
2k+2 − 2

)
, for 0 ≤ k ≤ d − 1.

Proof. Let Δd be a perfectly centered simplex of dimension d. The f -
vector of Δd is given by

fk(Δd) =

(
d + 1
k + 1

)
, for 0 ≤ k ≤ d − 1.

By Theorem 5.1.2, the faces of Δd + Δ∗
d can be characterized as the sums

F D + G, with G ⊆ F nontrivial faces of Δd.
Let S and T be the vertex sets of respectively G and F , with S ⊆ T ,

and denote U = T \ S. The dimension k of F D + G is dim(F D) + dim(G) =
d − 1 + dim(G) − dim(F ) = d − 1 + |S| − |T | = d − 1 − |U |.

So the number of faces of dimension k can be written as pq, where p is
the number of possible choices of U with |U | = d−1−k, and q is the number
of choices of S nonempty, so that S ∩U = ∅ and |T | = |S ∪U | < d+1. Thus
we have

p =

(
d + 1
k + 2

)
and q = 2k+2 − 2.
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Theorem 6.5.2 Let �d be a hypercube of dimension d. Then, the f -vector
of the Nesterov rounding of �d is given by

fk(�d + �∗
d) =

(
d

k + 1

)
2d−k−1

(
3k+1 − 1

)
, for 0 ≤ k ≤ d − 1.

Proof. Let �d be a hypercube of dimension d. Then �d has 3d − 1
nontrivial faces, which can be decomposed into:

fk(�d) =

(
d
k

)
2d−k, for 0 ≤ k ≤ d − 1.

By Theorem 5.1.2, the faces of �d + �∗
d can be characterized as the sums

F D + G, with G ⊆ F nontrivial faces of �d.
Let S and T be the sets of fixed coordinates of respectively G and F , with

T ⊆ S, and denote U = S \ T . The dimension k of F D + G is dim(F D) +
dim(G) = d−1+dim(G)−dim(F ) = d−1+(d−|S|)−(d−|T |) = d−1−|U |.

So the number of faces of dimension k can be written as pqr, where p is
the number of possible choices of U with |U | = d − 1 − k, q is the number
of ways to fix the coordinates in U , and r is the number of choices of G, so
that S ∩ U = ∅ and |T | = |S ∪ U | < d + 1. We have

p =

(
d

k + 1

)
, q = 2d−k−1 and r = 3k+1 − 1.

We would like to thank Günter Ziegler, who has greatly contributed to the
simplification of these proofs.
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Chapter 7

Enumerating the vertices of a
Minkowski sum

Une pierre deux maisons trois ruines quatres fossoyeurs un jardin des fleurs
un raton laveur

Jacques Prévert, Inventaire.

We introduce in this chapter an algorithm due to Fukuda ([13]) computing the
V-representation of the Minkowski sum of polytopes also in V-representation.
We also present results of an implementation we did of this algorithm.

7.1 Theory

The algorithm is based on two very simple observations:

1. Vertices of a Minkowski sum are decomposed into vertices of the sum-
mands.

2. Edges of a Minkowski sum are decomposed into vertices and parallel
edges of the summands.

The algorithm consists in exploring the vertices of the Minkowski sum by
moving along edges. For this, we need to identify pairs of vertices which are
linked by an edge.

Proposition 7.1.1 If u and v are adjacent vertices of the sum polytope
P = P1 + · · ·+Pr, decomposed into u = u1 + · · ·+ur and v = v1 + · · ·+vr,
then ui and vi are either equal or adjacent vertices of Pi, and all adjacent
pairs are linked by parallel edges.
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Proof. Let E be the edge of P from u to v, decomposed into a sum of
faces E = E1 + · · ·+Er. Ei are either vertices (ui = vi) or parallel edges (ui

and vi are adjacent).

Therefore, if we have a vertex v of the sum polytope P = P1 + · · · + Pr

decomposed into v = v1 + · · · + vr, the edges incident to the summands vi

give us possible candidates for edges incident to v in the sum polytope P .
For each candidate, we can test whether it is a real edge by trying to find an
hyperplane separating it from the other candidates.

It is easy to find a vertex of the sum and its decomposition, by enumer-
ating the vertices of each summand and choosing the maximal one for any
linear function in general position. Using the method we just described, we
can find the incident edges, and then the adjacent vertices they link to, with
their own decomposition.

From this point, the problem of enumerating all vertices of the Minkowski
sum amounts to finding how to explore one by one the vertices from adjacent
vertex to adjacent vertex in an way as efficient as possible. The following
section describes an ideal solution.

7.2 The reverse search method

The reverse search method was developed by David Avis and Komei Fukuda
for the vertex enumeration problem. However, it can be used more generally
as a technique for enumerating many kind of discrete objects ([1]).

Let us assume we wish to enumerate a large set of objects, which can be
arranged as a graph G(V, E), where the set of nodes V is the set of objects,
and the edges E can be deduced using an adjacency oracle, which allows us
to enumerate the neighbours of a node in the graph.

Let us assume we can define an arborescence on this graph, that is, a
tree of oriented edges with a single sink. A property of arborescences is that
every node except the sink has a single parent, that is, a single neighbour
node in the tree with the edge oriented towards it. We assume we can define
a local search function which determines the parent of any node except for
the sink. We further assume the source node is known.

The reverse search works as follows. The enumeration is initiated at
the source node. From then, the tree is explored using depth-first search.
On each node N of the tree treated, the neighbours of N are enumerated
using the adjacency oracle. The descendants of N in the arborescence are
identified by the fact that N is their parent. When a descendant is found,
its embranchment is fully explored before looking for the next descendant.
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When all descendants are explored, the algorithm goes back one level to the
parent node. Thus, the algorithm examines every node of the graph, testing
each time every neighbour but continuing the search only on descendants,
going down and up every embranchment of the tree until ending on the source
node again.

Reverse search algorithms, if properly implemented, have the following
properties:

1. The number of calls to the oracles is proportional to the size of the
output times a polynomial in the size of the input.

2. Memory size needed is polynomial in the size of the input.

3. Parallel implementation is straightforward.

The first two properties are very important. Many enumeration problems
can have an output size which is exponential in terms of the input size (in
particular, enumerating the vertices of a Minkowski sum fits in this category).
Naturally, at least linear time in terms of the output size is needed for the
enumeration (if only to write results). Reverse search can therefore be said
to have maximal efficiency in terms of the output size, since the computation
time is linear and the memory size independent of the size of the output.

7.3 Reverse search and Minkowski sums

We explain here the details of how reverse search can be applied to the
enumeration of the vertices of a Minkowski sum.

The set V we wish to enumerate is of course that of the vertices of the
Minkowski sum. The graph G(V, E) is the one which is created by the vertices
and edges of the Minkowski sum.

Let P be the Minkowski sum of P1, . . . , Pr polytopes in Rd. Let v be a
vertex of P , decomposing in v1 + · · ·+ vr. In Section 7.1, we have seen that
it is possible to enumerate the adjacent vertices of v. For this, we need to
examine edge candidates which are parallel to the edges incident in Pi to vi

for all i. A candidate is recognized as an edge if we can separate it from
other candidates with an hyperplane, which can be tested by solving a linear
program. This method can be used as an adjacency oracle for the reverse
search method.

The local search function is somewhat trickier, and needs a trip to the
normal fan of the polytope.

For each vertex v of the Minkowski sum P , we need to define a maximizer
vector mv which is inside its normal cone N (P ;v). The facets of the normal
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cone of a vertex are the normal cones of incident edges. Therefore, we can list
the inequalities defining the normal cone by using once again the adjacency
oracle. In fact, it is not even necessary this time to distinguish real edges from
the false candidates, because the inequalities defined by the false candidates
are merely redundant in the description of the normal cone. Once we have
this H-representation of the normal cone, we can find a suitable mv in its
interior by solving a linear program.

mv

mr

�

x

Figure 7.1: Ray shooting to find the parent vertex.

The procedure to find the parent vertex is illustrated on Figure 7.1. Let
r be the vertex of P we chose to be the sink of the arborescence. Let v
be a vertex different from r. We shoot a ray which starts from mv towards
mr. The ray starts therefore in N (P ;v) and ends in N (P ; r). When leaving
N (P ;v), the ray hits a facet of the normal cone (in x on the figure), which
is the normal cone of an edge incident to v. We can determine this facet by
a single step of the simplex method. In case of degeneracies, we can choose
one of the facets it meets at the same point using symbolic perturbations. In
this way, we determine a unique edge E incident to v. We define the parent
of v to be the vertex at the other end of E.

It is important to note that any edge orientation thus created is consistent
with the general orientation of all edges of P by the linear function br. The
linear hull of N (P ; E) divides (Rd)∗ in the two sets of linear functions which
orient E one way or the other. Since the ray from bv to br crosses N (P ; E),
br gives it the same orientation.

Thus, this method defines for each vertex of P except r a single parent
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among its adjacent vertices. Since the orientations created are consistent with
a linear function, they contain no cycle, and so they form an arborescence
with r as sink.

Let us examine the complexity of the algorithm. Let P = P1 + · · ·+Pr be
a Minkowski sum in Rd we are computing. Let mi be the maximal degree of
vertices in Pi for all i, and m = m1 + · · ·+mr the maximal degree of vertices
in P , as implied in Section 7.1. Then the number of times an edge candidate
is tested is in O(mf0(P )). Each of these tests implies the resolution of a
linear program in dimension d with O(m) constraints. The number of times
we need to compute the local search function is in O(mf0(P )), since each
edge of P is tested twice. Each of these imply the resolution of a linear
program in dimension d with O(m) constraints, and a ray shooting, that is a
single pivot of a linear program with O(m) constraints. Therefore, the total
complexity of the algorithm is in O(mf0(P )) resolutions of linear programs
of O(m) constraints.

We also need to compute the adjacency list of each summand Pi, which
is done in O(f0(Pi))

2 resolutions of linear programs with O(mi) constraints.

7.4 Results

Fukuda’s algorithm was implemented in C++, based on a framework devel-
oped for TOPCOM by Jürg Rambau ([38]). Computations are done in exact
precision using the GMP library. The computation of the adjacency matrix of
each summand, the resolution of linear programs and the ray shooting de-
scribed in preceding section are executed by calls to Fukuda’s cddlib library.
The complete source code is available on the web ([41]).

Let us illustrate the efficiency of the algorithm by showing the numerical
results of some problems we studied in the course of this PhD.

First of all, the program is able to handle very large problems without
difficulties. The largest Minkowski sum we computed is that of the Birkhoff
polytopes of the Pappus configuration. The sum is in R28. Though each
of the nine summands has only 6 vertices, the sum has 2.372.583 of them!
Though the computation time was around 4 weeks, the memory size needed
was low. Actually, in this particular case, it is faster to actually enumerate
all possible 69 vertex decompositions, and check for each one whether it is
present in the sum. Since it is the case for 23% of them, we test four times too
many decompositions, but the test can be made with a single linear program,
and so it is very fast. The computation is then done in just over three days.
Nevertheless, it was a good test of the stability of the implementation.
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7.4.1 Hypercubes

In table 7.1 are reproduced the computation time of summing d orthogo-
nal line segments in Rd, that is, computing the vertices of a d-dimensional
hypercube.

dimension vertices edges time lp rs
5 32 80 12 5 0
6 64 192 39 25 1
7 128 448 121 71 5
8 256 1’024 362 238 11
9 512 2’304 1’063 733 33
10 1’024 5’120 2’982 2’114 91
11 2’048 11’264 8’250 5’898 219
12 4’096 24’576 21’917 16’065 523
13 8’192 53’248 57’724 42’905 1’310
14 16’384 114’688 149’770 113’289 3’161
15 32’768 245’760 381’683 291’584 7’896

Table 7.1: Computation times (0.01s) for computing d-dimensional hyper-
cubes.

The “lp” and “rs” values indicate the total time used for computing the
solution of a linear program or a ray shooting respectively. Though there is
one ray shooting executed for each edge of the Minkowski sum, the computa-
tion time is very small. The computation time for solving linear programs is
quite large as expected. We can see that as dimension grows, it amounts to
more than 75% of the total computation time. The rest of the computation
time is used for actually building the linear programs before feeding it to the
solver.

7.4.2 Hidden Markov Models

In table 7.2 are reproduced the computation time of the different inference
functions of an Hidden Markov Model (HMM) of different lengths.

Here, the column “bld” contains the time used just to build linear pro-
grams testing whether a candidate is an edge or not. We observe that this
takes almost as much as solving linear programs! We can deduce from this
that the linear programs are quite large, but are solved very fast.
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length vertices facets time lp bld
2 38 2 26 16 12
3 398 71 1’566 644 419
4 1’570 225 25’502 8’844 7’957
5 5’266 749 413’620 139’139 120’699
6 17’354 2’507 6’176’450 2’109’214 1’526’135
7 55’230 8’516 54’431’755 18’834’517 12’959’941

Table 7.2: Computation times (0.01s) for HMM of different lengths.
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Figure 7.2: A hidden Markov model of length 4.
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Hidden Markov Models

Hidden Markov Models are used to study chains of informations which
we may observe only indirectly (see Figure 7.2). The chains are mod-
elized by a homogeneous Markov chain (l1, . . . , ln), from which we derive
observations (l′1, . . . , l

′
n), which are imperfect.

Briefly presented, the goal of the computation is to compute the number
of distinct functions inferring the values of an hidden Markov chain of
length n on the basis of observed values.
If the values are binary, and the transition probabilities of the chain
and the observations are coded in two transition matrices A and
B, then the probability of realizations are polynomials in R8 =
(α00, α01, α10, α11, β00, β01, β10, β11). For a certain observation (l′1, . . . , l

′
n),

the inference function consists in choosing the values (l1, . . . , ln) maxi-
mizing the likelihood. If we represent the logarithm of the polynomials
as vectors in R8 = (ln(α00), . . . , ln(β11)), this amounts to solving a linear
program on their convex hull.
So for one observation, the different inference functions are represented by
the vertices of a polytope. For many observations, the different inference
functions are represented by the vertices of the Minkowski sum of the
respective polytopes.
Combinatorially, the computation is a sum in R8 of 2n polytopes of about
2n vertices each. The summands are actually 4-dimensional, and the sum
5-dimensional.
For more information on the subject, please refer to [36].

7.4.1 Distributed sums

We study in this section whether it is efficient to decompose sums of many
polytopes in distributed sums in order to speed up the computations. We
tried for this three different schemes for computing the Hidden Markov Model
of length 4, which we compare in Table 7.3. HMM’s are ideal for such a study,
since the number of summands is a power of two. We name the sixteen
summands 1 to 9, then A to G.

The first scheme consists in simply summing all polytopes in a single
computation. It is denoted by 1 + · · · + G in Table 7.3.

The second scheme is incremental. It consists in summing first 1+2 = 12,
then 12 + 3 = 123, 123 + 4 = 1234, and so on.
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The third scheme is pyramidal. We first sum of polytopes by pairs, such
as 1 + 2 = 12, 3 + 4 = 34, and so on. We then sum the results by pairs,
such as 12 +34 = 1234 and 56 +78 = 5678, and again until all polytopes are
summed.

sum vertices time init diff
1 + · · ·+ G 1’570 25’502 428 26’074

1 + 2, 7 + 8, 9 + A, F + G 36 73 43 30
3 + 4, 5 + 6, B + C, D + E 48 127 65 62

12 + 34, . . . , DE + FG 148 845 608 237
1234 + 5678, . . . 494 13’715 12’945 770

12345678 + 9ABCDEFG 1’570 381’865 379’784 2’081

Table 7.3: Computation times (0.01s) for different sums.

The “init” column indicates the time necessary for the initial step of
the algorithm, which is to compute the adjacency of the summands. The
“diff” column indicates the time taken by the rest of the algorithm. Since
the complexity of computing the adjacency of a polytope is in the square of
its number of vertices, we see immediately the problem of distributed sums:
Computing the adjacency of intermediate results takes much more time than
solving the whole problem.

It would be possible to modify the algorithm so as to output the adja-
cency list of the Minkowski sum as well as its vertices, without changing its
complexity. In this case, this initial step should become unnecessary and the
time gained by distributing the sums would be appreciable. However, this
would require larger amounts of memory to store intermediate results.





Chapter 8

Enumerating the facets of a
Minkowski sum

Da steh ich nun, ich armer Tor!
Und bin so klug als wie zuvor.

Johann Wolfgang von Goethe, Faust.

As stated before, some problems of computational geometry are much eas-
ier to solve when using polytopes in V-representation than polytopes in H-
representation. Unfortunately, Minkowski sums of polytopes is one of them.

Indeed, the vertices of a Minkowski sum are very easy to characterize,
since they decompose in a sum of vertices of the summands. By contrast, the
facets of a d-dimensional Minkowski sum of r polytopes can be decomposed
into a multitude of ways.

For instance, let P = P1 + P2 be a Minkowski sum in dimension three.
Facets of P can decompose into a vertex of P1 plus a facet of P2, a facet of P1

plus a vertex of P2, or an edge of P1 plus a edge of P2. Those are the exact
decompositions, where the dimension of the sum is equal to the sum of the
dimension of the summands. If we allow the decomposition to be inexact,
facets of P can also be the sum of an edge and a facet, or even of two facets.

It is not difficult (and an interesting exercise) to prove that if P is the
d-dimensional Minkowski sum of r polytopes, then there are(

d + r − 2
d − 1

)

different ways for (d−1)-dimensional facets to have an exact decomposition,
and if we allow inexact decompositions, the number of possibilities is

dr −
(

d + r − 2
d − 2

)
.
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What’s more, we have shown in the preceding chapter that it is quite easy
to have an adjacency oracle determining the edges incident to the vertex of a
Minkowski sum. However, computing the (d−2)-dimensional ridges incident
to a (d − 1)-dimensional facet of a Minkowski sum amounts to finding the
(d− 2)-dimensional facets of a (d− 1)-dimensional Minkowski sum! For this
reason, it would generally be very inefficient to use an algorithm based on
the same principles as in the preceding chapter. Every step of the algorithm
would be in the worst case almost as complex as the initial problem, and
we would end up computing recursively all faces of the polytope, down to
vertices.

There is however an exception. When the summands are relatively in
general position, the facets have an exact decomposition, and so, their face
lattices are isomorphic to those of Cartesian products. In this case, an oracle
for listing the ridges incident to a facet can be built as follows. Let P =
P1 + · · ·+ Pr be a Minkowski sum. Let F be a facet of P with F1, . . . , Fr its
exact decomposition. Then a set F ′ is a facet of F if and only if

F ′ = F1 + · · · + Fi−1 + Gi + Fi+1 + · · · + Fr

For some facet Gi of Fi, with dim(Fi) ≥ 1. Note that it may be necessary to
compute the whole face lattices of the summands to use this oracle, instead of
merely their vertex adjacency lists. Nevertheless, it makes it possible to cre-
ate an algorithm for computing the facets of a Minkowski sum of polytopes,
assuming they are relatively in general position.

From there, one might be able to design a general algorithm using some
kind of symbolic perturbation which would make input polytopes satisfy this
assumption. The complexity of such a technique is uncertain, and should be
studied carefully.

Another way to compute the facets of a Minkowski sum is naturally to
first compute its vertices, then compute from there its facets. However, this
solution is not satisfying, for reasons which are explained in next section.

8.1 Convex hull

A core element in the study of polytopes is their duality, that is, the fact
they can be represented as the intersection of a finite number of half-space
(the H-representation), or as the convex hull of a finite number of vertices
(the V-representation).

The convex hull problem, which consists in transforming a V-representation
into H-representation, is therefore at the center of the computational ge-
ometry on polytopes. The inverse question, called vertex enumeration, of
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transforming a H-representation into a V-representation actually amounts
to virtually the same problem: From a polytope in H-representation, it is
trivial to compute the V -representation of its dual. If we solve the convex
hull problem on the dual to find the H-representation of the dual, we can
then easily deduce the V -representation of the starting polytope.

Not only is the convex hull problem one of the most basic questions, it
is also the one with the most applications. Many problems about polytopes
can be solved naturally and easily by using one representation, but are con-
siderably more difficult when using the other. For instance, the intersection
of two polytopes is quite easy to do using H-representation, as it is enough
to remove the half-spaces which are redundant. Doing the same using V-
representation is considerably more difficult. On the contrary, computing
the Minkowski of two polytopes is much easier with V-representations than
with H-representations.

This would be unimportant if the convex hull problem were easy to solve.
Unfortunately, it is not. In fact, even if we have a list of inequalities, there is
currently no known easy way to check whether the list is complete or not. It
has even been proved that the more general problem concerning polyhedra is
NP-Complete ([25])! We attempt here to explain the difficulties encountered.
For simplicity, we take as example the inverse problem of vertex enumeration,
which is as we said equivalent by duality.

8.1.1 Double description

Let us outline an algorithm for enumerating the vertices of a d-dimensional
polytope in H-representation. It was presented by Motzkin at al. in 1953
([33]).

Algorithm 8.1.1 (Double description)

Input: h1, . . . , hm half-spaces

Output: v1, . . . , vn vertices

P = Rd

V = ∅
for i:= 1 to m {

Add to V vertices created by cutting P with hi

Remove from V points which are beyond hi

P := P ∩ hi

}
Output V
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This corresponds to computing successively the vertices of h1, h1 ∩ h2, h1 ∩
h2 ∩ h3 and so on until we have run out of half-spaces, removing as we go
vertices which are cut off from the polytope by the half-space we are adding.

The problem of this algorithm is that we may need to compute many
unnecessary vertices. An example of application to the regular nonagon is
shown on Figure 8.1. We can see that we compute six unnecessary vertices
for nine in the solution.
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6

7

8

9

Figure 8.1: Computation of the vertices of a nonagon

The number of unnecessary vertices can sometimes be reduced by using
the right insertion order for the half-spaces. However, it has been proved
that in some cases, all orderings compute a number of unnecessary vertices
which is exponential in terms of the input and the output ([4]).

It is interesting to note that it is possible to transpose the Double De-
scription algorithm in the dual space to compute the convex hull of a set of
points. The principles of this dual version, called beneath and beyond, were
presented by Branko Grünbaum in 1963 ([19]).

In brief, this algorithm works by adding vertices one by one to a polytope,
computing for each step the new convex hull by adding new facets formed
by the new point with old ones, and removing facets which are visible from
the new point. The duality is complete! If both algorithms are used on dual
centered polytopes, each computation on one side is mirrored on the dual.
The relations between the different steps of both algorithms are shown in
this table:
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Double description Beneath and beyond
Input: facets Input: vertices

Output: vertices Output: facets
Add facet 〈ai,x〉 ≤ 1 Add vertex ai

Compute vertices of intersection Compute facets of convex hull
Remove vertices beyond 〈ai,x〉 ≤ 1 Remove facets beyond which ai is.

8.2 Overlay of normal fans

As we have seen in the preceding section, it is difficult to deduce the facets of
a polytope from its vertices. Therefore, we should look for a way to compute
the facets of a Minkowski sum directly.

We present here a quite efficient method which was proposed by Guibas
and Seidel in [22]. As we said before, the normal fan of polytopes contains
all of their combinatorial organization. It is therefore enough to compute the
normal fan of a Minkowski sum to have its combinatorial properties. We can
then easily deduce the polytope itself by combining these informations with
the summand polytopes.

We know that the normal fan of a Minkowski sum is the common refine-
ment of the normal fans of its summands. The particular interest of working
with normal fans is that their structure is essentially simpler by one rank com-
pared to the polytopes: We can intersect them with a sphere of radius one
without losing any information. For this reason, computing the Minkowski
sum of three-dimensional polytopes is equivalent to computing the common
refinement of polyhedral complexes on the surface of a three-dimensional
sphere, which is a two-dimensional manifold.

This is great news, because many problems of computational geometry
are considerably easier in dimension two than three. For instance, computing
the common refinement of cell complexes in two dimension can be done in
O(n + k) log n) time, where n and k are the size of the input and the output
respectively, by using a sweeping plane algorithm.

So we arrive to a simple and efficient method to compute the facets of a
Minkowski sum in dimension three:

1. Compute the normal fan of the polytopes,

2. Compute the intersection of the normal fans with a sphere,

3. Compute the overlay of the resulting polyhedral complexes.

The vertices of the overlay then correspond to facets of the Minkowski sum.
The edges of the overlay provide the facet adjacency.
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This method was implemented with great success in a slightly modified
version (intersecting the normal fans with the surface of a cube instead of
a sphere, so as to avoid working in a non-Euclidean space) by Fogel and
Halperin ([11]).

Unfortunately, it is impossible to generalize this method to higher dimen-
sions. Even adapting it to the sum of four-dimensional polytopes seems quite
difficult. The reason being that while efficient algorithms exist for computing
the common refinement of two polyhedral complexes in dimension two, their
complexity grows quickly in higher dimensions.

The reason of this is quite simple: The vertex of a common refinement in
dimension two is either a vertex of the starting complexes, or the intersection
of two edges. But in higher dimensions, there are more possibilities, corre-
sponding to the many decomposition possibilities of a facet in the Minkowski
sum. As we hit the same roadblock, we are forced to conclude that an ef-
ficient algorithm for computing facets would require a completely different
strategy.

8.3 Beneath and beyond

Another approach for computing facets of Minkowski sums has been de-
veloped and implemented by Peter Huggins in the special case of sequence
alignment problems ([23]). It consists in executing a beneath and beyond
algorithm as presented in Chapter 8.1, computing for each step a new vertex
of the Minkowski sum.

Let us explain it in more details. We start from the V-representation of
the summands. For any linear function a, it is easy to find the vertex of
the Minkowski sum which is optimal for a. Indeed, the maximum vertex for
the Minkowski sum is the sum of the maximum vertices for each summand.
These can be found by a simple vertex enumeration. In the special case of
sequence alignments, Huggins uses the Needleman-Wunsch algorithm ([34]).

We start by finding d + 1 vertices of the Minkowski sums by optimizing
in various directions, and compute the facets of their convex hull. We add
vertex by vertex to the simplex P thus found, as in a classic beneath and
beyond algorithm, until the Minkowski sum is complete.

For each facet (a, β) of the polytope P , we find the vertex v of the
Minkowski sum which is maximal for the linear function a. If v is on the
facet (a, β), then the facet is a facet of the Minkowski sum.

If v is not on (a, β), then we add it to P like for beneath and beyond: We
compute the new facets in conv(P ∪ v), and remove the facets of P visible
from v.
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When all facets have been checked, the Minkowski sum is complete.
The implementation Peter Huggins did of this algorithm is extremely fast:

HMM6 and HMM7 are computed in a few minutes, when our implementa-
tion takes days, without even computing facets! The implementation uses
floating-point arithmetic, which is faster than exact precision, but its speed
is nevertheless impressive. One possible problem of this algorithm is that it
shares with beneath and beyond the drawback of its exponential time and
memory requirements in terms of the input and the output size. However,
this is the case for all incremental algorithms computing the convex hull.





Part IV

Conclusion





Chapter 9

Open Problems

Il lavoro cessa al tramonto. Scende la notte sul cantiere.
È una notte stellata. - Ecco il progetto, - dicono.

Work stops at sunset. Night falls over the construction site.
It’s a starry night. Here is the project, they say.

Italo Calvino, The Invisible Cities.

Despite the simplicity of the definition of Minkowski sums, and their large
number of applications, we are still relatively ignorant of many of their com-
binatorial properties, even in quite trivial cases. For instance, we have only
conjectures about how many vertices the sum of three polytopes in dimension
three can have!

Though the complexity of the problem partly explains the lack of results,
another cause is certainly that the combinatorial study of Minkowski sums
is a rather recent subject of research. We are convinced that there are many
new results just waiting to be discovered.

9.1 Bounds

An obvious direction of research would be to look for more bounds of all
kinds on the complexity of the sum.

The results of Section 4.3 state that the trivial bound on vertices can be
reached when summing two polytopes in dimension 4. However, we found in
Section 4.2 that it was also possible in dimension 3. It is an open problem
whether the other bounds from Section 4.3 are optimal for dimension, but it
seems unlikely.

We know very little of bounds on the number of vertices when the trivial
bound cannot be reached, that is, in Minkowski sums of k polytopes in
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dimension d, with k ≥ d. Though a construction has been proposed in [12],
its maximality is not established.

It would also be desirable to find bounds on faces of higher dimensions,
as the only known bound on facets is for dimension three. For instance, the
Hidden Markov Models introduced in Section 7.4 generate a much smaller
number of facets than predicted by theory. Though they amount to a sum in
dimension five, we are for the moment at a loss to explain the phenomenon.

9.2 Relation

The linear relation presented in Chapter 5 is limited to sums of polytopes
relatively in general position. Though the relation fails in other cases, it
remains to be seen whether it is possible to find extensions, factoring the
faces which have inexact decompositions.

Additionally, it is likely that it is possible to extend the relation to more
general families of objects. It can of course be applied to the dual operation
of Minkowski sums of polytopes, that is the common refinement of normal
fans. With minimum modifications to our proof, it should be possible to show
that the relation remains valid for the refinement of all polyhedral complexes
in general position, and even for the refinement of non polyhedral complexes,
as long as cells before and after the refinement are topologically contractible.

9.3 Nesterov Rounding

Though Nesterov rounding might seem such a specific operation as to have
no applications, it has been already extraordinarily helpful for finding new
theoretical results. Apart from zonotopes, the Nesterov rounding of perfectly
centered polytopes in the only family of Minkowski sums for which we have
complete knowledge of the f-vector.

Additionally, the asymptotic properties of a polytope rounded repeatedly
are quite remarkable. Though it has already been proved that the rounded
object tends to a self-dual one geometrically, there are hints indicating that
the f-vector itself tends to become more and more symmetrical. We have
proved this for dimension three, in Section 6.3, but the problem remains
open for higher dimensions.
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9.4 Algorithmic developments

There are many different paths to explore from the algorithmic point of view,
be it by extending and improving current ones, or looking for new ones.

While the current implementation of the algorithm described in Chapter 7
is very reliable and versatile, it has shown on some occasions to be much less
efficient than other implementations. The most obvious way to improve it
would be to write a parallel version. As mentioned, the reverse search method
is perfectly suited to parallelization, and the speed-up can be expected to be
nearly optimal.

Another way to make the program faster would be to implement a floating-
point version. Though it would mean some uncertainty with regards to the
combinatorial structure of the result, the geometrical properties would likely
be close enough for most applications.

Other algorithms may be extended, for instance, the one presented in
Chapter 8.2 is currently limited to dimension three. It should be possible, if
not easy, to extend it to dimension four or five .

It would also certainly be interesting to investigate the algorithm we
sketched in the introduction of Chapter 8, which computes facets of the
Minkowski sum of polytopes relatively in general position. We might then
be able to extend it to more general cases.

Generally, it is frustratingly simple to find one particular vertex or facet of
a Minkowski sum. The difficulty resides in enumerating all of them efficiently.

A completely new approach would be to exploit the symmetries of the
Minkowski sum. Hidden Markov model problems are highly symmetric, and
so would be a typical example. This method has recently been thoroughly
researched concerning the convex hull problem. (For an excellent survey, see
[5].)

Thankfully, there are enough applications of Minkowski sums, from biol-
ogy to computer graphics, to assume that the research won’t stop here.





Thanks

So, good night unto you all.
Give me your hands, if we be friends,

And Robin shall restore amends.
William Shakespeare, A Midsummer Night’s Dream.
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and Möbius functions. Aequationes Math., 6:235–240, 1971.

[28] L. Lovász. Problem 206. Mathematikai Lapok, 25:181, 1974.

[29] T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-
free paths among polyhedral obstacles. Commun. ACM, 22(10):560–570,
1979.

[30] P. McMullen. The maximum numbers of faces of a convex polytope.
Mathematika, 17:179–184, 1970.

[31] H. Minkowski. Volumen und Oberfläche. Mathematische Annalen,
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Euler’s formula, 32, 33, 64–66, 75
exact decomposition, 63

f-vector, 32
face, 30–34

trivial bound, 59
face lattice, 31
facet, 30
finitely generated, 27
flag f-vector, 33

generated, 26, 27
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