
The Perfectly-Synchronized Round-based

Model of Distributed Computing

Carole Delporte-Gallet a, Hugues Fauconnier a,
Rachid Guerraoui b, Bastian Pochon b,∗

aLIAFA Institute, Université Denis Diderot, F-75251 Paris 5
bSchool of Computer and Communication Sciences, EPFL, CH-1015 Lausanne

Abstract

The perfectly-synchronized round-based model provides the powerful abstraction of
crash-stop failures with atomic and synchronous message delivery. This abstraction
makes distributed programming very easy. We describe a technique to automatically
transform protocols devised in the perfectly-synchronized round-based model into
protocols for the crash, send omission, general omission or Byzantine models.

Our transformation is achieved using a round shifting technique with a constant
time complexity overhead. The overhead depends on the target model: crashes,
send omissions, general omissions or Byzantine failures. Rather surprisingly, we
show that no other automatic non-uniform transformation from a weaker model,
say from the traditional crash-stop model (with no atomic message delivery), onto
an even stronger model than the general-omission one, say the send-omission model,
can provide a better time complexity performance in a failure-free execution.

Key words: Abstraction, simulation, distributed systems, fault-tolerance,
synchronous system models, complexity.

1 Introduction

1.1 Motivations

Distributed programming would be easy if one could assume a perfectly-
synchronized round-based model where the processes would share, after every

∗ Corresponding author. Present address: EPFL IC IIF LPD, Station 14, CH-1015
Lausanne, Switzerland. Email address: Bastian.Pochon@epfl.ch

Preprint submitted to Information and Computation 20 December 2006

round, the same view of the distributed system state. Basically, computation
would proceed in a round-by-round way, with the guarantee that, in every
round, a message sent by a correct process is received by all processes, and
a message sent by a faulty process is either received by all or by none of the
processes. All processes that reach the end of a round would have the same
view of the system state.

Unfortunately for the programmers, and fortunately for the distributed com-
puting research community, the assumption that all processes have the same
view of the system state does not hold in practice. In particular, the illusion of
a perfectly-synchronized world breaks because messages sent over a network
might be subject to partial delivery or message loss, typically because of a
buffer overflow at a router, or due to a crash failure, resulting from the crash
of some computer hosting processes involved in the distributed computation.

It is of course legitimate to figure out whether we could provide the program-
mer with the simple view of a perfectly synchronized world, and translate,
behind the scenes, distributed protocols devised in such an ideal model into
more realistic and weaker models. After all, the job of a computer scientist is
usually about providing programming abstractions that hide low level details,
so why not try to provide those that really facilitate the job of the programmer
of distributed applications.

The very fact that the abstraction of a perfectly-sychronized round-based
model has not already been made available to programmers through popu-
lar programming middleware, even after several decades of research in dis-
tributed computing, might indicate that its implementation might turn out to
be significantly involved. Indeed, a closer look at the semantics of the perfectly-
synchronized round-based (PSR) model reveals that what needs to be imple-
mented is actually a succession of instances of an agreement algorithm, more
precisely an algorithm solving the Interactive Consistency (IC) problem [18].
Indeed, this is the key to provide processes with the same view of the system
at the end of every round. Roughly speaking, in the IC problem, each process
is supposed to propose a value and eventually decide on a vector of values,
such that the following properties are satisfied: termination (i.e., every correct
process eventually decides on a vector), validity (i.e., the jth component of any
decided vector by a correct process is the value proposed by process pj if pj

is correct), and agreement (i.e., no two correct processes decide on different
vectors).

The relationship between Interactive Consistency and the perfectly-sychronized
round-based model highlights two issues. The first has to do with feasibility.
On the one hand, to implement the PSR abstraction over a given model, one
needs to make some synchrony assumptions on the model (e.g., the Interactive
Consistency problem is not solvable in an eventually synchronous model [10]),

2

and the coverage of these assumptions might simply not be sufficient for cer-
tain distributed environments. The second issue has to do with performance.
Even when the PSR abstraction can be implemented, the cost of its imple-
mentation might be too high. That is, devising a distributed protocol over
PSR, and relying on the implementation of PSR to automatically generate a
distributed protocol in a weaker model might have a significant overhead with
respect to devising the protocol directly in the latter model.

The lack of any evidence concerning the exact overhead of implementing the
PSR absraction was the motivation of this work. More precisely, the moti-
vation was to figure out whether we can come up with an efficient imple-
mentation, in terms of time complexity, of the PSR abstraction over syn-
chronous round-based models with various types of failures, ranging from
simple crash failures [12] to more general Byzantine failures [18,15], including
send-omissions [12] and general-omissions [16].

1.2 Background

The PSR abstraction is known to have implementations in all the models men-
tioned above, but the inherent cost of these implementations in either of these
models was unclear. The lack of any result on the cost of implementing PSR
might seem surprising given the amount of work that was devoted to devis-
ing optimal agreement algorithms over various models, including the omission
model and the Byzantine model.

(1) In particular, we do know that, in terms of round complexity, there is a
tight lower bound on implementing interactive consistency in a synchronous
round-based model where t processes can crash is t+1 [7]. The result is derived
for the model with crashes, and thus also holds for send-omissions, general-
omissions, and Byzantine failures. The result says that t+1 rounds of, say, the
general-omission model are needed for all correct processes to reach a decision
about the new global state of the distributed system (i.e., the decision vector).
If, pretty much like in state machine replication [13,21], we implement PSR
as a sequence of instances of interactive consistency, then the t+1 cost would
add up. In other words, K(t + 1) rounds would be needed to implement K
rounds of PSR.

One might wonder whether algorithms that are early deciding [14,5] would
decrease this cost. Indeed, these algorithms need fewer rounds for processes to
decide when only f failures occur, out of the total number t of failures that are
tolerated. These algorithms however do not guarantee a simultaneous decision
from all the processes [4], even from the correct processes only. In such a case,
it would then be necessary to delay the simulation of the next PSR round

3

until each process reaches the next multiple of t + 1 rounds. In other words,
K(t + 1) rounds would again be needed to implement K rounds of PSR.

(2) Implementing a synchronous round-based model with crash failures [12]
(crash-stop model) over various weaker models, such as the omission model,
has been the subject of several investigations, e.g. [1,17]. These can be viewed
as implementing an abstraction that is weaker than PSR. (PSR prevents a
message from being received by some but not all the processes, whereas the
crash-stop model does not, in case the sender crashes.) The idea underlying
the implementation proposed in [17], for instance for the omission model, is
that of doubling rounds. Roughly speaking, any round of the crash-stop model
is simulated with two rounds of the omission model. Hence, 2K rounds of the
omission model are needed to simulate K rounds of the crash-stop model.

In the first case where we use a sequence of interactive consistency instances,
or in the second case where we mask failures by doubling rounds, we end
up with multiplicative factor overheads, and even if we try to implement the
weaker crash-stop abstraction along the lines of [17]. In fact, if we implement
PSR directly on the crash-stop model (used as an intermediate model), and
use the transformation of [17], we end up with a cost of K(f + 1) rounds of
the omission model for K rounds of the PSR model with f actual failures.
Is this multiplicative factor inherent to implementing PSR over an omission
model? Or could we devise a shifting implementation with an additive factor,
i.e., K + S with S a constant? At first glance, this would be counter-intuitive
because it would mean devising a more efficient implementation than [17] for
an abstraction that is strictly stronger.

1.3 Contributions

This paper presents a time-efficient shifting technique to implement the PSR
abstraction over the synchronous round-based message-passing models with
crash failures, send-omissions, general-omissions and Byzantine failures (for
t < n/3): K rounds of PSR require at most K + t rounds of the model with
more severe failures, when t failures are tolerated. That is, with an additive
factor S = t. This is clearly optimal because PSR solves interactive consistency
in one round, and this costs at least t + 1 rounds in either model (with crash
failures, send or general omissions, or Byzantine failures) [7]. In other words,
any shifting transformation technique from the PSR model to the omission
model has to pay the cost of t additional rounds.

This paper gives both a uniform and a non-uniform shifting transformation.
Intuitively speaking, a uniform transformation ensures that any process, be
it correct or faulty, simulates a correct behavior according to the original al-

4

gorithm (i.e., the algorithm to be transformed), or nothing at all, whereas a
non-uniform transformation does not ensure faulty processes simulate a cor-
rect behavior with respect to the original algorithm. For both transforma-
tions, we make the details clear about the underlying Interactive Consistency
algorithms that are used, respectively uniform and non-uniform. Our shifting
transformations do not necessarily require that all processes decide simultane-
ously within each underlying Interactive Consistency instance, hence the use
of early-deciding algorithms is possible. By considering an early-deciding non-
uniform Interactive Consistency algorithm, we show that our shifting transfor-
mation works in “real-time” in a failure-free execution, i.e., the transformed
algorithm executes as fast as the original algorithm. In this precise case, it
is clear that the transformation is optimal, since K round of PSR are trans-
formed into K rounds of the target model.

We precisely define the general notion of transformation and then describe our
novel shifting transformation technique. Beforehand, we introduce the neces-
sary machinery to formulate the definitions of simulation and transformation.
The key idea of our technique is that a round in the weak model (crash, send
or general omission, Byzantine failure), is involved in the simulation of more
than one round of PSR. This is also the source of some tricky algorithmic
issues that we had to address.

2 Model

2.1 Processes

We consider a finite set Ω of n processes {p0, . . . , pn−1}, that communicate by
point-to-point message-passing. We assume that processes are fully connected.
A process is characterized by its local state and we denote by S the set of
possible states of any process. Processes interact in a synchronous, round-
based computational way. Let R = N∗ be the set of round numbers (strictly
positive, integer numbers). We denote by M the set of messages that can
be sent, and by M′ = M ∪ {⊥} the set of messages that can be received.
⊥ is a special value that indicates that no message has been received. The
primitive send() allows a process to send a message to the processes in Ω.
The primitive receive() allows a process to receive a message sent to it that
it has not yet received. We assume that each process receives an input value
from the external world, at the beginning of every round, using the primitive
receiveInput(). We denote by I the set of input values that can be received,
for all processes. An input pattern is a function I : Ω × R → I. For any
given process pi and round number r, I(i, r) represents the input value that
pi receives at the beginning of round r. For any given set of input values

5

I, we denote by ΓI the set composed of all input patterns over I. For the
sake of simplicity, we assume that input values do not depend on the state
of processes. In Section 5, we discuss an extension where this assumption is
relaxed.

Roughly speaking, in each synchronous round r, every process goes through
four, non-atomic steps (in particular, the processes do not have any atomic
broadcast primitive for executing the second step). In the first step, the process
receives an external input value. In the second step, the process sends the
(same) message to all processes (including itself). In the third step, the process
receives all messages sent to it. The fourth step is a local computation to
determine the next local state of the process.

Throughout the paper, if a variable v appears in the local state of all processes,
we denote by vi the variable at process pi, and by vr

i the value of v after
pi has executed round r, but before pi has started executing round r + 1.
For convenience of notation, v0

i denotes the value of v at process pi after
initialization, before pi takes any step.

2.2 Protocols

The processes execute a protocol Π = 〈Π0, . . . , Πn−1〉. Each process pi executes
a state machine Πi, defined as a triple 〈si, Ti, Oi〉, respectively an initial state,
a state transition function and a message output function. We assume that,
at any process pi, the corresponding state machine is initialized to si. The
message output function Oi : S × I × R → M generates the message to be
sent by process pi during round r, given its state at the beginning of round
r, an external input value, and the round number. Note that, throughout this
paper, we assume for presentation simplicity that processes always have a
value to send, and we reserve the symbol ⊥ for the very case where a message
is not received, as the result of a failure. The state transition function Ti :
S × (M′)n × R → S outputs the new state of process pi, given the current
state of pi, the messages received during the round from all processes (possibly
⊥ if a message is not received) and the current round number.

We introduce three functions for describing whether the execution of any pro-
tocol by any process is correct or deviate from the one intended. In the fol-
lowing functions, N denotes the interval of integer values [1, n], corresponding
to process identifiers in Ω.

• ST : N ×R∪{0} → S is a function such that, for any process pi and round
r, ST(i, r) is the state of process pi at the end of round r. (Slightly abusing
the notation, we define ST(i, 0) = si for any process pi.)

• MS : N × N × R → M′ is a function such that, for any processes pi, pj

6

and round r, MS(i, j, r) is the message sent by pi to pj in round r, or ⊥ if
pi fails to send a message to pj in round r.

• MR : N × N × R → M′ is a function such that, for any processes pi, pj

and round r, MR(i, j, r) is the message received by pi from pj in round r,
or ⊥ if pi fails to receive a message from pj in round r. In the following,
MR(i, r) denotes the vector of all the messages received by pi in round r,
i.e., MR(i, r) = [MR(i, 1, r), . . . ,MR(i, n, r)].

2.3 Correctness

When we make no assumption whatsoever about the behavior of any process
pi, we consider that pi behaves correctly, i.e., pi follows the state machine Πi

assigned to it. Here we define the correct behavior of any process pi more
formally.

Any process pi is correct up to round r, r ≥ 1, if for any r′, 1 ≤ r′ ≤ r, and
any input pattern I:

• pi does not fail in sending its message:

(∀pj ∈ Ω)(MS(i, j, r′) = Oi(ST(i, r′ − 1), I(i, r′), r′)),

• pi does not fail in receiving any message:

(∀pj ∈ Ω)(MR(i, j, r′) = MS(j, i, r′)),

• pi makes a correct state transition (pi does not crash):

ST(i, r′) = Ti(ST(i, r′ − 1),MR(i, r′), r′).

By definition, any process is correct up to round 0.

2.4 Failures

If any process pi does not follow the state machine Πi assigned to pi in any
round r, i.e., pi is correct up to round r − 1 and is not correct up to round r,
pi is faulty in round r and may fail by either of the following types of failure.
(For the sake of clarity, we indicate here the complete behavior of pi in round
r, not only the faulty part.)

Atomic failure. A process pi that commits an atomic failure in round r can
either crash before sending its message to all or after sending its message to
all in round r. Processes do not recover after an atomic failure: a process that

7

crashes due to an atomic failure in round r does not send nor receive any
message in any subsequent round r′ > r. More formally,

• pi either crashes before sending any message:
· pi does not send any message to any process:

(∀pj ∈ Ω)(MS(i, j, r) = ⊥),

· pi does not receive any message from any process:

(∀pj ∈ Ω)(MR(i, j, r) = ⊥),

• or pi crashes after sending a message to all and before receiving any message:
· pi sends a message to all processes:

(∀pj ∈ Ω)(MS(i, j, r) = Oi(ST(i, r − 1), I(i, r), r)),

· pi does not receive any message from any process:

(∀pj ∈ Ω)(MR(i, j, r) = ⊥).

In either cases, pi does not perform any step after crashing:

• pi does not send nor receive any message:

(∀r′ > r)(∀pj ∈ Ω)(MS(i, j, r′) = ⊥ ∧MR(i, j, r′) = ⊥),

• pi does not perform any state transition:

(∀r′ ≥ r)(ST(i, r′) = ST(i, r − 1)).

Crash failure. A process pi that commits a crash failure in a round r — or
simply that crashes in round r — can either (i) send a message to a subset
of the processes, crash, not receive any message, or (ii) send a message to all,
receive a subset of the messages sent to it, and crash. Processes do not recover
after crashing: a process that crashes in round r does not send nor receive any
message in any subsequent round r′ > r. More formally,

• pi either sends its message to a subset of the processes, crashes, and does
not receive any message:
· pi sends its message to pj or nothing at all:

(∀pj ∈ Ω)(MS(i, j, r) = Oi(ST(i, r − 1), I(i, r), r) ∨MS(i, j, r) = ⊥),

· pi does not receive any message:

(∀pj ∈ Ω)(MR(i, j, r) = ⊥),

8

• or pi sends its message to all processes, receives the message from a subset
of the processes, and crashes:
· pi sends its message to all processes:

(∀pj ∈ Ω)(MS(i, j, r) = Oi(ST(i, r − 1), I(i, r), r)),

· pi receives a message from a subset of the processes:

(∀pj ∈ Ω)(MR(i, j, r) = MS(j, i, r) ∨MR(i, j, r) = ⊥).

In either cases, pi does not perform any step after crashing:

• pi does not send nor receive any message:

(∀r′ > r)(∀pj ∈ Ω)(MS(i, j, r′) = ⊥ ∧MR(i, j, r′) = ⊥),

• pi does not perform any state transition:

(∀r′ ≥ r)(ST(i, r′) = ST(i, r − 1)).

Send-omission failure. A process pi that commits a send-omission in a round
r fails to send its message in that round to a subset of processes in the system.
More formally:

(∀pj ∈ Ω)(MS(i, j, r) = Oi(ST(i, r − 1), I(i, r), r) ∨MS(i, j, r) = ⊥) ∧
(∃pj ∈ Ω)(MS(i, j, r) =⊥).

Receive-omission failure. A process pi that commits a receive-omission in a
round r fails to receive a message from a subset of processes in the system.
More formally:

(∀pj ∈ Ω)(MR(i, j, r) =MS(j, i, r) ∨MR(i, j, r) = ⊥) ∧
(∃pj ∈ Ω)(MR(i, j, r) =⊥ ∧MS(j, i, r) 6= ⊥).

General-omission failure. A process pi that commits a general omission in a
round r if pi commits either a send- and/or a receive-omission failure in round
r.

Byzantine failure. A process pi that commits a Byzantine failure in round r
may arbitrarily deviate from its protocol, there is no message authentication
mechanism: pi sends any message, alters any message that pi has received,
or relays spurious messages that appear to be from other processes. More

9

formally, a process pi that commits a Byzantine failure in round r performs at
least one of the following items in round r and behaves correctly for the rest
of round r:

• pi fails to send correctly to at least one process:

(∃pj ∈ Ω)(MS(i, j, r) 6= Oi(ST(i, r − 1), I(i, r), r))

• pi fails to receive correctly from at least one process:

(∃pj ∈ Ω)(MR(i, j, r) 6= MS(j, i, r))

• pi makes an incorrect state transition:

(ST(i, r) 6= Ti(ST(i, r − 1),MR(i, r), r))

2.5 Runs

A run corresponds to an execution of a protocol, and is defined as a tuple
〈I, ST,MS,MR〉, where I is the input pattern observed in the run, ST is
the state function, MS represents the messages sent, and MR the messages
received.

Any process pi is correct in run R if pi is correct up to round r, for any
r ≥ 0. A process that is not correct in run R is faulty in R. Let correct(R, r),
r ≥ 1, denote the set of processes correct up to round r in run R (all the
processes are correct up to round 0). The set of correct processes in run R is
correct(R) = ∪r≥0correct(R, r), whereas the set of faulty processes in run R is
faulty(R) = Ω\correct(R).

2.6 System Models and Problem Specifications

A system model, or model, is the particular set of all runs that can occur under
some conditions (for any protocol). Hence a system model may be defined as a
set of conditions that its runs must satisfy. We denote by R(Π, M, ΓI) the set
of all runs produced by protocol Π in system model M and input pattern in
ΓI . A problem specification, or problem, Σ is defined as a predicate on runs.

Definition 1 A protocol Π solves a problem Σ in system model M with input
pattern in ΓI if and only if (∀R ∈ R(Π, M, ΓI))(R satisfies Σ).

A model M is defined as a particular set of runs. In particular, we define six
distinct models:

10

• Model PSR(n, t) (Perfectly-synchronized round) is defined by all runs over
n processes where at most t < n processes are subject to atomic failures,
and the remaining processes are correct.

• Model Crash(n, t) is defined by all runs over n processes where at most t < n
processes are subject to crash failures only, and the remaining processes are
correct.

• Model Omission(n, t) is defined by all runs over n processes where at most
t < n processes are subject to crash failures or send-omission failures in
some round, and the remaining processes are correct.

• Models General(n, t) and General-MAJ(n, t) are defined by all runs over n
processes where at most t, where t < n processes, respectively t < n/2 pro-
cesses, are subject to crash failures, send- and/or receive-omission failures
in some round, and the remaining processes are correct.

• Model Byzantine(n, t) is defined by all runs over n processes where at most
t < n/3 processes are subject to Byzantine failures, and the remaining
processes are correct.

We say that a model Ms is stronger than a model Mw, and we write Ms � Mw,
if and only if Ms ⊆ Mw. We say that a model Ms is strictly stronger than Mw,
and we write Ms � Mw, if and only if Ms � Mw and Mw � Ms. Weaker and
strictly weaker relations are defined accordingly. From the equations above, it
is clear that PSR(n, t) � Crash(n, t) � Omission(n, t) � General(n, t).

For any run R, in any model, we denote by f the effective number of faulty
processes in R, i.e., f = |faulty(R)|.

3 Simulation and Transformation

The notions of simulation and transformation, although intuitive, require a
precise definition. In particular, some problems in a given model cannot be
transformed into another model, simply because they cannot be solved in the
second model.

Consider two models Ms and Mw, such that Ms � Mw. A transformation T
takes any protocol Πs designed to run in the strong model Ms and converts it
into a protocol Πw = T (Πs) that runs correctly in the weak model Mw. For
example, Ms could be PSR and Mw could be Crash. To avoid ambiguities, we
call a round in the weak model Mw, a phase.

The transformation of a protocol Πs in Ms to a protocol Πw in Mw is defined
through a simulation function, Sim, which simulates a run of Πs by a run of Πw.
In [3], the authors present a problem, called the Strong Dependent Decision
(SDD) problem, which is solvable in a synchronous model, and show that this

11

problem does not admit any solution in an asynchronous model augmented
with a Perfect failure detector [2] when one process can crash. This seems to
contradict the fact that algorithms designed for the former model can be run
in the latter [17]. The contradiction is in apparence only, and depends on how
we define the notion of simulation.

For any process pi executing a protocol Πw in Mw simulating Πs, the local
state s of pi contain variables s.statesi and s.ssi, which maintain the simulated
states of protocol Πs. Indeed, in contrast with the doubling technique of [17]
where each state of the run in Πw simulates at most one state of a run in
Πs, we do not restrict our transformation to simulate only one state of a run
of Πs in a state of the run of Πw. More precisely, s.states is a set of round
numbers, such that, at the end of any phase x, for any round r in s.statesi,
s.ssi[r] gives the r-th simulated state, i.e., the simulated state at the end of
round r (s.states0

i = {0}, s.ss0
i [0] = si). We now give the formal definitions of

our transformation notions, over an arbitrary set of input values I.

We first define the notion of non-uniform transformation, and then use this
definition to define the notion of uniform transformation.

Definition 2 An algorithm T is called a non-uniform transformation from
model Ms to model Mw, with input pattern in ΓI, if there is a correspond-
ing simulation function Sim and a function f : R → R, with the following
property: for any protocol Πs and any run Rw of Πw = T (Πs) running in
Mw with input pattern Iw, Sim maps run Rw = 〈Iw, STw,MSw,MRw〉 onto a
corresponding simulated run Rs = Sim(Rw) such that

(i) Rs = 〈Is, STs,MSs,MRs〉 and Rs ∈ R(Πs, Ms, ΓI),

(ii) correct(Rw) ⊆ correct(Rs),

(iii) (∀r ∈ R)(∀pi ∈ correct(Rw)(I ′(i, r) = I(i, r)),

(iv) (∀x ∈ R)(∀pi ∈ correct(Rw))(∀r ∈ STw(i, x).states)

(STw(i, x).ss[r] = STs(i, r)),

(v) (∀r ∈ R)(∀pi ∈ correct(Rs))(∃c ≤ f(r))(r ∈ STw(i, c).states),

(vi) (∀r, r′ ∈ R, r 6= r′)(∀pi ∈ correct(Rw))

(x ∈ STw(i, r).states ∩ STw(i, r′).states ⇒

STw(i, r).ss[x] = STw(i, r′).ss[x]),

(vii) (∀x ∈ R)(∀pi ∈ correct(Rw))(∀r ∈ STw(i, x).states)(∀r′ < r)

(r′ ∈ ∪x
k=0STw(i, k).states).

Definition 3 An algorithm T is called a uniform transformation from model

12

Ms to model Mw, with input pattern in ΓI, if T is a non-uniform transforma-
tion from Ms to Mw with simulation function Sim and function f satisfying
the properties of a non-uniform transformation and such that, for any pro-
tocol Πs and any run Rw of Πw = T (Πs) running in Mw with input pattern
Iw, Sim maps run Rw = 〈Iw, STw,MSw,MRw〉 onto a corresponding simulated
run Rs = Sim(Rw), the additional following properties are also satisfied:

(iii’) Iw = Is,

(iv’) (∀x ∈ R)(∀pi ∈ Ω)(∀r ∈ STw(i, x).states)(STw(i, x).ss[r] = STs(i, r)),

(vi’) (∀r, r′ ∈ R, r 6= r′)(∀pi ∈ Ω)

(x ∈ STw(i, r).states ∩ STw(i, r′).states ⇒

STw(i, r).ss[x] = STw(i, r′).ss[x]),

(vii’) (∀x ∈ R)(∀pi ∈ Ω)(∀r ∈ STw(i, x).states)(∀r′ < r)

(r′ ∈ ∪x
k=0STw(i, k).states).

The difference between the definitions of a non-uniform and a uniform trans-
formation concerns properties (iii), (iv), (vi) and (vii) in the non-uniform case,
denoted respectively (iii’), (iv’), (vi’) and (vii’) in the uniform case. For a non-
uniform transformation, the corresponding properties must be satisfied by the
processes that are correct in the underlying run Rw of Mw, whereas for a uni-
form transformation, the corresponding properties must be satisfied by the
processes that are correct in the simulated run Rs of Ms. These processes
include those that are correct in Rw by Property (ii).

Property (i) states that the simulated run should be one of the runs of the
simulated protocol. Property (ii) forces a correct process to be correct in the
simulated run (though a faulty process may appear correct in the simulated
run). Properties (iii) and (iii’) state that the input pattern is preserved by the
simulation. Properties (iv) and (iv’) state that any simulated state is correct
w.r.t. Πs. Property (v) forces the simulation to accomplish progress. Prop-
erties (vi) and (vi’) state that each state of Πs is simulated in at most one
manner. Properties (vii) and (vii’) force a process to simulate states sequen-
tially w.r.t. Πs.

With a non-uniform transformation, any process pi that is faulty in any run
Rw of Mw is not required, according to Definition 2, to make any progress
nor to guarantee any property on the states that pi simulates. In particular,
if the underlying model Mw permits it, e.g. Mw is Byzantine, pi may behave
arbitrarily and may simulate states that are not consistent in Ms with the
simulation of the correct processes in Rw. Nevertheless Property (i) ensures
the correctness of the simulation w.r.t. Ms at all times. Roughly speaking, all
the processes correct in Rw maintain a simulated state for any process faulty

13

in Rw, that is consistent in Ms. In Section 5 we will see that we indeed define
the simulation function Sim through the processes that are correct in Rw for
a non-uniform transformation.

Apart from Property (iii), our definition encompasses the notion of simulation
of [17], although the notion of input pattern does not appear in [17]. In the
transformation of [17] from Crash to Omission, each round is transformed in
two phases, which can be defined with f(r) = 2r, and c = 2r in (v). This
implies that STw(i, 2x).states = {x} and STw(i, 2x + 1).states = ∅.

In the following definition, we recall the notion of effectively solving [17] a prob-
lem, to indicate that the resolution is obtained through a simulation function.

Definition 4 For any given function Sim, Πw effectively solves problem Σ in
model Mw with input pattern in ΓI if and only if, for any run R ∈ R(Πw, Mw, ΓI),
Sim(R) satisfies Σ.

The next proposition follows from definitions 2, 3 and 4.

Proposition 5 Let Πs be any protocol that solves specification Σ in model Ms.
If T is a transformation from Ms to Mw and Sim the corresponding simulation
function, then protocol T (Πs) effectively solves Σ in model Mw.

4 Interactive Consistency Algorithms

We consider in this section the Interactive Consistency (IC) problem [18] that
is solved to simulate a single round in our transformation. Roughly speaking,
in the IC problem, each process pi is supposed to propose an initial value and
eventually decide on a vector of values.

We use two specifications of Interactice Consistency: a uniform specification
and a non-uniform specification. Non-uniform Interactive Consistency is the
original problem as defined in [18].

In uniform IC, each process pi is supposed to propose a value vi and eventually
decide on a vector of values Vi such that

Termination: every correct process eventually decides,
Uniform agreement: no two decided vectors differ,
Validity: for any decision vector V , the jth component of V is either the

value proposed by pj or ⊥, and is ⊥ only if pj fails.

In non-uniform IC, each correct process pi is supposed propose a value vi and
eventually decide on a vector of values Vi such that

14

Termination: (similar as for uniform IC) every correct process eventually
decides,

Agreement: no two vectors decided by correct processes differ,
Validity: for any vector V decided by a correct process, the jth component

of V is either the value proposed by pj or ⊥, and is ⊥ only if pj fails.

To be self-contained, this paper presents several IC algorithms:

• for non-uniform IC, the paper presents, in Fig. 1, an early stopping In-
teractive Consistency algorithm in General, Omission and Crash, for all
three models with t < n. In this algorithm, and for any run R of General,
Omission or Crash, all the correct processes decide by the end of round f +1
in run R in which at most f ≤ t processes fail (this is a tight lower bound
due to [14]), and halt by the end of round min(f + 2, t + 1) in run R (this
is a tight lower bound due to [5]). In any failure-free run (f = 0), all the
processes are correct and decide by the end of round 1 and halt by the end
of round 2.

• for uniform IC, the paper presents two algorithms, respectively for Omission
and Crash (t < n) in Fig. 2 and for General-MAJ (t < n/2) in Fig. 3. In both
algorithms, and for any run R of Omission or Crash, resp. General-MAJ,
all the correct processes decide and halt at the end of round t + 1 in run R
(this is a lower bound due to [7]).

In Byzantine, we refer the reader to the following algorithms from the literature
solving non-uniform IC: [18] (with exponentially-growing message size), or [9]
(with polynomially-growing message size). It is not possible to solve uniform
IC in General (t < n) [17,19] and in Byzantine [18].

4.1 Non-uniform Interactive Consistency

We give in Fig. 1 an algorithm solving non-uniform IC in General, Omission
and Crash, for t < n.

The algorithm is derived from the Terminating Reliable Broadcast algorithm
of [20]. We briefly describe how the algorithm works. In this description, we
focus on the value of process pi, the same mechanism extands to the value of
the other processes.

In round 1, pi sends its value to all the processes. In later rounds, every process
relays pi’s value by sending its complete vector of values to all the processes. In
parallel, each process pj maintains a set quiet with the processes from which pj

does not receive a message in some round. When receiving a vector of values,
pi copies from this vector the values that pi does not have in its own vector of
values.

15

At process pi:
1: quieti := ∅
2: Vi := [>, . . . , vi, . . . ,>]

3: for r from 1 to t + 1 do {For each round r}
4: send Vi to all processes {Send phase}
5: if (∀k : Vi[k] 6= >) then halt

6: ∀pj ∈ Ω\quieti : if receive Vj then {Receive phase}
7: ∀k : if (Vi[k] = >) then Vi[k] := Vj [k]
8: else
9: quieti := quieti ∪ {pj}

10: if |quieti| < r then
11: ∀k : if Vi[k] = > then Vi[k] := ⊥
12: if (∀k : Vi[k] 6= >) then decide(Vi)

13: ∀k : if Vi[k] = > then Vi[k] := ⊥ {If not decided in round t + 1}
14: decide(Vi)
15: halt

Fig. 1. Non-uniform Interactive Consistency in General (t < n)

At the end of any round r, if pi did not receive a message from strictly less
than r processes, then pi fills the missing values in its vector of value with
⊥, meaning that the process at this position is faulty. Process pi decides on
its vector of values at the end of any round when its vector is filled for each
position, either with a value or with ⊥. After sending its vector in the next
round, pi may halt. If after t + 1 rounds, pi still has not decided, pi fills the
missing values in its vector of values with ⊥ and decides on its vector before
halting.

4.2 Uniform Interactive Consistency in Omission and Crash

The algorithm in Figure 2 solves IC in Omission and Crash. This algorithm
is given in [11]. In both models we assume t < n. In the algorithm, all the
processes that decide, decide after t + 1 rounds. We briefly explain how the
algorithm works.

In the algorithm in Figure 2, any process pi sends its value vi to all the
processes in round 1, vi being embedded in the vector Vi. The value vi is then
relayed to all processes by another process in each round, until round t + 1.
When any process relays a estimate value, it sends its vector of estimate values
to all the processes. For any process pi, the value of pi is relayed successively

16

At process pi:
1: Vi := [⊥, . . . , vi, . . . ,⊥]
2: for r from 1 to t + 1 do
3: send Vi to all processes
4: ∀pj ∈ Ω: if receive Vj do
5: Vi[(j − r + 1) mod n] := Vj [(j − r + 1) mod n]
6: decide(Vi)

Fig. 2. Interactive Consistency in Omission (t < n)

by the processes pi, . . . , p(i+t) mod n
, respectively in round 1 to t + 1.

In the algorithm, the relaying mechanism is hidden in the reception phase.
More precisely, when any process pk receives a vector of estimate values in
round r from pj, pk only copies into its own vector of estimate values, the
component that pk is supposed to relay in that particular round r. Process pk

does not make use of any other estimate value from pj’s vector.

In any particular round r, any process pk relays the value of a different process
(i.e., the value of process (k− r +1) mod n); whereas the value of any process
pi is relayed by a different process (i.e., process (i + r − 1) mod n).

We now give an intuition of the correctness of the algorithm. The intuition
is particularily simple: as t + 1 processes are involved in relaying the value of
any process pi, at least one of them is correct, say pj, and thus never commits
omissions. When pj relays the estimate value of pi’s value to all the processes,
as pj is correct, all processes receive pj’s estimate value. From this round on,
all processes maintain the same estimate value for pi’s value in their vector of
estimate values.

4.3 Uniform Interactive Consistency in General-MAJ

The algorithm in Figure 3 solves IC in General-MAJ. The algorithm is inspired
from the uniform consensus algorithm of [6]. In General-MAJ, we assume
t < n/2, as [17,19] that this is necessary for the problem to be solvable. In the
algorithm, all the processes that decide, decide after t + 1 rounds. We briefly
explain how the algorithm works.

Primarily, the processes exchange vectors of estimate values, and update their
own vector with the vectors received in each round. In the absence of omission,
this procedure ensures that each process decides on the same vector of estimate
values at the end of round t+1. To tolerate general omission, we do not allow
some faulty processes (those with insufficent information) to decide, at the
end of round t + 1.

17

At process pi:
1: halti := ∅
2: suspecti := ∅
3: Vi := [⊥, . . . , vi, . . . ,⊥]
4: for r from 1 to t + 1 do
5: send [Vi, halti] to all processes
6: ∀pj ∈ Ω\halti: if receive [Vj , haltj] then
7: if pi ∈ haltj then
8: suspecti := suspecti ∪ {pj}
9: else

10: halti := halti ∪ {pj}
11: for all pj ∈ Ω\halti and for all k do
12: if Vi[k] = ⊥ then Vi[k] := Vj [k]
13: if |halti ∪ suspecti| ≤ t then
14: decide(Vi)

Fig. 3. Interactive Consistency in General (t < n/2)

Similary as in the algorithm for Omission, any process pi maintains a set halti
with the identity of processes from which pi does not receive a message in this
round or in a previous round. Moreover, any process pi maintains in addition
a set suspecti with the identity of any process px which includes pi’s identity
in its set haltx. pi maintains the vector of estimate values Vi, and decides on
this vector at the end of round t + 1.

5 Shifting Transformation

We present our algorithm to transform any protocol Π written in PSR into
a protocol Π′ in a weaker model Mw such that Π′ simulates Π, through a
simulation function Sim that we give.

For any two distinct processes pi and pj simulating protocol Π, we do not
necessarily assume that Πi = Πj. However, we will assume for the time being
that pi knows the state machine Πj = 〈sj, Tj, Oj〉 executed by pj. We relax
this assumption in Section 6.

Our transformation works on a round basis: it transforms a single round in
PSR into several phases in Mw. The key to its efficiency is that a phase is
involved in the simulation of more than one round simultaneously. We start
by giving a general definition of the notion of shifting transformation, before
giving our own.

Our algorithm implements at the same time a non-uniform and a uniform
transformation. Roughly speaking, the transformation algorithm relies on an

18

underlying Interactive Consistency algorithm, which alone determines if the
overall transformation algorithm is uniform or non-uniform. More precisely,
using a non-uniform, resp. uniform, IC algorithm as the underlying IC algo-
rithm in the transformation leads to a transformation that is also non-uniform,
resp. uniform. In the rest of this section, we thus present a single transfor-
mation algorithm that uses an underlying IC algorithm that may either be
uniform or non-uniform, depending on the transformation required.

From this observation, it is thus clear that the uniform transformation may
work only in Crash, Omission and General-MAJ (t < n/2), and not in General
(t < n) or Byzantine, since it is not possible to implement uniform IC in both
models [17,19]. The non-uniform transformation works for all models, i.e.,
transformation may work only in Crash, Omission and General-MAJ (t <
n/2), General (t < n) and Byzantine.

Let Πs be any protocol in model Ms, T any transformation (uniform or not)
from Ms to Mw, and Πw = T (Πs) the transformed protocol. Roughly speaking,
a shifting transformation is such that any process simulates round r of Πs after
a bounded number of phases counting from phase r. More precisely:

Definition 6 A non-uniform (resp. uniform) transformation T from model
Ms to model Mw is a non-uniform (resp. uniform) shifting transformation if
and only if there exists a constant S ∈ N, such that, for all r ∈ R, f(r) = r+S.
We call S the shift of the transformation.

5.1 Algorithm

In our transformation, all processes collaborate to reconstruct the failure and
input patterns of a run in PSR. They accomplish both reconstructions in par-
allel, one round after another. When processes terminate the reconstruction
of the patterns for a round, they locally execute one step of the simulated
protocol. If a process realizes that it is faulty in the simulated failure pattern,
this process simulates a crash in PSR. To simulate one round in PSR, pro-
cesses solve exactly one instance of the Interactive Consistency problem. In
the instance of IC, each process pi proposes its own input value for the round.
The decision vector corresponds at the same time to a round of the failure
pattern, and of the input pattern.

Figure 4 gives the transformed protocol T (Πs) for process pi, in terms of Πs

and the input pattern I. The underlying IC algorithm may either be uniform or
non-uniform, for the transformation to be uniform or non-uniform. When using
the early-stopping non-uniform IC algorithm in Fig. 1 for a transformation
into Crash, Omission, or General, with t < n for all three models, each round
of PSR is transformed into f + 1 phases of the weaker model, in any run R

19

1: failure := ∅ {failure corresponds to one round of the failure pattern}
2: simulatedRound := 1 {simulatedRound is the current simulated round number}
3: (∀j ∈ [1, n])(simst(0)[j] := sj) {state of protocol Πs for pj at the end of round 0}
4: states := {0} {set of rounds of protocol Πs simulated by Πw in the current round}
5: ss[0] := si {set of states of protocol Πs simulated by Πw in the current round}
6: for phase r (r = 1, 2, . . .) do

7: input := receiveInput() {receive input value corresponding to I(i, r)}
8: start IC instance number r, and propose(input)
9: execute one round of all pending IC instances

10: states := ∅ {has any IC instance decided?}
11: while simulatedRound-th instance of IC has decided do
12: states := states ∪ {simulatedRound} {instance simulatedRound has decided}
13: decision := decision vector of instance simulatedRound {reconstruct patterns}
14: for each pj ∈ Ω do {check input against byzantine failures}
15: if decision[j] 6= ⊥ and decision[j] /∈ I then
16: decision[j] := ⊥
17: failure := failure ∪ { pj | decision[j] = ⊥} {ensure atomic failures only}
18: if pi ∈ failure then halt {is process pi faulty?}
19: for each pj ∈ Ω do {adjust decision vector with previous failure pattern}
20: if pj ∈ failure then
21: decision[j] := ⊥
22: for each pj ∈ Ω do {generate messages}
23: if pj /∈ failure then
24: rcvd[j] := Oj(simst(simulatedRound− 1)[j], decision[j], simulatedRound)
25: else
26: rcvd[j] := ⊥
27: for each pj ∈ Ω do {perform state transitions}
28: if pj /∈ failure then
29: simst(simulatedRound)[j] := Tj(simst(simulatedRound− 1)[j], rcvd, simulatedRound)
30: else
31: simst(simulatedRound)[j] := simst(simulatedRound− 1)[j]
32: ss[simulatedRound] := simst(simulatedRound)[i]

33: simulatedRound := simulatedRound + 1 {increment simulated round counter}
34: if r − simulatedRound ≥ δ then halt {is process pi faulty?}

Fig. 4. Transformation algorithm (code for process pi)

with at most f ≤ t failures. In any failure-free (f = 0) run, we observe that
the transformation of one round of PSR requires a single phase of the weaker
mode. In this sense, the simulation outputs the results in real time.

When using a uniform IC algorithm, e.g., the algorithm in Fig. 2 when the
weaker model is Crash or Omission with t < n or the algorithm in Fig. 3
when the weaker model is General-MAJ with t < n/2, each round of PSR is
transformed into t + 1 phases of the weaker model, in any run R.

For the sake of simplicity, the transformation algorithm is given in an op-
erational manner (i.e., pseudo-code). During any phase, many IC instances
might be running together. If the condition of the while loop at line 11
(“simulatedRound-th instance of IC has decided”) is true in a phase x of pro-
cess pi, then we denote by decisioni(simulatedRound) the decision vector for
the instance of IC in line 13, failurei(simulatedRound) the value of the vari-
able failure updated in line 17, rcvdi(simulatedRound) the value of the variable

20

rcvd updated in lines 24 or 26, and simsti(simulatedRound) the value of the
variable simst updated in lines 29 or 31. The following proposition defines the
simulation function Sim in our transformation.

The next proposition gives the construction of the simulation function Sim for
both the uniform and non-uniform transformation.

Proposition 7 The simulation Sim for a run of T (Πs), R = 〈I, ST,MS,MR 〉,
is defined by R′ = 〈I ′, ST ′,MS ′,MR ′〉 as follows. Let pi be a process in
correct(R). We consider the simulation of round r of R′, for any process pj.

(i) I ′(j, r) is the value decisioni(r)[j] of the r-th instance of IC.

(ii) if r = 0 then ST ′(j, 0) = sj, otherwise ST′(j, r) = simsti(r)[j].

(iii) if pj ∈ failurei(r) then MS ′(j, k, r) = ⊥, otherwise

MS ′(j, k, r) = rcvdi(r)[j] for any process pk ∈ Ω.

(iv) if pj ∈ failurei(r) then MR ′(j, r) = [⊥, . . . ,⊥], otherwise

MR ′(j, r) = rcvdi(r).

The next propositions assert the correctness of the non-uniform, resp. uniform,
transformation.

Proposition 8 The algorithm of Fig. 4 (used in conjonction with an un-
derlying non-uniform IC algorithm) is a non-uniform shifting transforma-
tion from PSR(n, t) to Crash(n, t), Omission(n, t), General(n, t) (t < n), or
Byzantine(n, t) (t < n/3) where the shift S is the number of rounds needed
to solve non-uniform Interactive Consistency in Crash(n, t), Omission(n, t),
General(n, t) (t < n), or Byzantine(n, t) (t < n/3).

Proposition 9 The algorithm of Fig. 4 (used in conjonction with an underly-
ing uniform IC algorithm) is a uniform shifting transformation from PSR(n, t)
to Crash(n, t), Omission(n, t) (t < n), or General-MAJ(n, t) (t < n/2) where
the shift S is the number of rounds needed to solve uniform Interactive Con-
sistency in Crash(n, t), Omission(n, t) (t < n), General-MAJ(n, t) (t < n/2).

In this section we prove Proposition 9, but Proposition 8 would be proved in
the exact same manner.

To prove Proposition 9, we first show that the construction of function Sim in
Fig. 4 is consistent with Proposition 7. We proceed through a series of lemmas.

Lemma 10 For any run R and any process pi in correct(R), pi never halts,
and decides in all IC instances.

21

Proof: A process pi that is correct in R exists since t < n for Crash(n, t),
Omission(n, t) or General-MAJ(n, t). Thus, pi does not halt in lines 18 or 34,
as pi ∈ correct(R))Process pi is correct and never crashes. By the termination
property of IC, pi always decides in any instance of IC. Thus pi never halts
in line 34. Moreover, by the validity property of IC, in any decision vector,
decision[i] 6= ⊥. Thus pi never halts in line 18. 2

Lemma 11 For any run R, any process pi in correct(R), any process pj,
and any round r such that pj decides in the r-th instance of IC, we have the
following properties:

• decisioni(r) = decisionj(r)
• failurei(r) = failurej(r)
• rcvdi(r) = rcvdj(r)
• simsti(r) = simstj(r)

Proof: By Lemma 10, pi decides in all IC instances. By the agreement property
of IC, the decision is the same for pi and pj. In the algorithm, pj decides in the
r-th instance of IC if and only if pj has decided in all previous instances. We
show the three last items by induction on r. Initially, because of initialization,
the properties are true for r = 0. Assume the properties are true up to round
r − 1. When pi decides in the r-th instance, it adds a set of processes to
failurei. By the agreement property of IC, pi and pj add the same set. By
induction, failurei(r) = failurej(r). As decision(r) and failure(r) are the same
for all processes for which they are defined, by induction hypothesis, we have
rcvdi(r) = rcvdj(r) and simsti(r) = simstj(r). 2

We can define the simulation through the value of the variables of any correct
process. Consider any run R and let pk be a correct process in R (we know
there exists at least one as t < n). We define the simulation through the
variables of pk.

Lemma 12 If there exists a round r and a process pi such that i ∈ failurek(r)
then, for any r′ ≥ r, simstk(r

′)[i] = simstk(r)[i].

Proof: Directly from the transformation algorithm. 2

Lemma 13 For any process pi, any round r such that decisioni(r) and decisioni(r+
1) occur, failurei(r) ⊆ failurei(r + 1).

Proof: From the transformation algorithm, failurei always increases. 2

Lemma 14 correct(R) ⊆ correct(R′).

Proof: By Lemma 10, all correct processes decide in all instances of IC. By

22

termination of IC, no correct processes ever halt in line 34. By the validity
property of IC, the decision value is not ⊥ for any correct process in any
decision vector. Thus no correct process ever halts in line 18. Therefore all
correct processes in R are correct in R′. 2

Lemma 15 For any process pi and any protocol Πs to simulate, let 〈si, Ti, Oi〉
be the state machine for pi. For any round r and any pj ∈ Ω, we have:

(1) ST′(i, 0) = si.
(2) if pi ∈ correct(R′, r) then MS ′(i, j, r) = Oi(ST ′(i, r − 1), I ′(i, r), r), oth-

erwise MS ′(i, j, r) = ⊥.
(3) if pi ∈ correct(R′, r) then MR ′(i, j, r) = MS ′(j, i, r), otherwise MR ′(i, j, r) =

⊥.
(4) if pi ∈ correct(R′, r) then ST ′(i, r) = Ti(ST ′(i, r − 1), [MS ′(1, i, r), . . . ,-

MS ′(n, i, r)], r), otherwise ST ′(i, r) = ST ′(i, r − 1).

Proof: (1) is immediate, from the initialization of the variable simstk[i](0). We
prove (2), (3) and (4) by induction. For the case r = 1, and pi /∈ correct(R′, 1),
then pi ∈ failurek(1). By the algorithm rcvdk(1)[i] = ⊥, and by properties
(iii) and (iv) of the definition of the simulation, MS ′(i, j, 1) = rcvdk(1)[i]
and MR ′(i, j, 1) = rcvdk(1)[j]. By Lemma 12 and (1), we have ST ′(i, 1) =
ST ′(i, 0). If pi ∈ correct(R′, 1), then pi /∈ failurek(1). By the properties (iii)
and (iv) of the definition of the simulation, MS ′(i, j, 1) = rcvdk(1)[i] and
MR ′(i, j, 1) = rcvdk(1)[j]. By line 24 of the algorithm, rcvdk(1)[i] = Oi(simstk(0)[i],-
decisionk[i], 1), and so MS ′(i, j, 1) = Oi(ST ′(i, 0), I ′(i, 1), 1). By line 24 of the
algorithm, rcvdk(1)[j] = MS ′(j, k, 1), and so MR ′(i, j, 1) = MS ′(j, i, 1). By
line 29 of the algorithm, simstk(1)[i] = Ti(simstk(0)[i], rcvdk, 1), and ST ′(i, 1) =
Ti(ST ′(i, 0), [MS ′(1, i, 1), . . . ,MS ′(n, i, 1)], 1).

Assume the properties (2) and (4) are true up to round r−1. If pi /∈ correct(R′, r),
then pi ∈ failurek(r). By the properties (iii) and (iv) of the definition of the
simulation, MS ′(i, j, r) = ⊥, and MR ′(i, r) = [⊥, . . . ,⊥]. By Lemma 12 and
(1), we have ST ′(i, r) = ST ′(i, r − 1). If pi ∈ correct(R′, r), then by defini-
tion and by the transformation algorithm, pi /∈ failurek(r). By the properties
(iii) and (iv) of the definition of the simulation, MS ′(i, j, r) = rcvdk(r)[i]
and MR ′(i, j, r) = rcvdk(r)[j]. By line 24 of the algorithm, rcvdk(r)[i] =
Oi(simstk(r − 1)[i], decisionk[i], r), and so MS ′(i, j, r) = Oi(ST ′(i, r − 1),-
I ′(i, r), r). By line 29 of the algorithm, simstk(r)[i] = Ti(simstk(r − 1)[i],-
rcvdk, r), and so ST ′(i, r) = Ti(ST ′(i, r− 1), [MS ′(1, i, r), . . . ,MS ′(n, i, r)], r).
2

By Lemmas 11 and 15, the function Sim is well defined, and consistent with
Proposition 7.

Lemma 16 R′ is a run of Πs.

23

Proof: Lemmas 11 and 13 show that R′ is in PSR if R is in M , where M ∈
{Crash,Omission,General-MAJ). Lemma 15 shows that the functions ST ′,
MS ′ and MR ′ consistently define a run of Πs, with input value I ′. 2

Lemma 17 Let x be any phase, pi any process and r any round. If r ∈
ST(i, x).states then ST(i, x).ss[r] = ST ′(i, r).

Proof: Each time a round r is added to statesi (line 12), ssi[r] = simsti(r)[i]
(line 32). By Lemma 11 and Proposition 7, simsti(r)[i] = ST ′(i, r). 2

Lemma 18 For any round r and any process pi in correct(R′), if it exists c
such that r ∈ ST(i, c).states then ST(i, c).ss[r] = ST ′(i, r).

Proof: If such a c exists, then pi has decided in the r-th instance of IC, and
by the algorithm in Figure 4, in each previous instance. By Lemma 17, we
have ST(i, c).ss[r] = ST ′(i, r). 2

Lemma 19 Let pi be any process in correct(R′) and r any round. There exists
a unique c ≤ r + S such that r ∈ ST(i, c).states and ST(i, c).ss[r] = ST ′(i, r).

Proof: By Lemma 10, pi decides in all instance of IC. In particular, for the
r-th instance, pi decides in phase c. We pose S as the number of phases for
any instance of IC to decide, and thus c ≤ S + r. We have r ∈ ST(i, c).states,
and by Lemma 18, ST(i, c).ss[r] = ST ′(i, r). 2

(End of proof of Proposition 9) We show that our function Sim, as defined
by Proposition 7, satisfies the seven properties of Definition 3, with f(r) =
r + S, where S is the number of phases to solve IC in Mw. Hence, S = t + 1
for Crash, Omission and General-MAJ.

Lemma 16 shows that Sim(R) is a run of Πs, which implies Property (i).
Lemma 14 shows that correct(R) ⊆ correct(R′), which implies Property (ii).
By the definition of the simulation, we have I = I ′, which implies Prop-
erty (iii). Property (iv) follows from Lemma 17. By Lemma 10, any correct
process pi in R decides in any instance of IC. In particular, in the r-th in-
stance of IC, it decides at most at phase r + S. Lemma 19 shows that for any
round r and any process pi in correct(R′), there exists c ≤ r + S such that
r ∈ ST(i, c).states and ST(i, c).ss[r] = ST ′(i, r) (Property (v)) and that this c
is unique (Property (vi)). If a process adds any round r in its set states, by the
algorithm, it has decided the r-th instance of IC, and all previous instances of
IC as well. This implies Property (vii).

24

6 Transformation Extension

We give in this section an extension of the uniform transformation of Fig. 4.
In the transformation of Fig. 4, the processes only need to send their input
value in a phase, because the protocol itself can be locally simulated by other
processes. We assume now that the processes do not know the state machine
simulated by any other process. As a result, any process pi needs to send,
in addition to the message of the previous transformation, the content of the
message it would normally send in the simulated protocol, i.e., the output of
function Oi. Nevertheless, as with our previous transformation, we would like
to start the simulation of a round before the decision of all previous simulations
are known. Thus pi cannot know in which precise state of the protocol it should
be at the time it has to generate a message (remember that the current state
is a parameter of the message output function Oi).

More precisely, consider any process pi simulating a run R′ = 〈I ′, ST ′,MS ′,MR ′〉
of PSR. The idea of the extended transformation is to maintain, for pi, all sim-
ulated states of ST ′ that are coherent with previous (terminated) simulations,
and which only depend on the outcome of on-going (not yet terminated) simu-
lations. Hereafter, these states are called the extended set of states and denoted
by es. For any two processes pi and pj simulating the execution of protocol Π
in PSR, we denote by mj the message pj sends to pi in round r. Before the
end of round r simulation, i.e., in any phase r′ such that r ≤ r′ ≤ r + δ − 2
where δ is the number of phases for the r-th IC instance to decide, pi does
not know the decision value corresponding to pj’s proposal: (1) as long as pi

has not received mj, the decided value can be any value in M′ (including ⊥),
and (2) if pi receives mj, the decided value can either be mj or ⊥. To be able
to start the next instance in the next phase, pi generates a new extended set
of states. To generate this set of states, pi computes Ti on every state in the
current set of states, with every possible combination of messages received in
phase r (i.e., ⊥ values are successively substituted by any value of M, and
any received value successively substituted with ⊥). To each state in the ex-
tended set of states corresponds a message of Πi to be sent in round r by pi.
These messages are gathered in a set, hereafter called the extended message
and denoted by em.

For example, consider the case of the Crash(3, 2) model with I = M = {0, 1}.
After phase 1, process p1 gathers the received values in the vector [1 0⊥]. The
possible combinations of messages are [1 0⊥], [1 0 0], [1 0 1], [1⊥⊥], [1⊥ 0],
[1⊥ 1], [⊥ 0⊥], [⊥ 0 0], [⊥ 0 1], [⊥⊥ 0], and [⊥⊥ 1]. Process p1 generates the
extended set of states by applying function T1 on each combination of mes-
sages.

Figure 5 presents our extended transformation algorithm. For the sake of clar-

25

ity, we ignore possible optimizations in this algorithm (e.g., any process can
reduce the number of possible states as it receives more values from other
processes). In Fig. 5, we denote by rcvd[r] the messages of instance r received
in phase r. We assume without loss of generality that any process sends in any
phase of the underlying IC algorithm, the value it proposes to this instance.

Let pi be any process simulating state machine Πi = 〈si, Ti, Oi〉. We consider
the transformation algorithm at the beginning of phase r.

6.1 Message generation

At the beginning of phase r, pi receives an input value input = I(i, r), and
computes a new extended set of states es′ and the corresponding extended
message em. A tuple in em is of the form 〈num(st), rec, num(st′), m〉, and
contains (i) the identifier num(st) of a possible state st of pi at the beginning
of round r − 1, (ii) a combination rec of messages received by pi in phase
r − 1, (iii) the identifier num(st′) of the state st′ of pi at the beginning of
round r, such that st′ = Ti(st, rec, r−1), (iv) the message sent in round r, i.e.,
m = Oi(st

′, I(i, r), r). For each state st in the current extended set of states es,
and for any combination rec of messages (according to the extended messages
of phase r − 1), pi computes the next state st′ = Ti(st, rec, r) (whenever pi

includes a new state st′ in es′, it associates a unique identifier num(st′) with
st′), and the corresponding message m = Oi(st

′, input, r). pi sends em and the
extended messages of other running IC instances in phase r.

6.2 Simulation

In the following, the variable simulatedRound denotes the next round to be
simulated (we consider that the simulation has been performed up to round
simulatedRound−1). Each process pi maintains (1) the simulated state of ma-
chine Πi at the end of round simulatedRound−1 (denoted by ss[simulatedRound−
1]), and (2) the identifier associated with the state currently simulated at each
process pj, at the end of round simulatedRound− 1, denoted by sim[j].

If the condition of the while loop at line 22 (“simulatedRound-th instance of
IC has decided”) is true in a phase x at process pi, then decisioni(simulatedRound)
denotes the decided vector of messages at line 24, failurei(simulatedRound) the
value of the variable failure updated in line 25, and trueRcvdi(simulatedRound)
the value of the variable trueRcvd updated in line 39. Process pi uses the de-
cided vector decisioni(simulatedRound) to update the simulated state of ma-
chine Πi, i.e., pi adds simulatedRound in states and computes ss[simulatedRound].
More precisely,

26

(1) pi computes the messages trueRcvd: (1a) if pj ∈ failure or decision[j] = ⊥,
then trueRcvd[j] = ⊥, otherwise (1b) pi searches for the tuple 〈sim[j], M, ∗, ∗〉
in the extended message of pj (generated at phase simulatedRound),
where M is the set of messages received in round simulatedRound − 1
(i.e., the previous value of trueRcvd). Let 〈sim[j], M, s, m〉 be this tuple.
sim[j] is updated with s and trueRcvd[j] with m.

(2) pi updates ss[simulatedRound] with the state Ti(ss[simulatedRound− 1],-
trueRcvd, simulatedRound).

If any value in the vector decision is ⊥, then the corresponding process is
added to failure. If any process adds itself to failure, it stops. In the algorithm,
at line 43, δ denotes the maximum number of phases for the underlying IC
algorithm to decide in the system model in which the transformation algorithm
is running. Indeed, a process that does not decide in an IC instance in δ phases
is faulty, and thus stops taking part to the simulation.

The following propositions assert the correctness of the extension of our trans-
formation. We introduce here the extension for the uniform transformation,
in Crash and Omission (t < n), and General-MAJ (t < n/2).

Proposition 20 The simulation Sim for a run of T (Πs), R = 〈I, ST,MS,MR〉
is defined by the run R′ = 〈I ′, ST ′,MS ′,MR ′〉 as follows. Let pi be a process
in correct(R). We consider the simulation of round r of R′, for any process
pj.

27

(i) I ′ = I.

(ii) if pj ∈ failurei(r) then pj /∈ correct(R′, r)

otherwise pj ∈ correct(R′, r).

(iii) ST ′(i, 0) = si and ST ′(i, r) = ssi[r]. For any

process pj (including pi) not in failurei(r),

ST ′(j, r) is the state of pj at the end of round r,

such that ST ′(j, 0) = sj and

ST ′(j, x) = Tj(ST ′(j, x− 1), trueRcvdi(x), x),

for each x from 1 to r. Otherwise, for any pj in

failurei(r), ST ′(j, r) = ST′(j, r − 1).

(iv) if pj ∈ failurei(r) then MS ′(j, k, r) = ⊥,

otherwise MS ′(j, k, r) = trueRcvdi(r)[j] for any process pk ∈ Ω.

(v) if pj ∈ failurei(r) then MR ′(j, r) = [⊥, . . . ,⊥],

otherwise MR ′(j, r) = trueRcvdi(r).

Proposition 21 The algorithm of Fig. 5 is a uniform shifting transforma-
tion (with an underlying uniform IC algorithm) from PSR(n, t) to Crash(n, t),
Omission(n, t) (t < n), General-MAJ(n, t) (t < n/2) where the shift S is num-
ber of rounds needed to solve uniform Interactive Consistency in Crash(n, t),
Omission(n, t) (t < n), or General-MAJ(n, t) (t < n/2).

The same idea can be applied when input values can depend on the state of the
processes, and there are finitely many possible input values (i.e., |I| < ∞). Us-
ing the technique described above, a process anticipates on the different input
values that it can receive, to start the next simulations. When the preceding
simulations terminate, the input value that had correctly anticipated the state
of the process is determined, and only the messages and states following from
this input value are kept. The algorithm in Fig. 5 can easily be adapted to the
case where input values depend on the state of processes. Note that in both
of the above cases, the number of messages generated is very high.

To prove Proposition 21, we first show that the construction of function Sim
in Fig. 5 is consistent with Proposition 20. We proceed through a series of
lemmas.

Lemma 22 For any run R and any process pi in correct(R), pi never halts,
and decides in all IC instances.

28

1: failure := ∅ {failure corresponds to one round of the failure pattern}
2: simulatedRound := 1 {simulatedRound is the current simulated round number}
3: states := {0}; ss[0] := si {set of states of protocol Πs which are simulated by Πw in

the current round}
4: (∀j ∈ [1, n])(sim[j] := 0) {all processes start in the 0-th state}
5: number := 1 {by convention num(ss[0]) = 0}

6: for phase r (r = 1, 2, . . .) do

7: input := receiveInput() {receive input value corresponding to I(i, r)}
8: if r = 1 then
9: es := {si}; em := { 〈−,−, 0, Oi(si, input, r)〉 }
10: else
11: es′ := ∅; em := ∅
12: for any possible combination rec of n messages of rcvd[r − 1] do
13: for any possible state st of es do
14: st′ := Ti(st, rec, r); num(st′) := number; number := number + 1
15: es′ := es′ ∪ {st′}
16: em := em ∪ { 〈num(st), rec,num(st′), Oi(st

′, input, r)〉 }
17: es := es′

18: start instance r, and propose(em)
19: execute one phase of all other running instances
20: rcvd[r] := extended messages of instance r

21: states := ∅
22: while simulatedRound-th instance of IC has decided do {has any IC instance decided?}
23: states := states ∪ {simulatedRound} {instance simulatedRound has decided}
24: decision := decision vector of instance simulatedRound {reconstruct patterns}
25: failure := failure ∪ { pj | decision[j] = ⊥} {ensure atomic failures}
26: if pi ∈ failure then {is process pi faulty?}
27: halt {pi does not perform any step}
28: for each pj ∈ Ω do {adjust decision vector with previous failure pattern}
29: if pj ∈ failure then
30: decision[j] := ⊥
31: for each pj ∈ Ω do {compose the messages of the round}
32: if pj ∈ failure then
33: tmpRcvd[j] := ⊥
34: else
35: if simulatedRound = 1 then
36: tmpRcvd[j] := m such that 〈∗, ∗, 0, m〉 ∈ decision[j]
37: else
38: let k and m such that 〈sim[j], trueRcvd, k, m〉 ∈ decision[j]
39: tmpRcvd[j] := m; sim[j] := k
40: trueRcvd := tmpRcvd
41: ss[simulatedRound] := Ti(ss[simulatedRound− 1], trueRcvd, simulatedRound)
42: simulatedRound := simulatedRound + 1

43: if r − simulatedRound ≥ δ then halt {is process pi faulty?}

Fig. 5. Extended transformation algorithm (code for process pi)

Proof: A process pi that is correct in R exists since t < n for Crash(n, t),
Omission(n, t) or General-MAJ(n, t). Thus, pi does not halt in lines 27 or 43.)
Process pi is correct and never crashes. By the termination property of IC,
pi always decides in any instance of IC within a bounded number of phases.
Thus pi never halts in line 43. Moreover, by the validity property of IC, in any
decision vector, decision[i] 6= ⊥. Thus pi never halts in line 27. 2

29

Lemma 23 For any run R, any process pi in correct(R), any process pj,
and any round r such that pj decides in the r-th instance of IC, we have the
following properties:

• decisioni(r) = decisionj(r)
• failurei(r) = failurej(r)
• trueRcvdi(r) = trueRcvdj(r)
• simi(r)[j] = num(ST′(j, r))

Proof: By Lemma 22, pi decides in all IC instances. In the algorithm, pj de-
cides in the r-th instance of IC if and only if pj has decided in all previous in-
stances. By the agreement property of IC, the decision is the same for pi and pj.
We show the three last items by induction on r. It is easy to see that these prop-
erties hold for r = 1: for the first IC instance, every process proposes its initial
value; when all processes terminates the first IC instance, they decide upon the
same vector. This implies decisioni(1) = decisionj(1), failurei(1) = failurej(1),
trueRcvdi(1) = trueRcvdj(1), and simi(1)[j] = num(ST ′(j, 1)), for any pi 6= pj.
Assume the properties hold up to round r− 1. When pi decides in the r-th in-
stance, it adds a set of processes to failurei. By the agreement property of IC,
pi and pj add the same set of processes. By induction, failurei(r) = failurej(r).
As decision(r) and failure(r) are the same for all processes for which they are
defined, by induction hypothesis, we have trueRcvdi(r) = trueRcvdj(r), and
simi(r)[j] = num(ST ′(j, r)). 2

We may once again define the simulation through the value of the variables of
any correct process. Consider any run R. In the following, pk denotes a correct
process in R (we know there exists at least one as t < n). We define some
parts of the simulation through the variables of pk. Note that, in contrast with
the proof of Proposition 9, we cannot prove Proposition 21 only through the
variables of pk, because in the algorithm of Fig. 5, for instance, pk does not
keep the states in which the other processes are.

Lemma 24 For any process pi, any round r such that decisioni(r) and decisioni(r+
1) occur, failurei(r) ⊆ failurei(r + 1).

Proof: From the algorithm, failurei always increases. 2

Lemma 25 correct(R) ⊆ correct(R′).

Proof: By Lemma 22, all correct processes decide in all instances of IC. Thus
they never halt in line 43. By the validity property of the underlying IC al-
gorithm, the decision value is not ⊥ for any correct process in any decision
vector. Thus no correct process ever halts in line 27. Therefore all correct pro-
cesses in R are correct in R′. 2

30

Lemma 26 For any process pi and any protocol Πs to simulate, let 〈si, Ti, Oi〉
be the state machine for pi. For any round r and any pj ∈ Ω, we have:

(1) ST(i, 0) = si.
(2) if pi ∈ correct(R′, r) then MS ′(i, j, r) = Oi(ST ′(i, r − 1), I ′(i, r), r), oth-

erwise MS ′(i, j, r) = ⊥.
(3) if pi ∈ correct(R′, r) then MR ′(i, j, r) = MS ′(j, i, r), otherwise MR ′(i, j, r) =

⊥.
(4) if pi ∈ correct(R′, r) then ST ′(i, r) = Ti(ST ′(i, r − 1), [MS ′(1, i, r), . . . ,-

MS ′(n, i, r)], r), otherwise ST ′(i, r) = ST ′(i, r − 1).

Proof: (1) is immediate, by the definition of ST ′ in Proposition 20. We prove
(2) and (3) by induction. For the case r = 1 and pi /∈ correct(R′, 1), then
pi ∈ failurek(1). By the algorithm trueRcvdk(1)[i] = ⊥, and by properties
(iii) and (iv) of the definition of the simulation, MS ′(i, j, 1) = trueRcvdk(1)[i]
and MR ′(i, j, 1) = trueRcvdk(1)[j]. By the algorithm and (1), ST ′(i, 1) =
ST ′(i, 0). If pi ∈ correct(R′, 1), then pi /∈ failurek(1). By the properties (iii)
and (iv) of the definition of the simulation, MS ′(i, j, 1) = trueRcvdk(1)[i] and
MR ′(i, j, 1) = trueRcvdk(1)[j]. By line 39 of the algorithm, trueRcvdk(1)[i] =
Oi(ST ′(i, 0), decisionk[i], 1), and so MS ′(i, j, 1) = Oi(ST ′(i, 0), I ′(i, 1), 1). By
line 39 of the algorithm, trueRcvdk(1)[j] = MS ′(j, k, 1), and so MR ′(i, j, 1) =
MS ′(j, i, 1). By line 41 of the algorithm, ssk(1)[k] = Tk(ssk(0)[k], trueRcvdk(1), 1),
and ST ′(k, 1) = Tk(ST ′(k, 0), [MS ′(1, k, 1), . . . ,MS ′(n, k, 1)], 1).

Assume the properties (2) and (3) are true up to round r−1. If pi /∈ correct(R′, r),
then pi ∈ failurek(r). By the properties (iii) and (iv) of the definition of
the simulation, MS ′(i, j, r) = ⊥, and MR ′(i, r) = [⊥, . . . ,⊥]. By the algo-
rithm and (1) ST ′(i, r) = ST ′(i, r − 1). If pi ∈ correct(R′, r), then pi /∈
failurek(r). By the properties (iii) and (iv) of the definition of the simula-
tion, MS ′(i, j, r) = trueRcvdk(r)[i] and MR ′(i, j, r) = trueRcvdk(r)[j]. By
line 39 of the algorithm, and by the induction hypothesis, trueRcvdk(r)[i] =
Oi(ST ′(i, r−1), decisionk[i], r), and so MS ′(i, j, r) = Oi(ST ′(i, r−1), I ′(i, r), r).
By line 39 of the algorithm, trueRcvdk(r)[j] = MS ′(j, k, r), and so MR ′(i, j, r) =
MS ′(j, i, r). By line 41 of the algorithm, and by the induction hypothesis,
ssk(r)[k] = Tk(ST ′(k, r − 1), trueRcvdk, r), and so ST ′(k, r) = Tk(ST ′(k, r −
1), [MS ′(1, k, r), . . . ,MS ′(n, k, r)], r). 2

By Lemmas 23 and 26, the function Sim is well defined, and consistent with
Proposition 20.

Lemma 27 R′ is a run of Πs.

Proof: Lemmas 23 and 24 show that R′ is in PSR if R is in M , where M ∈
{Crash,Omission,General}. Lemma 26 shows that the functions ST ′, MS ′

and MR ′ consistently define a run of Πs, with input value I ′. 2

31

Lemma 28 Let x be any phase, pi any process and r any round. If r ∈
ST(i, x).states then ST(i, x).ss[r] = ST ′(i, r).

Proof: Each time a round r is added to statesi (line 23), ssi[r] = Ti(ST ′(i, r−
1), trueRcvdi(r), r) (line 29). 2

Lemma 29 For any round r and any process pi in correct(R′), if it exists c
such that r ∈ ST(i, c).states then ST(i, c).ss[r] = ST ′(i, r).

Proof: If such a c exists, then pi has decided in the r-th instance of IC, and
by the algorithm in Figure 5, in each previous instance. By Lemma 25, we
have ST(i, c).ss[r] = ST ′(i, r). 2

Lemma 30 Let pi be any process in correct(R′) and r be any round. There
exists a unique c ≤ r + S such that r ∈ ST(i, c).states and ST(i, c).ss[r] =
ST ′(i, r).

Proof: By Lemma 10, pi decides in all instance of IC. In particular, for the
r-th instance, pi decides in phase c. We pose S as the number of phases for
an instance of IC to decide, thus c ≤ S + r. We have r ∈ ST(i, c).states, and
by Lemma 18, ST(i, c).ss[r] = ST ′(i, r). 2

(End of proof of Proposition 21) We show that our function Sim, as
defined by Proposition 20, satisfies the seven properties of Definition 3, with
f(r) = r + S, where S is the number of phases to solve IC in Mw.

Lemma 27 shows that sim(R) is a run of Πs, which implies Property (i).
Lemma 25 shows that correct(R) ⊆ correct(R′), which implies Property (ii).
By the definition of the simulation, we have I = I ′, which implies Prop-
erty (iii). Property (iv) follows from Lemma 28. By Lemma 22, any correct
process pi of F decides in any instance of IC. In particular, in the r-th in-
stance of IC, it decides at most at phase r + S. Lemma 30 shows that for any
round r and any process pi in correct(R′), there exists c ≤ r + S such that
r ∈ ST(i, c).states and ST(i, c).ss[r] = ST ′(i, r) (Property (v)) and that this c
is unique (Property (vi)). If a process adds any round r in its set states, by the
algorithm, it has decided the r-th instance of IC, and all previous instances of
IC as well. This implies Property (vii).

7 Complexity

We analyze the performance of our transformation technique in terms of mes-
sage and phase complexities. For the rest of this section, we need to make

32

a distinction between the number of phases before any process decides in a
non-uniform, resp. uniform, IC algorithm, and the number of phases before
any process halts in the same algorithm.

From the IC algorithms presented in Section 4, we have the following results:

• For non-uniform IC, and for any of the models Crash, Omission, and General,
the number of phases for all processes to decide is δnon-uniform = f + 1 in
any run R with at most f failures, whereas the number of phases for all
processes to halt is τnon-uniform = min(f +2, t+1) in any run R with at most
f failures.

• For uniform IC, and for any of the models Crash, Omission, and General-MAJ,
the number of phases for all processes to decide and halt is δuniform =
τuniform = t + 1, in any run R.

7.1 Message Complexity

In terms of messages, the first transformation generates at most a nlog2|I|-bit
message per process, per phase, and per IC instance. As there are τnon-uniform

non-uniform, resp. τuniform uniform, IC instances running in parallel, any pro-
cess sends a nτ log2|I|-bit message in any phase, in any run, where τ is either
τnon-uniform or τuniform, whether we consider the non-uniform or the uniform
transformation.

In the extended, uniform transformation, any process maintains at least 2nτuniform

states for a round simulation. A state (tuple) is coded using σ = 2log2|S| +
(n+1)log2|M| bits. As there are τuniform instances of the uniform IC algorithm
running in parallel, any process sends a τuniformnσ2nτuniform-bit message in any
phase, in any run.

Determining the exact overhead in terms of message size complexity is an open
issue, as is the tight lower bound on the message overhead for a automatic
shifting transformation technique.

7.2 Phase Complexity

The phase complexity overhead is defined as the number of additional phases
executed by the transformed protocol Πw in Mw, compared with the original
protocol Πs in Ms.

In any of our shifting transformation algorithms, the simulation of consecutive
rounds is overlapped, such that the simulation of two consecutive rounds start

33

with an interval of a single phase. Thus, for any of our shifting transformation
algorithm, the only phase complexity overhead is the number of phases for
obtaining the outcome of the simulation for the first round, corresponding to
δnon-uniform − 1 or δuniform − 1, depending on the transformation considered.

We observe that for the non-uniform transformation with δnon-uniform = f + 1,
the phase complexity overhead is just δnon-uniform − 1 = f . In any failure-free
(f = 0) run R, there is thus no phase complexity overhead for the non-uniform
transformation. This transformation provides the outcome of the simulation
in real-time, as the run executes. Had we try to simulate a weaker model than
PSR by using our non-uniform shifting transformation, we would not have
gained any improvement in the phase complexity in failure-free runs.

8 Concluding Remarks

In this paper, we have concentrated on models Crash, Omission, General and
General-MAJ, and Byzantine and have presented different shifting transforma-
tion techniques to translate protocols from the perfectly synchronous model
PSR into each of these weaker models. We first presented a simple shifting
transformation algorithm (in which each process knows that state machine ex-
ecuted by any other process) that allows for both a uniform and a non-uniform
transformation, and we have then extended the uniform transformation to a
more sophisticated transformation algorithm (in which any process does not
know the state machine executed by any other process).

We show in the paper that the complexity of the transformation in terms of
rounds is optimal, in two precise senses. First the round overhead to simulate
a single IC instance is optimal since we need just a single PSR. Second, the
non-uniform transformation provides real-time outputs of the simulation, and
thus had we try to simulate a weaker model than PSR by using our shifting
transformation, we would not have gained any improvement in the round
complexity.

We leave open the question of the message complexity. We have characterized
the message complexity obtained in our solution, but the optimal message
complexity for a shifting transformation is open, as is the question of finding
the corresponding shifting transformation.

34

References

[1] R. A. Bazzi and G. Neiger. Simplifying fault-tolerance: providing the
abstraction of crash failures. Journal of the ACM, 48(3):499–554, 2001.

[2] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, 1996.

[3] B. Charron-Bost, R. Guerraoui, and A. Schiper. Synchronous system and
perfect failure detector: Solvability and efficiency issues. In Proceedings of the
IEEE International Conference on Dependable Systems and Networks, pages
523–532, 2000.

[4] D. Dolev, R. Reischuk, and H. R. Strong. ‘Eventual’ is earlier than ‘Immediate’.
In Proceedings of the 23rd IEEE Symposium on Foundations of Computer
Science (FOCS’82), pages 196–203, 1982.

[5] D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in Byzantine
agreement. Journal of the ACM, 37(4):720–741, 1990.

[6] P. Dutta. A short note on uniform consensus in message omission model.
Technical Report EPFL/IC, EPFL, 2002.

[7] M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive
consistency. Information Processing Letters, 14(4):183–186, June 1982.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[9] J. Garay and Y. Moses. Fully polynomial byzantine agreement for n > 3t
processors in t + 1 rounds. SIAM Journal of Computing (SICOMP), 27(1),
1998.

[10] R. Guerraoui. On the hardness of failure-sensitive agreement problems.
Information Processing Letters, 79(2):99–104, 2001.

[11] R. Guerraoui, P. Kouznetsov, and B. Pochon. A note on set agreement with
omission failures. Electronic Notes in Theoretical Computing Science, 81, 2003.

[12] V. Hadzilacos. Byzantine agreement under restricted types of failures (not
telling the truth is different from telling lies). Technical Report 18-83,
Department of Computer Science, Harvard University, 1983.

[13] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), July 1978.

[14] L. Lamport and M. Fischer. Byzantine generals and transaction commit
protocols. Technical Report 62, SRI International, 1982.

[15] L. Lamport, R. Shostak, and L. Pease. The Byzantine Generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

35

[16] Y. Moses and M. R. Tuttle. Programming simultaneous actions using common
knowledge. Algorithmica, 3(1):121–169, 1988.

[17] G. Neiger and S. Toueg. Automatically increasing the fault-tolerance of
distributed algorithms. Journal of Algorithms, 11(3):374–419, 1990.

[18] L. Pease, R. Shostak, and L. Lamport. Reaching agreement in presence of faults.
Journal of the ACM, 27(2):228–234, 1980.

[19] M. Raynal. Consensus in synchronous systems: a concise guided tour. In
Proceedings of the 2002 Pacific Rim International Symposium on Dependable
Computing (PRDC’02), 2002.

[20] M. C. Roşu. Early-stopping terminating reliable broadcast protocol for general-
omission failures. In Proceedings of the 15th ACM Symposium on Principles of
Distributed Computing (PODC’96), page 209, New York, NY, USA, 1996. ACM
Press.

[21] F. B. Schneider. Replication management using the state machine approach.
In S. Mullender, editor, Distributed Systems. Addison-Wesley, 1993.

A Correctness of the Interactive Consistency Algorithms

A.1 Non-Uniform Interactive Consistency in General

We give in Fig. 1 an algorithm solving non-uniform IC in General, Omission
and Crash, for t < n. We prove in this section that the algorithm in Fig-
ure 1 satisfies the specification of non-uniform IC, through a series of lemmas
(Lemmas 31 to 33).

Lemma 31 In the algorithm in Figure 1, all the correct processes decide on
a vector of values by round f + 1, and halt by round min(f + 2, t + 1).

Proof: If f = 0, all the processes are correct. Any correct process pi sends
its vector Vi of values in round 1 with its value vi (line 4), receives the vector
from every other process at the end of round 1 (line 7), decides on its vector
of values at the end of round 1 (line 12) and halts in round 2 (line 5).

Now assume 1 ≤ f ≤ t. We distinguish two cases:

(1) Some correct process pi decides on its vector Vi in round f . In this case,
process pi sends its vector Vi to all the processes in round f + 1 (line 4),
thus every correct process decides at the end of round f +1 (line 12) and
halts by round min(f + 2, t + 1) (line 5).

36

(2) No correct process decides on its vector in round f . Thus no correct pro-
cess halts by round f + 1. In all rounds 1 ≤ k ≤ f + 1, every correct
process sends a message to all processes, in particular to all correct pro-
cesses (line 4). Consider any correct process pi at the end of round f +1.
As all the correct processes send a message to all the processes in round
1, . . . , f + 1, the set quieti for pi at the end of round f + 1 contain faulty
processes only. Thus, quieti ≤ f < f +1 at the end of round f +1. By the
algorithm, pi fills the missing values in Vi with ⊥ (line 11), then decides
on its vector Vi at the end of round f + 1 (line 12), and halts in round
min(f + 2, t + 1) (line 5).

2

Lemma 32 In the algorithm in Figure 1, for any decision vector V , the jth

component of V is either the value proposed by pj or ⊥. For any vector V
decided by any correct process, the jth component of V is ⊥ only if pj fails.

Proof: If any process pi is correct, pi sends its vector with its value vi to all
the processes in round 1 (line 4). Every correct process receives pi’s vector and
copies the value vi into its own vector (line 7). Thereafter, the value does not
change anymore. 2

Lemma 33 In the algorithm in Figure 1, if any correct process decides on a
vector of values V , then every correct process eventually decides on the same
vector of values V .

Proof: We proceed through a series of claims.

Claim 1 Any process decides on at most one vector.

Proof: From the algorithm in Fig. 1, it is clear that any process may decide
at most on a single vector. 2

Claim 2 If some correct process decides on a vector V such that V [k] = vk 6=
⊥ for some k, then some correct process copies vk (line 7 in Fig. 1) in its own
vector before round t + 1.

Proof: Suppose a process decides on a vector V at the end of round t+1 such
that V [k] = vk 6= ⊥ for some k. This means that there exist t + 1 processes
q1, . . . , qt+1, such that qi sends a vector Qi in round i such that Qi[k] = vk.
One of them, say qk, is necessarily correct. If k = 1, q1 has v1 = vk as its initial
value, at the beginning of round 1. For 2 ≤ k ≤ t + 1, qk copies vk in round
k − 1. In both cases, qk copies vk into its own vector before round t + 1. 2

Claim 3 If any correct process copies vk into its vector Vi for some k, then

37

no correct process ever sets Vj[k] := ⊥.

Proof: Let pi be the first correct process that sets Vi[k] := vk into its vector Vi

of values, for some k. By Claim 2, pi copies vk in some round l, l < t+1. This
implies the existence of l processes q1, . . . , ql, such that qx sends a vector Qx

in round x such that Qx[k] = vk. We distinguish two subcases, namely rounds
1 to l, and rounds l + 1 to t + 1:

(1) Suppose now by contradiction that some processes set V [k] := ⊥ in their
vector of values, and denote pj the first process that sets Vj[k] := ⊥ in
some round m ≤ l. In any round i, 1 ≤ i ≤ m, pj does not receive the
vector of values Qi from qi. Thus, at the end of round m, the set |quietj|
includes processes q1, . . . , qm, and thus |quietj| ≥ m at the end of round
m. As pj is the first process that sets Vj[k] := ⊥, pj necessarily does it
because |quietj| < m at the end of round m — a contradiction.

(2) As pi copies vk in round l, pi sends its vector of values Vi such that
Vi[k] = vk in round l + 1. From subcase 1 above, no process sends a
vector of values V such that V [k] = ⊥ in round l + 1. Thus, all the
correct processes receive Vi in round l + 1 and set V [k] = vk. Thereafter,
the value V [k] at any correct process may not change anymore. Thus no
correct process pj ever sets Vj[k] := ⊥.

2

By Lemma 31 and Claim 1, every correct process eventually decides on at
most one vector of values. By Lemma 32, for any decided vector V and for
any k, V [k] is either ⊥ or pk’s value. For any two vectors of values Vi and
Vj respectively decided by two correct processes pi and pj, and for any k,
Vi[k] = Vj[k] then directly follows from Claims 2 and 3. 2

A.2 Uniform Interactive Consistency in Omission and Crash

The algorithm in Figure 2 solves IC in Omission and Crash. In both models
we assume t < n. In the algorithm, all the processes that decide, decide after
t + 1 rounds. We show in this section that the algorithm in Figure 2 satisfies
the specification of Uniform IC, through a series of lemmas (Lemma 34 to 36).

Lemma 34 In the algorithm in Figure 2, every correct process eventually
decides.

Proof: It is clear that the algorithm runs for exactly t + 1 rounds at each
process, and no process may ever block while executing the algorithm. Thus
every process that does not crash, including any correct process, decides at

38

the end of round t + 1. 2

Lemma 35 In the algorithm in Figure 2, for any decision vector V , the jth

component of V is either the value proposed by pj or ⊥, and is ⊥ only if pj

fails.

Proof: We observe that the processes only decide at line 6, and each pro-
cess pi decides on its vector Vi of estimate values. Throughout the algorithm,
the coordinate Vx[j] at any process px, corresponding to the estimate value
proposed by any process pj, is assigned with either ⊥ or pj’s initial value (at
line 1), or pk’s component from another vector of estimate values (at line 5).
Hence, any Vx[j] component at any process px may only contain pj’s initial
value or ⊥.

If pj is a correct process and thus never crashes, pj sends its initial vector of
estimate values (which contains its initial value vj) to all the other processes
in round 1, and thereafter, every process pi that reaches the end of round 1,
receives pj’s message at line 5 and assigns Vi[j] with vj. (In the algorithm, the
expression (j − r + 1) is evaluated to j at any process pi.) In any subsequent
round r, the jth component of any vector Vi for any process pi does not change.
2

Lemma 36 In the algorithm in Figure 2, no two processes decide on different
vectors of estimate values.

Proof: We show that all the processes that decide a vector of estimate values
at line 6, decide on the same component for any process pi.

Suppose by contradiction that there exist two processes pa and pb that respec-
tively decide on the vectors of estimate values Va and Vb, such that Va[i] 6= Vb[i].
Furthermore, assume without loss of generality that Va[i] = vi and Vb[i] = ⊥.

According to the algorithm in Figure 2, and in particular to line 5, all processes
copy pi’s estimate value from pi’s vector in round 1, from pi+1’s vector in
round 2, . . . , from p

(i+t) mod n
’s vector in round t + 1. Among processes pi

to p
(i+t) mod n

, one is necessarily correct, say p
(i+x) mod n

(0 ≤ x ≤ t), as

there are at most t processes that may ever commit a send omission in any
execution.

In round x+1 (1 ≤ x+1 ≤ t+1), every process pj, and in particular pa and pb,
receives p

(i+x) mod n
’s vector of estimate values, and copies pi’s estimate value

from V
(i+x) mod n

to Vj. Thereafter, all the processes have the same estimate

value for pi’s value. There are two cases, whether V
(i+x) mod n

[i] is vi or is ⊥:

• V
(i+x) mod n

[i] = vi. Every process, in particular pb, receives p
(i+x) mod n

’s

39

message. Thus pb assigns Vb[i] with vi. Thereafter, pb only receives vi in the
ith component of any vector of estimate values. A contradiction with the
fact that pb decides on Vb and Vb[i] = ⊥.

• V
(i+x) mod n

[i] = ⊥. Every process, in particular pa, receives p
(i+x) mod n

’s

message. Thus pa assigns Va[i] with ⊥. Thereafter, pa only receives ⊥ in the
ith component of any vector of estimate values. A contradiction with the
fact that pa decides on Va and Va[i] = vi.

2

A.3 Uniform Interactive Consistency in General-MAJ

The algorithm in Figure 3 solves IC in General-MAJ. We show that the algo-
rithm satisfies termination, validity and uniform agreement.

Lemma 37 In the algorithm in Figure 3, for any decision vector V , the jth

component of V is either the value proposed by pj or ⊥, and is ⊥ only if pj

fails.

Proof: We observe that the processes only decide at line 14, and each process
pi decides on its vector Vi of estimate values. Throughout the algorithm, the
coordinate Vx[j] at any process px, corresponding to the estimate value of any
process pj, is assigned with pj’s initial value (at line 3), or pk’s component from
another vector of estimate values (at line 12). Hence, any Vx[j] component may
only contain pj’s initial value, or ⊥.

If pj is a correct process and thus never crashes, pj sends its initial vector of
estimate values (which contains its initial value vj) to all the other processes
in round 1, and thereafter, every process pi that reaches the end of round
1, receives pj’s message at line 6 and assigns Vi[j] with vj. In any subsequent
round r, the jth component of any vector Vi for any process pi does not change.
2

Lemma 38 In the algorithm in Figure 3, every correct process eventually
decides.

Proof: Suppose by contradiction that there is a correct process pi that does
not decide. Since pi is correct, pi completes round t + 1. Furthermore, since pi

does not decide, |haltt+1
i ∪ suspectt+1

i | ≥ t + 1. Consider any process pj in the
set haltt+1

i ∪ suspectt+1
i . There is at least one round k ≤ t + 1 in which either

pi does not receive a message from pj, or pj does not receive a message from
pi. Since pi is correct, (1) if pi does not receive a message from pj in round
k, then either pj crashes in round r, or commits a send-omission in round k,

40

or (2) if pj does not receive a message from pi in round k, then pj commits a
receive omission in round k. In both cases, pj is a faulty process. Therefore,
|haltt+1

i ∪ suspectt+1
i | ≥ t + 1 implies there are more than t faulty processes. A

contradiction. 2

Lemma 39 In the algorithm in Figure 3, no two processes decide on different
vectors of estimate values.

Proof: Suppose by contradiction that there are two distinct processes pa and
pb which decide on distinct vectors, respectively Va and Vb. Without loss of
generality, consider that there exists k, such that Va[k] = c 6= Vb[k] = d.
Hence, at the end of round t + 1, we have Va[k] = c and Vb[k] = d, and
|halta ∪ suspecta| ≤ t and |haltb ∪ suspectb| ≤ t.

For any process pi, the kth component of Vi, Vi[k], is only assigned with the
value Vj[k] from another process pj, and is assigned with pk’s initial value by
pk at the initialization of the algorithm. Hence, Vi[k] may only contain vk or
⊥. Assume without loss of generality that Va[k] = vk and that Vb[k] = ⊥. For
every run of the algorithm in Figure 3, let C0 = {pk} and Cx (1 ≤ x ≤ t + 1)
be the set of every process pl such that Vl[k] = vk at the end of round x′ ≤ x.
From the definition of Cx, we immediately observe that:

(1) O1: For 0 ≤ x ≤ t + 1, Cx ⊆ Cx+1. This follows from the fact that as
soon as any process pl assigns vk to Vl[k], pl keeps Vi[k] unchanged.

(2) O2: For 0 ≤ x ≤ t + 1,∀pl ∈ Cx, if pl sends its vector of estimate values
in round x′ > x, then Vl[k] = vk.

In the following, we prove five lemmas (Lemma 40 to Lemma 44) based on
these assumptions. Lemma 44 contradicts Lemma 41. 2

Lemma 40 Consider any process pl after completing round k (1 ≤ k ≤ t+1).
Let senderMsgk

l be the processes from which pl receives a message in round k
and that do not already belong to haltk−1

l . Then senderMsgk
l = Ω\haltkl .

Proof: Consider any process pl that reaches the end of round k, for 1 ≤ k ≤
t + 1, and consider any other process pm ∈ Ω distinct of pl. There are three
exhaustive and mutually exclusive cases regarding the message from pm to pl

in round k: (1) if pl does not receive any message from pm, then pl inserts pm in
haltl (line 10); (2) if pl receives a message from pm in round k and pm /∈ haltk−1

l ,
then pm ∈ senderMsgk

l and pm /∈ haltkl ; (3) if pl receives a message from pm

in round k and pm ∈ haltk−1
l , then pm /∈ senderMsgk

l and pm ∈ haltkl (line 6).
Thus any process pm is either in senderMsgk

l or in haltkl . 2

Lemma 41 |Ct| ≤ t.

41

Proof: Suppose by contradiction that |Ct| > t. Consider the message sent by
any process pm ∈ Ct to pb. From the observation O2 here above, it follows
that either pb receives from pm a message with Vm[k] = vk in round t + 1, or
pb does not receive any message from pm in round t + 1 due to some failure.

Now consider the messages received by pb in round t+1. The set senderMsgt+1
b

does not contain the message from pm, otherwise pb sets Vb[k] = vk. Therefore,
from Lemma 40, pm ∈ haltt+1

b . As a result, Ct ⊆ haltt+1
b and |haltb∪suspectb| ≥

|haltb| ≥ |Ct| > t: a contradiction. 2

Lemma 42 pa ∈ Ct+1 and pa /∈ Ct−1.

Proof: Suppose by contradiction that pa ∈ Ct−1. Consider any process pm ∈
Ω\Ct which sends a message to pa in round t+1. From the definition of Ω\Ct,
Vm[k] = ⊥. Therefore, pm does not receive any message from pa in round t.
Hence, from Lemma 40, pa ∈ halttm. Therefore, from each process in Ω\Ct, pa

either receives a message [V ′,Halt′] in round t + 1, such that pa ∈ Halt′, or pa

does not receive a message due to some failure. Thus, every process in Ω\Ct is
either in suspectt+1

a or is in haltt+1
a . Consequently, Ω\Ct ⊆ haltt+1

a ∪ suspectt+1
a .

From Lemma 41, it follows that |Ω\Ct| ≥ n − t > t (recall that t < n
2

in
Omission(n, t)). So |haltt+1

a ∪ suspectt+1
a | ≥ |Ω\Ct| > t: a contradiction. 2

Lemma 43 For all k such that 0 ≤ k ≤ t− 1, Ck ⊂ Ck+1.

Proof: Consider any 0 ≤ k ≤ t − 1. From the observation O2 here above,
Ck ⊆ Ck+1. So, either Ck ⊂ Ck+1, or Ck = Ck+1. Suppose by contradiction
Ck = Ck+1.

For any process pm ∈ Ω\Ck+1, pm does not receive any message from any
process in Ck; otherwise, pm sets Vm[k] = vk and pm ∈ Ck+1. Therefore, from
Lemma 40, Ck ⊆ haltk+1

m . Since Ck = Ck+1, so for every process pm ∈ Ω\Ck+1,
Ck+1 ⊆ haltk+1

m . Thus, in every round higher than k + 1, the processes in
Ω\Ck+1 ignore all the messages from any process in Ck+1 while updating their
vector of estimate values. For any process pm ∈ Ω\Ck+1, Vm[k] = ⊥. Thus,
after k + 1 rounds, the set C never changes (no process in Ω\C ever assigns
V [k] with vk), i.e., Ck+1 = Ck+2 = . . . = Ct+1. A contradiction with Lemma 42.
2

Lemma 44 |Ct| ≥ t + 1.

Proof: Lemma 43 implies that for every 0 ≤ k ≤ t − 1, |Ck+1| − |Ck| ≥ 1.
We know that C0 = {pk} and thus |C0| ≥ 1. Therefore, |Ct| ≥ t + 1. (A
contradiction with Lemma 41.) 2

42

