
On Optimal Replication Group Splits in P2P

Data Stores Based on the Hypercube

Dietrich Fahrenholtz1, Volker Turau1, and Andreas Wombacher2

1 Hamburg University of Technology, Institute of Telematics, Germany
{fahrenholtz|turau}@tu-harburg.de

2 Swiss Federal Institute of Technology, Dist. Information Sys. Lab., Switzerland
andreas.wombacher@epfl.ch

Abstract P2P data stores excel if availability of inserted data items
must be guaranteed. Their inherent mechanisms to counter peer pop-
ulation dynamics make them suitable for a wide range of application
domains. This paper presents and analyzes the split maintenance opera-
tion of our P2P data store. The operation aims at reorganizing replication
groups in case operation of them becomes sub-optimal. To this end, we
present a formal cost model that peers use to compute optimal points
when to run performance optimizing maintenance. Finally, we present
experimental results that validate our cost model by simulating various
network conditions.

1 Introduction

Peer-to-Peer network research over the last few years was mainly inspired by de-
vising and proving novel Peer-to-Peer networks (P2PN) that exhibit good lookup
performance [7], low maintenance overhead [9], or resilience against peer popu-
lation dynamics [11] to quote a few research objectives. Today the application
domains that drive research focus on storage of reputation and trust information
[10] or distributed variants of DNS [1], for example. These domains demand that
data inserted be available. P2P data stores promise to satisfy this demand. They
employ a distributed hash table (DHT) that maps a large key space onto a set of
network nodes in a distributed and deterministic manner. However, performance
of data access and data availability can be severely affected by peer population
dynamics (aka. churn or fluctuation). The turnover rate at which peers join or
leave the P2P data store characterizes fluctuation. The latter can both threaten
data availability and impede good performance. So every P2P data store has to
take its own countermeasures against churn.

The paper is structured as follows: First, we introduce briefly our P2P data
store and how peers organize to guarantee performance and cope with a growing
peer population (section 2 and 2.1). Second, we contribute a novel cost model
used to derive optimal thresholds of number of peers in a group for a split that
ensures the P2P data store keeps its performance (section 4). Then simulation
experiments show how to derive split thresholds from the model and confirm
their optimality and adequacy for our P2P data store (section 5).



2 Key ideas of our P2P data store

Due to space constraints we can only briefly present the key ideas of our P2P data
store. More details can be found in [4]. Peers connect to a network infrastructure
and collaborate to form an overlay network with hypercube topology that helps
locate data items efficiently. Data items can be accessed and manipulated by
basic DHT operations, namely insert, update, and lookup. Upon joining, a peer’s
local data store is empty. Note, as opposed to pure P2P networks, only P2P
data stores guarantee successful discovery of previously inserted data items with
configurable likelihood.

By definition, a hypercube of dimension d has N = 2d nodes, where each
node is associated with an ID represented by a bit vector of size d. A node is
connected with d other nodes via bidirectional links. In particular, there is a
connection between two nodes if their bit vectors exactly differ in one bit in
which case we call the two nodes acquainted. Each peer stores a routing table
that is made up of d references to remote nodes in different dimensions. All
peers act independently and autonomously of one another. So peers’ natural
behavior, i.e. joining and leaving the P2P data store at one’s own discretion,
directly affects the availability of data items. In the worst case this would lead
to data loss or, less worse, severe performance degradation because only few
remaining peers would have to answer all requests. Our P2P data store employs
the concept of replication groups, which are identical to hypercube nodes. Every
group contains a number of peers that are neighbors of one another. They store
and replicate data items of the node to which they belong, thus guaranteeing
data availability for these data items. Inter-group self-organization must take
precautions against a shrinking peer population. We analyzed this issue and
proposed the coalesce maintenance operation that ensures data availability with
configurable confidence in [2]. Peers can be in two distinct states: active, i.e.
online and a member of the P2P data store, or inactive otherwise. Each node
also has at least one coordinator that is responsible for bootstrapping joining
peers, administering group data such as the group’s neighbor list, and performing
regular maintenance operations.

2.1 Self-organization of the P2P data store

Every P2P network needs self-organization so that peers can issue and answer
lookup, insert and update requests successfully despite fluctuation of the peer
population. The primary goals of self-organization are 1) maintain data avail-
ability, P2P data store performance, and overlay network cohesion and, at the
same time, 2) keep maintenance bandwidth consumption as low as possible.
However notice, the more bandwidth is spent on maintenance the better overlay
network cohesion, but also the less bandwidth remains for data manipulation
and retrieval operations. We devised two essential self-organization operations,
i.e., split and coalesce. Both target the replication group level but have differ-
ent objectives. Technical details about how they operate can be found in [4].
The objective of the coalesce operation is to preserve data availability which is
equivalent to the number of peers of each group must not fall below a minimum
threshold. If peers continuously leave the P2P data store and fusions of nodes



never happen, this objective would be violated over the course of time and data
loss would ensue. We analyzed this operation in [2] and showed how coordinators
calculate the optimal point for coalescence so that sibling groups do not loose
data items with high probability. In contrast to a coalescence, a split is invoked
to optimize performance while still guaranteeing data availability. To this end,
a coordinator splits up its group into two sibling groups each containing half of
the peers and retires the parent group. Thus maintenance costs and request load
are distributed. In the next sections we shall analyze this operation and give a
cost model that is used by coordinators to compute the optimal point when to
split up their groups.

3 Related work

Every P2P network destined for real world deployment has to provide mecha-
nisms that handle both concurrent and sustained peer joins and leaves while also
keeping the network connected. There are relatively few papers addressing this
issue in P2P data stores. Bamboo [11], for example, uses periodic maintenance to
keep nodes’ routing tables consistent thus ensuring good lookup performance in
case of high peer population dynamics. The Kelips system [5] like Bamboo em-
ploys a periodic but, in contrast to the latter, epidemic-style communication to
distribute membership information about peers. In these systems, a file-inserting
peer must either periodically refresh its file to keep it from expiring (Kelips) or
rely on a service outside the DHT (Bamboo). However, maintenance operations
in both systems do not optimize system performance but rather ensure good
operation. Instead, in our P2P data store, replication groups maintain and guar-
antee data availability and thus free inserting peers from the burden of refreshing
their data, which is a substantial step towards P2P databases. Authors of [8] pro-
pose a P2P system that bears a strong resemblance to our P2P data store and
thus also withstands high fluctuation. In their approach, maintenance operations
called split and merge ensure routing tables do not become too large and data
loss is avoided, respectively. However, they do not use an optimization approach
as we do to compute best split thresholds. We think the solution presented in
this paper naturally lends itself to also optimize their system.

4 Optimum for a split

Before we describe the process by which a coordinator arrives at a decision
whether a split is optimal, we state several conditions to hold throughout the
lifetime of our P2P data store: 1) Coordinators involved in a split do not leave
the network. 2) There is an upper bound on network packet transmission and
processing delay. 3) Messages are transferred reliably. 4) Every peer can reach
every other peer. We further assume there are periods where the P2P data store
grows so that eventually group splits become necessary. Moreover, events such as
a peer joins or leaves occur at their individual rate (λjoin, λleave) and are random
by nature. The time between two events of the same type is called interarrival

time being measured by coordinators. A group is idle if no event occurs. Events
depending on user behavior such as insertions, updates, and lookup operations



are unpredictable, whereas other events such as routing table updates occur
regularly as do heartbeats, which are sent from peers to their coordinator to
indicate their liveliness.

Every group has to react to requests such as answering lookup requests, join-
ing new peers, etc. To this end, communication with other peers is indispensable.
We call the number of bytes being transferred during communication the costs

of an operation because peers need to “spend” bytes to receive and answer re-
quests. The task of any coordinator is to maintain its group and access local
data only when calculating group costs. Thus, extra communication is avoided.
In this paper we analyze the split maintenance operation invoked whenever it is
better to distribute operational costs to two groups.

4.1 Operating groups and costs

Next, we give cost functions for operational costs, which are separated into re-
ceiving and sending costs. For a detailed explanation concerning the individual
costs functions see [3]. γpct denotes the constant overhead to packetize a request
and γdata is the constant size of a data item. α and β give the size of additional
meta data. Variable C is the current number of active peers in a group, R is the
sum of all peer references currently stored in the routing table of that group’s
coordinator, and d is the current dimension of the group. Moreover, 7 bytes are
necessary to uniquely identify a peer.
1. Join new peer: costjoin(C, R) := 7C + 7R + γpct

2. Insert/update data item: costins upd(C) := C(γdata + γpct)
3. Failure detection: costfd() := α + γpct

4. Send neighbor list: costrt upd↑(C, d) := (d + 1)(7C + β + γpct)

5. Receive and forward neighbor list: costrt upd↓(C, R) := C(7R + β + γpct)
When multiplying individual costs with average event rates (denoted by

λxxx), we obtain net costs coordinators have to spend. Cost figures are updated
whenever a new peer joins a group. We give sending and receiving operational
costs first.

cost′opr↑(C, R, R, d) := λjoin · costjoin(C, R) + λins upd · costins upd(C) +

λrt upd↑ · costrt upd↑(C, d)

cost′opr↓(C, R, R, d) := λhb · costfd() + λrt upd↓ · costrt upd↓(C, R)

(1)

Finally, we add costs for acknowledging requests to obtain total costs.

costopr↑(C, R, R, d) := cost′opr↑(C, R, R, d) + costack(cost
′
opr↓(C, R, R, d))

costopr↓(C, R, R, d) := cost′opr↓(C, R, R, d) + costack(cost
′
opr↑(C, R, R, d))

(2)

Peers that are not coordinators have operational costs, too. Their costs should
influence the point in time when to split up the group they belong to. When-
ever peers answer lookup requests that pertain to data items they store, their
individual operational costs increase. On the other hand, they forward requests
they cannot answer. We do not want request forwarding to contribute to peers’
operational costs because it does not concern data items stored in forwarding
peers. Every split of a group extends routing paths of a number of lookup re-
quests by one thus causing higher latencies for these requests. We think if peers



in a group have to answer many lookup requests on average, splitting up this
group should be postponed until lookup request rate decreases. A penalty func-
tion, P(λlook) := ζ ·λlook · (γdata +γpct) that grows with the number of answered
lookup requests meets this requirement. The sum γdata + γpct denotes the num-
ber of bytes of an answer. λlook is the current average lookup rate of all C peers
in a group and ζ ≥ 1 is a scale factor fixed at the start of the P2P data store.

4.2 Group maintenance and costs

Of course, group maintenance also incurs costs and we give split costs here. For
further details, see [3]. In what follows, δ and γstats denote the number of bytes
for sending bounds and group statistics, respectively.
1. Send new bounds and neighbor lists: costnb nl(C) := C

2

(

7C
2

+ δ + γpct

)

2. Determine new coordinators: costnc() := γstats + γpct

After a split, a routing table update advises acquainted nodes of the two new
sibling groups. Thus, total split costs sum to

costsplit(C) := 2 · costnb nl(C) + costnc() + costrt upd↑(C, d − 1)+
costack(2 · costnb nl(C) + costnc() + costrt upd↑(C, d − 1)) .

(3)

Notice, the split maintenance operation makes sure the hypercube remains bal-
anced, i.e., there is no more than one dimension difference between acquainted
nodes.

4.3 Split model

We are now ready to formulate a model to be solved by Nonlinear Programming,
an Operations Research tool [6], that helps coordinators decide when a split is
optimal. To this end we, first, introduce parameters of the model. We let

costopr↑(C, R, R, d) + costopr↓(C, R, R, d) − P(λlook)

costsplit(C) + costopr↑(C′, R′, R′, d + 1) + costopr↓(C′, R′, R′, d + 1)
(4)

be the objective function to be maximized subject to constraints

costopr↑(· · · ) < BC↑ , (5)

costopr↓(· · · ) < BC↓ , (6)

⌊C/2⌋ > Cmin , (7)

λjoin − λleave > 0 . (8)

Here Cmin is a lower bound of peers a group resulting from a split must contain
to guarantee data availability also taking into account the group size change rate,
defined by constraint (8), might become negative after a split. Values of Cmin are
unique for each group. With a method presented in [2], coordinators compute a
prediction of Cmin whenever an event in their groups occurs. The denominator of
eq. (4) estimates costs of one of the sibling groups resulting from a split plus the
split costs. However, those costs need adapted event rates. Specifically, join rate,
heartbeat rate, and insert/update rate halve on average. This is because events



occur uniformly at random over the complete search interval and each new group
assumes responsibility for half of the parent’s group search interval. However, the
number of future routing table updates in both directions will increase by one
per update period because such updates must also reach the other sibling group.
New sibling groups contain C′ = C

2
peers and have R′ = R + C

2
peer references

overall in their routing table leading to R′ = dR+C/2

d+1
peer references on average.

Peers can have an asymmetric network connection (e.g., ADSL) and we take this
into account by introducing BC↑, which is the available sending bandwidth of
a coordinator, and BC↓, which denotes its available receiving bandwidth. If the
ratio in (4) is maximal and all constraints hold, then this defines the best point
when to split a group. Constraints (5) and (6) have special importance. If one or
both of them become false and constraint (8) is true but constraint (7) is not, a
coordinator must hand over the coordinator role to a different peer in its group
that is more capable in terms of bandwidth. Notice that variables C, R, and all
event rates are random and thus there is no single optimal solution that can be
analytically derived. Thus this model needs to be validated with simulations.

5 Experiments for split threshold determination

We now briefly describe our simulator, the experiments that show the behavior
of the optimization model, and that computed split thresholds are practical in
various scenarios.

5.1 Simulation setup

We developed an activity-based simulator written in Java that allows concurrent,
non-deterministic peer interactions. Every peer is associated with a thread and
interacts with others through objects providing a message channel abstraction.
There are configuration directives such as number of coordinators per group,
maximum group size, etc. to set up our P2P data store. Network parameters
such as packet failure percentages and latencies can also be adjusted. Moreover,
the type, the frequency in percent, and the total number of data store layer
operations that are to occur in a simulation phase can be set. Finally, the mean
interarrival time between two consecutive data store layer operations and the
configuration of how statistics should be gathered can be tuned.

Essentially, in each experiment the peer population grows at a specific pos-
itive group size change rate. Peers join hypercube nodes uniformly at random.
Once a new peer has joined, the joining coordinator employs a search procedure
to find the current split threshold that maximizes the objective function. All
simulations are separated into three phases. First of all, a minimum number of
peers joins the initially empty P2P data store. This leads to a number of group
splits until the hypercube contains a target number of nodes. Second, a phase in
which a phase-specific number of distinct data items are spread uniformly about
existing groups follows. This phase also stabilizes the P2P data store, i.e., the
average turnover rate reaches zero. Finally, the third phase grows the overall peer
population at a phase-specific positive group size change rate. For details about
parameter settings, we have to refer the reader to [3] due to space constraints.



 0

 5

 10

 15

 20

 25

 30

 35

 0  1  2  3  4  5  6  7  8

 0  1  2  3  4  5  6  7  8

P
e

e
rs

 i
n

 g
ro

u
p

P2P data store dimension

Split thresholds (no data items)
Safety margin (no data items)

Figure 1. Simulation results varying
number of groups

 10

 12

 14

 16

 18

 20

 22

 24

 0  2  4  6  8  10  12  14  16

 0  5  10  15  20

P
e

e
rs

 i
n

 g
ro

u
p

Mean interarrival time [secs]

Split thresholds (2 dim.)
Split thresholds (3 dim.)

Figure 2. Simulation results varying in-
terarrival time of turnover events

5.2 Simulation results

For the first string of experiments, we wanted to study the behavior of our
model, i.e., the change to split thresholds when varying the number of groups.
We set the number of data items per group to 0, λlook = 0 and the average
overall turnover rate is set to 10 peers per time unit. Figure 1 shows error bars
that indicate smallest, average, and greatest split thresholds for P2P data store
dimensions from 0 (1 group) to 8 (256 groups) using the lower x-axis. Two things
are striking: First, an increase in the number of dimensions leads to an increase
in deviations of split thresholds. This is because the number of peers in each
group is binomially distributed and the variance of this distribution increases
linearly with the total number of peers in the P2P data store. Second, average
split thresholds decrease toward dimension 3 but increase again afterwards. The
explanation for this is: the turnover rate halves from dimension x to dimension
x+1 and is highest in dimension 0. We note that split thresholds in dimension one
and two overshoot their optima because of the high turnover rate. The observed
increase in average split thresholds in dimensions > 3 is due to operational costs
of those groups growing faster than the sum of operational costs of a group
resulting from a split plus the split costs. Finally, the second curve of Figure
1 shows safety margins using error bars and the upper x-axis. These margins
capture the difference between a split threshold (first curve) and Cmin and grow
with the size of the P2P data store.

The effects of varying mean interarrival times of join and leave events on
split thresholds are shown in Figure 2. For these experiments, we inserted 1000
data items overall and recorded split thresholds from groups in a 2- (lower x-
axis) and 3-dimensional (upper x-axis) P2P data store. Error bars again express
the minimum, average and maximum split thresholds of groups in the same di-
mension. We see a slow decrease of average split thresholds down to a lower
bound for mean interarrival times > 2 secs. in the P2P data store with 3 dimen-
sions and > 4 secs. in the 2-dimensional P2P data store. This happens because
decreasing the turnover rate also decreases the operational costs. For mean in-
terarrival times less than the above mentioned values, we see a sharp decrease of
split thresholds. This surprising phenomenon has a simple explanation: A high
turnover rate also leads to high Cmin values because when sibling groups merge
there must be enough peers in both groups to guarantee data availability during



and after the fusion. A high turnover rate also increases coordinators’ commu-
nication a lot, which in turn might exceed their maintenance bandwidth budget
quickly. Both effects determine split thresholds (cf. constraints (5), (6), and (7))
when mean interarrival times are below 2 or 4 secs., respectively. Also notice, if
the mean interarrival time of events in a group is shorter than 400 ms, no split
will ever be performed. This is because constraint (7) never holds.

Notice, our technical report [3] has two additional series of experiments that
show how varying number of data items and the lookup/turnover events ratio
affect split thresholds.

6 Conclusion

In this paper we have introduced and analyzed the maintenance operation ’split’
whose task is to optimize the performance of groups in our P2P data store.
We developed a Nonlinear Programming cost model and used simulations to
validate our model. The simulation results show that reasonable optimal split
thresholds can be computed and there is always enough safety margin between
split thresholds and minimum numbers of peers necessary for a coalescence of
two groups. However notice, all maintenance operations ought to be invoked
infrequently because of their bandwidth consumption.

References

1. R. Cox, A. Muthitacharoen, and R. T. Morris. Serving DNS Using a Peer-to-Peer
Lookup Service. In Proc. of the 1st Int’l Workshop on Peer-to-Peer Systems, 2002.

2. D. Fahrenholtz and V. Turau. Improving Churn Resistance of P2P Data Stores
Based on the Hypercube. In Proc. of the 5th Int’l Symposium on Parallel and

Distributed Computing, 2006.
3. D. Fahrenholtz, V. Turau, and A. Wombacher. Optimal Node Splits in Hypercube-

based Peer-to-Peer Data Stores. Technical Report TR-2006-12-01, Hamburg Uni-
versity of Technology, 2006.

4. D. Fahrenholtz and V. Turau. A Tree-based DHT Approach to Scalable Weakly
Consistent Data Management. In Proc. of the 1st Int’l Workshop on P2P Data

Management, Security and Trust, 2004.
5. I. Gupta, K. Birman, P. Linga, et al.. Kelips: Building an Efficient and Stable P2P

DHT Through Increased Memory and Background Overhead. In Proc. of the 2nd

Int’l Workshop on Peer-to-Peer Systems, 2003.
6. F. S. Hillier and G. J. Lieberman. Introduction to Operations Research. 5th ed.,

McGraw-Hill Inc., 1990
7. F. Kaashoek and D. Karger. Koorde: A simple Degree-optimal Hash Table. In

Proc. of the 2nd Int’l Workshop on Peer-to-Peer Systems, 2003.
8. Th. Locher, S. Schmid, and R. Wattenhofer. eQuus: A Provably Robust and

Locality-Aware Peer-to-Peer System. In Proc. of the 6th IEEE International Con-

ference on Peer-to-Peer Computing, Cambridge, UK, 2006.
9. G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed Hashing in a

Small World. In Proc. of the 4th USENIX Symposium on Internet Technologies

and Systems, Seattle, WA, USA, 2003.
10. S. Marti and H. Garcia-Molina. Taxonomy of Trust: Categorizing P2P Reputation

Systems. Computer Networks 50(4): 472–484, 2006.
11. S. Rhea, D. Geels, et al.. Handling Churn in a DHT. In Proc. of the USENIX

Annual Technical Conference, Boston, MA, USA, 2004.


